JP2018195543A - 高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池 - Google Patents

高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池 Download PDF

Info

Publication number
JP2018195543A
JP2018195543A JP2017101137A JP2017101137A JP2018195543A JP 2018195543 A JP2018195543 A JP 2018195543A JP 2017101137 A JP2017101137 A JP 2017101137A JP 2017101137 A JP2017101137 A JP 2017101137A JP 2018195543 A JP2018195543 A JP 2018195543A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
membrane
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017101137A
Other languages
English (en)
Other versions
JP6890467B2 (ja
Inventor
仁 菖蒲川
Hitoshi Shobugawa
仁 菖蒲川
昭宏 栗間
Akihiro Kurima
昭宏 栗間
井上 祐一
Yuichi Inoue
祐一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017101137A priority Critical patent/JP6890467B2/ja
Publication of JP2018195543A publication Critical patent/JP2018195543A/ja
Application granted granted Critical
Publication of JP6890467B2 publication Critical patent/JP6890467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】耐久性の高い、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池を提供する。【解決手段】イオン交換当量が0.5〜3.0ミリ当量/gの高分子電解質(a)と、硫酸チタン及び硝酸チタンからなる群より選ばれる少なくとも一種の金属塩を有する化合物(b)と、を含有する、高分子電解質膜。【選択図】なし

