JP2018199159A - 面取り加工方法 - Google Patents

面取り加工方法 Download PDF

Info

Publication number
JP2018199159A
JP2018199159A JP2017163732A JP2017163732A JP2018199159A JP 2018199159 A JP2018199159 A JP 2018199159A JP 2017163732 A JP2017163732 A JP 2017163732A JP 2017163732 A JP2017163732 A JP 2017163732A JP 2018199159 A JP2018199159 A JP 2018199159A
Authority
JP
Japan
Prior art keywords
scanning
irradiation position
edge portion
chamfering
scanning step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017163732A
Other languages
English (en)
Other versions
JP7006022B2 (ja
Inventor
康弘 粂
Yasuhiro Kume
康弘 粂
裕喜 比江嶋
Hiroyoshi Hiejima
裕喜 比江嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Publication of JP2018199159A publication Critical patent/JP2018199159A/ja
Application granted granted Critical
Publication of JP7006022B2 publication Critical patent/JP7006022B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

【課題】金属材料における微小部分の面取りを高精度に行うことができる面取り加工方法を提供する。【解決手段】面取り加工方法は、エッジ部Eの延在方向であるY方向に沿ってレーザ光Lを照射しつつ走査する走査工程と、Y方向に直交するX方向に沿ってレーザ光Lの照射位置を切り換える切換工程と、を備え、XY面91におけるエッジ部Eから離れた位置を照射位置として走査工程を開始し、走査工程と切換工程とを交互に繰り返して複数回に亘って走査工程を実行することにより、X方向における照射位置をエッジ部Eに近付けつつレーザ光Lを照射する。【選択図】図1

