JP2018189092A - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
JP2018189092A
JP2018189092A JP2018125820A JP2018125820A JP2018189092A JP 2018189092 A JP2018189092 A JP 2018189092A JP 2018125820 A JP2018125820 A JP 2018125820A JP 2018125820 A JP2018125820 A JP 2018125820A JP 2018189092 A JP2018189092 A JP 2018189092A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
downstream
exhaust
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018125820A
Other languages
English (en)
Other versions
JP6538246B2 (ja
Inventor
真一郎 大塚
Shinichiro Otsuka
真一郎 大塚
研治 片山
Kenji Katayama
研治 片山
仙考 増満
Noritaka Masumitsu
仙考 増満
亮子 山田
Ryoko Yamada
亮子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018125820A priority Critical patent/JP6538246B2/ja
Publication of JP2018189092A publication Critical patent/JP2018189092A/ja
Application granted granted Critical
Publication of JP6538246B2 publication Critical patent/JP6538246B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】触媒コンバータとGPFとを排気通路に直列に配置した排気浄化システムにおいて、システム全体での圧力損失の増加を抑制しながら、優れた排気浄化性能を発揮できる内燃機関の排気浄化システムを提供すること。【解決手段】排気浄化システム2は、LAFセンサ51と、LAFセンサ51の検出箇所の下流側に設けられた上流触媒コンバータ31と、上流触媒コンバータ31の下流側に設けられたGPF32と、LAFセンサ51の出力信号KACTを用いて、GPF32に流入する排気の空燃比がストイキの近傍に設定された後段目標値に収束するようにエンジン1における混合気の空燃比を操作するECU6と、を備える。GPF32は、フィルタ基材と、フィルタ基材の隔壁に担持された下流TWCと、を備える。下流TWCは、少なくともRhを含む触媒金属と、酸素吸蔵放出能を有しかつ結晶構造中にNd及びPrを有する複合酸化物と、を含む。【選択図】図1

