JP2018176242A - 溶接製品の製造方法 - Google Patents

溶接製品の製造方法 Download PDF

Info

Publication number
JP2018176242A
JP2018176242A JP2017081909A JP2017081909A JP2018176242A JP 2018176242 A JP2018176242 A JP 2018176242A JP 2017081909 A JP2017081909 A JP 2017081909A JP 2017081909 A JP2017081909 A JP 2017081909A JP 2018176242 A JP2018176242 A JP 2018176242A
Authority
JP
Japan
Prior art keywords
period
laser beam
laser
welding
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017081909A
Other languages
English (en)
Inventor
洋樹 山本
Hiroki Yamamoto
洋樹 山本
松谷 渉
Wataru Matsutani
渉 松谷
英和 脇田
Hidekazu Wakita
英和 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017081909A priority Critical patent/JP2018176242A/ja
Publication of JP2018176242A publication Critical patent/JP2018176242A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Spark Plugs (AREA)

Abstract

【課題】溶込みを確保しつつスパッタの発生を抑制できる溶接製品の製造方法を提供すること。【解決手段】準備工程において溶接対象物が準備され、溶接工程において、パルスレーザ発振器から放出されたレーザ光が、溶接対象物の被照射部に照射される。溶接工程は、レーザ光の一つのパルスが持続する時間内に、レーザ出力の立ち上がりを含む第1期間、及び、前記第1期間に続く第2期間が存在する。被照射部におけるレーザ光の横モードにおいて、第2期間におけるパワー密度が最大となるレーザ光径が、第1期間におけるパワー密度が最大となるレーザ光径よりも小さくなるように、レーザ光の空間的強度分布を変化させる。【選択図】図3

