JP2018172760A - Manufacturing method of sintered ore and manufacturing device of sintered ore - Google Patents

Manufacturing method of sintered ore and manufacturing device of sintered ore Download PDF

Info

Publication number
JP2018172760A
JP2018172760A JP2017072932A JP2017072932A JP2018172760A JP 2018172760 A JP2018172760 A JP 2018172760A JP 2017072932 A JP2017072932 A JP 2017072932A JP 2017072932 A JP2017072932 A JP 2017072932A JP 2018172760 A JP2018172760 A JP 2018172760A
Authority
JP
Japan
Prior art keywords
granulated
sintering
carbonaceous
charging
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017072932A
Other languages
Japanese (ja)
Other versions
JP6772935B2 (en
Inventor
尊三 川口
Takazo Kawaguchi
尊三 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017072932A priority Critical patent/JP6772935B2/en
Publication of JP2018172760A publication Critical patent/JP2018172760A/en
Application granted granted Critical
Publication of JP6772935B2 publication Critical patent/JP6772935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of sintered ore and a manufacturing device of sintered ore, which can sufficiently achieve NOinhibition effect on a carbonaceous material granulated article even when granulation strength of the carbonaceous granulated article is insufficient.SOLUTION: There is provided a manufacturing method of sintered ore by conducting; a granulation process of a raw material for sintering (S1) for granulating the raw material for sintering containing at least an iron source to obtain a granulated article for sintering; a carbonaceous granulation process (S2) for granulating a carbonaceous granulated article containing an undersize carbon material obtained by using a sieve with screening classification point of 0.5 mm or more and 1 mm or less and an undersize coal source obtained by using a sieve with screening classification point of 0.5 mm or more and 1 mm or less; and injection processes (S3, S4) for mixing the carbonaceous granulated article and the granulated article for sintering on an injection chute and injecting them onto a pallet by directly inputting the carbonaceous granulated article to the injection chute and injecting the granulated article for sintering from a surge tank to the injection chute at the same time.SELECTED DRAWING: Figure 3

Description

本発明は、焼結鉱の製造方法および焼結鉱の製造装置に関する。   The present invention relates to a method for producing sintered ore and an apparatus for producing sintered ore.

高炉原料用の焼結鉱は、鉱石、スケールなどの雑原料(以下、鉱石と雑原料を総称して鉄源と言う)、炭材、石灰石等の副原料を焼結して製造されるものであり、具体的には、以下の手順で製造される。
まず、鉱石、副原料、炭材、返鉱を造粒機を用いて水で造粒して、焼結用配合原料を得る。
Sintered ore for blast furnace raw materials is manufactured by sintering auxiliary materials such as ores and scales (hereinafter referred to collectively as ores and miscellaneous materials as iron sources), carbonaceous materials and limestone. Specifically, it is manufactured by the following procedure.
First, the ore, the auxiliary material, the carbon material, and the return mineral are granulated with water using a granulator to obtain a blended raw material for sintering.

次に、配合原料を焼結機のパレット上に装入して充填層を形成し、バーナーで充填層の上面に着火する。着火により、充填層内の炭材が燃焼し、燃焼帯を形成する。さらにパレットの下方からパレット内の空気を吸引する。燃焼帯は、吸引によって充填層の上層から下層に進行する。燃焼帯では、燃焼熱によって周囲の造粒物(擬似粒子とも言う)が昇温されて部分的に溶融し、その融液により造粒物の間が架橋されて焼結し、焼結鉱が製造される。製造された焼結鉱はパレットから排鉱され、クラッシャーによって粉砕されて、篩で整粒される。篩上が焼結鉱となり、篩下は返鉱として焼結原料に戻される。   Next, the blended raw material is charged onto a pallet of a sintering machine to form a packed bed, and the upper surface of the packed bed is ignited with a burner. By ignition, the carbonaceous material in the packed bed burns to form a combustion zone. Further, air in the pallet is sucked from below the pallet. The combustion zone proceeds from the upper layer to the lower layer of the packed bed by suction. In the combustion zone, the surrounding granulated material (also called pseudo particles) is heated and partially melted by the heat of combustion, and the granulated material is cross-linked and sintered by the melt. Manufactured. The produced sintered ore is discharged from the pallet, crushed by a crusher, and sized with a sieve. The sieve top becomes sintered ore, and the sieve bottom is returned to the sintered raw material as return ore.

このような焼結鉱の製造方法は、安価で、大量に、かつ簡単に、粉粒状の焼結原料を塊成化できる。一方で、この製造方法は、焼結時に炭材が燃焼するため、窒素酸化物(NOx)を含む排ガスを放出する。そのため、NOxの発生を抑制する必要がある。 Such a method for producing a sintered ore is inexpensive, and can agglomerate a granular sintered raw material in a large amount and easily. On the other hand, this manufacturing method releases exhaust gas containing nitrogen oxides (NO x ) because the carbonaceous material burns during sintering. Therefore, it is necessary to suppress the generation of NO x.

特許文献1、2には、焼結鉱製造時のNOx発生を抑制するため、炭材に石灰源を添加し混合・造粒した炭材造粒物の一種であるLCC(Lime Coating Coke)を使用する技術が記載されている。
特許文献1、2では炭材とCaOとFeOxが近接配置された一個の造粒物になっており、炭材燃焼時に発生するNOxを、燃焼により生成したCaO・Fe23が分解すると記載されている。
特許文献1、2では、LCCから石灰被覆が剥離するのを防止し、かつ原料と炭材を均一に混合するために、LCC以外の原料を造粒した後にLCCを添加し混合・造粒する、後添加が好ましいとしている。
このように、焼結鉱の製造においては、一部の造粒物の剥離や崩壊を防ぎ、原料を均一に混合する方法が必要になる場合がある。
Patent Documents 1 and 2, in order to suppress the NO x generation during sintered ore production, which is a kind of carbonaceous material granules were mixed and granulated by adding lime source carbonaceous material LCC (Lime Coating Coke) Techniques for using are described.
In Patent Documents 1 and 2, the carbon material, CaO, and FeO x are in a single granulated product, and NO x generated during combustion of the carbon material is decomposed by CaO · Fe 2 O 3 generated by combustion. Then it is described.
In Patent Documents 1 and 2, in order to prevent the lime coating from peeling from the LCC and to uniformly mix the raw material and the carbonaceous material, the raw material other than the LCC is granulated, and then LCC is added and mixed and granulated. The post-addition is preferable.
As described above, in the production of sintered ore, there is a case where a method of preventing a part of the granulated material from peeling or collapsing and mixing the raw materials uniformly may be required.

特許文献3はLCCを使用する技術ではないが、コークス外装振動造粒ペレットが焼結機のパレット上で崩壊するのを防ぐために、常法により製造された原料粒子とは別に装入シュートに流下させる技術が記載されている。   Although Patent Document 3 is not a technique using LCC, it flows down to the charging chute separately from the raw material particles produced by a conventional method in order to prevent the coke exterior vibration granulation pellet from collapsing on the pallet of the sintering machine. The technology to be described is described.

特許文献4もLCCを使用する技術ではないが、原料充填層の上層に脆化層が形成されるのを防止するために、焼結原料を装入シュートから移動パレット上に充填するに際し、装入シュート上で固体燃料を新たに添加する技術が記載されている。   Patent Document 4 is not a technique that uses LCC, but in order to prevent the formation of an embrittlement layer in the upper layer of the raw material packed layer, when charging the sintered raw material from the charging chute onto the moving pallet, A technique for newly adding solid fuel on the incoming chute is described.

特許文献5もLCCを使用する技術ではないが、焼結補助燃料を焼結原料とは別にパレット上に装入する技術が記載されている。   Patent Document 5 is not a technique using LCC, but describes a technique in which a sintering auxiliary fuel is charged on a pallet separately from a sintering raw material.

特許文献6もLCCを使用する技術ではないが、焼結パレットの幅方向にわたって伸びた筒体に粉体を筒体長手方向に押し出して、筒体側面に設けた長手方向に分布した複数の紛体切り出し孔から装入シュートに切り出す技術が記載されている。   Patent Document 6 is not a technique using LCC, but a plurality of powders distributed in the longitudinal direction provided on the side surface of the cylindrical body by extruding the powder in the longitudinal direction of the cylindrical body extending over the width direction of the sintered pallet. A technique for cutting out a charging chute from a cutting hole is described.