Description

本発明は、内燃機関の排気浄化システムに関する。
従来、自動車等に搭載されるガソリンエンジンにおいて、燃焼効率の向上等の観点から、直噴ガソリンエンジンが採用されている。ところが、この直噴ガソリンエンジンでは粒子状物質(Particulate Matter、以下「PM」という。)が生成するため、近年のエミッション規制の強化に伴って、ガソリンエンジンの排気通路にPMを捕捉する排気浄化フィルタ(Gasoline Particulate Filter(以下、「GPF」との略称を用いる場合もある。)を設ける技術の検討が進められている。
また、ガソリンエンジンの排気通路には、排気中に含まれるCO、HC及びNOを浄化するため、三元触媒(以下、「TWC」との略称を用いる場合もある。)をハニカム支持体に担持して構成される触媒コンバータが設けられる。特に近年では、要求浄化性能を満たすために複数の触媒コンバータが直列に排気通路に配置される。そのため、これら複数の触媒コンバータに加え、GPFを新たに排気通路に設けるのは、圧力損失やコストの観点から好ましくない。
そこで、GPFのフィルタ基材にTWCを担持させることにより、フィルタ基材の持つPM捕捉機能に加えて、TWCによる三元浄化機能を付与する技術が提案されている(例えば、特許文献1参照)。この技術によれば、GPFとTWCとを一体化することで、圧力損失やコストの問題を解消できると見込まれる。すなわち、GPFにTWCの機能を付与することにより、その分だけ排気通路に設けるべき触媒コンバータの数を減らすことができるので、排気浄化システム全体での圧力損失及びコストの増加を抑制でき、合理的である。
特表2013−500857号公報
ここで、排気通路に触媒コンバータとGPFとを直列に配置した排気浄化システムの課題について詳細に検討する。上述のようにGPFにTWCの機能を付与すれば、その分だけ要求される排気浄化性能を達成するために必要なTWCの数を減らすことができると見込まれる。しかしながら、GPFに用いられるフィルタ基材には、PM捕捉機能を確保するため、触媒コンバータに用いられるハニカム支持体と異なって目封じが設けられている。このため、GPFのフィルタ基材は、TWCを担持させずとも圧力損失が高く、ハニカム支持体ほど多くのTWCを担持させることができない。すなわち、TWCの機能が付与されたGPFは、単純には触媒コンバータの代替とはなり得ない。したがって、触媒コンバータとGPFとを直列に配置した排気浄化システムでは、システム全体での排気浄化性能を確保しようとすると、GPFのフィルタ基材に多くの量のTWCを担持させざるを得ず、そうするとシステム全体での圧力損失の増加が懸念される。
このようにGPFのフィルタ基材にTWCを担持させようとすると、圧力損失と排気浄化性能との両立が困難になる。このためフィルタ基材に適したTWCの開発が望まれている。例えば特許文献1の技術では、触媒金属としてRhを含むTWCを用いた場合に、特にNO浄化性能が大きく低下する場合がある。例えば、優れた三元浄化機能を有するTWCとしてRh層とPd層の2層構造を有するものが知られているが、GPFのフィルタ基材にこのような2層構造のTWCを担持させると大きな圧力損失を招く。このため、フィルタ基材にはRhとPdを混合して得られる単層構造のTWCを担持させることが考えられる。ところがこの場合には、Pdの劣化抑制及びNO吸着性の向上のためにPd層に通常添加されているBaがRhに接触又は近接することとなる。すると、Baの電子供与作用によってRhが酸化されて酸化物化し、RhのNO還元能が低下する結果、GPFではさほど大きなNO浄化性能が達成できない、という課題がある。
本発明は上記に鑑みてなされたものであり、その目的は、触媒コンバータとGPFとを排気通路に直列に配置した排気浄化システムにおいて、システム全体での圧力損失の増加を抑制しながら、優れた排気浄化性能を発揮できる内燃機関の排気浄化システムを提供することにある。
(1)内燃機関(例えば、後述のエンジン1)の排気浄化システム(例えば、後述の排気浄化システム2)は、前記内燃機関の排気通路(例えば、後述の排気管3)に設けられ、排気の空燃比に応じた信号を生成する第1空燃比センサ(例えば、後述のLAFセンサ51)と、前記排気通路のうち前記第1空燃比センサの検出箇所の下流側に設けられ、排気を浄化する触媒を有する上流触媒コンバータ(例えば、後述の上流触媒コンバータ31)と、前記排気通路のうち前記上流触媒コンバータの下流側に設けられ、排気の空燃比に応じた信号を生成する第2空燃比センサ(例えば、後述のOセンサ52)と、前記排気通路のうち前記第2空燃比センサの検出箇所の下流側に設けられ、排気中の粒子状物質を捕捉して浄化する下流フィルタ(例えば、後述のGPF32)と、前記第1空燃比センサの出力信号及び前記第2空燃比センサの出力信号を用いて、前記下流フィルタに流入する排気の空燃比がストイキ(すなわち、完全燃焼反応における化学量論比)の近傍に設定された後段目標値に収束するように前記内燃機関で燃焼させる混合気の空燃比を操作する空燃比コントローラ(例えば、後述のECU6)と、を備える。前記下流フィルタは、排気の流入側端面から流出側端面まで延びる複数のセルが多孔質の隔壁により区画形成されかつこれらセルの流入側端面における開口と流出側端面における開口とが互い違いに目封じされたフィルタ基材と、前記隔壁に担持された下流三元触媒(例えば、後述のTWC33,33a,33b)と、を備え、前記下流三元触媒は、少なくともRhを含む触媒金属と、酸素吸蔵放出能を有するOSC材と、を含み、前記下流三元触媒のOSC材は、その結晶構造中にNd及びPrを有する複合酸化物を含み、前記上流触媒コンバータは、排気の流入側端面から流出側端面まで延びる複数のセルが多孔質の隔壁により区画形成されたハニカム基材と、前記ハニカム基材の隔壁に担持された上流三元触媒と、を備え、前記上流三元触媒は、触媒金属と酸素吸蔵放出能を有するOSC材と、を含み、前記フィルタ基材における単位体積当たりのOSC材の含有量は、前記ハニカム基材における単位体積当たりのOSC材の含有量よりも少ない。
(2)この場合、前記空燃比コントローラは、前記第2空燃比センサの出力信号が前記後段目標値に収束するように前記第1空燃比センサの出力信号に対する前段目標値を設定する前段空燃比設定手段と、前記第1空燃比センサの出力信号が前記前段目標値になるように前記内燃機関で燃焼させる混合気の空燃比を操作するための操作量を決定する操作量決定手段と、を備えることが好ましい。
(3)この場合、前記フィルタ基材の隔壁の厚さは、前記ハニカム基材の隔壁の厚さよりも大きく、前記フィルタ基材の隔壁の気孔率は、前記ハニカム基材の隔壁の気孔率よりも高く、前記フィルタ基材に形成されるセルの総数は、前記ハニカム基材に形成されるセルの総数よりも少ないことが好ましい。
(4)この場合、前記フィルタ基材の隔壁は、平均細孔径が15μm以上であり、
前記下流三元触媒は、粒度分布における小粒径側からの累積分布が90%となるときの粒子径D90が5μm以下であることが好ましい。
(5)この場合、前記下流三元触媒は、前記触媒金属としてRh及びPdを含み且つこれらRh及びPdが混合された状態で前記フィルタ基材の隔壁内の細孔内表面に担持されることが好ましい。
(6)この場合、前記下流三元触媒は、Baを含まずに構成されることが好ましい。
(7)この場合、前記下流三元触媒の複合酸化物中に含まれるNd及びPrの合計含有量は、10質量%以上であることが好ましい。
(1)本発明では、多孔質の隔壁に排気を通過させることによって排気中の粒子状物質を捕捉する所謂ウォールフロー型のGPFにおいて、隔壁に担持する下流三元触媒を、少なくともRhを含む触媒金属と、酸素吸蔵放出能(Oxygen Storage Capacity)を有するOSC材としてその結晶構造中にNd及びPrを有する複合酸化物を含むものと、を含んで構成する。ここで、酸素吸蔵放出能を有する複合酸化物の結晶構造中に組み込むことが可能な元素のうち、Nd及びPrは後段で詳述するように酸点の量が多い特性を有する。そのため、結晶構造中にNd及びPrを有する複合酸化物は、酸点の量が多いためHC吸着能が高く、HCと水の存在下で進行するスチームリフォーミング反応が効率良く進行する。すると、このスチームリフォーミング反応の進行により水素が生成し、生成した水素によって下流三元触媒を構成するRhの酸化物化が抑制される。即ち、RhのNO還元能の低下を回避できるため、高いNO浄化性能を発揮できる。従って本発明では、優れた三元浄化機能を発揮し得る下流三元触媒を下流フィルタのフィルタ基材に用いることにより、十分な三元浄化機能を発揮しつつGPF32の圧力損失の増加を抑制することができる。
ここで一般的に三元触媒には、三元浄化機能を発揮するための触媒金属に加えて、空燃比の変動を抑制するためにOSC材が含まれる。このため、下流フィルタにおける圧力損失の増加を極力抑制するためには、下流フィルタのフィルタ基材における単位体積当たりのOSC材の含有量を、上流触媒コンバータのハニカム基材における単位体積当たりのOSC材の含有量より少なくすることが好ましい。この点、後述するように、スチームリフォーミング反応による水素の生成量はPrよりもNdの方が高いが、Prは空燃比の変動を吸収する効果を有する。従って下流フィルタに用いる下流三元触媒に含まれるOSC材として、結晶構造中にNd及びPrを有する複合酸化物を含んだものを用いることにより、空燃比の変動を抑制しつつ高い三元浄化機能を発揮しながら、フィルタ基材におけるOSC材の含有量を少なくできる。以上のように、本発明では、フィルタ基材に適した下流三元触媒を用いた上、さらに下流フィルタのOSC材の含有量を上流触媒コンバータよりも少なくすることにより、システム全体での圧力損失の増加を抑制しながら、優れた排気浄化性能を発揮できる。