Description

本発明は溶接製品の製造方法に関し、特にパルスレーザ発振器から放出されるレーザ光を用いる溶接製品の製造方法に関するものである。
溶接対象物をレーザ溶接する技術として、特許文献1には、レーザ光を照射する初期段階では、ビーム径を絞って溶接対象物を局所的に溶融し、最終段階までビーム径を順次拡大させながら溶接する方法が開示されている。特許文献1に開示される技術によれば、溶込みを確保して溶接部の強度を確保できる。
特開2006−224134号公報
しかしながら上記従来の技術では、溶接の初期段階においてビーム径を絞るので、溶接対象物が局所的に加熱され、溶融金属が急膨張し、スパッタが多量に発生するという問題点がある。
本発明は上述した問題点を解決するためになされたものであり、溶込みを確保しつつスパッタの発生を抑制できる溶接製品の製造方法を提供することを目的としている。
この目的を達成するために本発明の溶接製品の製造方法は、準備工程において溶接対象物が準備され、溶接工程において、パルスレーザ発振器から放出されたレーザ光が、溶接対象物の被照射部に照射される。溶接工程は、レーザ光の一つのパルスが持続する時間内に、レーザ出力の立ち上がりを含む第1期間、及び、第1期間に続く第2期間が存在する。被照射部におけるレーザ光の横モードにおいて、第2期間におけるパワー密度が最大となるレーザ光径が、第1期間におけるパワー密度が最大となるレーザ光径よりも小さくなるように、レーザ光の空間的強度分布を変化させる。
請求項1記載の溶接製品の製造方法によれば、溶接対象物の被照射部におけるレーザ光の横モードにおいて、第2期間におけるパワー密度が最大となるレーザ光径が、第1期間におけるパワー密度が最大となるレーザ光径よりも小さくなるようにレーザ光の空間的強度分布を変化させる。レーザ出力の立ち上がりを含む第1期間で溶融池の面積を広げ、第1期間の後の第2期間で溶融池の中央を深くできるので、溶込みを確保しつつ、溶融金属の急膨張を抑制してスパッタの発生を抑制できる。
請求項2記載の溶接製品の製造方法によれば、溶接工程ではレーザ光の空間的強度分布を連続的に変化させる。その結果、溶融金属の状態の急変を防ぐことができるので、請求項1の効果に加え、スパッタの発生をさらに抑制できる。
請求項3記載の溶接製品の製造方法によれば、溶接対象物は2つの部材からなり、被照射部において2つの部材を溶融するので、各部材の溶込みを確保できる。よって、請求項1又は2の効果に加え、溶接製品の接合強度を確保できる。
請求項4記載の溶接製品の製造方法によれば、請求項1から3のいずれかの効果に加え、スパークプラグの溶接品質を向上できる。
本発明の第1実施の形態におけるスパークプラグの片側断面図である。 レーザ加工機のブロック図である。 (a)はパルス波形の模式図であり、(b)は第1期間の被照射部におけるレーザ光の横モードであり、(c)は第1期間における溶接対象物の断面図である。 (a)は第2期間の被照射部におけるレーザ光の横モードであり、(b)は第2期間の被照射部におけるレーザ光の横モードであり、(c)は第2期間における溶接対象物の断面図である。 (a)は変形例におけるパルス波形の模式図であり、(b)は第1期間の被照射部におけるレーザ光の横モードであり、(c)は第2期間の前半の被照射部におけるレーザ光の横モードであり、(d)は第2期間の後半の被照射部におけるレーザ光の横モードである。 第2実施の形態におけるスパークプラグの片側断面図である。
以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は軸線Oを境にした第1実施の形態におけるスパークプラグ10の片側断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という(図6において同じ)。
図1に示すようにスパークプラグ10は、絶縁体11、中心電極13(第1電極)及び接地電極19(第2電極)を備えている。絶縁体11は、高温下の絶縁性や機械的特性に優れるアルミナ等により形成された円筒状の部材であり、軸線Oに沿って貫通する軸孔12が形成されている。軸孔12の先端側に中心電極13が配置される。
中心電極13は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われた棒状の電極母材14(金属材)と、電極母材14の先端に溶接されたチップ15とを備えている。チップ15は、貴金属を主体とする合金または貴金属により柱状に形成されている。チップ15は、電極母材14及びチップ15が溶融した溶融部16を介して電極母材14に接合されている。中心電極13は絶縁体11に保持され、先端が軸孔12から露出する。
端子金具17は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具17は、先端側が軸孔12に圧入された状態で、絶縁体11の後端に固定されている。絶縁体11の外周の先端側に、端子金具17と軸線O方向に間隔をあけて、主体金具18が加締め固定されている。