Description

本発明は、金属材料の面取りを行う面取り加工方法に関する。
例えば、下記の特許文献1には、レーザ光を用いてガラス基板等の脆性材料の面取りを行う技術が開示されている。特許文献1に記載の技術では、レーザ光によるアブレーション加工を行うことにより、面取り時にクラック(割れ)等の欠陥が生じることを抑制している。
国際公開第2009/157319号
ところで、特許文献1に記載の技術では脆性材料が面取りの対象とされているが、高硬度の金属材料(例えばプレス加工を行う金型等)が面取りの対象とされる場合には、従来、手作業による研磨によって面取りが行われていた。このような金属材料は、微細粒子の金属粉末とバインダ(粘結剤)とを焼結することにより得られる焼結体であることが多い。そのため、金属材料の面取りが研磨によって行われる場合には、摩擦により金属材料の表面から金属の粒子が脱落して、粒子が脱落した部分に窪みが生じることがある。このような場合には、研磨された部分が凹凸面となるため、精度の高い面取りを行うことは困難となる。特に、微小部分の面取りを行う場合には、小さな凹凸であっても面取りの精度に影響し易い。
そこで、金属材料における微小部分の面取りを高精度に行うことができる面取り加工方法が求められる。
本開示に係る面取り加工方法は、
金属材料の複数の面が交差して形成されるエッジ部を面取り対象として、当該エッジ部を形成する複数の面のうち何れかの面である対象面に対向する位置からレーザ光を照射してアブレーション加工することにより面取りを行う面取り加工方法であって、
前記エッジ部の延在方向に沿って前記レーザ光を照射しつつ走査する走査工程と、
前記対象面内で前記延在方向に直交する直交方向に沿って前記レーザ光の照射位置を切り換える切換工程と、を備え、
前記対象面における前記エッジ部から離れた位置を前記照射位置として前記走査工程を開始し、前記走査工程と前記切換工程とを交互に繰り返して複数回に亘って前記走査工程を実行することにより、前記直交方向における前記照射位置を前記エッジ部に近付けつつ前記レーザ光を照射する。
本構成によれば、アブレーション加工によって、金属粒子の結合状態によらず金属材料における所望の箇所を蒸発、飛散させることが可能となり、金属粒子自体を削り取ることにより金属材料表面からの金属粒子の脱落を抑制しつつ加工することができる。また、走査工程と切換工程とを交互に繰り返し行うことで、エッジ部の延在方向及びこれに直交する直交方向の範囲で、当該エッジ部の周辺部分を蒸発、飛散させて、削り取る形状の調整が可能となるので、R形状等の面取りを任意に行うことができる。このように、本構成によれば、金属材料における微小部分の面取りを高精度に行うことができる。
また、
前記走査工程により前記延在方向に沿う溝部を形成し、
前記走査工程と前記切換工程とを組み合わせて実行することにより前記溝部の幅を前記直交方向に沿って拡大させ、
前記切換工程を1回行ったときの前記照射位置の移動量を、前記溝部の最大幅の半分よりも小さく設定していると好適である。
本構成によれば、延在方向に沿う溝部を直交方向に拡大させていくことで、エッジ部の周辺部分を蒸発、飛散させることが可能となり、エッジ部の面取りを行うことができる。そして、切換工程を1回行ったときの照射位置の移動量が溝部の最大幅の半分よりも小さく設定されていることで、切換工程を実行する前後でのそれぞれの照射位置を直交方向に沿って互いに近接させることが可能となり、溝部を直交方向に拡大させていく過程で溝部の底部分を滑らかに形成することができる。従って、本構成によれば、面取り部分を滑らかな面状に仕上げることができる。
また、
前記切換工程により前記照射位置を前記エッジ部に近付けていくに従って、1回の前記走査工程における走査回数を増やしていくと好適である。
本構成によれば、エッジ部に近い領域ほど、金属材料における対象面を基準とする深い部分に亘って、当該部分を蒸発、飛散させることができる。これにより、金属材料の微小部分の面取りを適切に行うことができる。
また、
前記切換工程により前記照射位置を前記エッジ部に近付けていくに従って、1回の前記走査工程において照射される前記レーザ光の出力を上げていくと好適である。
本構成によれば、エッジ部に近い領域ほど、金属材料における対象面を基準とする深い部分に亘って、当該部分を蒸発、飛散させることができる。これにより、金属材料の微小部分の面取りを適切に行うことができる。
また、
前記切換工程により前記照射位置が前記対象面から外れた位置に設定された後は、前記切換工程により前記照射位置を前記エッジ部から遠ざけていくに従って、1回の前記走査工程における走査回数を増やしていくと好適である。
本構成によれば、面取りにより形成される面を、滑らかな曲面状となるように仕上げることが可能となる。
また、
前記切換工程により前記照射位置が前記対象面から外れた位置に設定された後は、前記切換工程により前記照射位置を前記エッジ部から遠ざけていくに従って、1回の前記走査工程において照射される前記レーザ光の出力を上げていくと好適である。
本構成によれば、面取りにより形成される面を、滑らかな曲面状となるように仕上げることが可能となる。
また、
前記切換工程により前記照射位置を前記エッジ部から遠ざけていく場合における前記エッジ部から前記照射位置までの最大距離が、前記溝部の前記最大幅の半分に相当する距離以下であると好適である。
本構成によれば、エッジ部がレーザ光の照射範囲から外れることを抑制しつつ、エッジ部を滑らかな曲面状に仕上げることが可能となる。
本開示に係る技術のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。
光学系の構成を示す模式図である。 光学系の制御構成を示すブロック図である。 各条件で走査工程を行った場合に得られる各溝部を示す図である。 各条件で切換工程を行った場合に得られる各溝部の比較例を示す図である。 面取り加工の一過程を示す図である。 面取り加工の一過程を示す図である。 面取り加工の一過程を示す図である。 面取り加工の一過程を示す図である。 面取り加工の一過程を示す図である。 レーザ光のエネルギー密度と各材料の加工閾値との関係を示す図である。 第2実施形態の構成を示す図である。 第2実施形態の変形例を示す図である。 第3実施形態の構成を示す図である。 第3実施形態の変形例を示す図である。 第4実施形態の構成を示す図である。 第4実施形態の変形例を示す図である。 その他の実施形態の構成を示す図である。
本発明は、金属材料に対してレーザ光を照射してアブレーション加工することにより面取りを行う面取り加工方法であり、金属材料の微小部分の面取りを行う際に用いられると好適である。以下、本発明に係る面取り加工方法の実施形態について説明する。ただし、以下で説明する実施形態は本発明の一例に過ぎず、このような実施形態によって本発明が限定されるものではない。また、本発明は、面取りを行うための加工方法に限定されることはなく、当該方法を実現するための装置等についても本発明の範囲とすることができる。
〔第1実施形態〕
第1実施形態に係る面取り加工方法について図面を参照して説明する。
図1には、金属材料としてのワーク9の面取りを行うための光学系100が示されている。ワーク9は、高硬度の金属材料であり、例えばプレス加工を行う際の金型等である。図1に示されるように、光学系100を用いた面取り加工方法では、ワーク9の複数の面91、92が交差して形成されるエッジ部Eを面取り対象として、当該エッジ部Eを形成する複数の面91、92のうち何れかの面である対象面に対向する位置からレーザ光Lを照射してアブレーション加工することにより面取りを行う。
なお、本実施形態では、エッジ部Eの延在方向をY方向と定義し、レーザ光Lの照射方向をZ方向と定義し、Y方向及びZ方向に直交する直交方向をX方向と定義する(図1等参照)。
図1に示される例では、エッジ部Eは、X方向及びY方向に沿うXY面91と、Y方向及びZ方向に沿うYZ面92と、が交差して形成されている。本実施形態では、これらの面91、92のうち、XY面91が「対象面」とされる。従って、本実施形態では、XY面91に対向する位置から(XY面91に垂直なZ方向に沿って)レーザ光Lを照射してアブレーション加工を行う。