これに加えて本発明では、下流フィルタに用いるOSC材の含有量を減らすことに起因する下流フィルタにおける三元浄化機能の低下を回避するため、上流触媒コンバータ及び下流フィルタのそれぞれの上流側に設けられた第1及び第2空燃比センサの出力信号を用いて、下流フィルタに流入する排気の空燃比がストイキの近傍に設定された後段目標値に収束するように、内燃機関で燃焼させる混合気の空燃比を操作する。先ず本発明では、上流触媒コンバータには下流フィルタよりも多くの量のOSC材が設けられることになる。このため、上流触媒コンバータを通過する過程で空燃比の変動が抑制されるので、下流フィルタに流入する排気の空燃比を安定させることができる。このように本発明では、OSC材の含有量を上流触媒コンバータと下流フィルタとで適切に配分することによって、下流フィルタに流入する排気の空燃比を安定させた上で、さらに2つの空燃比センサを用いて、下流フィルタに排気の空燃比をストイキの近傍に設定された後段目標値に収束するように混合気の空燃比を操作することにより、下流フィルタにおけるOSC材の含有量を少なくすることによる圧力損失の増加の抑制と、排気浄化性能の向上とを両立することができる。
(2)本発明では、第2空燃比センサの出力信号がストイキの近傍に設定された後段目標値に収束するように上流触媒コンバータの上流側の第1空燃比センサの出力信号に対する前段目標値を設定する。そして第1空燃比センサの出力信号が前段目標値になるように内燃機関で燃焼させる混合気の空燃比を操作するための操作量を決定する。これにより、下流フィルタに流入する排気の空燃比がストイキの近傍に設定された後段目標値に収束するように、すなわち下流三元触媒における三元浄化機能が発揮され続けるように、上流触媒コンバータにおける第1空燃比センサの出力信号から第2空燃比センサの出力信号までの制御系の応答遅れや無駄時間等を考慮して前段目標値を設定することができる。
(3)図17は、下流フィルタのフィルタ基材を特徴付けるパラメータである壁厚、気孔率、及びセル数と、下流フィルタによるPM捕捉機能や圧力損失性能等との関係を示す図である。先ず、本発明では、フィルタ基材の隔壁の厚さを、ハニカム基材の隔壁の厚さよりも大きくする。これにより、下流フィルタに要求される程度のPM捕捉機能を達成することができる。しかしながら図17に示すように、フィルタ基材の隔壁を厚くするとPM捕捉機能は向上するものの、圧力損失が増加してしまう。そこで本発明では、フィルタ基材の隔壁の気孔率を、ハニカム基材の隔壁の気孔率よりも高くする。これにより、下流フィルタにおける圧力損失の増加を抑制することができる。しかしながら気孔率を高くすると、図17に示すようにフィルタ基材の機械的強度が低下してしまう。したがってフィルタ基材の十分な機械的強度を確保するためには、気孔率は過剰に増加させることができず、十分に圧力損失を低下させることができない。そこで本発明では、フィルタ基材の隔壁に形成されるセルの総数を、ハニカム基材に形成されるセルの総数よりも少なくする。本発明では、以上のようにして壁厚、気孔率、セル数を設定することにより、十分なPM捕捉機能、機械的強度、及び圧力損失性能を達成することができる。
(4)本発明では、フィルタ基材の隔壁の平均細孔径を15μm以上とすると共に、下流三元触媒の粒子径D90を5μm以下として微粒子化する。これにより、微粒子化された下流三元触媒を隔壁の細孔内に導入でき、かかる細孔内表面に下流三元触媒を担持させることができる。したがって本発明によれば、隔壁の表層にのみ下流三元触媒が担持されることで生じる下流フィルタの圧力損失の増大を回避でき、ひいてはより高い三元浄化機能を発揮できる。
(5)本発明では、下流三元触媒を、Rh及びPdを含んで構成すると共に、これらRh及びPdを混合した状態でフィルタ基材の隔壁内の細孔内表面に担持する。上述したように従来ではRhとPdを混合して下流フィルタに担持させた場合には、従来Pd層に添加されるBaがRhに接触又は近接する結果、Baの電子供与作用によってRhが酸化されて酸化物化し、NO浄化性能が大きく低下していた。これに対して本発明によれば、(1)の発明の効果が顕著に発揮される結果、RhのNO浄化性能の低下を回避でき、従来よりも優れた三元浄化機能を発揮し得る下流フィルタを提供できる。
また、Rh層とPd層の2層構造を有する従来の下流三元触媒を、隔壁の細孔内表面に担持させるのは困難であるところ、この発明によればRhとPdを混合した状態でも高い三元浄化機能が発揮されるため、隔壁の細孔内表面への担持に好ましい触媒組成となっている。
(6)本発明では、下流三元触媒を、Baを含まずに構成する。これにより、下流三元触媒にBaが含まれていないため、上述したようにBaによりRhの酸化物化が促進されてNO浄化性能が低下するのを回避できる。
(7)本発明では、NdとPrが複合酸化物の結晶構造中に10質量%以上含まれる構成とする。これにより、より優れた三元浄化性能が発揮される。
本発明の一実施形態に係るエンジンの排気浄化システムの構成を示す図である。 上記実施形態に係るGPFの断面模式図である。 上記実施形態に係るGPFの隔壁の拡大模式図である。 CO−TPRによるRhの還元のし易さを示す図である。 NH−TPDによる各複合酸化物の酸点の量を示す図である。 各複合酸化物のスチームリフォーミング反応による水素生成量を示す図である。 実施例1及び比較例1における温度とNO浄化率との関係を示す図である。 実施例1及び比較例2、3における温度と空燃比吸収率との関係を示す図である。 実施例6のTWCの粒子径分布を示す図である。 実施例1のGPFの隔壁内におけるTWCの担持状態を示す図である。 実施例1〜7におけるTWCのD90と圧力損失との関係を示す図である。 実施例1及び実施例8、9におけるGPFの隔壁の平均細孔径と圧力損失との関係を示す図である。 実施例1及び実施例10〜13におけるTWCのウォッシュコート量と圧力損失との関係を示す図である。 実施例1及び実施例17、18におけるGPFの壁厚と圧力損失との関係を示す図である。 実施例1のGPFにおける空燃比と浄化率との関係を示す図である。 実施例19のGPFにおける空燃比と浄化率との関係を示す図である。 実施例20のGPFにおける空燃比と浄化率との関係を示す図である。 実施例21のGPFにおける空燃比と浄化率との関係を示す図である。 Nd及びPrの合計含有量とNO_T50との関係を示す図である。 Nd及びPrの合計含有量とCO_T50との関係を示す図である。 Nd及びPrの合計含有量とHC_T50との関係を示す図である。 GPFのフィルタ基材を特徴付けるパラメータである壁厚、気孔率、及びセル数と、GPFによるPM捕捉機能や圧力損失性能等との関係を示す図である。
以下、本発明の一実施形態について、図面を参照して説明する。
図1は、本実施形態に係る内燃機関(以下、「エンジン」という)1とその排気浄化システム2の構成を示す図である。
エンジン1は、複数の気筒毎に設けられた燃料噴射弁11によって、各気筒内に直接燃料を噴射する直噴方式のガソリンエンジンである。これら燃料噴射弁11は、後述のECU6からの信号によって作動する。ECU6では、後述の空燃比制御プログラムによってこれら燃料噴射弁11における燃料噴射量や燃料噴射時期等の燃料噴射態様を決定するとともに、決定した燃料噴射態様が実現されるように燃料噴射弁11を開閉駆動する。
排気浄化システム2は、第1空燃比センサとしてのLAFセンサ51と、エンジン1の排気管3に設けられた上流触媒コンバータ31と、第2空燃比センサとしてのOセンサ52と、排気管3に設けられた下流フィルタとしてのGPF32と、LAFセンサ51及びOセンサ52の出力信号を用いてエンジン1で燃焼させる混合気の空燃比を操作する空燃比コントローラとしてのECU6と、を備え、これらによって排気管3を通流するエンジン1の排気を浄化する。以下では、始めに上流触媒コンバータ31及びGPF32の構成について説明した後、2つのセンサ51,52及びECU6の機能について説明する。
上流触媒コンバータ31は、排気の流入側端面から流出側端面まで延びる複数のセルが多孔質の隔壁により区画形成されたハニカム基材と、このハニカム基材の隔壁に担持されたTWCと、を備える。上流触媒コンバータ31に用いられるTWCは、排気中のHCをHOとCOに、COをCOに、NOをNにそれぞれ酸化又は還元することで浄化する機能(すなわち、三元浄化機能)を有する。このTWCには、例えば、アルミナ、シリカ、ジルコニア、チタニア、セリア、ゼオライト等の酸化物からなる担体に、触媒金属としてPdやRh等の貴金属を担持させたものが用いられる。
上流触媒コンバータ31のTWCは、酸素吸蔵放出能を有するOSC材を含む。OSC材としては、CeOの他、CeOとZrOの複合酸化物(以下、「CeZr複合酸化物」という。)等が用いられる。中でも、CeZr複合酸化物は、高い耐久性を有するため好ましく用いられる。なお、これらOSC材に、上記触媒金属が担持されていてもよい。
上流触媒コンバータ31の製造方法については特に限定されず、従来公知のスラリー法等により調製される。例えば、上記の酸化物、貴金属、OSC材等を含むスラリーを調製後、調製したスラリーをコージェライト製のハニカム基材にコートして焼成することにより製造される。
GPF32は、排気管3のうち上流触媒コンバータ31の下流側に設けられる。GPF32は、排気中のPMを捕捉して浄化する。具体的には、後述する隔壁内の微細な細孔を排気が通過する際に、隔壁の表面にPMが堆積することで、PMを捕捉する。
図2は、本実施形態に係るGPF32の断面模式図である。