Description

本発明は、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池に関する。
燃料電池は、電池内で、水素、メタノール等を電気化学的に酸化することにより、燃料の化学エネルギーを、直接、電気エネルギーに変換して取り出すものであり、クリーンな電気エネルギー供給源として注目されている。特に、固体高分子電解質型燃料電池は、他と比較して低温で作動することから、自動車代替動力源、家庭用コジェネレーションシステム、携帯用発電機等として期待されている。
このような固体高分子電解質型燃料電池は、電極触媒層とガス拡散層とが積層されたガス拡散電極がプロトン交換膜の両面に接合された膜電極接合体を少なくとも備えている。ここでいうプロトン交換膜は、高分子鎖中にスルホン酸基、カルボン酸基等の強酸性基を有し、プロトンを選択的に透過する性質を有する組成物からなる膜である。このようなプロトン交換膜に使用される組成物としては、化学的安定性の高いナフィオン(登録商標、デュポン社製)に代表されるパーフルオロ系プロトン組成物を用いたプロトン交換膜が好適に用いられる。
燃料電池の運転時においては、アノード側のガス拡散電極に燃料(例えば、水素)、カソード側のガス拡散電極に酸化剤(例えば、酸素や空気)がそれぞれ供給され、両電極間が外部回路で接続されることにより、燃料電池の作動が実現される。具体的には、水素を燃料とした場合、アノード触媒上で水素が酸化されてプロトンが生じる。このプロトンは、アノード触媒層内のプロトン伝導性ポリマーを通った後、プロトン交換膜内を移動し、カソード触媒層内のプロトン伝導性ポリマーを通ってカソード触媒上に達する。一方、水素の酸化によりプロトンと同時に生じた電子は、外部回路を通ってカソード側ガス拡散電極に到達する。カソード触媒上では、上記プロトンと酸化剤中の酸素とが反応して水素が生成される。このとき、電気エネルギーが取り出される。
この際、プロトン交換膜は、ガスバリア隔壁としての役割も果たす必要がある。プロトン交換膜のガス透過率が高いと、アノード側水素のカソード側へのリーク及びカソード側酸素のアノード側へのリーク、すなわち、クロスリークが発生する。クロスリークが発生すると、いわゆるケミカルショートの状態となって良好な電圧が取り出せなくなるほか、アノード側水素とカソード側酸素が反応して過酸化水素が発生する。この過酸化水素は電池に供給される加湿ガスの供給配管等に含まれる微量な金属(Fe、Cr、Ni等のイオン)によって分解され、ヒドロキシラジカルや過酸化ラジカルが生成する。これらのラジカルによりプロトン交換膜の劣化が促進されるという問題が生じる。
特に燃料電池自動車の場合、車両コストの削減の観点から、80℃を越えるような高温運転、加湿器削減による湿度30%RH以下のような低加湿運転、金属製のバイポーラプレートの使用が見込まれる。上記のような高温低加湿運転を行う場合、耐久性に優れていると言われているパーフルオロ系のプロトン交換膜を隔膜に用いても膜の劣化が加速されるという問題が生じる。また金属製のバイポーラプレートを用いた場合、運転中に徐々に金属(Fe、Cr、Ni等)が溶け出し、溶け出した金属のイオンが過酸化水素の分解を促進し、ラジカル種が生成し、プロトン交換膜の劣化を促進する恐れがある。
上記のようなラジカル種によるプロトン交換膜の劣化を抑制する方法として、高分子電解質膜中に金属酸化物(例えば、酸化マンガン、酸化コバルト等)を分散配合する方法(例えば、特許文献1参照。)が開示されている。また、高分子電解質膜のスルホン酸基の一部を硫酸セリウム(例えば、特許文献2参照)やリン酸チタン(例えば、特許文献3参照)を用いてラジカル種を補足し高分子電解質膜の劣化を抑制する方法が開示されている。一方で、電極触媒層で発生したラジカル種を電解質膜に侵入する前に分解させることを目的とし、硫酸チタンを電極触媒層内に分散添加することで化学耐久性を改善している方法が開示されている(例えば、特許文献4参照)。
特開2001−118591号公報 国際公開2005/124911号 特開2005−71760号公報 特開2007−12375号公報
しかしながら、上記特許文献1に記載された方法では、過酸化水素分解物質の酸性、耐熱性が不充分であるために過酸化水素分解能の持続性の観点からなお改善の余地がある。特許文献2ではキャスト法により製膜された高分子電解質膜を硫酸セリウム溶液に浸漬する方法をとっているが、セリウムを溶液中で微分散することは難しく、粒子の凝集が起こり、ラジカル種を均一に補足することは困難で、かつ電解質膜から凝集により生じたセリウムの脱離が懸念され、ラジカル耐久性の劣化を引き起こすという問題がある。特許文献3においても浸漬法によりリン酸チタンを電解質膜中に配置しているが、膜中で均一に粒子を分散させることは困難であり、かつ膜中での無機物の濃度やEW等の膜物性を正確に制御することは困難と考えられる。特許文献4では硫酸チタンを電極触媒層中に組み込まれているが、電解質膜上で生じるクロスオーバーの副生成物のラジカル種を捕捉することは困難であり、このような構成では電解質膜の劣化を抑制することは不十分である。
そこで、本発明は上記問題点に鑑みてなされたものであり、耐久性の高い、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池を提供することを目的とする。
本発明者らは、上記課題を解決する為に鋭意検討した結果、電極反応副生成物に起因するラジカル種やクロスオーバー現象により水素と酸素の燃料反応副生成物に起因するラジカル種により高分子電解質膜が劣化することを効果的に抑えるための構成を見出し、本発明をするに至った。
すなわち本発明は、以下のとおりである。
[1]
イオン交換当量が0.5〜3.0ミリ当量/gの高分子電解質(a)と、
硫酸チタン及び硝酸チタンからなる群より選ばれる少なくとも一種の金属塩を有する化合物(b)と、
を含有する、高分子電解質膜。
[2]
前記高分子電解質がフッ素系高分子電解質である、[1]に記載の高分子電解質膜。
[3]
前記高分子電解質が下式[1]で示されるフッ素系高分子電解質である、[1]又は[2]に記載の高分子電解質膜。
−[CF2CX12a−[CF2−CF(−O−(CF2−CF(CF23))b−Oc−(CFR1d−(CFR2e−(CF2f−X4)]g− [1]
(式[1]中、X1、X2及びX3は、互いに独立して、ハロゲン元素又は炭素数1以上3以下のパーフルオロアルキル基である。a及びgは、0≦a<1、0<g≦1、a+g=1である。bは0以上8以下の整数である。cは0又は1である。d及びeは、互いに独立して、0以上6以下の整数である。fは、0以上10以下の整数である。ただし、d+e+fは0に等しくない。R1及びR2は、互いに独立して、ハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基又はフルオロクロロアルキル基である。X4はCOOZ、SO3Z、PO32又はPO3HZである。ここで、Zは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアミン類(NH4、NH33、NH234、NHR345、NR3456)である。またR3、R4、R5及びR6はアルキル基又はアレーン基である。)
[4]
前記硫酸チタン及び硝酸チタンが、成分(a)に分散されてなる、[1]〜[3]のいずれかに記載の高分子電解質膜。
[5]
ラジカル捕捉剤(c)をさらに含有する、[1]〜[4]のいずれかに記載の高分子電解質膜。
[6]
[1]〜[5]のいずれかに記載の高分子電解質膜と、
前記高分子電解質膜上に配された電極触媒層と、
を有する、膜電極接合体。
[7]
前記電極触媒層が、イオン交換当量が0.5〜3.0ミリ当量/gの高分子電解質(a)と、硫酸チタン及び硝酸チタンからなる群より選ばれる少なくとも一種の金属塩を有する化合物(b)と、を含む、[6]の膜電極接合体。
[8]
[6]又は[7]に記載の膜電極接合体を有する、固体高分子型燃料電池。
本発明によれば、耐久性の高い、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池を提供することができる。
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施形態の高分子電解質膜は、イオン交換当量が0.5〜3.0ミリ当量/gの高分子電解質(a)と、硫酸チタン及び硝酸チタンからなる群より選ばれる少なくとも一種の金属塩を有する化合物(b)と、を含有する。このように構成されているため、本実施形態の高分子電解質膜は、優れた耐久性を発現することができる。
(高分子電解質(a成分))
本実施形態で用いられる高分子電解質(a成分)はイオン交換当量が0.5〜3.0ミリ当量/gのイオン交換基を有する高分子化合物である。イオン交換当量を3.0ミリ当量/g以下とすることにより、高分子電解質膜として利用した際に、高分子電解質膜が燃料電池運転中の高温高加湿下での膨潤が低減される。膨潤が低減されることは、高分子電解質膜の強度の低下や、しわが発生して電極から剥離したりするなどの問題、さらには、ガス遮断性が低下する問題を低減することに寄与し得る。一方、イオン交換当量を0.5ミリ当量/g以上とすることにより、得られた高分子電解質膜を備えた燃料電池の発電能力を良好に維持し得る。上記同様の観点から、高分子電解質(a成分)のイオン交換当量は、より好ましくは0.65〜2.0ミリ当量/gであり、さらに好ましくは0.8〜1.5ミリ当量/gである。
イオン交換容量は、下記のようにして測定される。
まず、イオン交換基の対イオンがプロトンの状態となっている高分子電解質からなる膜を、25℃の飽和NaCl水溶液に浸漬し、その水溶液を十分な時間攪拌する。次いで、その飽和NaCl水溶液中のプロトンを、0.01N水酸化ナトリウム水溶液で中和滴定する。中和後にろ過して得られたイオン交換基の対イオンがナトリウムイオンの状態となっている高分子電解質からなる膜を、純水ですすぎ、更に真空乾燥した後、秤量する。中和に要した水酸化ナトリウムの物質量をM(mmol)、イオン交換基の対イオンがナトリウムイオンである高分子電解質からなる膜の質量をW(mg)とし、下記式により当量質量EW(g/当量)を求める。
EW=(W/M)−22
高分子電解質(a成分)としては、例えば、フッ素系高分子電解質や、分子内に芳香環を有する炭化水素系高分子化合物にイオン交換基を導入したものなどが好ましく、化学的安定性の観点から、フッ素系高分子電解質が好ましく、その中でもイオン交換基を有するパーフルオロカーボン高分子化合物が特に好ましい。
ここで、分子内に芳香環を有する、一部がフッ素化された炭化水素系高分子化合物としては、特に限定されないが、例えば、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリチオエーテルエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルエーテルケトン、ポリベンゾイミダゾール、ポリベンゾオキサゾール、ポリオキサジアゾール、ポリベンゾオキサジノン、ポリキシリレン、ポリフェニレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセン、ポリシアノゲン、ポリナフチリジン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリイミド、ポリエーテルイミド、ポリエステルイミド、ポリアミドイミド、ポリアリレート、芳香族ポリアミド、ポリスチレン、ポリエステル、ポリカーボネート等の分子中の一部がフッ素化された高分子化合物が挙げられる。