図1に示されるように、光学系100は、光学定盤1と、光学定盤1に設けられたXYステージ2と、レーザ光Lを発振するレーザ発振器3と、レーザ発振器3により発振されたレーザ光Lを偏向する光偏向装置としてのガルバノスキャナ5と、を備えている。なお、本実施形態では、レーザ発振器3により発振されたレーザ光Lは、複数のミラーから構成される光ガイド機構4によってガルバノスキャナ5へと導かれる。ただし、光学系100は、光ガイド機構4を備えない構成とされていても良く、その場合には、レーザ発振器3により発振されたレーザ光Lが直接ガルバノスキャナ5に導かれるように構成されると良い。
XYステージ2は、ワーク9の位置合わせを行うための装置である。XYステージ2は、X方向又はY方向に摺動自在な複数(図示の例では2つ)のステージを有しており、ステージ駆動部2A(図2参照)によってこれらのステージが駆動される。本実施形態では、XYステージ2は、ワーク台2Bを介して当該XYステージ2の上に配置されたワーク9を、X方向及びY方向に移動させることにより、ワーク9の位置合わせを行う。なお、ワーク9の位置合わせは、光学系100に備えられた撮像装置6(例えばCCDカメラ)により得られた画像に基づいて行われると良い。
レーザ発振器3は、レーザ光Lを発振するための装置である。レーザ発振器3は、レーザ光Lの出力、パルス幅、繰り返し周波数等を調整可能に構成されている。本実施形態では、レーザ発振器3は、パルス幅が短い短パルスレーザを発振する。本実施形態では、レーザ光Lのパルス幅は350フェムト秒(fs)に設定され、当該レーザ光Lは、いわゆるフェムト秒レーザとして構成されている。ただし、これに限らず、レーザ光Lは、例えばパルス幅がピコ秒オーダーのピコ秒レーザとして構成されていても良い。そして、本実施形態では、レーザ光Lは、その出力が0.8ワット(W)に設定され、その繰り返し周波数が200キロヘルツ(kHz)に設定され、その波長が赤外線領域である1045ナノメートル(nm)に設定される。ただし、これらの数値は単なる例示であり、この例示によって設定値が限定されるものではない。
光ガイド機構4は、レーザ発振器3により発振されたレーザ光Lをガルバノスキャナ5に導くための装置である。本実施形態では、光ガイド機構4は、複数(図示の例では3つ)のミラーを含んで構成されている。複数のミラーによってレーザ光Lの光路が変換され、レーザ光Lがガルバノスキャナ5に導かれる。光ガイド機構4により、レーザ光Lの光路を比較的自由に設定でき、これにより、光学系100を構成する各装置(少なくともレーザ発振器3及びガルバノスキャナ5)の相対的な配置関係を柔軟に設定することができる。
ガルバノスキャナ5は、レーザ光Lを偏向して、これをワーク9に照射するための装置である。ガルバノスキャナ5によりレーザ光Lが走査される。本実施形態では、ガルバノスキャナ5は、レーザ光LをX方向及びY方向に偏向可能に構成されており、図2に示されるように、レーザ光LをX方向に偏向するX軸ガルバノミラー51Xと、Y方向に偏向するY軸ガルバノミラー51Yと、を備えている。
X軸ガルバノミラー51Xは、軸を介してX軸ガルバノモータ52Xに連結されており、X軸ガルバノモータ52Xの作動により回転するように構成されている。これにより、レーザ光LがX方向に偏向される。
Y軸ガルバノミラー51Yは、軸を介してY軸ガルバノモータ52Yに連結されており、Y軸ガルバノモータ52Yの作動により回転するように構成されている。これにより、レーザ光LがY方向に偏向される。
図1に示されるように、光学系100は、ガルバノスキャナ5によって偏向されたレーザ光Lを加工の対象とされる部分で結像するための結像機構7を更に備えている。本実施形態では、結像機構7は、fθレンズとして構成されている。これにより、結像部分における走査速度を等速にすることができる。本実施形態では、レーザ光Lの走査速度が1メートル毎秒(m/s)に設定されている。なお、本実施形態において「走査」とは、特に説明しない場合には、Y方向に沿うレーザ光Lの走査を意味するものとする。
次に、光学系100の制御構成について説明する。
光学系100は、図2に示されるように、当該光学系100を構成する各装置を制御するための制御装置8を備えている。
制御装置8は、ステージ駆動部2Aを制御してXYステージ2を駆動する。制御装置8は、XYステージ2を駆動し、撮像装置6によって得られる画像に基づいてX方向及びY方向においてワーク9の位置合わせを行う。これにより、加工を行うための適切な位置にワーク9を配置することができる。このように、本実施形態に係る面取り加工方法は、金属材料としてのワーク9の位置合わせを行う位置調整工程を備えている。
制御装置8は、X軸ガルバノモータ52Xを制御してX軸ガルバノミラー51Xを駆動する。これにより、レーザ光LをX方向に偏向することができ、その結果、レーザ光Lの照射位置PをX方向に沿って切り換えることができる。本実施形態では、制御装置8は、予め設定されたタイミングでX軸ガルバノミラー51Xを駆動することにより、レーザ光Lの照射位置PをX方向に沿って切り換えるように構成されている。このように、面取り加工方法は、対象面としてのXY面91内でY方向に直交する方向であるX方向に沿ってレーザ光Lの照射位置Pを切り換える切換工程Cを備えている。
制御装置8は、Y軸ガルバノモータ52Yを制御してY軸ガルバノミラー51Yを駆動する。これにより、レーザ光LをY方向に偏向することができ、その結果、レーザ光LをY方向に沿って走査することができる。本実施形態では、制御装置8は、レーザ光Lの走査がY方向に沿って往復して行われるように、Y軸ガルバノモータ52Yを正逆回転させつつY軸ガルバノミラー51Yを駆動するように構成されている。このように、面取り加工方法は、エッジ部Eの延在方向であるY方向に沿ってレーザ光Lを照射しつつ走査する走査工程Sを備えている。
制御装置8は、レーザ発振器3を制御してレーザ光Lの出力、パルス幅、繰り返し周波数等を調整する。これらの値は、用途に応じて適宜調整することができる。
本実施形態では、以上のように構成された光学系100によって、ワーク9のエッジ部Eの面取りを行う。
本実施形態では、走査工程SによりY方向に沿う溝部93をXY面91に形成する(図3参照)。図3には、各条件で走査工程Sを行った場合に得られる複数の溝部93が模式的に示されている。図3に示されるように、溝部93は、最も深い部分である最深部93Aと、X方向におけるエッジ部E(図3において省略)に向かう側を基準として、最深部93Aに向かって下降する下降部93Bと、最深部93Aからエッジ部Eに向かって上昇する上昇部93Cと、を有している。
走査工程Sは、照射位置Pと走査回数とが異なる各条件下で行われる。異なる条件下で走査工程Sを行うことにより、異なる深さD(最深部93Aの深さ)の溝部93を形成することができる。
本実施形態における走査工程Sには、図3に示されるように、加工されていない状態のXY面91に深さD1の溝部93を形成する条件で行われる第1走査工程S1と、深さD2の溝部93を形成する条件で行われる第2走査工程S2と、深さD3の溝部93を形成する条件で行われる第3走査工程S3と、深さD4の溝部93を形成する条件で行われる第4走査工程S4と、深さD5の溝部93を形成する条件で行われる第5走査工程S5と、がある。
深さD1〜深さD5は、次第に深さが深くなっていくものであり、深さD1が最も浅く、深さD5が最も深い(図3参照)。
本実施形態では、第1走査工程S1〜第5走査工程S5は、次第に走査回数が多くなっていくものであり、第1走査工程S1が最も走査回数が少なく、第5走査工程S5が最も走査回数が多い。
本実施形態では、各走査工程S1〜S5における走査回数は、切換工程Cを行うタイミングによって調整される。すなわち、本実施形態では、Y方向に沿うレーザ光Lの走査は、X方向における同じ位置において往復して行われ、その走査速度は一定とされている(本例では1m/s)。そして、切換工程Cによって照射位置PをX方向に沿って移動させない限り、X方向における同じ位置においてY方向の走査が繰り返し行われる(走査回数が増加する)。