図2に示すように、GPF32は、フィルタ基材320を備える。フィルタ基材320は、例えば軸方向に長い円柱形状であり、コージェライト、ムライト、シリコンカーバイド(SiC)等の多孔質体により形成される。フィルタ基材320には、流入側端面32aから流出側端面32bまで延びる複数のセルが設けられ、これらセルは隔壁323により区画形成される。
フィルタ基材320は、流入側端面32aを目封じする流入側目封じ部324を備える。流入側目封じ部324によって流入側端面32aが目封じされたセルは、流入側端部が閉塞する一方で流出側端部が開口し、隔壁323内を通過した排気を下流へ流出させる流出側セル322を構成する。
流入側目封じ部324は、フィルタ基材320の流入側端面32aから目封じ用セメントを封入することで形成される。
フィルタ基材320は、流出側端面32bを目封じする流出側目封じ部325を備える。流出側目封じ部325によって流出側端面32bが目封じされたセルは、流入側端部が開口する一方で流出側端部が閉塞し、排気管3から排気が流入する流入側セル321を構成する。
流出側目封じ部325は、フィルタ基材320の流出側端面32bから目封じ用セメントを封入することで形成される。
なお、セルの流入側端面32aにおける開口と、流出側端面32bにおける開口とが互い違いに目封じされることで、上記流入側セル321と流出側セル322とが互いに格子状(市松状)に隣接して配置されようになっている。
図3は、本実施形態に係るGPF32の隔壁323の拡大模式図である。
図3に示すように、隔壁323内の細孔内表面には、TWC33が担持される。TWC33は、Rhを含むTWC33aと、Pdを含むTWC33bを含んで構成される。これらTWC33は、微粒子化された状態で細孔内表面に担持されている。なお、隔壁323の細孔は、これらTWC33により閉塞されてはおらず、大きな圧力損失が生じないようになっている。
隔壁323は、平均細孔径が15μm以上であることが好ましい。平均細孔径が15μm以上であれば、後述するTWC33の粒子径との関係でTWC33が細孔径内に入り込むことができ、細孔内表面にTWC33を担持できる。より好ましい平均細孔径は20μm以上である。
また、隔壁323の厚さは特に制限されないが、10mil以下であることが好ましい。隔壁の厚さが10milを超える場合、TWCの担持量や隔壁の平均細孔径等との関係で圧力損失が増大する場合がある。
TWC33は、粒度分布における小粒径側からの累積分布が90%となるときの粒子径D90が5μm以下で微粒子化されている。TWC33のD90が5μm以下であれば、上述の隔壁323の平均細孔径との関係でTWC33が細孔径内に入り込むことができ、細孔内表面にTWC33を担持できる。より好ましいD90は3μm以下である。
TWC33は、触媒金属として少なくともRhを含み、好ましくは図3に示したように触媒金属としてRh及びPdを含む。これらRh及びPdは、後述する酸素吸蔵放出能を有するOSC材に担持されていてもよく、アルミナ、シリカ、ジルコニア、チタニア、セリア、ゼオライト等の酸化物からなる従来公知の担体に担持されていてもよい。
上述したようにTWC33は、Rhを含むTWC33aと、Pdを含むTWC33bと、を含んで構成される。図3に示したように、これらRhを含むTWC33aとPdを含むTWC33bは、混合された状態で隔壁323内の細孔内表面に担持される。
またTWC33は、上述のような触媒金属の他、酸素吸蔵放出能を有するOSC材を含む。そしてこのTWC33に用いられるOSC材には、その結晶構造中にNd及びPrを有する複合酸化物を含むものが用いられる。なおTWC33に用いられるOSC材には、このようなNd及びPrを有する複合酸化物に加えて、CeO、ZrO及びこれらの複合酸化物等、酸素吸蔵放出能を有する既知の材料を用いてもよい。
本実施形態では、触媒金属と共にOSC材として用いる複合酸化物が隔壁323内に担持されている。
上流触媒コンバータ31及びGPF32に用いられるTWCは、それぞれ排気中のHCを酸化してCOとHOに変換し、COを酸化してCOに変換する一方、NOをNまで還元する機能を有している。この両反応に対する触媒作用を同時に有効に生じさせるためには、燃料と空気の比(以下「空燃比」という。)をストイキ近傍に保つことが好ましい。
自動車等の内燃機関における空燃比は、運転状況に応じて大きく変化する。このため、ECU6では、後述の空燃比制御を行うことによって、上流触媒コンバータ31及びGPF32に流入する排気の空燃比をストイキの近傍に保つよう制御する。しかし、このような方法で空燃比を制御するだけでは触媒が浄化性能を発揮するには十分ではない。
従って、酸化雰囲気下で酸素を吸蔵し、還元雰囲気下で酸素を放出する酸素吸蔵放出能を有するOSC材が助触媒として触媒金属と共に用いられている。例えばCeOや、CeとZrの複合酸化物等がOSC材として知られている。
本実施形態におけるOSC材として用いる複合酸化物においては、CeOやZrOの結晶構造中のCeやZrの一部をNd、Prで置換した構造をとっている。
Nd、PrはHC吸着能が高く、後述するスチームリフォーミング反応による水素の発生量が多い。水素はRhの還元を促進させ、RhのNO浄化性能を向上させる。
本実施形態においては、Ndに加え、Ndよりスチームリフォーミング反応による水素の生成量の少ないPrも複合酸化物の構造中に含有されている。Prはストイキに対する空燃比の変動を吸収する機能を有するため、Prが含有されることで空燃比がストイキ近傍に保たれ易くなっている。
本実施形態に係るCeZrNdPr複合酸化物は、例えば、以下の方法により調製することができる。
先ず、硝酸セリウム、硝酸ジルコニウム、硝酸ネオジウム及び硝酸プラセオジウムを、所望の比率になるように、純水に溶解する。その後、水酸化ナトリウム水溶液を滴下して、溶媒のpHを例えば10にすることで、沈殿物を得る。その後、沈殿物を含む溶液を例えば60℃に加熱した状態で減圧濾過することで、溶媒を蒸発させる。次いで、残留物を抽出後、マッフル炉内において例えば500℃で2時間の仮焼を行うことで、CeZrNdPr複合酸化物を得る。
また、本実施形態のTWC33は、従来Pdの劣化抑制及びNO吸着性の向上の観点から添加されていた、Baを含まずに構成されている。
本実施形態のTWC33では、複合酸化物中に含まれるNd及びPrの合計含有量が、10質量%以上であることが好ましい。複合酸化物中に含まれるNd及びPrの合計含有量がこの範囲内であれば、より高い三元浄化機能が発揮される。この合計含有量の上限値は好ましくは20質量%であり、より好ましい範囲は12質量%〜16質量%である。
TWC33におけるRhとPdの含有比率は、特に限定されないが、好ましくは質量基準でRh:Pd=1:10〜1:5である。
また、GPF32のフィルタ基材320における単位体積当たりのTWC33の担持量(以下、「ウォッシュコート量」ともいう)は、特に限定されないが、好ましくは40〜80g/Lである。ウォッシュコート量が40g/L未満である場合には十分な浄化性能が得られなくなり、80g/Lを超える場合には圧力損失が増大する。
なお本実施形態では、TWC33には触媒金属として他の貴金属、例えばPtが含まれていてもよい。また、GPF32には、隔壁内又は隔壁表面に三元浄化機能以外の機能を有する触媒、例えばNO触媒や酸化触媒、GPF内に堆積したPMを燃焼除去するためのAg系触媒等が担持されていてもよい。
次に、本実施形態に係るGPF32の製造方法について説明する。
本実施形態に係るGPF32は、例えばディッピング法により製造される。ディッピング法では、例えば、TWC33の構成材料を所定量含むスラリーを湿式粉砕等により作製し、作製したスラリー中にGPF32を浸漬させた後、GPF32を引き上げて所定の温度条件で焼成を行うことにより、GPF32にTWC33を担持させることができる。
本実施形態においては、RhやPd等の触媒をボールミル等で混合して作成したスラリーを、粒径が5μm以下となるまで粉砕し、GPF32に1回浸漬させることが好ましい。これにより、RhとPdを、隔壁323内の細孔内表面にランダムに混合した状態で担持させることができる。
次に、本実施形態に係るTWCは、Baを含まないことが好ましい理由について図4を参照して説明する。
図4は、CO−TPRによるRhの還元のし易さを示す図である。具体的には、TWCに添加されるBaの有無による、Rhの還元のし易さをCO−TPR(昇温還元法)により下記手順に従って測定した結果を示す図である。
TWCはRhをそれぞれ0.3質量%、3質量%の割合でZr酸化物に担持させ、10質量%のBaを添加したものと添加しないものをそれぞれ作成して測定したものである。
[CO−TPR測定手順]
(1)He中で昇温させ、600℃で10分間保持した。
(2)100℃まで降温させた。
(3)1%CO/N中で、10℃/分で800℃まで昇温させRhを還元させた。
(4)600℃まで降温させた。
(5)10%O/N中、600℃で10分間保持した。
(6)100℃まで降温させ、He中で10分間保持後、1%CO/N中で10分間保持した。
(7)1%CO/N中で、10℃/分で800℃まで昇温させCO放出の温度による変化を計測した。
図4に示す通り、Baを含むTWCは、Baを含まないTWCと比較して、低温でのCO放出量が少ないことが分かる。これは、Rhが還元され難くなっていることを意味しており、BaがRhの還元を阻害していると考えられる。従って本実施形態におけるTWCは、Baを含まないことでRhの還元状態を維持し、高いNO浄化性能が発揮される。
次に、CeZrNdPr複合酸化物による作用について説明する。
触媒金属として用いられるRhは、水素の存在下で還元状態が維持され、NO浄化性能が向上する。そのため本実施形態においては、スチームリフォーミング反応を利用している。スチームリフォーミング反応は、高温、触媒存在下で水蒸気とHCが反応して水素が発生する次式のような反応である。