この中でも、分子内に芳香環を有する、一部がフッ素化された炭化水素系高分子化合物としては、特に限定されないが、耐熱性や耐酸化性、耐加水分解性の観点から、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリチオエーテルエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルエーテルケトン、ポリベンゾイミダゾール、ポリベンゾオキサゾール、ポリオキサジアゾール、ポリベンゾオキサジノン、ポリキシリレン、ポリフェニレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセン、ポリシアノゲン、ポリナフチリジン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリイミド、ポリエーテルイミド、ポリエステルイミドの分子中の一部がフッ素化された高分子化合物が好ましい。
なお、これらに導入するイオン交換基としては、特に限定されないが、例えば、スルホン酸基、スルホンイミド基、スルホンアミド基、カルボン酸基、リン酸基等が好ましい。このなかでも、特にスルホン酸基が好ましい。
また、イオン交換基を有するパーフルオロカーボン高分子化合物としては、特に限定されないが、例えば、パーフルオロカーボンスルホン酸樹脂、パーフルオロカーボンカルボン酸樹脂、パーフルオロカーボンスルホンイミド樹脂、パーフルオロカーボンスルホンアミド樹脂、パーフルオロカーボンリン酸樹脂、又はこれら樹脂のアミン塩、金属塩等が挙げられる。
パーフルオロカーボン高分子化合物としては、特に限定されないが、より具体的には、下記式[1]で表される重合体が挙げられる。
−[CF2CX12a−[CF2−CF(−O−(CF2−CF(CF23))b−Oc−(CFR1d−(CFR2e−(CF2f−X4)]g− [1]
(式[1]中、X1、X2及びX3は、互いに独立して、ハロゲン元素又は炭素数1以上3以下のパーフルオロアルキル基である。a及びgは、0≦a<1、0<g≦1、a+g=1である。bは0以上8以下の整数である。cは0又は1である。d及びeは、互いに独立して、0以上6以下の整数である。fは、0以上10以下の整数である。ただし、d+e+fは0に等しくない。R1及びR2は、互いに独立して、ハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基又はフルオロクロロアルキル基である。X4はCOOZ、SO3Z、PO32又はPO3HZである。ここで、Zは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアミン類(NH4、NH33、NH234、NHR345、NR3456)である。またR3、R4、R5及びR6はアルキル基又はアレーン基である。)
中でも、下記式[2]又は式[3]で表されるパーフルオロカーボンスルホン酸樹脂もしくはその金属塩が好ましい。
−[CF2CF2a−[CF2−CF(−O−(CF2−CF(CF3))b−O−(CF2c−SO3X)]d− [2]
(式[2]中、a及びdは、0≦a<1、0≦d<1、a+d=1である。bは1以上8以下の整数である。cは0以上10以下の整数である。Xは水素原子又はアルカリ金属原子である。)
−[CF2CF2e−[CF2−CF(−O−(CF2f−SO3Y)]g− [3]
(式[3]中、e及びgは、0≦e<1、0≦g<1、e+g=1である。fは0以上10以下の整数である。Yは水素原子又はアルカリ金属原子である。)
本実施形態において用いられうるイオン交換基を有するパーフルオロカーボン高分子化合物は、特に限定されないが、例えば、下記式[4]に示される前駆体ポリマーを重合した後、アルカリ加水分解、酸処理等を行って製造することができる。
−[CF2CX12a−[CF2−CF(−O−(CF2−CF(CF23))b−Oc−(CFR1d−(CFR2e−(CF2f−X5)]g− [4]
(式[4]中、X1、X2及びX3は、互いに独立して、ハロゲン元素又は炭素数1以上3以下のパーフルオロアルキル基である。a及びgは0≦a<1,0<g≦1,a+g=1である。bは0以上8以下の整数である。cは0又は1である。d及びeは、互いに独立して、0以上6以下の整数である。fは、0以上10以下の整数である。ただし、d+e+fは0に等しくない。R1及びR2は互いに独立して、ハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基又はフルオロクロロアルキル基である。X5はCOOR7、COR8又はSO28である。ここで、R7は炭素数1〜3の炭化水素系アルキル基である。R8はハロゲン元素である。)
また、国際公開第2017/033685号に開示されている高分子化合物を有する高分子電解質を使用することも可能である。つまり、高分子主鎖中にイオン交換基を有さない環状構造を有する高分子化合物とイオン交換基を有する高分子化合物とを有する前駆体ポリマー、または上記式[2]又は式[3]に2つのイオン交換基を有する高分子化合物を有する前駆体ポリマーを重合した後、アルカリ加水分解、酸処理等を行って製造することができる。
上記前駆体ポリマーは、特に限定されないが、例えば、フッ化オレフィン化合物とフッ化ビニル化合物とを共重合させることにより製造することができる。
ここで、フッ化オレフィン化合物としては、特に限定されないが、例えば、下記化合物等が挙げられる。
CF2=CFZ
(上記式中、Zは、H、Cl、F、炭素数1〜3のパーフルオロアルキル基、又は酸素を含んでいてもよい環状パーフルオロアルキル基を示す。)
また、フッ化ビニル化合物としては、特に限定されないが、例えば、下記化合物等が挙げられる。
CF2=CFO(CF2z−SO2F,
CF2=CFOCF2CF(CF3)O(CF2z−SO2F,
CF2=CF(CF2z−SO2F,
CF2=CF(OCF2CF(CF3))z−(CF2z-1−SO2F,
CF2=CFO(CF2z−CO2R,
CF2=CFOCF2CF(CF3)O(CF2z−CO2R,
CF2=CF(CF2z−CO2R,
CF2=CF(OCF2CF(CF3))z−(CF22−CO2
(式中、Zは1〜8の整数を示し、Rは炭素数1〜3の炭化水素系アルキル基を表す。)
フッ化オレフィン化合物とフッ化ビニル化合物との共重合方法としては、特に限定されないが、例えば、以下のような方法を挙げることができる。
(i)溶液重合:
含フッ素炭化水素などの重合溶媒を使用し、この重合溶媒に充填溶解した状態でフッ化ビニル化合物とフッ化オレフィンのガスとを反応させて重合を行う方法。上記含フッ素炭化水素としては、特に限定されないが、例えば、トリクロロトリフルオロエタン、1,1,1,2,3,4,4,5,5,5−デカフロロペンタンなど、「フロン」と総称される化合物群を好適に使用することができる。
(ii)塊状重合:
含フッ素炭化水素などの溶媒を使用せず、フッ化ビニル化合物そのものを重合溶剤として用いてフッ化オレフィン化合物とフッ化ビニル化合物との重合を行う方法。
(iii)乳化重合:
界面活性剤の水溶液を重合溶媒として用い、この重合溶媒に充填溶解した状態でフッ化ビニル化合物とフッ化オレフィンガスとを反応させて重合を行う方法。
(iv)ミニエマルジョン重合、マイクロエマルジョン重合:
界面活性剤及びアルコールなどの助乳化剤の水溶液を用い、この水溶液に充填乳化した状態でフッ化ビニル化合物とフッ化オレフィンのガスとを反応させて重合を行う方法。
(v)懸濁重合:
懸濁安定剤の水溶液を用い、この水溶液に充填懸濁した状態でフッ化ビニル化合物とフッ化オレフィンのガスとを反応させて重合を行う方法。
本実施形態の形態においては、前駆体ポリマーの重合度の指標としてメルトマスフローレート(以下「MFR」と略称する)を使用することができる。本実施形態において、前駆体ポリマーのMFRは、0.01g/10分以上が好ましく、0.1g/10分以上がより好ましく、0.3g/10分以上がさらに好ましい。MFRの上限は限定されないが、100g/10分以下が好ましく、10g/10分以下がより好ましい。MFRを0.01g/10分以上100g/10分以下とすることにより、高分子電解質膜の成膜等の成型加工性がより優れる傾向にある。なお、MFRは、JIS K−7210に基づき、270℃、荷重2.16kgf、オリフィス内径2.09mmで測定することができる。
以上のようにして作製された前駆体ポリマーは、塩基性反応液体中で加水分解処理され、温水などで十分に水洗され、酸処理される。この酸処理によってパーフルオロカーボンスルホン酸樹脂前駆体はプロトン化され、SO3H体となる。
〔化合物(b)〕
本実施形態に用いられる化合物(b)は、硫酸チタン及び硝酸チタンからなる群より選ばれる少なくとも一種の金属元素を有する化合物である。本実施形態において硫酸チタンとはチタンの硫酸塩であり、チタンの酸化数IIIとIVの化合物が知られ、化学式はTi2(SO43とTi(SO42となる。また、硝酸チタンに関してはチタンの硝酸塩であり四硝酸チタンTi(NO34及びオキシ硝酸チタンTiO(NO32があり、これらいずれの化合物でもかまわない。化合物(b)は、過酸化水素の分解を抑制する作用をもつ。このように、過酸化水素からヒドロキシラジカルや過酸化ラジカルが生成する分解反応を抑制できることにより、本実施形態に係る高分子電解質膜は耐久性により優れる。
化合物(b)の含有量は、高分子電解質(a)と化合物(b)の合計100質量%に対して、好ましくは0.0001〜10.0000質量%であり、より好ましくは0.0003〜5.0000質量%、さらに好ましくは0.0005〜5.0000質量%である。化合物(b)全体の含有量が上記範囲(0.0001〜10.0000質量%)であることにより、良好なプロトン伝導度を維持したまま、過酸化水素の分解を抑制し、高耐久性を有する高分子電解質膜、電極触媒層を得ることができる傾向にある。
本実施形態において、硫酸チタン及び硝酸チタンが、成分(a)に分散されてなることが好ましい。分散とは、染色処理を施さずにTEM観察を行った場合に、高分子電解質(a成分)相の中に金属塩(b成分)を含む相が粒子状に分散し、「島状に分散している」状態を意味する。すなわち、成分(a)が海部を構成し、成分(b)が島部を構成する、海島構造をとることを意味する。このような状態で分散することは、金属塩(b成分)を主体とする部分が高分子電解質(a成分)を主体とする部分に均一に微分散していることを表しており、耐久性の観点から好ましい。
〔ラジカル捕捉剤(c)〕
本実施形態に係る高分子電解質膜は、ラジカル捕捉剤(c)をさらに含有することができる。本実施形態に係る高分子電解質膜は、上述したように、ラジカル種の発生を効率よく抑制でき、高い耐久性を発現するが、これに加え、ラジカル捕捉剤(c)を含むことにより、万が一ラジカル種が発生した場合にも、ラジカル捕捉剤(c)で捕捉することができる。これにより、燃料電池自動車で要求される高温低加湿な条件においても燃料電池の耐久性を飛躍的に向上させることができる傾向にある。
本実施形態に用いることのできるラジカル捕捉剤(c)としては、特に限定されないが、具体的には、公知の酸化防止剤で提唱されているメカニズムを可能にする官能基を有する化合物が挙げられる。このような官能基としては、特に限定されないが、例えば、ラジカル連鎖禁止機能を有する官能基、ラジカルを分解させる機能を有する官能基、連鎖開始を阻害する機能を有する官能基が挙げられる。ラジカル連鎖禁止機能を有する官能基としては、特に限定されないが、例えば、フェノール性水酸基、1級アミン、2級アミン等を挙げることができる。また、ラジカルを分解させる機能を有する官能基としては、特に限定されないが、例えば、硫黄、リン等を含有するメルカプト基、チオエーテル基、ジサリファイド基、フォスファイト基等を挙げることができる。さらに、連鎖開始を阻害する機能を有する官能基としては、特に限定されないが、例えば、ヒドラジン、アミドなどを挙げることができる(「酸化防止剤ハンドブック」(大成社刊1978))。