国際公開第2011/129388号International Publication No. 2011/129388 特開2016−104901号公報Japanese Patent Laid-Open No. 2006-104901 特開平05−148557号公報JP 05-148557 A 特開2000−256757号公報JP 2000-256757 A 特許第2982128号明細書Japanese Patent No. 2982128 特開2000−096158号公報JP 2000-096158 A

特許文献1〜6に記載の技術は、一部の造粒物が被覆されている場合に、剥離や崩壊を防ぎ、原料を均一に混合できるという点では有用である。特に、特許文献1、2に記載の技術は焼結鉱製造時のNOx発生を抑制できる点で有用である。
しかしながら、炭材造粒物の造粒強度が不十分な場合は、これらの技術を用いても炭材造粒物のNOx抑制効果が充分に発揮されない場合があった。
The techniques described in Patent Documents 1 to 6 are useful in that when a part of the granulated material is coated, peeling and collapse can be prevented and the raw materials can be mixed uniformly. In particular, the techniques described in Patent Documents 1 and 2 are useful in that NO x generation during the production of sintered ore can be suppressed.
However, if the granulation strength of the carbonaceous material granules is insufficient, there is a case where NO x suppression of carbonaceous material granules even using these techniques is not sufficiently exhibited.

本発明は、炭材造粒物の造粒強度が不十分な場合でも、炭材造粒物のNOx抑制効果を充分に発揮できる、焼結鉱の製造方法および焼結鉱の製造装置を提供することを目的とする。 The present invention provides a method for producing a sintered ore and an apparatus for producing a sintered ore that can sufficiently exhibit the NO x suppression effect of the carbonaceous granulated product even when the granulated strength of the carbonaceous granulated product is insufficient. The purpose is to provide.

本発明に係る焼結鉱の製造方法は、少なくとも鉄源を含む焼結用原料を造粒して焼結用造粒物を得る、焼結用原料造粒工程と、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の炭材、および篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の石灰源を含む炭材造粒物を造粒する炭材造粒工程と、前記炭材造粒物を装入シュートに直接投入し、同時に前記焼結用造粒物をサージ槽から前記装入シュートに投入することにより、前記炭材造粒物および前記焼結用造粒物を前記装入シュート上で混合してパレット上に装入する装入工程と、を実施することを特徴とする。
本発明によれば、造粒強度が不十分なP型を含む炭材造粒物を、他の焼結用原料とは別に、装入シュートに直接投入する。そのため、造粒からパレットへの装入までの間に、炭材造粒物が他の造粒物と接触する機会を、極力減らすことができ、接触による炭材造粒物の崩壊を防ぐことができる。
よって、炭材造粒物の造粒強度が不十分な場合でも、炭材造粒物のNOx抑制効果を充分に発揮できる。
The method for producing sintered ore according to the present invention comprises a sintering raw material granulation step in which a sintering raw material containing at least an iron source is granulated to obtain a sintered granulated product, and a sieving classification point of 0 Carbonaceous material granulation containing sieving carbon material obtained by using sieve of 5 mm or more and 1 mm or less and lime source of sieving obtained by using sieve having classification point of 0.5 mm or more and 1 mm or less A carbonaceous material granulating step for granulating the product, and directly charging the carbonized material granulated product into the charging chute, and simultaneously charging the granulated material for sintering from the surge tank to the charging chute, And a charging step of mixing the carbon material granulated material and the granulated material for sintering on the charging chute and charging the mixture onto the pallet.
According to the present invention, a carbonaceous granulated product containing P-type having insufficient granulation strength is directly charged into a charging chute separately from other sintering raw materials. Therefore, the opportunity for the carbonaceous granule to come into contact with other granulated materials between granulation and charging to the pallet can be reduced as much as possible, and the collapse of the carbonaceous granulated material due to contact can be prevented. Can do.
Accordingly, even if granulation strength of the carbonaceous material granules is insufficient, it can sufficiently exhibit NO x suppression of carbonaceous material granules.

本発明では、前記炭材造粒工程は、予め炭材を、篩分け分級点が0.5mm以上、1mm以下の篩で分級する分級工程と、前記分級工程の篩下と、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の石灰源とを造粒して第1の炭材造粒物を製造する第1の炭材造粒工程を実施するのが好ましい。
この発明によれば、炭材造粒工程でP型の炭材造粒物(第1の炭材造粒物)を造粒する。そのため、造粒強度が不十分なP型の炭材造粒物が他の造粒物と接触する機会を極力減らすことができ、接触による炭材造粒物の崩壊を防ぐことができる。
In the present invention, the carbonaceous material granulation step is performed by classifying a carbonaceous material in advance with a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less, a sieving under the classification process, and a sieving classification point. Performing the first carbon material granulation step of producing the first carbon material granulated product by granulating the lime source under the sieve obtained using a sieve of 0.5 mm or more and 1 mm or less. preferable.
According to this invention, a P-type carbon material granulated material (1st carbon material granulated material) is granulated at a carbon material granulation process. Therefore, it is possible to reduce as much as possible the chance that a P-type carbonaceous granulated product with insufficient granulation strength comes into contact with other granulated products, and to prevent collapse of the carbonaceous granulated product due to contact.

本発明では、前記分級工程の篩上と、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の石灰源とを造粒した第2の炭材造粒物を製造する第2の炭材造粒工程と、前記焼結用造粒物を前記サージ槽に投入する前に、前記第2の炭材造粒物を添加する添加工程と、を実施するのが好ましい。
この発明によれば、比較的強度の高い炭材造粒物であるC型(第2の炭材造粒物)を、P型の炭材造粒物の製造時の炭材の篩下を用いて製造し、サージ槽前で焼結用造粒物に添加する。そのため、装入シュートに直接投入する炭材造粒物の量をP型のみに削減でき、装入シュートへの投入設備を簡素化できる。
In the present invention, the second carbon material granulated product obtained by granulating the sieve in the classification step and the lime source under the sieve obtained by using a sieve having a classification point of 0.5 mm or more and 1 mm or less. The second carbonaceous material granulation step to be manufactured and the addition step of adding the second carbonaceous material granulated product before introducing the granulated material for sintering into the surge tank are performed. preferable.
According to the present invention, the C-type (second carbon material granule), which is a relatively high strength carbon material granule, is used for the sieving of the carbon material during the production of the P-type carbon material granule. And then added to the granulated material for sintering before the surge tank. For this reason, the amount of the granulated carbonaceous material directly charged into the charging chute can be reduced to only the P type, and the charging equipment for the charging chute can be simplified.

本発明では、前記炭材造粒物が前記焼結用原料を含んでもよい。
この発明によれば、P型の炭材造粒物を含む原料であれば、組成を問わずに装入シュートに直接投入する。そのため、造粒からパレットへの装入までの間にP型の炭材造粒物が他の造粒物と接触する機会を極力減らすことができ、接触による崩壊を防ぐことができる。
In the present invention, the carbon material granule may include the raw material for sintering.
According to this invention, if it is a raw material containing a P-type carbon material granulated material, it will be directly injected into the charging chute regardless of the composition. Therefore, the opportunity for the P-type carbon material granulated product to come into contact with another granulated product between granulation and charging into the pallet can be reduced as much as possible, and collapse due to contact can be prevented.

本発明に係る焼結鉱の製造装置は、少なくとも鉄源を含む焼結用原料を造粒して焼結用造粒物を製造する造粒部と、前記焼結用造粒物を貯留するサージ槽と、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の炭材、および篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の石灰源を含む炭材造粒物を造粒する炭材造粒部と、前記焼結用造粒物、および前記炭材造粒物が装入されるパレットと、前記焼結用造粒物、および前記炭材造粒物を前記パレットに装入する際のガイドとなる装入シュートと、前記炭材造粒物を前記装入シュートに直接投入する炭材投入部と、前記焼結用造粒物をサージ槽から前記装入シュートに投入する焼結用造粒物投入部と、前記パレットに装入された前記焼結用造粒物および前記炭材造粒物を焼結する点火炉と、を備えることを特徴とする。   The apparatus for producing a sintered ore according to the present invention stores a granulation part for producing a granulated product for sintering by granulating a raw material for sintering containing at least an iron source, and the granulated product for sintering. Surge tank, carbon material under sieving obtained using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less, and a sieve obtained using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less A carbon material granulation part for granulating a carbon material granule containing the lower lime source, the granulation for sintering, a pallet into which the carbon material granulation is charged, and the sintering A charging chute that serves as a guide for charging the granular material and the carbonaceous granulated material into the pallet; a carbonaceous material charging unit that directly inputs the carbonaceous granulated material into the charging chute; Sintered granule input part for charging the granulated product into a charging chute from a surge tank, and the sintered granulated material charged in the pallet An ignition furnace for sintering the preliminary the carbonaceous material granules, characterized in that it comprises a.