切換工程Cによって照射位置Pを移動させる(切り換える)タイミングが早いほど、1回の走査工程Sによって行われる走査回数が少なくなり、これによって形成される溝部93の深さDは浅くなる。反対に、切換工程Cによって照射位置Pを移動させるタイミングが遅いほど、1回の走査工程Sによって行われる走査回数が多くなり、これによって形成される溝部93の深さDは深くなる。
本実施形態では、走査工程Sと切換工程Cとを組み合わせて実行することにより溝部93の幅W(最大幅)をX方向に沿ってエッジ部E側に拡大させていく。これにより、エッジ部Eの周辺部分を蒸発、飛散させることができ、エッジ部Eの面取りを行うことができる。
ここで、溝部93の幅Wを拡大させていくことによりエッジ部Eの面取りを適切に行うには、切換工程Cを1回行ったときの照射位置Pの移動量ΔXを適切な値に設定する必要がある。この点に関して、図4の比較例を参照して説明する。
図4には、切換工程Cを1回行ったときの照射位置Pの移動量ΔXを異なる値に設定した場合に、1回の切換工程Cにより合計で2回の走査工程Sを行ったときに形成される各溝部93の比較例が示されている。図4中の細線は、1回の走査工程Sで形成される仮想的な溝部の外形を示しており、図4中の太線は、2回の走査工程Sによって実際に形成される溝部93の外形を示している。
図4中の左図は本実施形態に係るものであり、移動量ΔXが溝部93の基準幅WRの半分幅Wh(以下、単に半分幅Whという場合がある。)よりも小さい場合に形成される溝部93を示している(ΔX<Wh)。図4中の中央図は、移動量ΔXと半分幅Whとが同じ場合に形成される溝部93を示している(ΔX=Wh)。図4中の右図は、移動量ΔXが半分幅Whよりも大きい場合に形成される溝部93を示している(ΔX>Wh)。ここで、「溝部93の基準幅WR(最大幅)」とは、加工されていない状態のXY面91に走査工程Sを1回行った場合における溝部93の幅W(最大幅)であり、この幅W(基準幅WR)の半分の幅が半分幅Whとなる(図3参照)。従って、本実施形態では、拡大している途中の溝部93の幅Wは、基準幅WRには相当せず、この幅Wが移動量ΔXの基準となるわけではない。
図4中の中央図に示されるように、移動量ΔXと半分幅Whとが同じ場合には(ΔX=Wh)、2箇所の照射位置Pでそれぞれ行われた合計2回の走査工程Sにより、底部分が平らな溝部93が形成された。このような溝部93をX方向に沿って拡大させていったとしても、エッジ部Eの面取りを適切に行うことはできない。
図4中の右図に示されるように、移動量ΔXが半分幅Whよりも大きい場合には(ΔX>Wh)、2箇所の照射位置Pでそれぞれ行われた合計2回の走査工程Sにより、底部分が波状(凹凸状)の溝部93が形成された。このような溝部93をX方向に沿って拡大させていったとしても、エッジ部Eの面取りを適切に行うことはできない。
そこで、本実施形態では、図4中の左図に示されるように、切換工程Cを1回行ったときの照射位置Pの移動量ΔXを、溝部93の基準幅WRの半分幅Whよりも小さく設定している。このように半分幅Whを設定した場合には、2箇所の照射位置Pでそれぞれ行われた合計2回の走査工程Sにより、全体が滑らかに連続した曲面状の溝部93が形成された。これによれば、溝部93を、X方向に拡大させていく過程で滑らかに形成することができ、その結果、面取り部分を滑らかな曲面状に仕上げることができる。なお、照射位置Pの移動量ΔXは、X軸ガルバノミラー51Xの回転量を制御することにより調整することができる。
次に、面取り加工方法の手順について、図5〜図9を参照して説明する。なお、各図中の細線は、1回の走査工程Sで形成される仮想的な溝部の外形を示しており、各図中の太線は、走査工程Sを複数回繰り返すことによって実際に形成される溝部93の外形を示している。
面取り加工方法では、XY面91におけるエッジ部Eから離れた位置を照射位置Pとして走査工程Sを開始し、走査工程Sと切換工程Cとを交互に繰り返して複数回に亘って走査工程Sを実行することにより、X方向における照射位置Pをエッジ部Eに近付けつつレーザ光Lを照射する。
本実施形態では、切換工程Cにより照射位置Pをエッジ部Eに近付けていくに従って、1回の走査工程Sにおける走査回数を増やしていく。これにより、エッジ部Eに近い領域ほど、ワーク9の深い部分に亘って、当該部分を蒸発、飛散させることができる。
本実施形態では、レーザ光Lの照射位置Pを第1照射位置P1とした状態で、各走査工程S1〜S5のうち、第1走査工程S1を最初に行う(図5参照)。第1照射位置P1は、エッジ部Eから離れた位置に設定され、面取り加工(アブレーション加工)を行う際の開始位置となる。第1走査工程S1を行うことにより、最深部93Aの位置を第1照射位置P1とする溝部93が、XY面91に形成される。このとき形成される溝部93は、幅W(基準幅WR)、深さD1とされる。本実施形態では、第1走査工程S1は、第1走査工程S1の開始(加工の開始)から時間T1が経過するまでの間行われる。
第1走査工程S1の開始から時間T1が経過後した後は、第2走査工程S2に移行するための切換工程Cを1回行い、レーザ光Lの照射位置Pを次の照射位置である第2照射位置P2に移動させて、第2走査工程S2を行う(図6参照)。前述のように、このときの移動量ΔXは、溝部93の基準幅WRの半分幅Whよりも小さく設定されている。本実施形態では、第2走査工程S2は、第2走査工程S2の開始(時間T1の経過後)から時間T2が経過するまでの間行われる。時間T2は、時間T1よりも長く設定されている。これにより、第2走査工程S2で実行される走査回数が、第1走査工程S1で行われる走査回数よりも多くなる。面取り加工方法では、第2走査工程S2の実行により、第1走査工程S1で形成された溝部93をX方向に沿って拡大させつつ当該溝部93の最深部93Aを深く形成する。なお、図6に示される例では、第2走査工程S2を実行することにより、溝部93(詳細には溝部93の上昇部93C)がエッジ部Eに到達する。従って、この時点で溝部93の幅Wは最大となる。そして、第2走査工程S2を終えた時点で、エッジ部Eと上昇部93Cとが繋がると共に、Z方向におけるエッジ部Eの位置が第1走査工程S1を終えた時点(図5参照)での位置よりも低い(深い)位置となっている。
第2走査工程S2の開始から時間T2が経過した後は、第3走査工程S3に移行するための切換工程Cを1回行い、レーザ光Lの照射位置Pを次の照射位置である第3照射位置P3に移動させて、第3走査工程S3を行う(図7参照)。このときの移動量ΔXは、溝部93の基準幅WRの半分幅Whよりも小さく設定されている。本実施形態では、第3走査工程S3は、第3走査工程S3の開始(時間T2の経過後)から時間T3が経過するまでの間行われる。時間T3は、時間T2よりも長く設定されている。これにより、第3走査工程S3で実行される走査回数が、第2走査工程S2で行われる走査回数よりも多くなる。面取り加工方法では、第3走査工程S3の実行により、第2走査工程S2で形成された溝部93の最深部93Aを深く形成する。なお、図7に示される例では、第3走査工程S3を実行することにより、Z方向におけるエッジ部Eの位置が第2走査工程S2を終えた時点(図6参照)での位置よりも更に低い位置となっている。そして、第3走査工程S3を終えた時点では、第2走査工程S2を終えた時点(図6参照)に比べて上昇部93Cが短くなるものの、エッジ部Eと上昇部93Cとは未だ繋がっている状態である(図7参照)。