また、ラジカル捕捉剤(c)としては、原子がラジカルにより引き抜かれやすい、例えば、3級炭素に結合した水素、あるいは、炭素−ハロゲン結合などを構造中に有する化合物も挙げられる。
また、本実施形態に用いることのできるラジカル捕捉剤(c)は、高分子電解質(a)とイオン結合を作る官能基を有することも可能である。このようなラジカル捕捉剤(c)としては、特に限定されないが、例えば、同一分子内に1級アミン、2級アミンのうち何れかのアミンを少なくとも有する化合物(c−1)及び/又は同一分子内に3級アミンを有し、かつ、硫黄、リン、ヒドラジン、アミド、フェノール水酸基、1級アミン、2級アミン、3級炭素に結合した水素、及び炭素に結合したハロゲンからなる群より選択される少なくとも1種以上を有する化合物(c−2)が挙げられる。
ここで、化合物(c−1)及び化合物(c−2)における、高分子電解質(a)とイオン結合を作る官能基としては、特に限定されないが、例えば、高分子電解質(a)中のイオン交換基がスルホン酸基の場合は、塩基性官能基を示し、具体的には1級アミン、2級アミン、3級アミン等の窒素含有官能基が挙げられる。従って、1級アミン、2級アミンを有すれば、高分子電解質(a)のイオン交換基と相互作用を有し、かつ、ラジカル捕捉機能をも有することとなる(化合物(c−1)に相当)。一方、高分子電解質(a)のイオン交換基と相互作用を有する部分が3級アミンである場合には、高分子電解質(a)とイオン結合を作る官能基は、ラジカル捕捉機能を有する部分とは別に同一分子内に含まれることが好ましく、このような官能基としては、特に限定されないが、例えば、フェノール水酸基、1、2級アミン等が挙げられる(化合物(c−2)に相当)。
本実施形態に用いることができる化合物(c−1)及び化合物(c−2)をより具体的に例示すると以下のようになる。
化合物(c−1)としては、特に限定されないが、例えば、ポリアニリンのような上記の官能基で一部置換された芳香族化合物、ポリベンゾイミダゾール、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾオキサジアゾール、フェニル化ポリキノキサリン、フェニル化ポリキノリン等の不飽和の複素環化合物を挙げることができる。
化合物(c−2)としては、特に限定されないが、例えば、側鎖にスルホン酸と酸塩基結合を有する3級窒素複素環を有し、主鎖にラジカルで引き抜かれやすいベンジル位の水素を有する化合物として、ポリビニルピリジン、ポリビニルカルバゾール、芳香環に2級アミン、あるいは、3級アミンを含む基が導入されたポリスチレン等を挙げることができる。
尚、化合物(c−1)及び化合物(c−2)は、イオン交換基を有する高分子電解質(a)と相互作用を有するユニットと、ラジカル捕捉機能を有するユニットとの共重合体等であってもよい。高分子電解質(a)と相互作用を有する部分を有することにより、高分子電解質(a)への相溶性がより向上する傾向にある。また、ラジカル捕捉機能を有することにより、化学的耐久性がより向上する傾向にある。
本実施形態に係る高分子電解質膜における化合物(c−1)及び化合物(c−2)の含有量は、高分子電解質(a)と化合物(c−1)及び化合物(c−2)の合計100質量%に対して、好ましくは0.001〜50.000質量%であり、より好ましくは0.005〜20.000質量%、さらに好ましくは0.010〜10.000質量%、よりさらに好ましくは0.100〜5.000質量%、さらにより好ましくは0.100〜2.000質量%である。
本実施形態では化合物(c−1)及び化合物(c−2)全体の含有量を上記の範囲(0.001〜50.000質量%)に設定することにより、良好なプロトン伝導度を維持したまま、高耐久性を有する高分子電解質膜が得られる傾向にある。
〔チオエーテル化合物(d)〕
本実施形態に係る高分子電解質膜は、高分子電解質(a)、化合物(b)、ラジカル捕捉剤(c)の他に、チオエーテル化合物(d)を含んでもよい。
チオエーテル化合物(d)としては、特に限定されず−(R−S)n−(Sはイオウ原子、Rは炭化水素基、nは1以上の整数)の化学構造を含む化合物であって、例えば、ジメチルチオエーテル、ジエチルチオエーテル、ジプロピルチオエーテル、メチルエチルチオエーテル、メチルブチルチオエーテルのようなジアルキルチオエーテル;テトラヒドロチオフェン、テトラヒドロアピランのような環状チオエーテル;メチルフェニルスルフィド、エチルフェニルスルフィド、ジフェニルスルフィド、ジベンジルスルフィドのような芳香族チオエーテル等が挙げられる。これらは単量体で用いてもよいし、例えばポリフェニレンスルフィド(PPS)のような重合体で用いてもよい。
チオエーテル化合物(d)は、耐久性の観点からn≧10の重合体(オリゴマー、ポリマー)であることが好ましく、n≧1,000の重合体であることがより好ましい。さらに好ましいチオエーテル化合物(d)は、ポリフェニレンスルフィド(PPS)である。
ここでポリフェニレンスルフィドについて説明する。本実施形態において用いられるポリフェニレンスルフィドは、パラフェニレンスルフィド骨格を好ましくは70モル%以上、より好ましくは90モル%以上有するポリフェニレンスルフィドである。
上記ポリフェニレンスルフィドの製造方法は、特に限定されないが、例えば、ハロゲン置換芳香族化合物(p−ジクロルベンゼン等)を硫黄と炭酸ソーダの存在下で重合させる方法、極性溶媒中でハロゲン置換芳香族化合物を硫化ナトリウムあるいは硫化水素ナトリウムと水酸化ナトリウムの存在下で重合させる方法、又は極性溶媒中でハロゲン置換芳香族化合物を硫化水素と水酸化ナトリウムあるいはナトリウムアミノアルカノエートの存在下で重合させる方法、p−クロルチオフェノールの自己縮合等が挙げられる。中でもN−メチルピロリドン、ジメチルアセトアミド等のアミド系溶媒やスルホラン等のスルホン系溶媒中で硫化ナトリウムとp−ジクロルベンゼンを反応させる方法が好適に用いられる。
また、ポリフェニレンスルフィドの有する−SX基(Sはイオウ原子、Xはアルカリ金属又は水素原子である)の含有量は、通常10μmol/g以上10,000μmol/g以下であり、好ましくは15μmol/g以上10,000μmol/g以下であり、より好ましくは20μmol/g以上10,000μmol/g以下である。
−SX基濃度が上記範囲にあることにより、反応活性点が多くなる傾向にある。−SX基濃度が上記範囲を満たすポリフェニレンスルフィドを用いることで、本実施形態の高分子電解質(a)との混和性が向上することにより分散性が向上し、高温低加湿条件下でより高い耐久性が得られると考えられる。
また、チオエーテル化合物(d)としては、末端に酸性官能基を導入したものも好適に用いることができる。導入する酸性官能基としては、特に限定されないが、例えば、スルホン酸基、リン酸基、カルボン酸基、マレイン酸基、無水マレイン酸基、フマル酸基,イタコン酸基、アクリル酸基、メタクリル酸基が好ましい。このなかでも、スルホン酸基がより好ましい。
なお、酸性官能基の導入方法は特に限定されず、一般的な方法を用いて実施される。例えば、スルホン酸基の導入については、無水硫酸、発煙硫酸などのスルホン化剤を用いて公知の条件で実施することができる。このような導入方法は、特に限定されないが、例えば、K.Hu, T.Xu, W.Yang, Y.Fu, Journal of Applied Polymer Science, Vol.91,や、 E.Montoneri, Journal of Polymer Science: Part A: Polymer Chemistry, Vol.27, 3043-3051(1989)に記載の条件で実施できる。
また、導入した酸性官能基を金属塩又はアミン塩に置換したものも好適に用いられる。金属塩としては、特に限定されないが、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩等のアルカリ土類金属塩が好ましい。
さらに、チオエーテル化合物(d)を粉末状で用いる場合、チオエーテル化合物(d)の平均粒子径は、0.01〜2.0μmであることが好ましく、0.01〜1.0μmがより好ましく、0.01〜0.5μmがさらに好ましく、0.01〜0.1μmがよりさらに好ましい。平均粒子径が上記範囲内であることにより、高分子電解質(a)中の分散性がより向上し、高寿命化等の効果により優れる傾向にある。なお、平均粒子径は、走査型電子顕微鏡(SEM)を用いた観察により求めることができる。
チオエーテル化合物(d)を高分子電解質(a)中に微分散させる方法としては、特に限定されないが、例えば、高分子電解質(a)等との溶融混練時に高せん断を与えて粉砕及び微分散させる方法、高分子電解質溶液を得た後、その溶液を濾過し粗大チオエーテル化合物(d)粒子を除去し、濾過後の溶液を用いる方法等が挙げられる。
溶融混練を行う場合に好適に用いられるポリフェニレンスルフィドの溶融粘度(フローテスターを用いて、300℃、荷重196N、L/D(L:オリフィス長、D:オリフィス内径)=10/1で6分間保持した値)は、成形加工性の観点から、好ましくは1〜10,000ポイズであり、より好ましくは100〜10,000ポイズである。
高分子電解質(a)とチオエーテル化合物(d)の質量比(a/d)は、(a/d)=60/40〜99.99/0.01であることが好ましく、(a/d)=70/30〜99.95/0.05がより好ましく、(a/d)=80/20〜99.9/0.1がさらに好ましく、(a/d)=90/10〜99.5/0.5がよりさらに好ましい。高分子電解質(a)の質量比を60以上とすることにより、良好なイオン伝導性が実現でき、良好な電池特性が実現できる傾向にある。一方、チオエーテル化合物(d)の質量比を40以下とすることにより、高温低加湿条件での電池運転における耐久性がより向上する傾向にある。
また、チオエーテル化合物(d)は、本実施形態に係るラジカル捕捉剤(c)と併せて配合することにより、高温低加湿の条件下でも極めて高い耐久性を示すことが可能となる傾向にある。
ここでラジカル捕捉剤(c)とチオエーテル化合物(d)の質量比(c/d)は、(d/d)=1/99〜99/1が好ましく、(c/d)=5/95〜95/5がより好ましく、(c/d)=10/90〜90/10がさらに好ましく、(c/d)=20/80〜80/20がよりさらに好ましい。質量比(c/e)が上記範囲内であることにより、化学的安定性と耐久性(分散性)のバランスにより優れる傾向にある。
さらに、ラジカル捕捉剤(c)とチオエーテル化合物(d)の合計質量が高分子電解質膜中に占める含有量は、0.01〜50質量%が好ましく、0.05〜45質量%がより好ましく、0.1〜40質量%がさらに好ましく、0.2〜35質量%がよりさらに好ましく、0.3〜30質量%がさらにより好ましい。含有量が上記範囲内であることにより、イオン伝導性と耐久性(分散性)のバランスにより優れる傾向にある。
また、本実施形態に係る高分子電解質膜は、所定の成分を含む高分子電解質溶液(以下、高分子電解質組成物ともいう。)を用いることで得られる。このような高分子電解質組成物は、高分子電解質膜、電極触媒層の形態にできる他、高分子電解質バインダー等の形態で使用することもできる。
〔高分子電解質溶液〕
本実施形態に係る高分子電解質組成物は、その組成物を構成する各成分をそれぞれ同時に又は別々に溶解又は分散した後、混合することにより、高分子電解質溶液として用いてもよい。