本発明によれば、造粒強度が不十分なP型の炭材造粒物を含む造粒物を、他の焼結用原料とは別に、装入シュートに直接投入する。そのため、造粒からパレットへの装入までの間に炭材造粒物が他の造粒物と接触する機会を極力減らすことができ、接触による炭材造粒物の崩壊を防ぐことができる。   According to the present invention, a granulated material containing a P-type carbon material granulated material having insufficient granulation strength is directly charged into a charging chute separately from other sintering raw materials. Therefore, it is possible to reduce the chance that the carbonaceous granulated product comes into contact with other granulated products between granulation and charging to the pallet as much as possible, and prevent collapse of the carbonaceous granulated product due to contact. .

本発明の第1の実施形態に係る焼結装置を示す模式図。The schematic diagram which shows the sintering apparatus which concerns on the 1st Embodiment of this invention. 図1のサージ槽付近の図。The figure of the surge tank vicinity of FIG. 本発明の第1の実施形態に係る焼結方法の手順を示すフロー図。The flowchart which shows the procedure of the sintering method which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る焼結装置を示す模式図であって、サージ槽付近の図。It is a schematic diagram which shows the sintering apparatus which concerns on the 2nd Embodiment of this invention, Comprising: The figure of surge tank vicinity. 本発明の第2の実施形態に係る焼結方法の手順を示すフロー図。The flowchart which shows the procedure of the sintering method which concerns on the 2nd Embodiment of this invention. 実施例で用いた焼結試験装置を示す模式図。The schematic diagram which shows the sintering test apparatus used in the Example.

<発明の背景>
まず、本発明の背景について説明する。
特許文献1、2に記載のように、焼結鉱製造時のNOx発生を抑制するため、炭材に石灰源を添加し混合・造粒して炭材造粒物とする技術は公知である。
一方で、炭材造粒物は、原料である炭材と石灰源の粒度によって、P型とC型という異なる構造になることを本発明者は見出した。
本発明者はさらに、P型の炭材造粒物の方がC型の炭材造粒物よりも造粒強度が弱く、崩壊しやすいことも見出した。これは、C型の炭材造粒物が、核粒子を微粉が被覆した構造であるのに対し、P型の炭材造粒物は、核粒子がなく、微粉のみで粒化した構造であるためと考えられた。
<Background of the invention>
First, the background of the present invention will be described.
As described in Patent Documents 1 and 2, in order to suppress the NO x generation during sintered ore production, the addition of lime source carbonaceous material mixed and granulated technique as carbonaceous material granules in a known is there.
On the other hand, the inventor has found that the carbonaceous granulated product has different structures of P-type and C-type depending on the raw material carbonaceous material and the particle size of the lime source.
The present inventor has also found that the P-type carbonaceous material granule has a lower granulation strength than the C-type carbonaceous material granulated product, and tends to collapse. This is because the C-type carbonaceous material granule has a structure in which the core particles are covered with fine powder, whereas the P-type carbonaceous material granulated structure has no core particles and is granulated only with the fine powder. It was thought that there was.

よって、P型の炭材造粒物を含む炭材造粒物が他の造粒物と接触する機会を、極力減らすことにより、接触による崩壊を防ぐことができ、焼結鉱製造時のNOx発生を抑制できるのではないかと本発明者は考えた。 Therefore, by reducing as much as possible the chance that the carbonaceous granulated product including the P-type carbonaceous granulated product comes into contact with other granulated products, collapse due to contact can be prevented, and NO during sinter production The present inventor thought that x generation could be suppressed.

そこで、本発明者は焼結鉱の製造の際に、P型との炭材造粒物を含む炭材造粒物を試験的に、装入シュートに直接投入した。その結果、P型の炭材造粒物の崩壊を防ぐことができ、焼結鉱製造時のNOx発生を抑制できることを見出し、本発明をするに至った。
以上が本発明の背景である。
Therefore, the present inventor directly put the carbonaceous material granule including the P-type carbonaceous material granule into the charging chute as a test when the sintered ore was manufactured. As a result, it has been found that the P-type carbonaceous material granule can be prevented from collapsing and the generation of NO x during the production of sintered ore can be suppressed, and the present invention has been achieved.
The above is the background of the present invention.

以下、図面に基づき、本発明に好適な実施形態について、詳細に説明する。
最初に、図1および図2を参照して、第1の実施形態に係る焼結鉱製造装置の概略構成について、説明する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
Initially, with reference to FIG. 1 and FIG. 2, schematic structure of the sintered ore manufacturing apparatus which concerns on 1st Embodiment is demonstrated.

図1および図2に示す焼結鉱製造装置100は、鉄源としての鉄鉱石の焼結を行うDL(ドワイトロイド)型焼結装置である。
図1に示すように、焼結鉱製造装置100は、パレット台車群12、原料配合装置50、原料装入装置60、炭材造粒部70、点火炉13、風箱群14、ブロア15、クラッシャー18、クーラー19、篩20を有する。
A sintered ore manufacturing apparatus 100 shown in FIG. 1 and FIG. 2 is a DL (Dwightroid) type sintering apparatus that performs sintering of iron ore as an iron source.
As shown in FIG. 1, the sinter production apparatus 100 includes a pallet carriage group 12, a raw material blending apparatus 50, a raw material charging apparatus 60, a carbonaceous granulation unit 70, an ignition furnace 13, a wind box group 14, a blower 15, A crusher 18, a cooler 19, and a sieve 20 are provided.

パレット台車群12は、焼結用造粒物8(焼結用配合原料の造粒物)が装入されるパレットに車輪を設けた台車を、連結したものである。パレット台車群12は連続無端に連結されており、図示しない駆動装置を用いて連続的に駆動している。   The pallet carriage group 12 is a combination of trolleys provided with wheels on a pallet into which the granulated material for sintering 8 (granulated material of the compounding material for sintering) is charged. The pallet carriage group 12 is connected continuously and is continuously driven using a driving device (not shown).

原料配合装置50は、焼結用造粒物8の配合・造粒を行う部分である。
原料配合装置50は、原料銘柄別に設けられた複数の貯留槽からなる貯留槽群1、集合コンベア4、ドラムミキサー6、給水ノズル7、ベルトコンベア9を有する。
The raw material blending device 50 is a part for blending and granulating the granulated material 8 for sintering.
The raw material blending device 50 includes a storage tank group 1 composed of a plurality of storage tanks provided for each raw material brand, a collective conveyor 4, a drum mixer 6, a water supply nozzle 7, and a belt conveyor 9.

貯留槽は鉄鉱石、雑原料、副原料、炭材、返鉱などのそれぞれの焼結原料を貯留する装置である。   The storage tank is an apparatus for storing respective sintered raw materials such as iron ore, miscellaneous raw materials, auxiliary raw materials, carbonaceous materials, and returning ores.

各貯留槽に貯留された原料は、その下端に備えられた定量切り出し装置(不図示)によって、一定流量で集合コンベア4上に排出される。これによって、集合コンベア4の下流端では、各原料が所定の比率で配合された原料(造粒前配合原料)が形成される。   The raw material stored in each storage tank is discharged onto the collective conveyor 4 at a constant flow rate by a quantitative cutout device (not shown) provided at the lower end thereof. Thereby, at the downstream end of the collective conveyor 4, a raw material (pre-granulation mixed raw material) in which the respective raw materials are mixed at a predetermined ratio is formed.