第3走査工程S3の開始から時間T3が経過した後は、第4走査工程S4に移行するための切換工程Cを1回行い、レーザ光Lの照射位置Pを次の照射位置である第4照射位置P4に移動させて、第4走査工程S4を行う(図8参照)。このときの移動量ΔXは、溝部93の基準幅WRの半分幅Whよりも小さく設定されている。図8に示される例では、第4照射位置P4は、X方向においてワーク9のXY面91から外れた位置(Z方向視でXY面91と重ならない位置)に設定されている。本実施形態では、切換工程Cにより照射位置Pがワーク9のXY面91から外れた位置に設定された後は、切換工程Cにより照射位置Pをエッジ部Eから遠ざけていくに従って、1回の走査工程Sにおける走査回数を増やしていく。照射位置Pをワーク9のXY面91から外れた位置に設定して走査工程Sを実行することで、面取りにより形成される面を、滑らかな曲面状となるように仕上げることが可能となる。本実施形態では、第4走査工程S4は、第4走査工程S4の開始(時間T3の経過後)から時間T4が経過するまでの間行われる。時間T4は、時間T3よりも長く設定されている。これにより、第4走査工程S4で実行される走査回数が、第3走査工程S3で行われる走査回数よりも多くなる。面取り加工方法では、第4走査工程S4の実行により、溝部93の最深部93Aを深く形成する。なお、図8に示される例では、第4走査工程S4を実行することにより、Z方向におけるエッジ部Eの位置が第3走査工程S3を終えた時点(図7参照)での位置よりも更に低い位置となっている。この時点で、上昇部93Cが消滅し、下降部93Bとエッジ部Eとが連続した溝部93が形成されている状態である。そして、エッジ部Eが溝部93の最深部93Aとなる。
第4走査工程S4の開始から時間T4が経過した後は、第5走査工程S5に移行するための切換工程Cを1回行い、レーザ光Lの照射位置Pを次の照射位置である第5照射位置P5に移動させて、第5走査工程S5を行う(図9参照)。このときの移動量ΔXは、溝部93の基準幅WRの半分幅Whよりも小さく設定されている。本実施形態では、第5走査工程S5は、第5走査工程S5の開始(時間T4の経過後)から時間T5が経過するまでの間行われる。時間T5は、時間T4よりも長く設定されている。これにより、第5走査工程S5で実行される走査回数が、第4走査工程S4で行われる走査回数よりも多くなる。面取り加工方法では、第5走査工程S5を実行することにより、溝部93の最深部93Aを深く形成する。なお、図9に示される例では、第5走査工程S5を実行することにより、Z方向におけるエッジ部Eの位置(最深部93Aの位置)が第4走査工程S4を終えた時点(図8参照)での位置よりも更に低い位置となっている。
本実施形態では、第5走査工程S5が、第1走査工程S1〜第5走査工程S5のうち最後に行われる工程である。そして、ワーク9のXY面91から外れた位置である第4照射位置P4及び第5照射位置P5のうち、第5走査工程S5において設定される第5照射位置P5が、エッジ部Eから最も離れた位置に設定されている。
本実施形態では、切換工程Cにより照射位置Pをエッジ部Eから遠ざけていく場合におけるエッジ部Eから照射位置Pまでの最大距離が、溝部93の基準幅WR(最大幅)の半分に相当する距離以下となるように設定されている。図9に示されるように、エッジ部Eから第5照射位置P5までのX方向における離間距離X5は、基準幅WRの半分幅Wh(図3も参照)に相当する距離以下となるように設定されている。
上述したように、照射位置Pをワーク9のXY面91から外れた位置に設定して走査工程S(第4走査工程S4及び第5走査工程S5)を実行することで、面取りにより形成される面を、滑らかな曲面状となるように仕上げることが可能となる。一方で、エッジ部Eから第5照射位置P5までの離間距離X5が、基準幅WRの半分幅Whに相当する距離よりも大きく設定されている場合には、エッジ部Eがレーザ光Lの照射範囲から外れて加工できなくなる可能性が高い。本実施形態では、エッジ部Eから第5照射位置P5までの離間距離X5が、基準幅WRの半分幅Whに相当する距離以下に設定されているため、エッジ部Eがレーザ光Lの照射範囲から外れることを抑制しつつ、エッジ部Eを滑らかな曲面状に仕上げることが可能となる。
このように、第1走査工程S1〜第5走査工程S5を行うことにより、図9に示されるように、滑らかな曲面状となるようにワーク9の面取りを行うことができる。
ここで、照射位置Pをワーク9のXY面91から外れた位置に設定して走査工程S(第4走査工程S4及び第5走査工程S5)を実行することにより、ワーク9を下方で支持するワーク台2Bに対してレーザ光Lが照射される場合がある。この場合には、ワーク台2Bが、意図せず削られる可能性がある。
そこで、本実施形態では、非加工対象であるワーク台2Bの加工閾値が、加工対象(面取り対象)であるワーク9の加工閾値よりも大きい値に設定されている。これにより、照射位置Pをワーク9のXY面91から外れた位置に設定して走査工程Sを実行した場合であっても、レーザ光Lによってワーク台2Bが削られることを抑制することができる。
図10には、レーザ光Lのエネルギー密度と、各材料(ここでは、ワーク9及びワーク台2B)の加工閾値と、の関係が示されている。本実施形態において「加工閾値」とは、レーザ光Lが照射された材料が加工される(削られる)か否かの境界を示すレーザ光Lのエネルギー密度の値である。例えば、エネルギー密度の単位は、「J/cm」などであって良い。
図10における縦軸が、レーザ光Lのエネルギー密度の高低を示しており、横軸が、レーザ光Lの照射範囲を示している。横軸における「P」で示された位置が、レーザ光Lの照射位置Pである。そして、図中において、レーザ出力を小さく設定した場合におけるレーザ光L1でのエネルギー密度及び照射範囲の関係を「L1」が付された実線で示し、同様に、レーザ出力を上記レーザ光L1よりも大きく設定した場合におけるレーザ光L2での上記関係を「L2」が付された実線で示し、レーザ光Lの出力を上記レーザ光L2よりも大きく設定した場合におけるレーザ光L3での上記関係を「L3」が付された実線で示している。また、図中の「V1」はワーク9に用いられる材料(以下、単にワーク9という)の加工閾値(第1加工閾値V1)を示しており、「V2」はワーク台2Bに用いられる材料(以下、単にワーク台2Bという)の加工閾値(第2加工閾値V2)を示している。
図10に示されるように、非加工対象であるワーク台2Bの第2加工閾値V2が、加工対象(面取り対象)であるワーク9の第1加工閾値V1よりも大きい値に設定されている。
レーザ出力を小さく設定した場合におけるレーザ光L1によって加工しようとする場合、そのエネルギー密度は第1加工閾値V1及び第2加工閾値V2の双方を超えない。従って、この場合には、ワーク9及びワーク台2Bのいずれも加工することができない。
また、レーザ出力を大きく設定した場合におけるレーザ光L3によって加工しようとする場合、そのエネルギー密度は第1加工閾値V1及び第2加工閾値V2の双方を超える。従って、この場合には、加工対象であるワーク9の他、非加工対象であるワーク台2Bについても意図せず加工されることになる。
一方、本実施形態では、レーザ光L1を照射する場合よりも大きく、且つ、レーザ光L3を照射する場合よりも小さくなるようにレーザ出力を設定した場合におけるレーザ光L2によって加工する。この場合、レーザ光L2のエネルギー密度は、第2加工閾値V2を超えない範囲で第1加工閾値V1を超える。従って、この場合には、非加工対象であるワーク台2Bが加工されることを抑制しつつ、加工対象であるワーク9のみを加工することが可能となる。これにより、照射位置Pをワーク9のXY面91から外れた位置に設定して走査工程Sを実行した場合であっても、レーザ光Lによってワーク台2Bが加工される(削られる)ことを抑制することができる。
〔第2実施形態〕
次に、第2実施形態について説明する。上記の第1実施形態では、ワーク9及びワーク台2Bそれぞれの加工閾値V1,V2の差を利用することにより、ワーク台2Bが加工されることを抑制しつつ、ワーク9のみを加工することが可能な構成について説明した。第2実施形態では、ワーク台2Bにおけるレーザ光Lが照射される部分での当該レーザ光Lのエネルギー密度を調整する。これにより、ワーク台2Bが加工されることを抑制しつつ、ワーク9のみを加工することが可能となる。以下、第2実施形態について図11を参照して説明する。なお、以下において特に説明しない部分については、上記第1実施形態と同様の構成である。