+nHO→nCO+(n+1/2m)H
スチームリフォーミング反応による水素の生成量を向上させるためには、HC吸着能が重要であり、HC吸着能は酸点に依存するものと考えられる。
図5は、NH−TPDによる各複合酸化物の酸点の量を示す図である。具体的には、CeやZrの複合酸化物の結晶構造中に含有させることのできる元素として挙げられる、Y、La、Pr及びNdそれぞれの酸点の量を、NH−TPD(昇温還元法)で下記手順により測定した結果を示す図である。
[NH−TPD測定手順]
(1)He中で昇温させ、600℃で60分間保持した。
(2)100℃まで降温させた。
(3)0.1%NH/He中で60分間保持した後、He中で60分間保持した。
(4)He中で、10℃/分で600℃まで昇温させた。
図5に示す通り、Nd及びPrは、Y、Laよりも酸点が多いことが分かる。従ってこの結果から、Nd及びPrはHC吸着能が高いと言える。
図6は、Y、La、Pr及びNdの各元素をCeZr複合酸化物の結晶構造中に含有させた場合の、500℃におけるスチームリフォーミング反応による水素の生成量を比較したグラフである。なお、このときのY、La、Pr及びNdの各元素の含有量は7質量%、Ceの含有量が41質量%、Zrの含有量が52質量%である。図6に示す通り、Pr、NdはY、Laよりも水素の生成量が多いことが分かる。
図1に戻り、排気管3に設けられた上流触媒コンバータ31及びGPF32の好ましい組み合わせについて説明する。上述のように上流触媒コンバータ31及びGPF32は、多孔質の基材に、三元浄化機能を発生する触媒金属と酸素吸蔵放出能を有するOSC材とを含んで構成されるTWCを担持して構成される点で共通する。ここで、上流触媒コンバータ31に用いられる基材やTWCは、上述の例に限らずGPF32に用いられているものと同じものを用いてもよい。しかしながら、ECU6による空燃比制御の下でOセンサ52の下流側のGPF32における空燃比がストイキの近傍で安定して制御されることを考慮すると、上流触媒コンバータ31及びGPF32におけるOSC材の含有量(より具体的には、基材における単位体積当たりのOSC材の含有量[g/L])、三元触媒の担持量(より具体的には、基材における単位体積当たりの三元触媒の担持量[g/L])、基材のセル構造、及び基材の気孔率は、下記の表を満たすように組み合わせることが好ましい。
Figure 2018189092
例えば、上記表に示すように、GPF32のフィルタ基材における単位体積当たりのOSC材の含有量は、上流触媒コンバータ31のハニカム基材における単位体積当たりのOSC材の含有量よりも少ない方が好ましい。より具体的には、上流触媒コンバータ31におけるOSC材の含有量を1とした場合、GPF32におけるOSC材の含有量は、1から0.3の範囲内、より好ましくは0.35程度である。
またGPF32のフィルタ基材における単位体積当たりのTWC33の担持量[g/L]は、上流触媒コンバータ31のハニカム基材における単位体積当たりのTWCの担持量[g/L]よりも少ない方が好ましい。より具体的には、上流触媒コンバータ31におけるTWCの担持量を200[g/L]とした場合、GPF32におけるTWC33の担持量は50から100[g/L]の範囲内、より好ましくは後述の実施例に示すように60[g/L]程度である。
GPF32のフィルタ基材の隔壁の厚さは、上流触媒コンバータ31のハニカム基材の隔壁の厚さよりも大きい方が好ましい。より具体的には、GPF32の壁厚を8milとした場合、上流触媒コンバータ31の壁厚は3.5milとすることが好ましい。
また、GPF32のフィルタ基材の隔壁の気孔率は、上流触媒コンバータ31のハニカム基材の隔壁の気孔率よりも高い方が好ましい。より具体的には、GPF32の気孔率を65%とした場合、上流触媒コンバータ31の気孔率は35%とすることが好ましい。
GPF32のフィルタ基材に形成されるセルの総数は、上流触媒コンバータ31のハニカム基材に形成されるセルの総数よりも少ない方が好ましい。より具体的には、GPF32のセルの総数を300とした場合、上流触媒コンバータ31のセルの総数は600とすることが好ましい。以上のように壁厚、気孔率、セルの総数を構成することにより、GPF32における十分なPM捕捉機能、機械的強度、及び圧力損失性能を達成することができる。
次に、LAFセンサ51、Oセンサ52、及びECU6の機能について説明する。
LAFセンサ51は、排気管3のうち上流触媒コンバータ31の上流側を流れる排気の空燃比(排気中の酸素に対する燃料成分の比)を検出し、検出値に略比例した信号をECU6に送信する。Oセンサ52は、排気管3のうち上流触媒コンバータ31とGPF32との間を流れる排気の酸素濃度(すなわち、空燃比)を検出し、検出値に応じた信号をECU6に送信する。
ここで、LAFセンサ51とOセンサ52の出力信号の特性について比較する。LAFセンサ51は、Oセンサ52よりもより広範囲の空燃比にわたり空燃比に略比例したレベルの信号を発生する。すなわち、LAFセンサ51の信号のレベルは、リッチな領域からリーンな領域までの間でリニアな特性を有しており、Oセンサ52よりもより広範囲で空燃比の検出が可能となっている。Oセンサ52は、排気の酸素濃度がストイキ近傍の範囲Δ内にあるとき、排気の酸素濃度に略比例した信号を発生する。すなわち、Oセンサ52から出力される信号のレベルは、ストイキの近傍でローからハイに反転する略2値的な特性がある。したがってOセンサ52は、ストイキ近傍の限られた範囲内では、LAFセンサ51よりも高感度で空燃比を検出することができる。
ECU6は、上記センサ51,52等の各種センサからの入力信号波形を整形し、電圧レベルを所定のレベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、以下で説明する空燃比制御等の各種制御プログラムを実行する中央演算処理ユニット、並びに制御プログラムで決定した態様でエンジン1の燃料噴射弁11等の各種装置を駆動する駆動回路等によって構成される。
図1には、ECU6における空燃比制御の手順を模式的に示す。ECU6では、LAFセンサ51の出力信号KACT及びOセンサ52の出力信号VO2を用いた目標空燃比演算及び燃料噴射量演算から成る空燃比制御プログラムを実行することにより、エンジン1で燃焼させる混合気の空燃比の操作量である燃料噴射弁11からの燃料噴射量を決定する。
燃料噴射量演算では、ECU6は、LAFセンサ51の出力信号KACTが後述の目標空燃比演算によって算出される目標空燃比KCMDに収束するように、スライディングモード制御等の既知のフィードバック制御則を利用して燃料噴射弁11からの燃料噴射量を決定する。
目標空燃比演算では、ECU6は、上流触媒コンバータ31のTWC及びGPF32のTWC各々で高い三元浄化機能を発揮できるように、LAFセンサ51の出力信号KACT及びOセンサ52の出力信号VO2を用いることによって目標空燃比KCMDを決定する。より具体的には、目標空燃比演算では、ECU6は、LAFセンサ51の出力信号KACTからOセンサ52の出力信号VO2までの制御系Pを、少なくとも応答遅れ要素及び無駄時間要素を含んだモデルを定義し、以下で説明する適応スライディングモードコントローラ、リアルタイム同定器、及び状態予測器等における演算を用いることによって、上記のような目的を達成するような目標空燃比KCMDを決定する。
先ず、リアルタイム同定器は、LAFセンサ51の出力信号KACT及びOセンサ52の出力信号VO2を用いることによって、上記モデルで定義される複数のモデルパラメータの同定値を逐次生成する。また状態予測器は、上記制御系Pの無駄時間後の出力、すなわちOセンサ52の出力信号VO2の無駄時間後の推定値を逐次生成する。適応スライディングモードコントローラは、GPF32のTWC33において高い三元浄化機能が発揮されるように、ストイキの近傍に設定された所定の後段目標値にOセンサ52の出力信号VO2が収束するように、上記リアルタイム同定器によって生成された同定値及び状態予測器によって生成された推定値を用いて目標空燃比KCMDを決定する。
なお、以上のようなECU6における空燃比制御のアルゴリズムの詳細については、例えば本願出願人による特開2000−230451号公報や特開2001−182528号公報等に記載されているので、ここではこれ以上詳細な説明を省略する。
本実施形態によれば、以下の効果が奏される。
本実施形態では、所謂ウォールフロー型のGPF32において、隔壁323に担持するTWC33を、少なくともRhを含む触媒金属と、酸素吸蔵放出能を有するOSC材として結晶構造中にNd及びPrを有する複合酸化物を含むものと、を含んで構成した。
ここで、酸素吸蔵放出能を有する複合酸化物の結晶構造中に組み込むことが可能な元素のうち、Nd及びPrは酸点の量が多い特性を有する。そのため、結晶構造中にNd及びPrを有する複合酸化物は、酸点の量が多いためHC吸着能が高く、HCと水の存在下で進行するスチームリフォーミング反応が効率良く進行する。すると、このスチームリフォーミング反応の進行により水素が生成し、生成した水素によってTWC33を構成するRhの酸化物化が抑制される。即ち、RhのNO還元能の低下を回避できるため、高いNO浄化性能を発揮できる。従って本発明では、優れた三元浄化機能を発揮し得るTWC33をGPF32のフィルタ基材に用いることにより、十分な三元浄化機能を発揮しつつGPF32の圧力損失の増加を抑制することができる。
上述のようにTWCにはOSC材が含まれる。このため、GPF32における圧力損失の増加を極力抑制するためには、GPF32のフィルタ基材における単位体積当たりのOSC材の含有量を、上流触媒コンバータ31のハニカム基材における単位体積当たりのOSC材の含有量より少なくすることが好ましい。この点、上述のように、スチームリフォーミング反応による水素の生成量はPrよりもNdの方が高いが、Prは空燃比の変動を吸収する効果を有する。従ってGPF32に用いるTWC33に含まれるOSC材として、結晶構造中にNd及びPrを有する複合酸化物を含んだものを用いることにより、空燃比の変動を抑制しつつ高い三元浄化機能を発揮しながら、フィルタ基材におけるOSC材の含有量を少なくできる。以上のように、本実施形態では、フィルタ基材に適したTWC33を用いた上、さらにGPF33のOSC材の含有量を上流触媒コンバータ31よりも少なくすることにより、排気浄化システム全体での圧力損失の増加を抑制しながら、優れた排気浄化性能を発揮できる。
これに加えて本実施形態では、GPF32に用いるOSC材の含有量を減らすことに起因するGPF32における三元浄化機能の低下を回避するため、上流触媒コンバータ31及びGPF32のそれぞれの上流側に設けられたLAFセンサ51及びOセンサ52の出力信号を用いて、GPF32に流入する排気の空燃比がストイキの近傍に設定された後段目標値に収束するように、エンジン1における混合気の空燃比を操作する。先ず本実施形態では、上流触媒コンバータ31にはGPF32よりも多くの量のOSC材が設けられることになる。このため、上流触媒コンバータ31を通過する過程で空燃比の変動が抑制されるので、GPF32に流入する排気の空燃比を安定させることができる。このように本実施形態では、OSC材の含有量を上流触媒コンバータ31とGPF32とで適切に配分することによって、GPF32に流入する排気の空燃比を安定させた上で、さらにLAFセンサ51及びOセンサ52を用いて、GPF32に排気の空燃比をストイキの近傍に設定された後段目標値に収束するように混合気の空燃比を操作することにより、GPF32におけるOSC材の含有量を少なくすることによる圧力損失の増加の抑制と、排気浄化性能の向上とを両立することができる。
また本実施形態では、Oセンサ52の出力信号VO2がストイキの近傍に設定された後段目標値に収束するように上流触媒コンバータ31の上流側のLAFセンサ51の出力信号KACTに対する目標空燃比KCMDを設定する。そしてLAFセンサ51の出力信号KACTが目標空燃比KCMDになるようにエンジン1で燃焼させる混合気の空燃比を操作するための操作量である燃料噴射量を決定する。これにより、GPF32に流入する排気の空燃比がストイキの近傍に設定された後段目標値に収束するように、すなわちTWC33における三元浄化機能が発揮され続けるように、上流触媒コンバータ31におけるLAFセンサ51の出力信号からOセンサ52の出力信号までの制御系の応答遅れや無駄時間等を考慮して目標空燃比KCMDを設定することができる。
また本実施形態では、GPF32のフィルタ基材の隔壁の厚さを、上流触媒コンバータ31のハニカム基材の隔壁の厚さよりも大きくする。これにより、GPF32に要求される程度のPM捕捉機能を達成することができる。しかしながら図17に示すように、フィルタ基材の隔壁を厚くするとPM捕捉機能は向上するものの、圧力損失が増加してしまう。そこで本実施形態では、フィルタ基材の隔壁の気孔率を、ハニカム基材の隔壁の気孔率よりも高くする。これにより、GPF32における圧力損失の増加を抑制することができる。しかしながら気孔率を高くすると、図17に示すようにフィルタ基材の機械的強度が低下してしまう。したがってフィルタ基材の十分な機械的強度を確保するためには、気孔率は過剰に増加させることができず、十分に圧力損失を低下させることができない。そこで本実施形態では、フィルタ基材の隔壁に形成されるセルの総数を、ハニカム基材に形成されるセルの総数よりも少なくする。本実施形態では、以上のようにしてGPF32の壁厚、気孔率、セル総数を設定することにより、十分なPM捕捉機能、機械的強度、及び圧力損失性能を達成することができる。
また本実施形態では、隔壁323の平均細孔径を15μm以上とすると共に、TWC33の粒子径D90を5μm以下として微粒子化した。これにより、微粒子化されたTWC33を隔壁323の細孔内に導入でき、かかる細孔内表面にTWC33を担持させることができる。従って本実施形態によれば、隔壁323の表層にのみTWC33が担持されることで生じるGPF32の圧力損失の増大を回避でき、ひいてはより高い三元浄化機能を発揮できる。
また本実施形態では、TWC33を、Rh及びPdを含んで構成すると共に、これらRh及びPdを混合した状態で隔壁323内の細孔内表面に担持した。上述したように従来ではRhとPdを混合してGPF32に担持させた場合には、Pd層に添加されるBaがRhに接触又は近接する結果、Baの電子供与作用によってRhが酸化されて酸化物化し、NO浄化性能が大きく低下していた。これに対して本実施形態によれば、上述のスチームリフォーミング反応によりRhのNO浄化性能の低下を回避でき、従来よりも優れた三元浄化機能を発揮し得るGPF32を提供できる。
また、Rh層とPd層の2層構造を有する従来のTWCを、隔壁の細孔内表面に担持させるのは困難であるところ、本実施形態によればRhとPdを混合した状態でも高い三元浄化機能が発揮されるため、隔壁323の細孔内表面への担持に好ましい触媒組成となっている。
また本実施形態では、TWC33を、Baを含まずに構成した。本実施形態によれば、TWC33にBaが含まれていないため、上述したようにBaによりRhの酸化物化が促進されてNO浄化性能が低下することを回避できる。
また本実施形態では、NdとPrが複合酸化物の結晶構造中に10質量%以上含まれる構成とした。これにより、より優れた三元浄化性能が発揮される。
なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
次に、上記実施形態に係る排気浄化システム2のGPF32の実施例について説明するが、GPF32は以下の実施例に限定されるものではない。
<実施例1〜21、比較例1〜4>
TWC及び担体、複合酸化物等を、表1に示す割合で、以下の手順により調製した。
まず、水系媒体、添加材を添加した後ボールミルにて混合してスラリー化した。次に、スラリーを湿式粉砕等により粉砕し、粒子径を調整した。次に、ディッピング法にてGPFに、混合したスラリーを1回浸漬させた。担持量(ウォッシュコート量)は60g/Lにて行った(実施例10〜13を除く)。その後、700℃×2時間焼成することで、TWCが担持されたGPFを得た。
なお、GPFとしては、NGK製のハニカム構造体(内径25.4(φ1インチ)mm、平均細孔径20μm(実施例8、9を除く)、壁厚8mil(実施例17、18を除く)、セル数300、材質コージェライト、容量15cc)を用いた。
Figure 2018189092
<NO浄化性能>
図7は、実施例1及び比較例1における温度とNO浄化率との関係を示す図である。具体的には、OSC材にNd、Prを添加した実施例1と、Y、Laを添加した比較例1について、以下の条件に従ってGPFのNO浄化性能を評価した結果を示す図である。図7に示す通り、実施例1は比較例1よりも低い温度でNOの浄化が進行していることが分かった。この結果から、GPF中のOSC材にNd、Prを添加した実施例1は、Y、Laを添加した比較例1と比較してNO浄化性能が向上することが確認された。
[NO浄化性能評価条件]
ストイキガス中でGPFを500℃まで20℃/分で昇温したときのNO濃度を計測することにより、NO浄化性能を評価した。
<空燃比吸収率>
図8は、実施例1及び比較例2、3における温度と空燃比吸収率との関係を示す図である。具体的には、OSC材にNdのみを添加した比較例2、Prのみを添加した比較例3、NdとPrの双方を使用した実施例1のそれぞれについて、GPFの空燃比吸収率を測定した結果を示す図である。空燃比吸収率は、以下の条件に従って式(1)により算出した。