ドラムミキサー6は造粒前配合原料を水で造粒する。給水ノズル7は造粒の際にドラムミキサー6内に注水するノズルであり、注水口がドラムミキサー6の内部に向けられる。造粒効果を高めるために、バインダーとして生石灰などを副原料の一部に使用する場合がある。   The drum mixer 6 granulates the raw material before granulation with water. The water supply nozzle 7 is a nozzle for pouring water into the drum mixer 6 during granulation, and the water injection port is directed toward the inside of the drum mixer 6. In order to enhance the granulation effect, quick lime or the like may be used as a part of the auxiliary raw material as a binder.

ベルトコンベア9は、造粒した焼結用造粒物8を、ドラムミキサー6から原料装入装置60へ搬送するコンベアである。   The belt conveyor 9 is a conveyor that conveys the granulated material 8 for sintering from the drum mixer 6 to the raw material charging device 60.

原料装入装置60は、焼結用造粒物8をパレット台車群12に装入する装置である。
図1および図2に示すように、原料装入装置60は、サージ槽10、ロールフィーダー10A、装入シュート11を有する。
サージ槽10は、パレット台車群12に装入する直前の焼結用造粒物8を貯留する、ホッパーである。
ロールフィーダー10Aは、サージ槽10から焼結用造粒物8を切り出す原料切り出し装置であり、ここでは回転式のフィーダー(焼結用造粒物投入部)である。
The raw material charging device 60 is a device for charging the granulated material 8 for sintering into the pallet carriage group 12.
As shown in FIGS. 1 and 2, the raw material charging device 60 includes a surge tank 10, a roll feeder 10 </ b> A, and a charging chute 11.
The surge tank 10 is a hopper that stores the granulated material 8 for sintering immediately before charging into the pallet carriage group 12.
The roll feeder 10 </ b> A is a raw material cutting device that cuts out the granulated material 8 for sintering from the surge tank 10, and is a rotary feeder (sintered granule charging unit) here.

装入シュート11は、パレット台車群12の所定の位置に焼結用造粒物8を装入する、傾斜した板状のガイドである。   The charging chute 11 is an inclined plate-shaped guide for charging the granulated material 8 for sintering into a predetermined position of the pallet carriage group 12.

図1および図2に示すように、炭材造粒部70は、炭材貯留部31、石灰石貯留部39、炭材造粒ミキサー35、炭材造粒物供給装置6Aを備える。
炭材貯留部31、石灰石貯留部39はそれぞれ炭材造粒物の原料である炭材、石灰石を貯留する装置である。
炭材造粒ミキサー35は炭材と石灰石を混合し、炭材造粒物8Aを造粒する装置である。
As shown in FIG. 1 and FIG. 2, the carbon material granulation unit 70 includes a carbon material storage unit 31, a limestone storage unit 39, a carbon material granulation mixer 35, and a carbon material granule supply device 6A.
The carbon material storage part 31 and the limestone storage part 39 are apparatuses for storing carbon material and limestone, which are raw materials of the carbon material granulated product, respectively.
The carbon material granulation mixer 35 is a device for mixing the carbon material and limestone to granulate the carbon material granulated product 8A.

炭材造粒物供給装置6A(炭材投入部)は、炭材造粒物8Aをパレット台車群12に装入する部分である。炭材造粒物供給装置6Aは、炭材造粒物8Aが崩壊しにくい構造であるのが好ましい。このような構造としては、特許文献5に記載のスリップスティックコンベアが挙げられる。炭材造粒物供給装置6Aは、装入シュート11の上方で、且つロールフィーダー10Aよりも上側に設けられている。   The carbon material granule supply device 6A (carbon material input unit) is a portion for charging the carbon material granule 8A into the pallet truck group 12. It is preferable that the carbonaceous granule supply device 6A has a structure in which the carbonaceous granule 8A does not easily collapse. As such a structure, the slip stick conveyor of patent document 5 is mentioned. The carbonaceous granule supply device 6A is provided above the charging chute 11 and above the roll feeder 10A.

点火炉13は、パレット台車群12に装入した原料の表層に点火する炉である。点火炉13は例えばガス燃料を高温燃焼させる炉である。
風箱群14は、パレット台車群12の下方からパレット台車群12内の空気を吸引することにより、装入した原料を上層から下層に向けて焼結させ、焼結ケーキ17を得る部材である。
The ignition furnace 13 is a furnace that ignites the surface layer of the raw material charged in the pallet carriage group 12. The ignition furnace 13 is a furnace for burning gas fuel at a high temperature, for example.
The wind box group 14 is a member that obtains a sintered cake 17 by sucking the air in the pallet truck group 12 from below the pallet truck group 12 to sinter the charged raw material from the upper layer toward the lower layer. .

風箱群14は、例えば上下端が開放された複数の箱が、パレット台車群12の下方に、パレット台車群12の移動方向に沿って配列されたものである。風箱群14はブロア15に接続されている。   In the wind box group 14, for example, a plurality of boxes whose upper and lower ends are opened are arranged below the pallet truck group 12 along the moving direction of the pallet truck group 12. The wind box group 14 is connected to the blower 15.

ブロア15は風箱群14内を吸引する機材であり、風箱群14に接続されている。
クラッシャー18は、焼結ケーキ17を粗粉砕する。
クーラー19は、粗粉砕された焼結ケーキ17を冷却する装置である。
篩20は粗粉砕された焼結ケーキ17を分級し、篩上を焼結鉱として高炉に送る。篩下は返鉱として再度焼結原料とする。
以上が第1の実施形態に係る焼結鉱製造装置100の概略構成の説明である。
The blower 15 is a device that sucks the inside of the wind box group 14 and is connected to the wind box group 14.
The crusher 18 coarsely pulverizes the sintered cake 17.
The cooler 19 is a device for cooling the coarsely pulverized sintered cake 17.
The sieve 20 classifies the coarsely pulverized sintered cake 17 and sends the sieve cake as a sintered ore to a blast furnace. The sieving material is used as a raw material again as a return ore.
The above is description of schematic structure of the sintered ore manufacturing apparatus 100 which concerns on 1st Embodiment.

次に、第1の実施形態に係る焼結鉱製造装置100を用いた焼結鉱製造方法について、図1〜図3を参照して説明する。   Next, the sintered ore manufacturing method using the sintered ore manufacturing apparatus 100 which concerns on 1st Embodiment is demonstrated with reference to FIGS.

まず、焼結原料を組成に基づき分類する(図3のS0)。
焼結原料のうち次に述べるS2以外の原料は、原料配合装置50を用いて造粒して焼結用造粒物8とする(図3のS1、焼結用原料造粒工程)。排ガス中のNOxの値が目標値の範囲内であれば、炭材を含んでもよい。
First, the sintering raw material is classified based on the composition (S0 in FIG. 3).
The raw materials other than S2 described below among the sintered raw materials are granulated using the raw material blending apparatus 50 to obtain a granulated product 8 for sintering (S1 in FIG. 3, raw material granulating step for sintering). If the value of NO x in the exhaust gas is within the target value range, carbonaceous materials may be included.

焼結原料が炭材である場合、炭材造粒部70を用いて炭材と石灰源から炭材造粒物8Aを造粒する(図3のS2、炭材造粒工程)。   When the sintered material is a carbon material, the carbon material granulated portion 70 is used to granulate the carbon material granulated product 8A from the carbon material and the lime source (S2, carbon material granulation step in FIG. 3).

第1の実施形態では、S2において、炭材造粒物8Aとして、P型を含む炭材造粒物8Aを製造する。具体的には特許文献1、2に記載の炭材造粒物を例示できる。   In the first embodiment, in S2, a carbonaceous material granulated product 8A including a P-type is manufactured as the carbonaceous material granulated product 8A. Specifically, the carbonaceous material granule described in Patent Documents 1 and 2 can be exemplified.

ここで、炭材造粒物8Aの構造について、より詳細に説明する。
焼結用の炭材は通常、平均粒径3mm以下に粉砕された粉コークスである。焼結用の石灰源は、石灰石や消石灰(生石灰の消化物を含む)であり、前者は平均粒径3mm以下に粉砕される。後者は平均粒径1mm以下である。
Here, the structure of the carbonaceous material granule 8A will be described in more detail.
The carbonaceous material for sintering is usually powder coke pulverized to an average particle size of 3 mm or less. The lime source for sintering is limestone or slaked lime (including digested lime), and the former is pulverized to an average particle size of 3 mm or less. The latter has an average particle size of 1 mm or less.