図11に示されるように、第2実施形態では、ワーク台2Bにおける、X方向においてワーク9のXY面91から外れた部分(Z方向視でXY面91と重ならない部分)に、段部21が形成されている。段部21は、レーザ光Lの走査方向と等しい方向(Y方向)に沿って形成されている。
ワーク台2Bに段部21が形成されていることで、レーザ光Lの照射範囲のうち最もエネルギー密度が高くなる部分である焦点Fとワーク台2Bとを離間させることができる(図11の右図参照)。これにより、ワーク台2Bにおけるレーザ光Lが照射される部分において、レーザ光Lのエネルギー密度を低くすることができ、ワーク台2Bが意図せず加工されることを抑制することが可能となる。
なお、図12に示されるように、ワーク台2Bは、段部21に代えて、当該ワーク台2Bの一部分が切り欠かれて形成された切欠部22を有していても良い。この構成によれば、ワーク台2Bに段部21が形成されている場合と同様の効果を奏することができる。更に、この構成によれば、ワーク台2Bに段部21が形成されている場合に比べてワーク台2Bの厚みを確保し易いため、ワーク台2Bの剛性が低下することを抑制することも可能となる。
〔第3実施形態〕
次に、第3実施形態について説明する。上記の第2実施形態では、段部21又は切欠部22によって、焦点Fとワーク台2Bとを離間させることにより、ワーク台2Bにおけるレーザ光Lが照射される部分での当該レーザ光Lのエネルギー密度を低くしていた。第3実施形態では、ワーク台2Bにおけるレーザ光Lが照射される部分の面積を大きくすることで、当該部分でのレーザ光Lのエネルギー密度を低くする。これにより、ワーク台2Bが加工されることを抑制しつつ、ワーク9のみを加工することが可能となる。以下、第3実施形態について図13を参照して説明する。
図13に示されるように、第3実施形態では、ワーク台2Bにおける、X方向においてワーク9のXY面91から外れた部分(Z方向視でXY面91と重ならない部分)に、X方向の外側に向かって下方に傾斜する傾斜面部23が形成されている。傾斜面部23は、レーザ光Lの走査方向と等しい方向(Y方向)に沿って形成されている。傾斜面部23の傾斜により、ワーク台2Bにおけるレーザ光Lが照射される部分の面積を大きくすることができ、当該部分におけるレーザ光Lのエネルギー密度を低くすることができる。
なお、図14に示されるように、ワーク台2Bは、傾斜面部23に代えて、曲面状に形成された曲面部24を有していても良い。この構成によれば、ワーク台2Bに傾斜面部23が形成されている場合と同様の効果を奏することができる。
〔第4実施形態〕
次に、第4実施形態について説明する。上記の第1実施形態では、ワーク台2Bに用いられる材料の加工閾値を、ワーク9に用いられる材料の加工閾値よりも大きな値である第2加工閾値V2となるように設定していた。第4実施形態では、レーザ光Lを照射されても加工される(削られる)ことのない加工閾値に設定されている抵抗部材25を、加工されることが望ましくない箇所に配置する(図15参照)。以下、第4実施形態について図15を参照して説明する。
図15に示されるように、第4実施形態では、レーザ光Lを照射されても加工される(削られる)ことのない加工閾値に設定されている抵抗部材25を、ワーク台2Bにおける、X方向においてワーク9のXY面91から外れた部分(Z方向視でXY面91と重ならない部分)に配置する。抵抗部材25によりレーザ光Lを遮断することによって、ワーク台2Bにおける当該抵抗部材25の裏側に位置する部分が加工されることを抑制することができる。
抵抗部材25は、Y方向に沿って配置されており、図示の例では、板状に形成されている。但し、レーザ光Lを遮断できる形状であれば、例えば直方体状など、どのような形状であっても良い。抵抗部材25の加工閾値は、レーザ光Lの出力との関係で適宜設定されると良い。
なお、図16に示されるように、抵抗部材25をワーク台2Bに配置することに代えて、抵抗部材25をワーク9自体に配置するようにしても良い。この構成によれば、ワーク9における当該抵抗部材25の裏側に位置する部分が加工されることを抑制することができる。
〔その他の実施形態〕
(1)上記の実施形態では、切換工程Cにより照射位置Pをエッジ部Eに近付けていくに従って、1回の走査工程Sにおける走査回数を増やしていく例について説明した。しかし、切換工程Cにより照射位置Pをエッジ部Eに近付けていくに従って、1回の走査工程Sにおいて照射されるレーザ光Lの出力を上げていくように構成しても良い。この構成によっても、エッジ部Eに近い領域ほどワーク9の深い部分に亘って当該部分を蒸発、飛散させることができる。また、これとは別に、切換工程Cにより照射位置Pをエッジ部Eに近づけていくに従って、1回の走査工程Sにおける走査速度を上げていくように構成しても良い。これにより、エッジ部Eに近い領域ほど走査回数を多くすることができ、ワーク9の深い部分に亘って当該部分を蒸発、飛散させることができる。
(2)上記の実施形態では、切換工程Cにより照射位置Pがワーク9のXY面91から外れた位置に設定された後は、切換工程Cにより照射位置Pをエッジ部Eから遠ざけていくに従って、1回の走査工程における走査回数を増やしていく例について説明した。しかし、切換工程Cにより照射位置Pをエッジ部Eから遠ざけていくに従って、1回の走査工程Sにおいて照射されるレーザ光Lの出力を上げていくように構成しても良い。
(3)上記の実施形態では、制御装置8は、レーザ光Lの走査がY方向に沿って往復して行われるように、Y軸ガルバノモータ52Yを正逆回転させつつY軸ガルバノミラー51Yを駆動するように構成されている例について説明した。しかし、ガルバノスキャナ5がいわゆるポリゴンミラー(多角形状ミラー)を含んで構成され、制御装置8は、当該ポリゴンミラーを制御して、レーザ光Lの走査がY方向に沿って行われるようにしても良い。
(4)上記の実施形態では、走査工程Sと切換工程Cとを交互に繰り返して複数回に亘って走査工程Sを実行することにより、面取り部分が滑らかな曲面状となるようにワーク9の面取りを行う例について説明した。しかし、走査工程Sと切換工程Cとを実行することにより、面取り部分が斜面状となるようにワーク9の面取りを行っても良い。この場合には、切換工程Cを1回行ったときの照射位置Pの移動量ΔX、切換工程Cを行うタイミング、レーザ光Lの出力等を必要に応じて適宜設定すると良い。
(5)上記の実施形態では、第1走査工程S1〜第5走査工程S5からなる合計5回の走査工程Sを行う例について説明した。しかし、走査工程Sを行う回数は複数回であれば良く、面取りの用途や形状等に応じて適宜設定することができる。
(6)上記の実施形態では、非加工対象であるワーク台2Bが加工されることを抑制しつつ、加工対象であるワーク9のみを加工することが可能な構成について説明した。このような構成として、例えば図17に示すように、ワーク9を、X方向においてワーク台2Bからはみ出す部分を有するように、ワーク台2B上に配置するようにしても良い。換言すれば、ワーク9を、Z方向視においてワーク台2Bと重ならない部分を有するように、ワーク台2B上に配置するようにしても良い。この構成によれば、ワーク9のエッジ部Eの面取りを行う過程で、ワーク台2Bにレーザ光Lが照射されることを抑制でき、ワーク台2Bが加工される(削られる)ことを抑制することが可能である。
(7)なお、前述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
本発明は、金属材料の面取りを行う面取り加工方法に利用することができる。
100 :光学系
1 :光学定盤
2 :XYステージ
3 :レーザ発振器
4 :光ガイド機構
5 :ガルバノスキャナ
6 :撮像装置
7 :結像機構
8 :制御装置
51X :X軸ガルバノミラー
51Y :Y軸ガルバノミラー
52X :X軸ガルバノモータ
52Y :Y軸ガルバノモータ
91 :XY面(対象面)
92 :YZ面
93 :溝部
93A :最深部
E :エッジ部
L :レーザ光
P :照射位置
C :切換工程
S :走査工程
WR :基準幅
Wh :半分幅
ΔX :移動量
X5 :離間距離(エッジ部から照射位置までの最大距離)