主体金具18は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具18の先端に接地電極19が接合されている。本実施の形態では、接地電極19は先端側が屈曲し、接地電極19と中心電極13(チップ15)との間に火花ギャップを形成する。
スパークプラグ10は、例えば、以下のような方法によって製造される。まず、予めチップ15が電極母材14の先端に溶接された中心電極13を絶縁体11の軸孔12に挿入し、中心電極13の先端が軸孔12から外部に露出するように配置する。軸孔12に端子金具17を挿入し、端子金具17と中心電極13との導通を確保した後、予め接地電極19が接合された主体金具18を絶縁体11の外周に組み付ける。接地電極19が中心電極13(チップ15)と対向するように接地電極19を屈曲して、スパークプラグ10を得る。
図2を参照して、電極母材14にチップ15を溶接して中心電極13(溶接製品)を作るレーザ溶接機20について説明する。図2はレーザ溶接機20のブロック図である。レーザ溶接機20はレーザ発振器21、ビーム伝送装置22及び加工ヘッド23を備えている。レーザ発振器21はレーザ光を発振する機器であり、レーザ出力をパルスの形で放出する。
ビーム伝送装置22は、レーザ光を加工ヘッド23に伝送する装置であり、ミラー、回折格子、光ファイバ等の光学部品(図示せず)を備えている。光ファイバは、第1コアと、第1コアの外周を取り囲む第2コアと、第2コアの外周を取り囲むクラッドと、を備えている。第1コア、第2コア及びクラッドは互いに屈折率が異なる。レーザ発振器21が放出したレーザ光は回折格子を透過し光ファイバに入射する。ビーム伝送装置22は、光軸に垂直な面で回折格子をスライドして、光ファイバに入射するレーザ光の干渉を変化させ、光ファイバを透過するレーザ光の空間的強度分布を変化させる。
加工ヘッド23は、ビーム伝送装置22が伝送したレーザ光24を溶接対象物25の被照射部26に収束する装置であり、集光レンズ、集光点の調整装置(いずれも図示せず)を備えている。溶接対象物25は、電極母材14とチップ15とを接触させたものである。レーザ溶接機20は、レーザ光24を照射して、溶接対象物25の被照射部26において、互いに接触した電極母材14及びチップ15を共に溶融する。
電極母材14及びチップ15の被照射部26にレーザ光24を照射した状態で、中心軸Oを中心にレーザ溶接機20に対して溶接対象物25を相対回転させることにより、電極母材14及びチップ15の外周に溶融部16(図1参照)が連続して形成される。
なお、電極母材14及びチップ15の外周に溶融部16を連続して形成するものに限らない。電極母材14及びチップ15の外周に、複数の溶融部16をスポット状に形成することは当然可能である。また、レーザ溶接機20と溶接対象物25とを相対回転して溶融部16を形成するものに限らない。溶接対象物25の周りの周方向の複数の点からレーザ光を溶接対象物25に照射することは当然可能である。
図3及び図4を参照して、レーザ溶接機20を用いた溶接方法について説明する。図3(a)はレーザ溶接機20が放出するレーザ光24のパルス波形の模式図である。図3(a)において、縦軸はレーザ出力(W)であり、横軸は時間である。本実施の形態では、矩形波のパルス波形について説明する。
図3(b)は第1期間Aの被照射部26におけるレーザ光24の横モードであり、図3(c)は第1期間Aにおける溶接対象物25の断面図である。図4(a)は第1期間Aと第2期間Cとの間の第2期間Bの被照射部26におけるレーザ光24の横モードであり、図4(b)は第2期間Cの被照射部26におけるレーザ光24の横モードであり、図4(c)は第2期間Cにおける溶接対象物25の断面図である。レーザ溶接機20(図2参照)から放射されたレーザ光24は、ビーム伝送装置22の状態に応じて、強度分布が変化する。横モードとは、レーザ光24の伝播方向に垂直な面のエネルギー強度分布である。
図3(b)、図4(a)及び図4(b)では、被照射部26におけるエネルギー強度分布が模式的に図示されている。図3(b)は第1期間A内の任意の時間の横モードが図示されており、図4(a)は第2期間Bのある時間の横モードが図示されている。図4(b)は第2期間C内の任意の時間の横モードが図示されている。
図3(b)、図4(a)及び図4(b)において、縦軸は、被照射部26における単位面積当たりのレーザ出力P(r)(パワー密度)であり、横軸は、パワー密度の分布中心からの半径方向の距離r(レーザ光径)である。パワー密度の分布中心は、被照射部26におけるレーザ光24の直径(ビーム径)の中心(r=0)に等しい。
図3(a)に示すように、レーザ溶接機20(図2参照)はレーザ光24をパルス発振する。レーザ光24の一つのパルス27が持続する時間内に、レーザ出力の立ち上がりを含む第1期間A、第1期間Aの後の第2期間C、及び、第1期間Aと第2期間Cとの間の第2期間Bが存在する。