空燃比吸収率(%)=((空燃比振幅(IN)−空燃比振幅(OUT))÷空燃比振幅(IN))×100
・・・式(1)

(式(1)中、「空燃比振幅(IN)」はOSC材通過前の空燃比振幅を示し、「空燃比振幅(OUT)」はOSC材通過後の空燃比振幅を示す。)
[空燃比吸収率測定条件]
実機エンジンを用いて、空燃比を14.5±1.0(1Hz)で振幅させ、30℃/分で昇温しているときの空燃比吸収率を測定する。
図8に示す通り、実施例1及び比較例3は、比較例2と比較して空燃比吸収率が高いことが分かった。この結果から、OSC材にPrを添加したGPFは、空燃比の変動を抑制でき、空燃比をストイキに保ち易いことが確認された。
<D90>
図9は、実施例6のTWCの粒子径分布を示す図である。図9に示す通り、TWC粒子のD90は、5μm以下となっていることが確認された。なお、他の実施例及び比較例についても同様にして以下の測定条件に従って粒子径分布を測定した。得られたD90は表1に示す通りであった。
[粒子径分布測定条件]
装置:レーザ回折式粒子径分布測定装置(SHIMADZU社製、SALD−3100)
測定方法:レーザ散乱法
<担持状態>
図10は、実施例1のGPFの隔壁内におけるTWCの担持状態を示す図である。具体的には、実施例1に係るGPFの隔壁内のTWCの担持状態を、以下の条件に従ってEPMAによる断面SEM観察及び元素分析を実施して得たマッピング図である。この結果から、隔壁の平均細孔径は15μm以上であり、TWCのD90が粒子径5μm以下である場合、TWCは隔壁内に均一に担持されることが確認された。
なお、TWCの粒子径が5μm以下である他の実施例についても、同様にTWCは隔壁内に均一に担持されることが確認された。
[EPMA測定条件]
装置:電子プローブマイクロアナライザ(JE0L社製、JXA−8100)
測定条件:加速電圧15KV、照射電流0.04μA、ピクセルサイズ1μm、1セルあたりのデータ採取時間38m秒、ビーム径0.7μm
<D90と圧力損失との関係>
図11は、実施例1〜7のGPFに担持されるTWCのD90と、圧力損失との関係を示す図である。図11に示す通り、D90が5μm以下である実施例1〜6は圧力損失が略一定の低いレベルに留まるのに対し、D90が8μmの実施例7のGPFのようにD90が5μmを超えると圧力損失が上昇することが分かった。この結果から、GPFに担持されるTWCのD90は5μm以下であることが好ましいことが確認された。
<平均細孔径と圧力損失との関係>
図12は、実施例1及び実施例8、9のGPFの隔壁の平均細孔径と、圧力損失との関係を示す図である。図12に示す通り、平均細孔径が小さくなるにつれ圧力損失がやや増大したが、平均細孔径が16μmである実施例8のGPFの圧力損失は低いレベルに留まることが分かった。この結果から、GPFの平均細孔径は15μm以上であることが好ましいことが確認された。
<ウォッシュコート(WC)量と圧力損失との関係>
図13は、実施例1及び実施例10〜13のTWCのウォッシュコート量と、圧力損失との関係を示す図である。図13に示す通り、ウォッシュコート量が増大するにつれ圧力損失が増大したが、ウォッシュコート量が80g/Lである実施例13のGPFの圧力損失は低いレベルに留まることが分かった。この結果から、TWCのウォッシュコート量は80g/L以下であることが好ましいことが確認された。
<壁厚と圧力損失との関係>
図14は、実施例1及び実施例17、18のGPFの壁厚と、圧力損失との関係を示す図である。図14に示す通り、壁厚が増大するにつれ圧力損失が増大したが、壁厚が10milである実施例18のGPFの圧力損失は低いレベルに留まることが分かった。この結果から、GPFの壁厚は10mil以下であることが好ましいことが確認された。
<Pdの有無による浄化性能>
図15A及び図15Bは、実施例1及び実施例19のGPFにおける空燃比とそれぞれCO、HC、NOの浄化率との関係を示す図である。図中、縦軸はそれぞれCO、HC、NOの浄化率を示し、横軸は燃料と空気の比である空燃比を示す。なお、ストイキとは空燃比が約14.5である領域を示す。
実施例1のGPFに担持されるTWCには、Rh及びPdが含まれ、実施例19のGPFに担持されるTWCにはRhのみが含まれる。評価条件は以下の条件に従って行った。
図15A及び図15Bの評価結果から、Rh及びPdが含まれる実施例1のGPFと比較し、Rhのみが含まれる実施例19のGPFは、空燃比がストイキより高い領域でHC浄化率が低いことが分かった。この結果から、GPFに担持されるTWCとしてRhを単独で用いた実施例19と比較し、RhとPdを併用した実施例1の方が高い三元浄化性能を有することが確認された。
[HC、CO、NO浄化性能評価条件]
実機エンジンを用いて、触媒入口温度500℃で空燃比を13.5から15.5まで20分間で連続的に変化させ、HC、CO、NOの浄化率を測定した。
<Baの有無による浄化性能>
図15C及び図15Dは、実施例20及び実施例21のGPFにおける空燃比とそれぞれCO、HC、NOの浄化率との関係を示す図である。
実施例20のGPFに担持されるTWCには、Rh及びPdと共に固体Ba(硫酸Ba)が含まれ、実施例21のGPFに担持されるTWCには、Rh及びPdと共に液体Ba(酢酸Ba及び硝酸Ba)が含まれる。また、前述の実施例1(図15A)のGPFに担持されるTWCにはRh及びPdが含まれるが、Baは含まれない。これを比較用として参照する。評価条件は上記HC、CO、NO浄化性能評価条件と同様の条件で評価を行った。
図15A、図15C及び図15Dの評価結果から、固体Baや液体Baを含む実施例20及び21のGPFは、Baを含まない実施例1のGPFと比較し、空燃比がストイキより低い領域でNO浄化率が低いことが分かった。この結果から、GPFに担持されるTWCにBaが含まれない実施例1は、Baが含まれる実施例20及び実施例21と比較して高い排気浄化性能を有することが確認された。
<Nd及びPdの合計含有量の違いによる浄化性能>
図16Aから図16Cは、それぞれ実施例1、実施例14、実施例15、実施例16及び比較例4のGPFに含まれるNd及びPrの合計含有量と、NO_T50、CO_T50、HC_T50との関係を示す図である。NO_T50、CO_T50、HC_T50とは、それぞれCO、HC、NOの50%が浄化される温度を示し、図中の縦軸に示される。横軸は複合酸化物中におけるNdとPrの合計含有量(質量%)を示す。Nd及びPrの合計含有量は比較例4、実施例14、実施例15、実施例1、実施例16の順にそれぞれ0、6、12、14、16質量%である。
図16Aから図16Cに示す通り、実施例1、実施例14、実施例15、実施例16のGPFは比較例4に対し、低い温度でNO、CO、HCが浄化されていることが分かった。従って本実施形態においてGPFに三元浄化機能を発揮させるには、NdとPrの合計含有量が10質量%〜20質量%であることが好ましく、12質量%〜16質量%であれば更に好ましいことが確認された。
1…エンジン(内燃機関)
2…排気浄化システム
3…排気管(排気通路)
31…上流触媒コンバータ(上流三元触媒)
32…GPF(下流フィルタ)
33,33a,33b…TWC(下流三元触媒)
320…フィルタ基材
323…隔壁
321…流入側セル(セル)
322…流出側セル(セル)
324…流入側目封じ部
325…流出側目封じ部
51…LAFセンサ(第1空燃比センサ)
52…Oセンサ(第2空燃比センサ)
6…ECU(空燃比コントローラ、前段空燃比設定手段、操作量決定手段)