Claims (7)

  1. 金属材料の複数の面が交差して形成されるエッジ部を面取り対象として、当該エッジ部を形成する複数の面のうち何れかの面である対象面に対向する位置からレーザ光を照射してアブレーション加工することにより面取りを行う面取り加工方法であって、
    前記エッジ部の延在方向に沿って前記レーザ光を照射しつつ走査する走査工程と、
    前記対象面内で前記延在方向に直交する直交方向に沿って前記レーザ光の照射位置を切り換える切換工程と、を備え、
    前記対象面における前記エッジ部から離れた位置を前記照射位置として前記走査工程を開始し、前記走査工程と前記切換工程とを交互に繰り返して複数回に亘って前記走査工程を実行することにより、前記直交方向における前記照射位置を前記エッジ部に近付けつつ前記レーザ光を照射する面取り加工方法。
  2. 前記走査工程により前記延在方向に沿う溝部を形成し、
    前記走査工程と前記切換工程とを組み合わせて実行することにより前記溝部の幅を前記直交方向に沿って拡大させ、
    前記切換工程を1回行ったときの前記照射位置の移動量を、前記溝部の最大幅の半分よりも小さく設定している請求項1に記載の面取り加工方法。
  3. 前記切換工程により前記照射位置を前記エッジ部に近付けていくに従って、1回の前記走査工程における走査回数を増やしていく請求項1又は2に記載の面取り加工方法。
  4. 前記切換工程により前記照射位置を前記エッジ部に近付けていくに従って、1回の前記走査工程において照射される前記レーザ光の出力を上げていく請求項1又は2に記載の面取り加工方法。
  5. 前記切換工程により前記照射位置が前記対象面から外れた位置に設定された後は、前記切換工程により前記照射位置を前記エッジ部から遠ざけていくに従って、1回の前記走査工程における走査回数を増やしていく請求項3に記載の面取り加工方法。
  6. 前記切換工程により前記照射位置が前記対象面から外れた位置に設定された後は、前記切換工程により前記照射位置を前記エッジ部から遠ざけていくに従って、1回の前記走査工程において照射される前記レーザ光の出力を上げていく請求項4に記載の面取り加工方法。
  7. 前記走査工程により前記延在方向に沿う溝部を形成し、
    前記切換工程により前記照射位置を前記エッジ部から遠ざけていく場合における前記エッジ部から前記照射位置までの最大距離が、前記溝部の最大幅の半分に相当する距離以下である請求項5又は6に記載の面取り加工方法。
JP2017163732A 2017-05-29 2017-08-28 面取り加工方法 Active JP7006022B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017105916 2017-05-29
JP2017105916 2017-05-29