高分子電解質溶液は、そのまま、あるいは濾過、濃縮等の工程を経た後、単独あるいは他の電解質溶液と混合して、高分子電解質膜や電極用バインダー等の材料として用いることができる。
高分子電解質溶液の製造方法について説明する。高分子電解質溶液の製造方法としては、特に限定されないが、例えば、まず、高分子電解質前駆体からなる成形物を塩基性反応液体中に浸漬し、加水分解する。この加水分解処理により、上記高分子電解質前駆体は高分子電解質(a)に変換される。次に、加水分解処理された上記成形物を温水などで十分に水洗し、その後、酸処理を行う。
酸処理に使用する酸は、特に限定されないが、例えば、塩酸、硫酸、硝酸等の鉱酸類やシュウ酸、酢酸、ギ酸、トリフルオロ酢酸等の有機酸類が好ましい。この酸処理によって高分子電解質前駆体はプロトン化され、SO3H体となる。上記のように酸処理された上記成形物(プロトン化された高分子電解質(a)を含む成形物)は、上記高分子電解質(a)を溶解又は懸濁させ得る溶媒(樹脂との親和性が良好な溶媒)に溶解又は懸濁される。このような溶媒としては、特に限定されないが、例えば、水;エタノール、メタノール、n−プロパノール、イソプロピルアルコール、ブタノール、グリセリンなどのプロトン性有機溶媒;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどの非プロトン性溶媒等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。特に、1種の溶媒を用いる場合、水単独が好ましい。また、2種以上を併用する場合、水とプロトン性有機溶媒との混合溶媒が好ましい。
溶解又は懸濁する方法は、特に限定されないが、例えば、上記溶媒中にそのまま溶解又は分散させることが好ましく、大気圧下又はオートクレーブ等で密閉加圧した条件のもとで、0〜250℃の温度範囲で溶解又は分散させることがより好ましい。特に、溶媒としてプロトン性有機溶媒を用いる場合、水とプロトン性有機溶媒の混合比は、溶解方法、溶解条件、高分子電解質(a)の種類、総固形分濃度、溶解温度、撹拌速度等に応じて適宜選択できる。水に対するプロトン性有機溶媒の質量の比率は、水1に対してプロトン性有機溶媒0.1〜10が好ましく、より好ましくは水1に対してプロトン性有機溶媒0.1〜5である。
なお、高分子電解質(a)の溶解・懸濁液としては、特に限定されないが、例えば、乳濁液(液体中に液体粒子がコロイド粒子あるいはそれより粗大な粒子として分散して乳状をなすもの)、懸濁液(液体中に固体粒子がコロイド粒子あるいは顕微鏡で見える程度の粒子として分散したもの)、コロイド状液体(巨大分子が分散した状態)、ミセル状液体(多数の小分子が分子間力で会合してできた親液コロイド分散系)等の1種又は2種以上が含まれる。
また、高分子電解質溶液は、成形方法や用途に応じて、溶媒をさらに含んでもよい。このような溶媒としては、特に限定されないが、例えば、水、有機溶媒、液状の樹脂モノマー、液状の樹脂オリゴマーのうち少なくとも1種以上を含有したものが挙げられる。
上記有機溶媒としては、特に限定されないが、例えば、メタノール、エタノール、2−プロパノール、ブタノール、オクタノール等のアルコール類;酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミド類が挙げられる。溶媒は、1種単独で用いても又は2種以上を併用してもよい。
また、高分子電解質溶液は、成形方法や用途に応じて、濃縮したり、濾過したりすることが可能である。濃縮の方法としては、特に限定されないが、例えば、加熱し、溶媒を蒸発させる方法や、減圧濃縮する方法等がある。高分子電解質溶液を塗工用溶液として使用する場合、高分子電解質溶液の固形分率は、0.5〜50質量%が好ましい。固形分率が0.5質量%以上であることにより、粘度上昇が抑制され、取り扱い性に優れる傾向にある。また、固形分率が50質量%以下であることにより、生産性が向上する傾向にある。
濾過の方法としては、特に限定されないが、例えば、フィルターを用いて、加圧濾過する方法が代表的に挙げられる。フィルターについては、90%捕集粒子径が粒子の平均粒子径の10倍〜100倍の濾材を使用することが好ましい。この濾材としては紙製、金属製等が挙げられる。特に濾材が紙の場合は、90%捕集粒子径が粒子の平均粒子径の10〜50倍であることが好ましい。金属製フィルターを用いる場合は、90%捕集粒子径が粒子の平均粒子径の50〜100倍であることが好ましい。当該90%捕集粒子径を平均粒径の10倍以上に設定することにより、送液するときに必要な圧力が高くなりすぎることを抑制したり、フィルターが短期間で閉塞してしまうことを抑制し得る傾向にある。一方、平均粒径の100倍以下に設定することにより、フィルムで異物の原因となるような粒子の凝集物や樹脂の未溶解物を良好に除去できる傾向にある
〔高分子電解質膜〕
本実施形態における高分子電解質膜は、上記のとおり、高分子電解質組成物を含むものということができる。高分子電解質膜の膜厚は、1μm以上500μm以下であることが好ましく、より好ましくは2μm以上100μm以下、さらに好ましくは5μm以上50μm以下である。膜厚が1μm以上であることにより、水素と酸素とが直接反応するような不都合を低減し得るだけでなく、燃料電池製造時の取り扱い時や燃料電池運転中に差圧・歪み等が生じても、膜の損傷等が発生しにくい傾向にある。一方、膜厚が500μm以下であることにより、イオン透過性が向上し、固体高分子電解質膜としての性能が向上する傾向にある。
高分子電解質膜の成形方法の具体例について説明する。高分子電解質膜の成形方法は、特に限定されず、高分子電解質溶液を用いてキャスト製膜してもよいし、溶融押し出し、延伸等の工程を経ることにより成形してもよい。溶融押し出しにより成形を行う場合、成形性の観点から、高分子電解質前駆体及びラジカル捕捉剤(c)、添加剤(d、e)の混合物を溶融混練後、押し出し成形して膜を形成し、その後、塩基性反応液体中に浸漬し、加水分解するのが好ましい。この加水分解処理により、上記高分子電解質前駆体は高分子電解質(a)に変換される。
さらに、上記成形物は、前記塩基性反応液体中で加水分解処理された後、温水などで十分に水洗され、その後、酸処理が行われる。酸処理に使用する酸は、特に限定されないが、例えば、塩酸、硫酸、硝酸等の鉱酸類やシュウ酸、酢酸、ギ酸、トリフルオロ酢酸等の有機酸類が好ましい。この酸処理によって高分子電解質前駆体はプロトン化され、SO3H体となる。
また、高分子電解質膜は、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ペルフルオロ(アルコキシビニルエーテル)共重合体(PFA)、ポリエチレン、ポリプロピレン等の多孔体、繊維、織布、不織布等の多孔シート;シリカ、アルミナ等の無機ウィスカ、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン製の有機フィラー等で補強されていてもよい。
さらに、高分子電解質膜は架橋剤や紫外線、電子線、放射線等を用いて架橋することもできる。
本実施形態に係る高分子電解質膜は、成形後、熱処理が施されることが好ましい。熱処理により高分子電解質の結晶化が促進され、高分子電解質膜の機械的強度が安定化され得る。また、熱処理によりラジカル捕捉剤(c)やチオエーテル化合物(e)等の添加剤の結晶物部分と高分子固体電解質部分とが強固に接着され、その結果、機械的強度がより安定化される傾向にある。
熱処理温度は、好ましくは120℃以上300℃以下であり、より好ましくは140℃以上250℃以下であり、さらに好ましくは160℃以上230℃以下である。熱処理温度が120℃以上であることにより、結晶物部分と電解質組成物部分との間の密着力がより向上する傾向にある。一方、熱処理温度が300℃以下であることにより、高分子電解質膜の特性がより向上する傾向にある。熱処理の時間は、熱処理温度にもよるが、好ましくは5分以上3時間以下であり、より好ましくは10分以上2時間以下である。
〔膜電極接合体〕
本実施形態に係る膜電極接合体は、上記高分子電解質膜及び上記電極触媒層を有する。すなわち、本実施形態の膜電極接合体は、本実施形態の高分子電解質膜と、前記高分子電解質膜上に配された電極触媒層と、を有する。本実施形態に係る高分子電解質膜は、膜電極接合体、及び固体高分子電解質型燃料電池の構成部材として使用することができる。高分子電解質膜の両面にアノードとカソードの2種類の電極触媒層が接合したユニットは、膜電極接合体(以下「MEA」と略称することがある)と呼ばれる。電極触媒層のさらに外側に一対のガス拡散層を対向するように接合したものについても、MEAと呼ばれる場合がある。
本実施形態における電極触媒層は、MEAに使用されている種々公知の電極触媒層を適用することができる。上記高分子電解質組成物を含むものとして構成されることが好ましい。すなわち、本実施形態の膜電極接合体においては、電極触媒層が、イオン交換当量が0.5〜3.0ミリ当量/gの高分子電解質(a)と、硫酸チタン及び硝酸チタンからなる群より選ばれる少なくとも一種の金属塩を有する化合物(b)と、を含むことが好ましい。この場合、電極触媒層は、高分子電解質組成物と、必要に応じて触媒金属の微粒子とこれを担持した導電剤とを含むものとすることができる。また、必要に応じて撥水剤が含んでいてもよい。電極に使用される触媒としては、特に限定されず、水素の酸化反応及び酸素の還元反応を促進する金属であればよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、及びこれらの合金等が挙げられる。この中では、主として白金が用いられる。
MEAの製造方法としては、特に限定されないが、例えば、次のような方法が行われる。まず、電極用バインダーイオン交換樹脂をアルコールと水の混合溶液に溶解したものに、電極物質となる白金担持カーボンを分散させてペースト状にする。これをPTFEシートに一定量塗布して乾燥させる。次に、PTFEシートの塗布面を向かい合わせにして、その間に高分子電解質膜を挟み込み、100℃〜200℃で熱プレスにより転写接合してMEAを得ることができる。電極用バインダーは一般にイオン交換樹脂を溶媒(アルコールや水等)に溶解したものが使用されるが、燃料電池運転時の耐久性の観点から、本実施形態における高分子電解質組成物を使用することが好ましい。
〔固体高分子電解質型燃料電池〕
本実施形態に係る固体高分子型燃料電池は、上記膜電極接合体(MEA)を有する。上記で得られたMEA、場合によってはさらに一対のガス拡散電極が対向した構造のMEAは、さらにバイポーラプレートやバッキングプレート等の一般的な固体高分子電解質型燃料電池に用いられる構成成分と組み合わされて、固体高分子電解質型燃料電池を構成することができる。
バイポーラプレートとは、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイトと樹脂との複合材料、又は金属製のプレート等を意味する。バイポーラプレートは、電子を外部負荷回路へ伝達する機能の他、燃料や酸化剤を電極触媒近傍に供給する流路としての機能を持っている。こうしたバイポーラプレートの間にMEAを挿入して複数積み重ねることにより、燃料電池が製造される。
以下、実施例によりさらに具体的に説明するが、本実施形態はこれらの実施例のみに限定されるものではない。実施例等における各種物性の測定方法及び評価方法は次の通りである。
(1)イオン交換当量