焼結用原料の粒子は、造粒処理後、付着粉、中間粒子、核粒子のいずれかとして挙動する。通常、付着粉と中間粒子との境界粒度は0.25mm〜0.5mm、中間粒子と核粒子との境界粒度は1mm〜2mmとされる。しかしながら、付着粉のみで構成されるP型造粒物は、ある程度の中間粒子を取り込んで造粒物となり得る。そのため、P型造粒物を製造する際の原料の粒子の上限の直径をP型上限粒度と呼ぶとき、P型上限粒度は0.5mm以上、1mm以下と上側に幅を持つ。
粉コークス(3mm以下)と消石灰(1mm以下)とを造粒することで得られる炭材造粒物は以下の3種類を含む。
(1)炭材を核として、消石灰と炭材の混合物を付着粉とする、C型構造の炭材造粒物。
(2)P型上限粒度以下の粒度の炭材と消石灰の混合物からなるP型構造の炭材造粒物。
(3)炭材の単独粒子。
The particles of the sintering raw material behave as any of adhering powder, intermediate particles, and core particles after the granulation treatment. Usually, the boundary particle size between adhering powder and intermediate particles is 0.25 mm to 0.5 mm, and the boundary particle size between intermediate particles and core particles is 1 mm to 2 mm. However, a P-type granulated product composed only of adhered powder can take a certain amount of intermediate particles and become a granulated product. Therefore, when the upper limit diameter of the raw material particles when producing the P-type granulated product is called the P-type upper limit particle size, the P-type upper limit particle size has a width on the upper side of 0.5 mm or more and 1 mm or less.
Carbon material granulated products obtained by granulating powder coke (3 mm or less) and slaked lime (1 mm or less) include the following three types.
(1) A carbon material granulated product having a C-type structure using a carbon material as a core and a mixture of slaked lime and carbon material as an attached powder.
(2) A P-type structured carbonaceous material granule comprising a mixture of a carbonaceous material having a particle size equal to or smaller than the P-type upper limit particle size and slaked lime.
(3) Carbonaceous single particles.

粉コークス(3mm以下)と石灰石(3mm以下)とを造粒することで得られる炭材造粒物は、以下の4種類となる。
(A)炭材を核として、炭材と石灰石との混合物を付着粉とする、C型構造の炭材造粒物。
(B)石灰石を核として、炭材と石灰との混合物を付着粉とする、C型構造の石灰石造粒物。
(C)P型上限粒度以下の粒度の炭材と石灰石の混合物からなるP型構造の炭材造粒物。
(D)粉コークスまたは石灰石の単独粒子。
Carbonaceous granulated products obtained by granulating powder coke (3 mm or less) and limestone (3 mm or less) are the following four types.
(A) A carbon material granulated product having a C-type structure in which a carbon material is used as a core and a mixture of carbon material and limestone is used as an adhering powder.
(B) A limestone granule having a C-type structure using a mixture of a carbonaceous material and lime as an adhering powder with limestone as a core.
(C) A carbonaceous material granule having a P-type structure composed of a mixture of carbonaceous material having a particle size equal to or smaller than the P-type upper limit particle size and limestone.
(D) Single particles of powder coke or limestone.

これらの炭材造粒物をまとめると、P型構造の炭材造粒物とは、P型上限粒度、すなわち、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の炭材、および同様の石灰源を含む炭材造粒物である。
C型構造の炭材造粒物とは、篩分け分級点が1mm以上、2mm以下の篩を用いて得られる篩上の炭材と、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の炭材および石灰源とを含む炭材造粒物である。または、篩分け分級点が1mm以上、2mm以下の篩を用いて得られる篩上の石灰源と、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の炭材および石灰源を含む炭材造粒物である。
When these carbonaceous material granules are put together, the P-type structure carbonaceous material granule is a P-type upper limit particle size, that is, a sieve obtained by using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less. A carbonaceous granulate containing the lower carbonaceous material and a similar lime source.
C-structured carbon material granulated material is a carbon material on a sieve obtained by using a sieve having a sieving classification point of 1 mm or more and 2 mm or less, and a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less. It is a carbonaceous material granulated product containing an undersieved carbonaceous material and a lime source. Or the lime source on the sieve obtained by using a sieve having a sieving classification point of 1 mm or more and 2 mm or less, and the carbon material under the sieve obtained by using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less. And a granulated carbonaceous material containing a lime source.

炭材造粒物8Aは必ずしも炭材と石灰源のみである必要はない。炭材、石灰源以外の焼結用原料を、NOx低減作用を消滅させない範囲で含んでもよい。 The carbon material granule 8A does not necessarily need to be only the carbon material and the lime source. Sintering raw materials other than the carbonaceous material and the lime source may be included within a range in which the NO x reduction action is not eliminated.

次に、炭材造粒物8Aを、炭材造粒物供給装置6Aを用いて、装入シュート11に直接投入する(図3のS3、装入工程)。
同時に、焼結用造粒物8を、サージ槽10からロールフィーダー10Aで切り出して装入シュート11に投入する(図3のS4、装入工程)。
Next, the carbonaceous granulated product 8A is directly charged into the charging chute 11 using the carbonaceous granulated product supply device 6A (S3 in FIG. 3, charging step).
At the same time, the granulated material 8 for sintering is cut out from the surge tank 10 by the roll feeder 10A and charged into the charging chute 11 (S4 in FIG. 3, charging step).

このように、P型構造を含む炭材造粒物8Aを装入シュート11上から直接投入することによって、炭材造粒物8Aの崩壊が防止され、NOx低減効果が充分に発揮される。
さらに、S3とS4は同時に行われるため、焼結用造粒物8と炭材造粒物8Aは装入シュート11上で混合され、パレット台車群12に装入される。炭材造粒物8Aの割合は、焼結用造粒物8に対して外数で3〜5質量%程度の微量であるため、装入シュート11上で十分に焼結用造粒物8と混合できる。
以上が、第1の実施形態に係る焼結鉱製造装置100を用いた焼結鉱製造方法の説明である。
Thus, by charging directly carbonaceous material granules 8A including P-type structure from the top charging chute 11, the collapse of the carbonaceous material granules 8A is prevented, NO x reduction effect is sufficiently exhibited .
Furthermore, since S3 and S4 are performed simultaneously, the granulated material 8 for sintering and the granulated material 8A for charcoal are mixed on the charging chute 11 and charged into the pallet truck group 12. Since the ratio of the carbon material granulated product 8A is a small amount of about 3 to 5% by mass with respect to the sintered granulated product 8, the granulated product 8 for sintering is sufficiently obtained on the charging chute 11. Can be mixed with.
The above is description of the sintered ore manufacturing method using the sintered ore manufacturing apparatus 100 which concerns on 1st Embodiment.

このように、第1の実施形態によれば、造粒強度が不十分なP型の炭材造粒物を含む造粒物を、他の焼結用原料とは別に、装入シュート11に直接投入する。そのため、造粒からパレットへの装入までの間に、炭材造粒物8Aが他の造粒物と接触する機会を極力減らすことができ、接触による崩壊を防ぐことができる。   As described above, according to the first embodiment, the granulated material including the P-type carbon material granulated material having insufficient granulation strength is put into the charging chute 11 separately from the other raw materials for sintering. Direct input. Therefore, the opportunity for the carbonaceous granulated product 8A to come into contact with another granulated product between granulation and charging to the pallet can be reduced as much as possible, and collapse due to contact can be prevented.

次に、第2の実施形態について、図4および図5を参照して説明する。
第2の実施形態は、第1の実施形態において、C型とP型の炭材造粒物を別々に造粒し、別の場所に投入するものである。なお、第2の実施形態において、第1の実施形態と同様の機能を果たす要素については同一の番号を付し、説明を省略する。
Next, a second embodiment will be described with reference to FIG. 4 and FIG.
In the first embodiment, the C-type and P-type carbonaceous material granulated materials are separately granulated in the first embodiment and put in different places. In the second embodiment, elements having the same functions as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

まず、図4を参照して第2の実施形態に係る焼結鉱製造装置の概略構成について説明する。
図4に示すように、焼結鉱製造装置100Aは、篩33、C型炭材造粒ミキサー37、C型炭材供給部6Bをさらに備える。
First, the schematic configuration of the sintered ore manufacturing apparatus according to the second embodiment will be described with reference to FIG.
As shown in FIG. 4, the sintered ore manufacturing apparatus 100A further includes a sieve 33, a C-type carbon material granulation mixer 37, and a C-type carbon material supply unit 6B.