図3(b)に示すように第1期間Aでは、レーザ光24の空間的強度分布がリング状のピークをもつ。被照射部26ではレーザ光径−r及びrにおいてパワー密度が最大(P)となる。パワー密度の最大値Pは、ビーム径の中心(r=0)の周りに連続して存在する。パワー密度のピークが、ビーム径の中心から外れているので、図3(c)に示すように、電極母材14及びチップ15の溶融金属によって被照射部26にできる溶融池28は、面積が広くて浅い。これにより、溶融池28の急膨張を防ぎ、溶融池28の圧力の上昇を抑制できる。その結果、溶融池28内の溶融金属の飛散を抑制できるので、スパッタの発生を抑制できる。
図4(b)に示すようにレーザ溶接機20(図2参照)は、第2期間Cにおいてパワー密度が最大(P)となるレーザ光径(r=0)を、第1期間Aにおいてパワー密度が最大となるレーザ光径(−r,r)に比べて小さくする。本実施の形態では、第2期間Cの被照射部26におけるレーザ光径の最大径は第1期間Aの被照射部26におけるレーザ光径の最大径以下であり、パワー密度はP>Pである。
図4(a)に示すように第2期間Bは、第1期間Aの状態(図3(b)参照)から第2期間Cの状態(図4(b)参照)へ連続的に変化する遷移期である。レーザ光の空間的強度分布を連続的に変化させる第2期間Bが存在するので、第2期間Bが存在しない場合に比べて、溶融金属の状態の急変を防ぐことができる。その結果、スパッタの発生をさらに抑制できる。
図4(b)に示すように、第2期間Cではパワー密度のピークがビーム径の中心に近づくので、溶融池28の中央を深くできる。これにより、電極母材14とチップ15とが互いに接触する接触面29を深く溶融できるので、溶込みDを大きくできる。その結果、電極母材14とチップ15との接合強度を確保できる。
これに対し、溶込みDを大きくするために、第1期間Aにおいて、ビーム径が小さくパワー密度の高いレーザ光24を被照射部26に照射すると、被照射部26が急激に溶融して急激に膨張する。溶融池28の圧力が上昇するので、溶融池28の溶融金属が飛散し、スパッタが多量に発生するという問題点がある。本実施の形態によれば、この問題点を解決することができ、溶込みDを確保しつつスパッタの発生を抑制できる。
第2期間Cにおけるパワー密度の最大値Pは第1期間Aにおけるパワー密度の最大値Pよりも大きいが、第2期間Cにおけるピークの数は第1期間Aにおけるピークの数より少ないので、第2期間Cにおけるレーザ出力(曲線で囲まれた面積)を、第1期間Aにおけるレーザ出力に比べて過大にならないようにできる。本実施の形態では、第2期間Cにおけるレーザ出力と第1期間Aにおけるレーザ出力とを同じにしている。その結果、レーザ発振器21(図2参照)の負荷の変動を抑制できる。
レーザ溶接機20(図2参照)は、単一のパルス27が持続する時間内にレーザ光の空間的強度分布を変化させるので、連続発振レーザから放出されるレーザ光の空間的強度分布を変化させる場合に比べて、空間的強度分布の変化を細かく制御できる。パルスレーザ発振器によれば短時間にピークパワーを出力できるので、空間的強度分布を細かく制御することにより、スパッタの少ない高品質の溶接製品を短時間で製造できる。
また、被照射部26における、第2期間Bのレーザ光径(最大径)を第1期間Aのレーザ光径(最大径)と同じにすれば、単一のパルス27が持続する時間内に加工ヘッド23(図2参照)の集光点の調整装置(図示せず)を作動させなくても済む。よって、単一のパルスの間にレーザ光24の空間的強度分布を応答性良く変化させることができる。
なお、被照射部26における、第2期間Cのレーザ光径(最大径)を第1期間Aのレーザ光径(最大径)よりも小さくすれば、溶融池28の中央にエネルギーを集中させ易くすることができ、溶込みDをより大きくできる。
次に図5を参照して、第1実施の形態の変形例について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図5(a)は変形例におけるパルス波形の模式図であり、図5(b)は第1期間Aの被照射部26におけるレーザ光24の横モードであり、図5(c)は第2期間Bの被照射部26におけるレーザ光24の横モードであり、図5(d)は第2期間Cの被照射部26におけるレーザ光24の横モードである。図5(b)は第1期間A内の任意の時間の横モードが図示されており、図5(c)は第2期間Bのある時間の横モードが図示されている。図5(d)は第2期間C内の任意の時間の横モードが図示されている。
図5(a)に示すように、パルス発振されたレーザ光24(図2参照)の一つのパルス27が持続する時間内に、レーザ出力の立ち上がりを含む第1期間A、第1期間Aの後の第2期間B、及び、第2期間Bの後の第2期間Cが存在する。