Claims (9)

  1. 内燃機関の排気通路に設けられ、排気の空燃比に応じた信号を生成する空燃比センサと、
    前記排気通路のうち前記空燃比センサの検出箇所の下流側に設けられ、排気を浄化する触媒を有する上流触媒コンバータと、
    前記排気通路のうち前記上流触媒コンバータの下流側に設けられ、排気中の粒子状物質を捕捉して浄化する下流フィルタと、
    前記空燃比センサの出力信号を用いて、前記下流フィルタに流入する排気の空燃比がストイキの近傍に設定された目標値に収束するように前記内燃機関で燃焼させる混合気の空燃比を操作するコントローラと、を備える内燃機関の排気浄化システムであって、
    前記下流フィルタは、排気の流入側端面から流出側端面まで延びる複数のセルが多孔質の隔壁により区画形成されかつこれらセルの流入側端面における開口と流出側端面における開口とが互い違いに目封じされたフィルタ基材と、前記隔壁に担持された下流三元触媒と、を備え、
    前記下流三元触媒は、少なくともRhを含む触媒金属と、酸素吸蔵放出能を有するOSC材と、を含み、
    前記下流三元触媒のOSC材は、その結晶構造中にNd及びPrを有する複合酸化物を含み、
    前記上流触媒コンバータは、排気の流入側端面から流出側端面まで延びる複数のセルが多孔質の隔壁により区画形成されたハニカム基材と、前記ハニカム基材の隔壁に担持された上流三元触媒と、を備え、
    前記上流三元触媒は、触媒金属と酸素吸蔵放出能を有するOSC材と、を含み、
    前記フィルタ基材における単位体積当たりのOSC材の含有量は、前記ハニカム基材における単位体積当たりのOSC材の含有量よりも少ないことを特徴とする内燃機関の排気浄化システム。
  2. 内燃機関の排気通路に設けられ、排気の空燃比に応じた信号を生成する空燃比センサと、
    前記排気通路のうち前記空燃比センサの検出箇所の下流側に設けられ、排気を浄化する触媒を有する上流触媒コンバータと、
    前記排気通路のうち前記上流触媒コンバータの下流側に設けられ、排気中の粒子状物質を捕捉して浄化する下流フィルタと、
    前記空燃比センサの出力信号が所定の目標値に収束するように前記内燃機関に設けられた燃料噴射弁を駆動するコントローラと、を備える内燃機関の排気浄化システムであって、
    前記下流フィルタは、排気の流入側端面から流出側端面まで延びる複数のセルが多孔質の隔壁により区画形成されかつこれらセルの流入側端面における開口と流出側端面における開口とが互い違いに目封じされたフィルタ基材と、前記隔壁に担持された下流三元触媒と、を備え、
    前記下流三元触媒は、少なくともRhを含む触媒金属と、酸素吸蔵放出能を有するOSC材と、を含み、
    前記下流三元触媒のOSC材は、その結晶構造中にNd及びPrを有する複合酸化物を含み、
    前記上流触媒コンバータは、排気の流入側端面から流出側端面まで延びる複数のセルが多孔質の隔壁により区画形成されたハニカム基材と、前記ハニカム基材の隔壁に担持された上流三元触媒と、を備え、
    前記上流三元触媒は、触媒金属と酸素吸蔵放出能を有するOSC材と、を含み、
    前記フィルタ基材における単位体積当たりのOSC材の含有量は、前記ハニカム基材における単位体積当たりのOSC材の含有量よりも少ないことを特徴とする内燃機関の排気浄化システム。
  3. 前記コントローラは、前記空燃比センサの出力信号が所定の目標値に収束するように前記内燃機関に設けられた燃料噴射弁を駆動することを特徴とする請求項1に記載の内燃機関の排気浄化システム。
  4. 前記コントローラは、前記空燃比センサの出力信号を用いることによって、前記下流フィルタに流入する排気の空燃比がストイキの近傍に収束するように前記内燃機関で燃焼させる混合気の空燃比を操作することを特徴とする請求項2に記載の内燃機関の排気浄化システム。
  5. 前記フィルタ基材の隔壁の厚さは、前記ハニカム基材の隔壁の厚さよりも大きく、
    前記フィルタ基材の隔壁の気孔率は、前記ハニカム基材の隔壁の気孔率よりも高く、
    前記フィルタ基材に形成されるセルの総数は、前記ハニカム基材に形成されるセルの総数よりも少ないことを特徴とする請求項1から4の何れかに記載の内燃機関の排気浄化システム。
  6. 前記フィルタ基材の隔壁は、平均細孔径が15μm以上であり、
    前記下流三元触媒は、粒度分布における小粒径側からの累積分布が90%となるときの粒子径D90が5μm以下であることを特徴とする請求項1から5の何れかに記載の内燃機関の排気浄化システム。
  7. 前記下流三元触媒は、前記触媒金属としてRh及びPdを含み且つこれらRh及びPdが混合された状態で前記フィルタ基材の隔壁内の細孔内表面に担持されることを特徴とする請求項1から6の何れかに記載の内燃機関の排気浄化システム。
  8. 前記下流三元触媒は、Baを含まずに構成されることを特徴とする請求項1から7の何れかに記載の内燃機関の排気浄化システム。
  9. 前記下流三元触媒の複合酸化物中に含まれるNd及びPrの合計含有量は、10質量%以上であることを特徴とする請求項1から8の何れかに記載の内燃機関の排気浄化システム。
JP2018125820A 2018-07-02 2018-07-02 内燃機関の排気浄化システム Active JP6538246B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018125820A JP6538246B2 (ja) 2018-07-02 2018-07-02 内燃機関の排気浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125820A JP6538246B2 (ja) 2018-07-02 2018-07-02 内燃機関の排気浄化システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017541197A Division JP6458159B2 (ja) 2015-09-24 2015-09-24 内燃機関の排気浄化システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019104111A Division JP6570785B1 (ja) 2019-06-04 2019-06-04 内燃機関の排気浄化システム