イオン交換基の対イオンがプロトンの状態となっている高分子電解質膜、およそ2〜20cm2を、25℃、飽和NaCl水溶液30mLに浸漬し、攪拌しながら30分間放置した。次いで、飽和NaCl水溶液中のプロトンを、フェノールフタレインを指示薬として0.01N水酸化ナトリウム水溶液を用いて中和滴定した。中和後に得られた、イオン交換基の対イオンがナトリウムイオンの状態となっている高分子電解質膜を、純水ですすぎ、さらに真空乾燥して秤量した。中和に要した水酸化ナトリウムの物質量をM(mmol)、イオン交換基の対イオンがナトリウムイオンの高分子電解質膜の重量をW(mg)とし、下記式により当量重量EW(g/eq)を求めた。
EW=(W/M)−22
さらに、得られたEW値の逆数をとって1000倍とすることにより、イオン交換当量(ミリ当量/g)を算出した。
(2)膜厚
高分子電解質膜を23℃、50%RHの恒温恒湿室内で1時間以上静置した後、膜厚計(東洋精機製作所製、商品名:B−1)を用いて測定を行った。
(フェントン試験)
高分子電解質膜を空気下、200℃、2時間の条件で前処理を行った。次いで鉄イオンが2ppm、過酸化水素が1%の水溶液を調製し、80℃に加温したところに前処理後の高分子電解質膜を1時間、浸漬した。その後、イオンクロマトグラフにより試験後の液に含まれるフッ素イオンを測定した。なお、フッ素イオン量(フッ素溶出量)が少ないほど耐久性の高い高分子電解質膜、電極触媒層等を与える高分子電解質組成物となる。
(3)耐久性試験:発電・OCVサイクル試験
高温低加湿条件下における高分子電解質膜の耐久性を加速的に評価するため、以下のような手順で発電、OCVサイクルによる加速試験を実施した。尚、「OCV」とは、開回路電圧(Open Circuit Voltage)を意味する。
(3)−1 電極触媒インクの調製
20質量%のパーフルオロスルホン酸ポリマー溶液(SS700C/20、旭化成製、当量質量(EW):740)、電極触媒(TEC10E40E、田中貴金属販売社製、白金担持量36.7wt%)を白金/パーフルオロスルホン酸ポリマーが1/1.15(質量)となるように配合し、次いで、固形分(電極触媒とパーフルオロスルホン酸ポリマーの和)が11wt%となるようにエタノールを加え、ホモジナイザー(アズワン社製)により回転数が3,000rpmで10分間、撹拌することで電極触媒インクを得た。
(3)−2 MEAの作製
自動スクリーン印刷機(製品名:LS−150、ニューロング精密工業株式会社製)を用い、高分子電解質膜の両面に前記電極触媒インクを、白金量がアノード側0.2mg/cm2、カソード側0.3mg/cm2となるように塗布し、140℃、5分の条件で乾燥・固化させることでMEAを得た。
(3)−3 燃料電池単セルの作製
前記MEAの両極にガス拡散層(製品名:GDL35BC、MFCテクノロジー社製)を重ね、次いでガスケット、バイポーラプレート、バッキングプレートを重ねることで燃料電池単セルを得た。
(3)−4 発電・OCVサイクル試験
前記燃料電池単セルを評価装置(東陽テクニカ製燃料電池評価システム890CL)にセットして、発電3時間、OCV3時間のサイクルによる耐久性試験を実施した。
発電の試験条件は、セル温度90℃、加湿ボトル61℃(相対湿度30%RH)とし、アノード側に水素ガス、カソード側に空気ガスを、それぞれ0.3A/cm2でのガス利用率が75%、55%となるよう供給する条件とした。また、アノード側とカソード側の両方を無加圧(大気圧)とした。
OCVの試験条件は、セル温度、加湿ボトル温度、供給ガス、圧力は発電の試験条件と同様とした。
(3)−5 劣化判定
試験時間0時間(L0)から100時間毎に水素のリーク電流を測定した。試験開始から500時間後(L500)の水素のリーク電流とL0の差(L500−L0)を算出することで劣化判定を行った。L500−L0が小さい程良好な耐久性を有すると判断した。尚、水素リーク電流が10mA/cm2以上となった場合、試験時間が500時間に満たなくとも破膜と判断し試験を中止した。
水素のリーク電流は、セル温度、加湿ボトルの温度は発電の試験条件と同様にして、無加圧の条件でアノードに水素ガス、カソードに窒素ガスをそれぞれ200cc/min導入することで実施した。測定にはポテンショガルバノスタット(製品名:ソーラートロン1280B、東陽テクニカ社製)を用い、0.4Vを5分間保持し、5分後の電流値を電極面積で割ることで算出した。
下記実施例4及び比較例4は、高分子電解質組成物の高分子電解質膜への適用例である。また、下記実施例11から12及び比較例3は高分子電解質組成物の電極触媒層への適用例である。
〔実施例1〕
(高分子電解質溶液の調製)
高分子電解質(a)の前駆体である、テトラフルオロエチレン、及びCF2=CFO(CF22−SO2Fから得られたパーフルオロスルホン酸樹脂前駆体ペレットを、水酸化カリウム(15質量%)とメチルアルコール(50質量%)を溶解した水溶液中に、80℃で20時間接触させて、加水分解処理を行った。その後、60℃水中に5時間浸漬した。次に60℃の2N塩酸水溶液に1時間浸漬させる処理を、毎回新しい塩酸水溶液を用いて5回繰り返した後、イオン交換水で水洗、乾燥した。これにより、スルホン酸基(SO3H)を有する高分子電解質(a)のペレット(加水分解・酸処理後のEW:740、イオン交換当量:1.3ミリ当量/g)を得た。
このペレットをエタノール水溶液(水:エタノール=66.7:33.3(質量比))と共に5Lオートクレーブ中に入れて密閉し、翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一なパーフルオロスルホン酸樹脂溶液を作製した。
次に、この溶液100gに化合物(b)として硫酸チタン(Ti(SO42:アルドリッチ製)を0.15g添加し、a/b=97/3(質量比)となるように調整した。最後に、化合物(b)の効果を確認する目的で、硫酸鉄(II)(関東化学社製)をパーフルオロスルホン酸樹脂に対して20ppmとなるように配合し、高分子電解質組成物を含む高分子電解質溶液を得た。
(高分子電解質膜の作製)
得られた高分子電解質溶液をスターラーを用いて充分に攪拌した後、80℃にて減圧濃縮して、キャスト溶液を得た。キャスト液21gを直径15.4cmのシャーレに流し込み、ホットプレート上にて60℃で1時間及び80℃で1時間の乾燥を行い、溶媒を除去した。次に、シャーレをオーブンに入れ160℃で1時間熱処理を行った。その後、オーブンから取り出し、冷却したシャーレにイオン交換水を注いで膜を剥離させ、膜厚約30μmの高分子電解質膜を得た。次に、60℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水で水洗、乾燥して高分子電解質膜を得た。この高分子電解質膜を用い、上記フェントン試験を実施したところ、良好な結果を得た。結果を表1に示す。
〔実施例2〕
化合物(b)に四硝酸チタン(アルドリッチ製)を用いる以外は実施例1と同様な手法により、厚さ23μmの高分子電解質膜を作製した。次いで、実施例1と同様な手法によりフェントン試験を実施したところ、良好な結果を得た。結果を表1に示す。
〔実施例3〕
化合物(c)として、ポリベンゾイミダゾールをさらに添加すること以外は実施例1と同様な手法により、厚さ23μmの高分子電解質膜を作製した。次いで、実施例1と同様な手法によりフェントン試験を実施したところ、良好な結果を得た。結果を表1に示す。
〔比較例1〕
化合物(b)を配合しない以外は実施例1と同様な手法により、厚さ23μmの高分子電解質膜を作製した。次いで、実施例1と同様な手法によりフェントン試験を実施したところ、不良な結果を示した。
〔比較例2〕
化合物(b)に硫酸セリウム(和光純薬工業製)を用いる以外は実施例1と同様な手法により、厚さ23μmの高分子電解質膜を作製した。次いで、実施例1と同様な手法によりフェントン試験を実施した。結果を表1に示す。
〔比較例3〕
化合物(b)にリン酸チタン(和光純薬工業製)を用いる以外は実施例1と同様な手法により、厚さ23μmの高分子電解質膜を作製した。次いで、実施例1と同様な手法によりフェントン試験を実施した。結果を表1に示す。
〔実施例4〕
(高分子電解質組成物の調製)
高分子電解質(a)の前駆体である、テトラフルオロエチレン、及びCF2=CFO(CF22−SO2Fから得られたパーフルオロスルホン酸樹脂前駆体ペレットを、水酸化カリウム(15質量%)とメチルアルコール(50質量%)を溶解した水溶液中に、80℃で20時間接触させて、加水分解処理を行った。その後、60℃水中に5時間浸漬した。次に60℃の2N塩酸水溶液に1時間浸漬させる処理を、毎回新しい塩酸水溶液を用いて5回繰り返した後、イオン交換水で水洗、乾燥した。これにより、スルホン酸基(SO3H)を有する高分子電解質(a)のペレット(加水分解・酸処理後のEW:740、イオン交換当量:1.3ミリ当量/g)を得た。
このペレットをエタノール水溶液(水:エタノール=66.7:33.3(質量比))と共に5Lオートクレーブ中に入れて密閉し、翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、5質量%の均一なパーフルオロスルホン酸樹脂溶液を作製した。
次に、この溶液100gに硫酸鉄(II)(関東化学社製)をパーフルオロスルホン酸樹脂に対して20ppmとなるように配合し、さらに固形分が20質量%になるまで減圧下、濃縮を行い、高分子電解質組成物を含む高分子電解質溶液を得た。
(電極触媒インクの調製)
得られた高分子電解質溶液に電極触媒(TEC10E40E、田中貴金属販売社製、白金担持量36.7wt%)を白金/パーフルオロスルホン酸ポリマーが1/1.15(重量)となるように配合した。最後に、固形分(電極触媒、パーフルオロスルホン酸ポリマー、ポリリン酸の和)が11wt%となるようにエタノールを加え、ホモジナイザー(アズワン社製)により回転数が3,000rpmで10分間、撹拌することで電極触媒インクを得た。
(膜電極接合体の作製)
得られた電極インクを自動スクリーン印刷機(製品名:LS−150、ニューロング精密工業株式会社製)を用い、実施例1で用いた硫酸チタン含有膜の両面に、白金量がアノード側0.2mg/cm2、カソード側0.3mg/cm2となるように塗布し、140℃、5分の条件で乾燥・固化させることでMEAを得た。
(燃料電池単セルの作製)
得られたMEAの両極にガス拡散層(製品名:GDL35BC、MFCテクノロジー社製)を重ね、次いでガスケット、バイポーラプレート、バッキングプレートを重ねることで燃料電池単セルを得た。得られた燃料電池単セルを用い、上記(3)耐久性試験を行ったところ良好な結果を得た。結果を表2に示す。
〔比較例4〕
(電極触媒インクの調製)
実施例4と同様にして得られた高分子電解質溶液に電極触媒(TEC10E40E、田中貴金属販売社製、白金担持量36.7wt%)を白金/パーフルオロスルホン酸ポリマーが1/1.15(重量)となるように配合した。次に、パーフルオロスルホン酸ポリマーに対して、3wt%となるように硫酸チタンを加えて撹拌混合した。最後に、固形分(電極触媒、パーフルオロスルホン酸ポリマー、ポリリン酸の和)が11wt%となるようにエタノールを加え、ホモジナイザー(アズワン社製)により回転数が3,000rpmで10分間、撹拌することで電極触媒インクを得た。
(膜電極接合体の作製)
得られた電極触媒インクを自動スクリーン印刷機(製品名:LS−150、ニューロング精密工業株式会社製)を用い、比較例1で用いた化合物(b)を配合しない膜の両面に、白金量がアノード側0.2mg/cm2、カソード側0.3mg/cm2となるように塗布し、140℃、5分の条件で乾燥・固化させることでMEAを得た。
(燃料電池単セルの作製)
得られたMEAの両極にガス拡散層(製品名:GDL35BC、MFCテクノロジー社製)を重ね、次いでガスケット、バイポーラプレート、バッキングプレートを重ねることで燃料電池単セルを得た。得られた燃料電池単セルを用い、上記(3)耐久性試験を行った。結果を表2に示す。