図5(b)に示すように第1期間Aでは、レーザ光24(図2参照)の空間的強度分布がリング状のピークをもつ。被照射部26(図3(c)参照)ではレーザ光径−r及びrにおいてパワー密度が最大(P)となる。パワー密度のピークが、ビーム径の中心の周囲に広がるので、被照射部26に広くて浅い溶融池28を形成できる。また、ビーム径の中心(r=0)におけるパワー密度Pは0<P<Pなので、ビーム径の中心にエネルギーを入力し、被照射部26の中央の溶融量を増やすことができる。
図5(c)に示すように第2期間Bのある時間では、レーザ光24(図2参照)の空間的強度分布が複数のピークをもつ。この時は、パワー密度が最大(P)となるレーザ光径(−r,r)を、第1期間Aにおいてパワー密度が最大(P)となるレーザ光径(−r,r)に比べて小さくする。即ち、|r|<|r|である。なお、パワー密度P<Pである。
第2期間Bではパワー密度のピークが複数あるので、被照射部26の各レーザ光径に投入されるエネルギーの変化を緩和できる。また、第2期間Bでパワー密度が最大となるレーザ光径(−r,r)を、第1期間Aでパワー密度が最大となるレーザ光径(−r,r)に比べて小さくするので、溶融池28の中央を深くできる。
図5(d)に示すように第2期間Cでは、パワー密度が最大(P)となるレーザ光径(r=0)を、第2期間Bにおいてパワー密度が最大となるレーザ光径(−r,r)に比べて小さくする。第2期間Cでは、パワー密度のピークがビーム径の中心に近づくので、溶融池28の中央をさらに深くできる。
変形例においても、第2期間Cにおいてパワー密度が最大となるレーザ光径を第1期間Aに比べて小さくするので、第1実施の形態で説明したように、溶込みDを確保しつつスパッタの発生を抑制できる。さらに、第1期間Aにおいて、ビーム径の中心(r=0)におけるパワー密度P>0なので、ビーム径の中心における第1期間Aと第2期間Cとの間のパワー密度の変化量を抑制できる。その結果、溶融池28内の溶融金属の飛散をさらに抑制し、スパッタの発生をさらに抑制できる。
次に図6を参照して第2実施の形態について説明する。第1実施の形態では、スパークプラグ10の中心電極13(溶接製品)を製造する場合について説明した。これに対し第2実施の形態では、スパークプラグ30の接地電極31(溶接製品)を製造する場合について説明する。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。図6は第2実施の形態におけるスパークプラグ30の片側断面図である。図6では、スパークプラグ30の軸線O方向の後端側の図示が省略されている。
図6に示すようにスパークプラグ30は、絶縁体11、中心電極13(第2電極)及び接地電極31(第1電極)を備えている。
接地電極31は、主体金具18の先端に接合された電極であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われた棒状の電極母材32(金属材)と、電極母材32の先端に溶接されたチップ33とを備えている。チップ33は、貴金属を主体とする合金または貴金属により角柱状に形成されている。
チップ33は、電極母材32及びチップ33が溶融した溶融部34を介して電極母材32に接合されている。接地電極31(チップ33)と中心電極13との間に火花ギャップが形成される。溶融部34は、第1実施の形態で説明したレーザ溶接機20(図2参照)によって形成される。従って、第2実施の形態においても、第1実施の形態と同様の作用効果を実現できる。
以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。
上記各実施の形態およびその変形例では、パルス波形が矩形波のレーザ光24の場合について説明したが、必ずしもこれに限られるものではない。他のパルス波形を採用することは当然可能である。他のパルス波形としては、例えば正弦波、三角波、スパイクパルス、エンハンストパルス等が挙げられる。
各実施の形態およびその変形例では、第1期間Aにおけるパワー密度のピーク(P)が、ビーム径の中心の周りに連続する場合について説明したが、必ずしもこれに限られるものではない。ビーム径の中心の周りに、パワー密度のピーク(P)が断続的に現れるようにレーザ光24の空間的強度分布を設定することは当然可能である。ビーム径の中心の周りにパワー密度のピーク(P)が断続的に現れても、面積が広くて浅い溶融池28を被照射部26に形成できるので、スパッタを抑制できるからである。
各実施の形態およびその変形例では、レーザ光24の横モードが軸対称の場合について説明したが、必ずしもこれに限られるものではない。溶接対象物25等に応じて、レーザ光24の横モードを非軸対称にすることは当然可能である。
第1実施形態の変形例では、第1期間Aにおいてレーザ光24の空間的強度分布がリング状のピークをもち(図5(b)参照)、第2期間Bのある時間において、レーザ光24の空間的強度分布が複数のピーク(P及びP)をもつ場合(図5(c)参照)について説明したが、必ずしもこれに限られるものではない。第1期間Aにおいて、レーザ光24の空間的強度分布が複数のピーク(例えばP及びP)をもつようにすることは当然可能である。第2期間Bでは、パワー密度が最大となるレーザ光径が連続的に0に近づくように横モードが変化する。