篩33は、炭材貯留部31から供給される炭材を分級する篩である。
C型炭材造粒ミキサー37は、篩33の篩上の炭材と石灰石貯留部39から供給される石灰源を造粒して、C型の炭材造粒物8C(第2の炭材造粒物)を造粒する装置である。
C型炭材供給部6Bは、C型の炭材造粒物8Cをベルトコンベア9に投入するコンベアであり、スリップスティックコンベアが好ましい。
The sieve 33 is a sieve that classifies the carbon material supplied from the carbon material storage unit 31.
The C-type carbon material granulation mixer 37 granulates the carbon material on the sieve of the sieve 33 and the lime source supplied from the limestone storage unit 39 to obtain a C-type carbon material granulated product 8C (second carbon material). It is an apparatus for granulating a granulated product.
The C-type carbon material supply unit 6B is a conveyor that inputs the C-type carbon material granule 8C to the belt conveyor 9, and is preferably a slip stick conveyor.

第2の実施形態では、炭材造粒ミキサー35は、篩33の篩下の炭材と石灰石貯留部39から供給された石灰源を造粒して、P型の炭材造粒物8B(第1の炭材造粒物)を造粒する。
以上が第2の実施形態に係る焼結鉱製造装置100Aの概略構成の説明である。
In the second embodiment, the carbon material granulation mixer 35 granulates the carbon material under the sieve 33 and the lime source supplied from the limestone storage unit 39 to obtain a P-type carbon material granulated product 8B ( The first carbon material granulated product) is granulated.
The above is the description of the schematic configuration of the sintered ore manufacturing apparatus 100A according to the second embodiment.

次に、第2の実施形態に係る焼結鉱製造装置100Aを用いた焼結鉱製造方法について、図4および図5を参照して説明する。   Next, a sintered ore manufacturing method using the sintered ore manufacturing apparatus 100A according to the second embodiment will be described with reference to FIG. 4 and FIG.

まず、焼結原料を組成に基づき分類する(図5のS11)。
焼結原料が炭材以外の場合、原料配合装置50を用いて焼結原料を造粒して焼結用造粒物8を得る(図5のS12)。
First, the sintering raw material is classified based on the composition (S11 in FIG. 5).
When the sintering raw material is other than the carbonaceous material, the sintering raw material is granulated using the raw material blending device 50 to obtain a granulated product 8 for sintering (S12 in FIG. 5).

焼結原料が炭材である場合、炭材貯留部31から篩33に炭材を供給し、分級する(図5のS13、分級工程)。篩分け分級点は0.5mm以上、1mm以下である。
次に、篩33の篩下の炭材と石灰源を造粒してP型の炭材造粒物8Bを造粒する(図5のS14、第1の炭材造粒工程)。
When the sintered material is a carbon material, the carbon material is supplied from the carbon material storage unit 31 to the sieve 33 and classified (S13 in FIG. 5, classification step). The sieving classification point is 0.5 mm or more and 1 mm or less.
Next, the carbon material under the sieve 33 and the lime source are granulated to granulate a P-type carbon material granulated product 8B (S14 in FIG. 5, first carbon material granulating step).

次に、篩33の篩上の炭材と石灰源を造粒してC型の炭材造粒物8Cを造粒する(図5のS15、第2の炭材造粒工程)。この石灰源の上限粒度は、核となる炭材への被覆を効率的に行なうために、0.5mm以上、1mm以下の篩を用いて得られる篩下が好ましく、具体的な粒度は0.25mm以下が最も好ましい。
C型の炭材造粒物8Cは、C型炭材供給部6Bを用いて、ベルトコンベア9を介してサージ槽10の前で焼結用造粒物8に添加する(図5のS16、添加工程)。
Next, the carbonaceous material and the lime source on the sieve 33 are granulated to granulate a C-shaped carbonaceous granulated product 8C (S15 in FIG. 5, second carbonaceous material granulating step). The upper limit particle size of the lime source is preferably sieving obtained by using a sieve of 0.5 mm or more and 1 mm or less in order to efficiently cover the core carbonaceous material. Most preferred is 25 mm or less.
The C-type carbon material granule 8C is added to the granulation material 8 for sintering in front of the surge tank 10 via the belt conveyor 9 using the C-type carbon material supply unit 6B (S16 in FIG. 5). Addition step).

次に、炭材造粒物供給装置6A(図2参照)を用いて、P型の炭材造粒物8Bを装入シュート11に直接投入する(図5のS17)。
同時に、C型炭材供給部6Bが添加された焼結用造粒物8を、ロールフィーダー10Aで切り出して装入シュート11に投入する(図5のS18)。
Next, the P-type carbon material granule 8B is directly charged into the charging chute 11 using the carbon material granule supply apparatus 6A (see FIG. 2) (S17 in FIG. 5).
At the same time, the granulated material for sintering 8 to which the C-type carbonaceous material supply unit 6B has been added is cut out by the roll feeder 10A and put into the charging chute 11 (S18 in FIG. 5).

C型の炭材造粒物8Cは、P型の炭材造粒物8Bよりも崩壊し難いので、焼結用造粒物8に添加してサージ槽10に投入しても、NOx低減効果は充分得られる。よって、第2の実施形態では、C型の炭材造粒物8Cを焼結用造粒物8にサージ槽10の前で添加する。
また、C型の炭材造粒物8Cをサージ槽10の前で添加することにより、P型の炭材造粒物8Bのみが装入シュート11から直接投入される。そのため、炭材造粒物供給装置6Aを小型化、簡素化できる。
C-type carbonaceous material granules 8C, since hardly collapsed than P-type carbonaceous material granules 8B, be charged to a surge tank 10 is added to the granulate 8 for sintering, NO x reduction A sufficient effect is obtained. Therefore, in 2nd Embodiment, C-type carbon material granulated material 8C is added to the granulated material 8 for sintering in front of the surge tank 10.
Further, by adding the C-type carbon material granule 8 </ b> C in front of the surge tank 10, only the P-type carbon material granule 8 </ b> B is directly charged from the charging chute 11. Therefore, the carbonaceous granule supply device 6A can be reduced in size and simplified.

以上が、第2の実施形態に係る焼結鉱製造装置100Aを用いた焼結鉱製造方法の説明である。   The above is the description of the sintered ore manufacturing method using the sintered ore manufacturing apparatus 100A according to the second embodiment.

このように、第2の実施形態では、C型の炭材造粒物8Cをサージ槽10前で焼結用造粒物8に添加する。P型の炭材造粒物8Bは装入シュート11に直接投入する。そのため、炭材造粒物供給装置6Aを小型化、簡素化できる。   As described above, in the second embodiment, the C-shaped carbon material granule 8 </ b> C is added to the granulation material 8 for sintering in front of the surge tank 10. The P-type carbon material granule 8 </ b> B is directly charged into the charging chute 11. Therefore, the carbonaceous granule supply device 6A can be reduced in size and simplified.

以下、実施例に基づき本発明を詳細に説明するが、本発明は実施例に限定されない。
(予備試験)
まず、焼結鉱の製造工程において、炭材造粒物が崩壊に至る外力を受ける可能性が高い場所はどこなのかを、予備試験で調査した。
具体的には、図6に示す、DL型焼結機を模した焼結試験装置200を用いて、炭材造粒物が混合・搬送過程で受ける混合時間を、加速度計を用いて調査した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to an Example.
(Preliminary test)
First, in the production process of sintered ore, a preliminary test was conducted to find out where the carbonaceous granule is likely to be subjected to external force leading to collapse.
Specifically, using a sintering test apparatus 200 simulating a DL-type sintering machine shown in FIG. 6, the mixing time that the carbonaceous material granule undergoes in the mixing / conveying process was investigated using an accelerometer. .