Claims (8)

  1. イオン交換当量が0.5〜3.0ミリ当量/gの高分子電解質(a)と、
    硫酸チタン及び硝酸チタンからなる群より選ばれる少なくとも一種の金属塩を有する化合物(b)と、
    を含有する、高分子電解質膜。
  2. 前記高分子電解質がフッ素系高分子電解質である、請求項1に記載の高分子電解質膜。
  3. 前記高分子電解質が下式[1]で示されるフッ素系高分子電解質である、請求項1又は2に記載の高分子電解質膜。
    −[CF2CX12a−[CF2−CF(−O−(CF2−CF(CF23))b−Oc−(CFR1d−(CFR2e−(CF2f−X4)]g− [1]
    (式[1]中、X1、X2及びX3は、互いに独立して、ハロゲン元素又は炭素数1以上3以下のパーフルオロアルキル基である。a及びgは、0≦a<1、0<g≦1、a+g=1である。bは0以上8以下の整数である。cは0又は1である。d及びeは、互いに独立して、0以上6以下の整数である。fは、0以上10以下の整数である。ただし、d+e+fは0に等しくない。R1及びR2は、互いに独立して、ハロゲン元素、炭素数1以上10以下のパーフルオロアルキル基又はフルオロクロロアルキル基である。X4はCOOZ、SO3Z、PO32又はPO3HZである。ここで、Zは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアミン類(NH4、NH33、NH234、NHR345、NR3456)である。またR3、R4、R5及びR6はアルキル基又はアレーン基である。)
  4. 前記硫酸チタン及び硝酸チタンが、成分(a)に分散されてなる、請求項1〜3のいずれか1項に記載の高分子電解質膜。
  5. ラジカル捕捉剤(c)をさらに含有する、請求項1〜4のいずれか1項に記載の高分子電解質膜。
  6. 請求項1〜5のいずれか1項に記載の高分子電解質膜と、
    前記高分子電解質膜上に配された電極触媒層と、
    を有する、膜電極接合体。
  7. 前記電極触媒層が、イオン交換当量が0.5〜3.0ミリ当量/gの高分子電解質(a)と、硫酸チタン及び硝酸チタンからなる群より選ばれる少なくとも一種の金属塩を有する化合物(b)と、を含む、請求項6の膜電極接合体。
  8. 請求項6又は7に記載の膜電極接合体を有する、固体高分子型燃料電池。
JP2017101137A 2017-05-22 2017-05-22 高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池 Active JP6890467B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017101137A JP6890467B2 (ja) 2017-05-22 2017-05-22 高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017101137A JP6890467B2 (ja) 2017-05-22 2017-05-22 高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池