各実施の形態およびその変形例では、状態が定常化した第1期間Aと第2期間Cとの間に、状態が遷移する第2期間Bが設けられる場合について説明したが、必ずしもこれに限られるものではない。なお、第1期間A、第2期間B及び第2期間Cの時間は、溶接対象物に応じて適宜設定できる。例えば、各期間の時間を限りなくゼロに近づけることは当然可能である。
第2期間Bの時間をゼロにすること、即ち、第2期間Bを省略することは当然可能である。第2期間Bを省略することにより、第1期間Aの横モードから第2期間Cの横モードへ瞬間的に変化する。第2期間Bを省略しても、第1期間Aにおいて被溶融部26を浅く広く溶融し、第2期間Cにおいて被溶融部26を狭く深く溶融できるので、スパッタの発生を抑制しつつ溶込みDを確保できる。この場合も第1期間A及び第2期間Cの時間は、溶接対象物25に応じて適宜設定できる。
同様に、定常的な第2期間Cの時間をゼロにすること、即ち、定常的な第1期間Aと状態が遷移する第2期間Bとが繰り返されるようにすることは当然可能である。この場合も、第2期間Bにおけるパワー密度が最大となるレーザ光径を、第1期間Aにおけるパワー密度が最大となるレーザ光径よりも小さくできる。よって、スパッタの発生を抑制しつつ溶込みDを確保できる。この場合も第1期間A及び第2期間Bの時間は、溶接対象物25に応じて適宜設定できる。
第1実施の形態では、スパークプラグ10の絶縁体11に保持された電極母材14(金属材)にチップ15を溶接する場合について説明した。また、第2実施の形態では、スパークプラグ30の主体金具18に接合された電極母材32(金属材)にチップ33を溶接する場合について説明した。しかし、必ずしもこれに限られるものではない。金属材からなる中間材にチップ15,33をレーザ溶接し、チップ15,33がそれぞれ溶接された中間材を、レーザ溶接や抵抗溶接等によって電極母材14,32にそれぞれ接合することは当然可能である。
各実施の形態およびその変形例では、主体金具18に接合された接地電極19,31を屈曲させる場合について説明した。しかし、必ずしもこれに限られるものではない。屈曲した接地電極19,31を用いる代わりに、直線状の接地電極19,31を用いることは当然可能である。この場合には、主体金具18の先端側を軸線O方向に延ばし、直線状の接地電極19,31を主体金具18に接合して、接地電極19,31を中心電極13と対向させる。
各実施の形態およびその変形例では、接地電極19,31と中心電極13とが軸線O上で対向するように接地電極19,31を配置する場合について説明した。しかし、必ずしもこれに限られるものではなく、接地電極19,31と中心電極13との位置関係は適宜設定できる。接地電極19,31と中心電極13との他の位置関係としては、例えば、中心電極13の側面と19,31の先端とが対向するように接地電極19,31を配置すること等が挙げられる。
各実施の形態およびその変形例では、中心電極13や接地電極31を例示して溶接製品を説明したが、必ずしもこれに限られるものではない。溶接製品は、レーザ溶接によって2つの部材を接合して得られるものである。溶接製品は中心電極13や接地電極31に限られない。なお、本実施の形態で説明した溶接方法は、融点が異なる2つの部材を溶接する場合に特に適している。溶接対象物に入力するエネルギーが小さいと、融点の高い部材が溶融し難く、溶接対象物に入力するエネルギーが大きいと、融点の低い部材の溶融量が増えてスパッタが発生し易いからである。
各実施の形態およびその変形例では、溶接対象物25の被照射部26において電極母材14,32及びチップ15,33を共に溶融し、電極母材14,32とチップ15,33とが互いに接触する接触面29に沿って溶融部16,34を形成する場合について説明したが、必ずしもこれに限られるものではない。上記実施の形態で説明した溶接方法を、重ね溶接や隅肉溶接等に適用することは当然可能である。上記実施の形態で説明した溶接方法を重ね溶接等に適用して、3つ以上の部材を同時に溶接することは当然可能である。
各実施の形態およびその変形例では、溶接対象物25の被照射部26において、電極母材14,32とチップ15,33とが同一面上にある場合について説明したが、必ずしもこれに限られるものではない。被照射部26に対するレーザ光24のビーム軸の角度や入力エネルギー等を適宜設定することにより、電極母材14,32とチップ15,33とが同一面上に配置されていなくても、それらを溶接できるからである。
10,30 スパークプラグ
13 中心電極(溶接製品)
14,32 電極母材(部材)
15,33 チップ(部材)
21 レーザ発振器(パルスレーザ発振器)
24 レーザ光
25 溶接対象物
26 被照射部
27 パルス
31 接地電極(溶接製品)
A 第1期間
C 第2期間