焼結試験装置200の原料配合装置50と原料装入装置60の構成は、焼結鉱製造装置100と概ね同じである。ただし、貯留槽群1から供給された原料の秤量は、ひとつの計量ホッパー5で行なわれる。一方で、風箱群14は5つの箱のみが設けられ、風箱群14の配列方向の両端には、デッドプレート23が設けられる。パレット台車群12は、3台のパレット台車のみが連結されている。両端のパレット台車には漏風蓋25および電気自動車12Aがそれぞれ設けられる。電気自動車12Aは、パレット台車を駆動する装置であり、漏風蓋25も兼ねる。   The configuration of the raw material blending device 50 and the raw material charging device 60 of the sintering test apparatus 200 is substantially the same as that of the sintered ore manufacturing apparatus 100. However, the weighing of the raw material supplied from the storage tank group 1 is performed by one weighing hopper 5. On the other hand, the wind box group 14 is provided with only five boxes, and dead plates 23 are provided at both ends of the wind box group 14 in the arrangement direction. In the pallet truck group 12, only three pallet trucks are connected. The pallet trucks at both ends are each provided with an air leakage cover 25 and an electric vehicle 12A. The electric vehicle 12 </ b> A is a device that drives the pallet truck and also serves as the air leakage cover 25.

焼結試験装置200の動作において、原料の配合は、計量ホッパー5へ使用する原料の銘柄を一種ずつ秤量しながら切り出して行なう。原料の造粒とパレット台車群12への装入は焼結鉱製造装置100と同じである。
焼結時は、パレット台車群12は風箱上で停止し、漏風蓋25または電気自動車12Aがデッドプレート23と接触することにより、風箱とパレット台車群12を密着させ、漏風を防止しつつ焼結を行う点で、焼結鉱製造装置100と異なる。
In the operation of the sintering test apparatus 200, the raw materials are blended by cutting out raw material brands used for the weighing hopper 5 while weighing them one by one. The raw material granulation and charging into the pallet carriage group 12 are the same as those of the sintered ore manufacturing apparatus 100.
At the time of sintering, the pallet truck group 12 stops on the wind box, and the wind leak cover 25 or the electric vehicle 12A comes into contact with the dead plate 23, thereby bringing the wind box and the pallet truck group 12 into close contact with each other while preventing air leakage. It differs from the sintered ore manufacturing apparatus 100 in that sintering is performed.

この焼結試験装置200を用いて、鉄鉱石、炭材、石灰源を含む焼結原料を、原料配合装置50と原料装入装置60を用いて造粒し、パレット台車群12に装入した。
この際、焼結原料に搖動計を投入した。搖動計は、造粒物の混合に必要な加速度(0.2G)以上の加速度を加えると、1カウントされる計測器であり、ここでは歩数計(OMRON社製HJ−005)を用いた。
焼結原料がパレット台車群12に装入された後に、搖動計を回収し、カウント数を算出した。
Using this sintering test apparatus 200, a sintered raw material containing iron ore, carbonaceous material, and lime source was granulated using a raw material blending apparatus 50 and a raw material charging apparatus 60 and charged into the pallet truck group 12. .
At this time, a peristaltic meter was added to the sintering raw material. The peristaltic meter is a measuring instrument that is counted once when an acceleration equal to or higher than the acceleration (0.2 G) necessary for mixing the granulated material is applied. Here, a pedometer (OMRON OMRON HJ-005) was used.
After the sintered raw material was charged into the pallet carriage group 12, the peristalsis was collected and the count number was calculated.

搖動計の投入位置は、次の3か所とした。
ケース1:ドラムミキサー6の入口。
ケース2:ベルトコンベア9。
ケース3:装入シュート11。
The following three locations were used for the peristaltic meter.
Case 1: Drum mixer 6 entrance.
Case 2: Belt conveyor 9.
Case 3: charging chute 11.

ドラムミキサー6内での造粒処理時間が60秒であることから、回収した搖動計のカウント値に基づいて、加速度が作用した累積時間を求めた。その結果、サージ槽10内でのドラムミキサー相当揺動時間が60秒、装入シュート11上でのドラムミキサー相当揺動時間が10秒程度であることがわかった。
よって、ケース1およびケース2は、ケース3と比べて炭材造粒物が崩壊に至る外力を受ける可能性が高いことが分かった。
Since the granulation processing time in the drum mixer 6 is 60 seconds, the accumulated time during which the acceleration was applied was determined based on the collected count value of the perimeter. As a result, it was found that the drum mixer equivalent rocking time in the surge tank 10 was 60 seconds and the drum mixer equivalent rocking time on the charging chute 11 was about 10 seconds.
Therefore, it was found that Case 1 and Case 2 are more likely to receive an external force that causes the carbonaceous material granule to collapse than Case 3.

また、特許文献1、2におけるLCCの後添加の造粒時間は、全造粒時間の1割程度としている。すなわち、ドラムミキサー6においては6秒程度に相当する。これは、ケース3の6割程度である。従って、ケース3の投入位置でも、炭材造粒物を他の造粒物と充分に混合できると推察した。   Further, the post-addition granulation time of LCC in Patent Documents 1 and 2 is about 10% of the total granulation time. That is, in the drum mixer 6, it corresponds to about 6 seconds. This is about 60% of Case 3. Therefore, it was speculated that the carbonaceous granulated product could be sufficiently mixed with other granulated products even at the charging position of case 3.

(焼結実験)
次に、焼結試験装置200を用いて、P型とC型の炭材造粒物を、異なる位置で投入して焼結試験を行い、投入位置とNOx発生量との関係を評価した。具体的な手順は以下の通りである。
まず、炭材造粒物として、表1に示すP型とC型の2種を、造粒して準備した。
(Sintering experiment)
Next, using a sintering test apparatus 200, P-type and C-type carbonaceous material granulates were charged at different positions to perform a sintering test, and the relationship between the charging position and the NO x generation amount was evaluated. . The specific procedure is as follows.
First, two types of P-type and C-type shown in Table 1 were prepared by granulation as a carbonaceous material granulated product.

Figure 2018172760
Figure 2018172760

次に、炭材造粒物、およびそれ以外の焼結原料を、表2に示す比率で用意した。表2における炭材造粒物の比率は外数である。   Next, a carbonaceous granulated product and other sintered raw materials were prepared in the ratios shown in Table 2. The ratio of the carbonaceous granulated material in Table 2 is an outside number.

Figure 2018172760
Figure 2018172760

次に、焼結試験装置200を用いて、表2の鉄鉱石、石灰石、返鉱を集合コンベア4から投入した。
さらに、炭材造粒物を、予備試験のケース1〜ケース3と同じ3通りの位置から投入して焼結を行い、排ガス中のNOx量を赤外線吸収方式連続ガス分析計で測定した。
Next, using the sintering test apparatus 200, the iron ore, limestone, and return ore shown in Table 2 were introduced from the collective conveyor 4.
Further, the carbonaceous material granule was charged from the same three positions as in case 1 to case 3 of the preliminary test and sintered, and the amount of NO x in the exhaust gas was measured with an infrared absorption type continuous gas analyzer.

ケース3では、ベルトフィーダーを装入シュート11上に仮設して、炭材造粒物を投入した。   In Case 3, a belt feeder was temporarily installed on the charging chute 11 and the carbonaceous granulated material was charged.

NOxの測定結果を表3に示す。数値は、P型、C型のそれぞれについて、ケース1のNOx量を基準として、ケース2およびケース3のNOx量をケース1からの低減率として算出した。 The measurement results of NO x are shown in Table 3. Figures, P-type, for each of the C-type, based on the amount of NO x of the case 1, to calculate the amount of NO x of the case 2, and case 3 as reduction rate from the case 1.

Figure 2018172760
Figure 2018172760

P型の炭材造粒物8Bを用いた場合、ケース2、3は、ケース1よりもNOx量が低減した。ケース3は、ケース2よりもNOx低減率が大きかった。
一方、C型の炭材造粒物8Cを用いた場合、ケース2、3はケース1よりもNOx量が低減したが、ケース2とケース3の低減率の差がP型に比較して小さかった。
When using a P-type carbonaceous material granules 8B, case 2 and 3, NO x amount is lower than the case 1. Case 3 had a larger NO x reduction rate than Case 2.
On the other hand, when a C-type carbonaceous material granules 8C, the case 2 is the amount of NO x than the case 1 is reduced, the difference in reduction rate of the case 2 and case 3 as compared to the P-type It was small.