Publications (2)

Publication Number Publication Date
JP2018189092A true JP2018189092A (ja) 2018-11-29
JP6538246B2 JP6538246B2 (ja) 2019-07-03

Family

ID=64478313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125820A Active JP6538246B2 (ja) 2018-07-02 2018-07-02 内燃機関の排気浄化システム

Country Status (1)

Country Link
JP (1) JP6538246B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112295403A (zh) * 2019-08-01 2021-02-02 丰田自动车株式会社 废气净化装置和废气净化系统及废气净化装置的制造方法
WO2021145326A1 (ja) 2020-01-14 2021-07-22 三井金属鉱業株式会社 排ガス浄化システム
JP2022110535A (ja) * 2021-01-18 2022-07-29 本田技研工業株式会社 排気浄化フィルタ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121602A (ja) * 2006-11-14 2008-05-29 Isuzu Motors Ltd フィルタ及び排気ガス浄化システム
JP2009082915A (ja) * 2007-09-27 2009-04-23 Umicore Ag & Co Kg 主として化学量論的空気/燃料混合物により運転される内燃機関エンジンの排ガスからの粒子の除去
JP2013530332A (ja) * 2010-04-19 2013-07-25 ビー・エイ・エス・エフ、コーポレーション ガソリン微粒子フィルターを有するガソリンエンジン排出処理システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121602A (ja) * 2006-11-14 2008-05-29 Isuzu Motors Ltd フィルタ及び排気ガス浄化システム
JP2009082915A (ja) * 2007-09-27 2009-04-23 Umicore Ag & Co Kg 主として化学量論的空気/燃料混合物により運転される内燃機関エンジンの排ガスからの粒子の除去
JP2013530332A (ja) * 2010-04-19 2013-07-25 ビー・エイ・エス・エフ、コーポレーション ガソリン微粒子フィルターを有するガソリンエンジン排出処理システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112295403A (zh) * 2019-08-01 2021-02-02 丰田自动车株式会社 废气净化装置和废气净化系统及废气净化装置的制造方法
WO2021145326A1 (ja) 2020-01-14 2021-07-22 三井金属鉱業株式会社 排ガス浄化システム
JP2022110535A (ja) * 2021-01-18 2022-07-29 本田技研工業株式会社 排気浄化フィルタ
CN114810283A (zh) * 2021-01-18 2022-07-29 本田技研工业株式会社 排气净化过滤器
JP7178432B2 (ja) 2021-01-18 2022-11-25 本田技研工業株式会社 排気浄化フィルタ
CN114810283B (zh) * 2021-01-18 2024-04-02 本田技研工业株式会社 排气净化过滤器

Also Published As

Publication number Publication date
JP6538246B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
JP6458159B2 (ja) 内燃機関の排気浄化システム
JPWO2017051459A1 (ja) 排気浄化フィルタ
US10201805B2 (en) Exhaust gas purification apparatus
JP5460597B2 (ja) 主に化学量論的混合気で運転される内燃機関の排ガスからの粒子の除去
US8950174B2 (en) Catalysts for gasoline lean burn engines with improved NH3-formation activity
KR101868176B1 (ko) 개선된 no 산화 활성을 갖는 가솔린 린번 엔진용 촉매
JP6570785B1 (ja) 内燃機関の排気浄化システム
JP6236995B2 (ja) 排気ガス浄化用触媒及びその製造方法並びにそれを用いた排気ガス浄化方法
JP2009082915A (ja) 主として化学量論的空気/燃料混合物により運転される内燃機関エンジンの排ガスからの粒子の除去
JP2006326573A (ja) ディーゼルパティキュレートフィルタ
JPWO2012147583A1 (ja) 層状複合酸化物、酸化触媒及びディーゼルパーティキュレートフィルター
JP5720950B2 (ja) 排ガス浄化装置
JP6538246B2 (ja) 内燃機関の排気浄化システム
JP2013536757A (ja) Nh3−形成活性が改良された、ガソリンリーンバーンエンジンのための触媒
JP2021514837A (ja) ガソリンエンジン排ガス後処理用触媒
JP2010046656A (ja) 排ガス浄化用触媒及びそれを用いた排ガス浄化方法
JP5481931B2 (ja) 排気浄化装置及び排気浄化方法
JP4591959B2 (ja) ディーゼルパティキュレートフィルタ
JP2008178766A (ja) パティキュレートフィルタ
JP6651344B2 (ja) パティキュレートフィルタ
JP7178432B2 (ja) 排気浄化フィルタ
JP6191635B2 (ja) 触媒付パティキュレートフィルタ
JP2014226656A (ja) 排気ガス浄化用触媒及びその製造方法
JP2020142166A (ja) フィルタ
JP2020142165A (ja) フィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190205

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190605

R150 Certificate of patent or registration of utility model

Ref document number: 6538246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150