Publications (2)

Publication Number Publication Date
JP2018195543A true JP2018195543A (ja) 2018-12-06
JP6890467B2 JP6890467B2 (ja) 2021-06-18

Family

ID=64571786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101137A Active JP6890467B2 (ja) 2017-05-22 2017-05-22 高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池

Country Status (1)

Country Link
JP (1) JP6890467B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258086B2 (en) 2019-12-03 2022-02-22 Toyota Jidosha Kabushiki Kaisha Method of manufacturing membrane electrode assembly and membrane electrode assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203648A (ja) * 2002-01-07 2003-07-18 Hitachi Ltd 固体高分子電解質複合膜,膜/電極接合体及びそれを用いた固体高分子型燃料電池
JP2006260964A (ja) * 2005-03-17 2006-09-28 Konica Minolta Holdings Inc 燃料電池用セパレータ及び燃料電池
JP2007012375A (ja) * 2005-06-29 2007-01-18 Toyota Motor Corp 燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法
JP2007073303A (ja) * 2005-09-06 2007-03-22 Toyota Central Res & Dev Lab Inc 膜電極接合体及び固体高分子電解質劣化抑制剤のスクリーニング方法
JP2013256641A (ja) * 2012-05-16 2013-12-26 National Institute For Materials Science パーフルオロスルホン酸ポリマー−アゾール−酸ブレンド膜及びその製造方法、パーフルオロスルホン酸ポリマー−アゾールブレンド膜及びその製造方法、並びにプロトン交換膜燃料電池
WO2014020849A1 (ja) * 2012-08-02 2014-02-06 パナソニック株式会社 分子配向性のパーフルオロスルホン電解質膜製造法
JP2014234445A (ja) * 2013-05-31 2014-12-15 旭化成イーマテリアルズ株式会社 高分子電解質組成物、並びに、それを用いた、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203648A (ja) * 2002-01-07 2003-07-18 Hitachi Ltd 固体高分子電解質複合膜,膜/電極接合体及びそれを用いた固体高分子型燃料電池
JP2006260964A (ja) * 2005-03-17 2006-09-28 Konica Minolta Holdings Inc 燃料電池用セパレータ及び燃料電池
JP2007012375A (ja) * 2005-06-29 2007-01-18 Toyota Motor Corp 燃料電池、燃料電池用電極触媒層の製造方法、及び燃料電池の運転方法
JP2007073303A (ja) * 2005-09-06 2007-03-22 Toyota Central Res & Dev Lab Inc 膜電極接合体及び固体高分子電解質劣化抑制剤のスクリーニング方法
JP2013256641A (ja) * 2012-05-16 2013-12-26 National Institute For Materials Science パーフルオロスルホン酸ポリマー−アゾール−酸ブレンド膜及びその製造方法、パーフルオロスルホン酸ポリマー−アゾールブレンド膜及びその製造方法、並びにプロトン交換膜燃料電池
WO2014020849A1 (ja) * 2012-08-02 2014-02-06 パナソニック株式会社 分子配向性のパーフルオロスルホン電解質膜製造法
JP2014234445A (ja) * 2013-05-31 2014-12-15 旭化成イーマテリアルズ株式会社 高分子電解質組成物、並びに、それを用いた、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258086B2 (en) 2019-12-03 2022-02-22 Toyota Jidosha Kabushiki Kaisha Method of manufacturing membrane electrode assembly and membrane electrode assembly

Also Published As

Publication number Publication date
JP6890467B2 (ja) 2021-06-18

Similar Documents

Publication Publication Date Title
US8304134B2 (en) Polymer electrolyte composition, polymer electrolyte membrane, membrane electrode assembly and solid polymer electrolyte-based fuel cell
US7811694B2 (en) Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuel cell comprising the same
CA2813564C (en) Fluorine-based polymer electrolyte membrane
JP2012092345A (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
WO2018207325A1 (ja) 高分子電解質膜、膜電極接合体、及び固体高分子型燃料電池
JP5354935B2 (ja) 高分子電解組成物及びその用途
JP5189394B2 (ja) 高分子電解質膜
JP5286651B2 (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2018174158A (ja) 高分子電解質組成物、及び、それを用いた、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池
JP2007031718A5 (ja)
JP2009021234A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP2015153573A (ja) 高分子電解質膜、膜電極接合体、及び固体高分子形燃料電池
JP6890467B2 (ja) 高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池
JP5614891B2 (ja) 膜電極複合体、及び固体高分子電解質型燃料電池
JP2014234445A (ja) 高分子電解質組成物、並びに、それを用いた、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子型燃料電池
JP2019102330A (ja) 高分子電解質膜、膜電極接合体、及び固体高分子型燃料電池
JP2013095757A (ja) 高分子電解質組成物、高分子電解質膜、膜電極複合体及び固体高分子電解質型燃料電池
JP7106002B2 (ja) 高分子電解質膜、膜電極接合体、固体高分子電解質形燃料電池、及び高分子電解質膜の製造方法
JP4798974B2 (ja) 高分子固体電解質膜の製造方法
JP2022190524A (ja) 高分子電解質組成物、高分子電解質膜、電極触媒層、膜電極接合体、及び固体高分子形燃料電池
JP2008091187A (ja) 燃料電池用電解質膜および、膜電極接合体,燃料電池
JP6158377B2 (ja) 固体高分子電解質型燃料電池
JP2014222666A (ja) 膜電極複合体、及び固体高分子電解質型燃料電池
JP2022015656A (ja) 高分子電解質膜、及び固体高分子形燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6890467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150