Claims (4)

  1. レーザ光を溶接対象物に照射して2つ以上の部材が溶接された溶接製品の製造方法であって、
    前記溶接対象物を準備する準備工程と、
    前記溶接対象物の被照射部にパルスレーザ発振器から放出された前記レーザ光を照射する溶接工程と、を備え、
    前記溶接工程は、前記レーザ光の一つのパルスが持続する時間内に、レーザ出力の立ち上がりを含む第1期間、及び、前記第1期間の後に第2期間が存在し、
    前記被照射部における前記レーザ光の横モードにおいて、前記第2期間におけるパワー密度が最大となるレーザ光径が、前記第1期間におけるパワー密度が最大となるレーザ光径よりも小さくなるように前記レーザ光の空間的強度分布を変化させる溶接製品の製造方法。
  2. 前記溶接工程では、前記レーザ光の空間的強度分布を連続的に変化させる請求項1記載の溶接製品の製造方法。
  3. 前記溶接対象物は2つの部材からなり、前記被照射部において前記2つの部材を溶融する請求項1又は2に記載の溶接製品の製造方法。
  4. 前記溶接対象物は、スパークプラグの電極を構成する電極母材およびチップである請求項1から3のいずれかに記載の溶接製品の製造方法。
JP2017081909A 2017-04-18 2017-04-18 溶接製品の製造方法 Pending JP2018176242A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081909A JP2018176242A (ja) 2017-04-18 2017-04-18 溶接製品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081909A JP2018176242A (ja) 2017-04-18 2017-04-18 溶接製品の製造方法