Publications (2)

Publication Number Publication Date
JP2018199159A true JP2018199159A (ja) 2018-12-20
JP7006022B2 JP7006022B2 (ja) 2022-01-24

Family

ID=64667555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017163732A Active JP7006022B2 (ja) 2017-05-29 2017-08-28 面取り加工方法

Country Status (1)

Country Link
JP (1) JP7006022B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091077A (zh) * 2019-05-29 2019-08-06 河南四方达超硬材料股份有限公司 一种聚晶金刚石复合片的高精度倒角加工装置
JP7476528B2 (ja) 2019-12-09 2024-05-01 ニプロ株式会社 医療用針の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108287A (ja) * 1994-10-07 1996-04-30 Seiji Ishibe 面取り加工方法
JP2002210577A (ja) * 2001-01-17 2002-07-30 Amada Eng Center Co Ltd レーザによるr面取り加工方法および同方法の実施に適したレーザ加工ヘッド
US6521862B1 (en) * 2001-10-09 2003-02-18 International Business Machines Corporation Apparatus and method for improving chamfer quality of disk edge surfaces with laser treatment
JP2010099708A (ja) * 2008-10-24 2010-05-06 Japan Steel Works Ltd:The 被切断材の切断面処理方法および装置
JP2012512131A (ja) * 2008-12-17 2012-05-31 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 面取りした端部を有する形状にガラスをレーザ加工する方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08108287A (ja) * 1994-10-07 1996-04-30 Seiji Ishibe 面取り加工方法
JP2002210577A (ja) * 2001-01-17 2002-07-30 Amada Eng Center Co Ltd レーザによるr面取り加工方法および同方法の実施に適したレーザ加工ヘッド
US6521862B1 (en) * 2001-10-09 2003-02-18 International Business Machines Corporation Apparatus and method for improving chamfer quality of disk edge surfaces with laser treatment
JP2010099708A (ja) * 2008-10-24 2010-05-06 Japan Steel Works Ltd:The 被切断材の切断面処理方法および装置
JP2012512131A (ja) * 2008-12-17 2012-05-31 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 面取りした端部を有する形状にガラスをレーザ加工する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091077A (zh) * 2019-05-29 2019-08-06 河南四方达超硬材料股份有限公司 一种聚晶金刚石复合片的高精度倒角加工装置
JP7476528B2 (ja) 2019-12-09 2024-05-01 ニプロ株式会社 医療用針の製造方法

Also Published As

Publication number Publication date
JP7006022B2 (ja) 2022-01-24

Similar Documents

Publication Publication Date Title
KR101243543B1 (ko) 다이싱 방법
TWI430863B (zh) A laser processing method, a division method of a workpiece, and a laser processing apparatus
CN109570778B (zh) 一种硬脆性材料的激光加工方法及激光加工系统
JP5994723B2 (ja) レーザ穴あけ加工方法および装置
WO2010122866A1 (ja) レーザ加工方法
KR20110120862A (ko) 챔퍼링된 모서리를 갖는 유리를 레이저 처리하는 방법
JP2012130952A (ja) レーザ加工方法
CN102271857B (zh) 激光加工装置
JP7040824B2 (ja) フェムト秒レーザーを用いた超精密ブレードエッジ加工方法
JP6054161B2 (ja) レーザ加工方法
JP2012016735A (ja) レーザ加工装置およびレーザ加工方法
JP7006022B2 (ja) 面取り加工方法
WO2018012195A1 (ja) レーザ加工方法およびレーザ加工装置
JP2005095936A (ja) レーザ加工装置及びレーザ加工工法
JP2008296269A (ja) レーザ加工機の多機能加工制御方法とレーザ加工機の多機能加工制御装置
JP6562536B2 (ja) レーザー加工装置、制御装置および加工面形成方法
KR100664573B1 (ko) 레이저 가공 장치 및 방법
WO2015136948A1 (ja) レーザ加工方法
CN107662054B (zh) 脆性材料基板的激光加工方法及激光加工装置
KR20100032650A (ko) 레이저 및 절삭 공구를 이용한 홈 가공 방법
CN114473527B (zh) 一种多重复合结构激光砂带加工方法
JP5285741B2 (ja) 半導体ウェハ及びその加工方法
JP2019042763A (ja) レーザ加工方法及びレーザ加工装置
JP2018065146A (ja) レーザ加工方法及びレーザ加工装置
CN107662055B (zh) 脆性材料基板的激光加工方法及激光加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7006022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150