Publications (1)

Publication Number Publication Date
JP2018176242A true JP2018176242A (ja) 2018-11-15

Family

ID=64282155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081909A Pending JP2018176242A (ja) 2017-04-18 2017-04-18 溶接製品の製造方法

Country Status (1)

Country Link
JP (1) JP2018176242A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113451A (ja) * 2019-01-14 2020-07-27 株式会社デンソー 内燃機関用のスパークプラグの製造方法
JP2020146700A (ja) * 2019-03-12 2020-09-17 三菱電機株式会社 レーザ加工機のレーザ制御方法及びレーザ切断加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227686A (ja) * 1994-02-22 1995-08-29 Mitsubishi Electric Corp 光伝送装置及び光照射方法
JP2002096187A (ja) * 2000-09-18 2002-04-02 Sumitomo Heavy Ind Ltd レーザ加工装置及び加工方法
JP2011258583A (ja) * 2007-03-29 2011-12-22 Ngk Spark Plug Co Ltd スパークプラグの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227686A (ja) * 1994-02-22 1995-08-29 Mitsubishi Electric Corp 光伝送装置及び光照射方法
JP2002096187A (ja) * 2000-09-18 2002-04-02 Sumitomo Heavy Ind Ltd レーザ加工装置及び加工方法
JP2011258583A (ja) * 2007-03-29 2011-12-22 Ngk Spark Plug Co Ltd スパークプラグの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113451A (ja) * 2019-01-14 2020-07-27 株式会社デンソー 内燃機関用のスパークプラグの製造方法
JP7074079B2 (ja) 2019-01-14 2022-05-24 株式会社デンソー 内燃機関用のスパークプラグの製造方法
JP2020146700A (ja) * 2019-03-12 2020-09-17 三菱電機株式会社 レーザ加工機のレーザ制御方法及びレーザ切断加工方法
JP7195186B2 (ja) 2019-03-12 2022-12-23 三菱電機株式会社 レーザ加工機のレーザ制御方法及びレーザ切断加工方法

Similar Documents

Publication Publication Date Title
KR102300555B1 (ko) 용접부
KR101392060B1 (ko) 스파크 플러그의 제조 방법
KR101393226B1 (ko) 스파크 플러그의 제조 방법
US5269056A (en) Laser welding of wire strands to an electrode pin
KR20170116118A (ko) 중첩 레이저 용접 장치 및 방법
JP2018176242A (ja) 溶接製品の製造方法
WO2018145544A1 (zh) 一种用于激光束和等离子弧复合焊接的焊炬
JP6777023B2 (ja) 積層金属箔の溶接方法
US20070265107A1 (en) Golf head and welding method thereof
EP3216552B1 (en) Laser welding methods, method of manufacturing a welded body, method of manufacturing electrode for spark plug, and method of manufacturing spark plug based on such laser welding methods
JP2017164811A (ja) レーザ溶接方法、溶接接合体の製造方法、スパークプラグ用の電極の製造方法、及びスパークプラグの製造方法
JP2020099917A (ja) 接合体の製造方法
JP6845170B2 (ja) レーザ加工方法
US10680416B2 (en) Method for producing a spark plug including an electrode having a base portion and a tip fixed to the base portion
JP6595546B2 (ja) スパークプラグの製造方法
JP6263286B1 (ja) スパークプラグの製造方法
JP7323740B2 (ja) 電解コンデンサ用リード端子及びその製造方法
CN111390386A (zh) 一种兼容材料压合间隙的激光叠焊方法
JP6882581B1 (ja) 接合物品の製造方法及び製造装置
JP6868733B1 (ja) 接合物品の製造方法及び製造装置
JP7074079B2 (ja) 内燃機関用のスパークプラグの製造方法
Dittrich et al. Coherent beam combining-Beam characterization of a new 14 kW CBC laser source and first results on copper welding
JP5862371B2 (ja) アーク点付け溶接方法
JP2024076250A (ja) レーザ溶接方法およびレーザ溶接装置
JP2018092848A (ja) スパークプラグの電極の製造方法、及び、スパークプラグの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210817