以上の結果から、P型の炭材造粒物8Bは、装入シュート11上に直接投入することによって、NOx量の低減効果が大きくなることがわかった。C型の炭材造粒物8Cは、サージ槽10前の投入でNOx量の低減効果が十分であることもわかった。 From the above results, it was found that the P-type carbon material granule 8B is directly charged on the charging chute 11 to increase the NO x reduction effect. It was also found that the C-type carbonaceous material granule 8C had a sufficient NO x reduction effect when charged before the surge tank 10.

さらに、ケース1〜ケース3の成品歩留を、以下の式(1)から求めた。
成品歩留={成品焼結鉱質量/(成品焼結鉱質量+返鉱質量)}×100…(1)
結果を表4に示す。
Furthermore, the product yield of case 1 to case 3 was obtained from the following equation (1).
Product yield = {product sinter ore mass / (product sinter ore mass + return ore mass)} x 100 (1)
The results are shown in Table 4.

Figure 2018172760
Figure 2018172760

いずれのケースも、成品歩留は同程度であり、炭材造粒物の投入位置が成品歩留に与える影響は小さかった。
この結果から、焼結原料とP型の炭材造粒物との混合は、装入シュート11上での混合で十分であることが確認された。
In all cases, the product yield was about the same, and the impact of the carbonized granule input position on the product yield was small.
From this result, it was confirmed that the mixing on the charging chute 11 was sufficient for mixing the sintered raw material and the P-type carbon material granulated product.

6…ドラムミキサー、6A…炭材造粒物供給装置、6B…C型炭材供給部、9…ベルトコンベア、10…サージ槽、11…装入シュート、12…パレット台車群、13…点火炉、35…炭材造粒ミキサー、37…C型炭材造粒ミキサー、39…石灰石貯留部、50…原料配合装置、60…原料装入装置、70…炭材造粒部、100…焼結鉱製造装置。   DESCRIPTION OF SYMBOLS 6 ... Drum mixer, 6A ... Carbonaceous granule supply apparatus, 6B ... C type carbonaceous material supply part, 9 ... Belt conveyor, 10 ... Surge tank, 11 ... Charging chute, 12 ... Pallet cart group, 13 ... Ignition furnace 35 ... carbon material granulation mixer, 37 ... C-type carbon material granulation mixer, 39 ... limestone storage unit, 50 ... raw material blending device, 60 ... raw material charging device, 70 ... carbon material granulation unit, 100 ... sintering Mining production equipment.

Claims (5)

少なくとも鉄源を含む焼結用原料を造粒して焼結用造粒物を得る、焼結用原料造粒工程と、
篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の炭材、および篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の石灰源を含む炭材造粒物を造粒する炭材造粒工程と、
前記炭材造粒物を装入シュートに直接投入し、同時に前記焼結用造粒物をサージ槽から前記装入シュートに投入することにより、前記炭材造粒物および前記焼結用造粒物を前記装入シュート上で混合してパレット上に装入する装入工程と、
を実施することを特徴とする焼結鉱の製造方法。
A raw material granulation step for sintering, wherein a raw material for sintering containing at least an iron source is granulated to obtain a granulated material for sintering;
Under-sieving carbon material obtained using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less, and a lime source under a sieving obtained using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less A carbonaceous material granulation step for granulating a carbonaceous material granulated product comprising
The charcoal granulated material and the granulated material for sintering can be obtained by directly charging the charcoal material granulated material into the charging chute and simultaneously charging the granulated material for sintering into the charging chute from a surge tank. A charging step of mixing an object on the charging chute and charging the pallet;
The manufacturing method of the sintered ore characterized by implementing.
請求項1に記載の焼結鉱の製造方法であって、
前記炭材造粒工程は、
予め炭材を、篩分け分級点が0.5mm以上、1mm以下の篩で分級する分級工程と、
前記分級工程の篩下と、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の石灰源とを造粒して第1の炭材造粒物を製造する第1の炭材造粒工程を実施することを特徴とする、焼結鉱の製造方法。
It is a manufacturing method of the sintered ore of Claim 1, Comprising:
The carbonaceous material granulation step,
A classification step of classifying the carbonaceous material in advance with a sieve having a classification point of 0.5 mm or more and 1 mm or less;
The first carbonaceous material granule is produced by granulating the sieving in the classification step and the lime source under the sieving obtained using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less. The manufacturing method of a sintered ore characterized by implementing 1 carbonaceous material granulation process.
請求項2に記載の焼結鉱の製造方法であって、
前記分級工程の篩上と、篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の石灰源とを造粒した第2の炭材造粒物を製造する第2の炭材造粒工程と、
前記焼結用造粒物を前記サージ槽に投入する前に、前記第2の炭材造粒物を添加する添加工程と、
を実施することを特徴とする焼結鉱の製造方法。
It is a manufacturing method of the sintered ore according to claim 2,
2nd which manufactures the 2nd carbonaceous material granulated material which granulated on the sieve of the said classification process, and the lime source of the sieving obtained using a sieve with a classification classification point of 0.5 mm or more and 1 mm or less The carbonaceous material granulation process,
Before adding the sintered granulated product to the surge tank, an addition step of adding the second carbonaceous material granulated product,
The manufacturing method of the sintered ore characterized by implementing.
前記炭材造粒物が前記焼結用原料を含むことを特徴とする請求項1から請求項3のいずれか一項に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to any one of claims 1 to 3, wherein the carbonized material granule includes the raw material for sintering. 少なくとも鉄源を含む焼結用原料を造粒して焼結用造粒物を製造する造粒部と、
前記焼結用造粒物を貯留するサージ槽と、
篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の炭材、および篩分け分級点が0.5mm以上、1mm以下の篩を用いて得られる篩下の石灰源を含む炭材造粒物を造粒する炭材造粒部と、
前記焼結用造粒物、および前記炭材造粒物が装入されるパレットと、
前記焼結用造粒物、および前記炭材造粒物を前記パレットに装入する際のガイドとなる装入シュートと、
前記炭材造粒物を前記装入シュートに直接投入する炭材投入部と、
前記焼結用造粒物をサージ槽から前記装入シュートに投入する焼結用造粒物投入部と、
前記パレットに装入された前記焼結用造粒物および前記炭材造粒物を焼結する点火炉と、
を備えることを特徴とする焼結鉱の製造装置。
A granulating part for granulating a sintering raw material containing at least an iron source to produce a granulated material for sintering; and
A surge tank for storing the granulated material for sintering;
Under-sieving carbon material obtained using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less, and a lime source under a sieving obtained using a sieve having a sieving classification point of 0.5 mm or more and 1 mm or less A carbonaceous granulation part for granulating a carbonaceous granulated product containing
A pallet into which the granulated material for sintering and the carbonaceous material granulated material are charged;
A charging chute that serves as a guide when charging the granulated material for sintering and the granulated carbonaceous material into the pallet;
A carbonaceous material input part that directly inputs the carbonized material granule into the charging chute;
A sintered granule charging unit for charging the sintered granulated material from a surge tank into the charging chute; and
An ignition furnace for sintering the granulated material for sintering and the carbonized material granulated material charged in the pallet;
An apparatus for producing sintered ore, comprising:
JP2017072932A 2017-03-31 2017-03-31 Sinter manufacturing method and sinter manufacturing equipment Active JP6772935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072932A JP6772935B2 (en) 2017-03-31 2017-03-31 Sinter manufacturing method and sinter manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072932A JP6772935B2 (en) 2017-03-31 2017-03-31 Sinter manufacturing method and sinter manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2018172760A true JP2018172760A (en) 2018-11-08
JP6772935B2 JP6772935B2 (en) 2020-10-21

Family

ID=64106680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072932A Active JP6772935B2 (en) 2017-03-31 2017-03-31 Sinter manufacturing method and sinter manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6772935B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098403A (en) * 1973-12-31 1975-08-05
JPH05148557A (en) * 1991-11-28 1993-06-15 Kawasaki Steel Corp Production of sintered ore
JPH05239560A (en) * 1992-02-27 1993-09-17 Nisshin Steel Co Ltd Manufacture of sintered ore
JPH0860257A (en) * 1994-08-12 1996-03-05 Kobe Steel Ltd Method for operating iron ore sintering machine
JP2002256348A (en) * 2001-03-06 2002-09-11 Kobe Steel Ltd Method for manufacturing sintered ore
JP2015200007A (en) * 2014-03-31 2015-11-12 新日鐵住金株式会社 Production method of sintered ore
JP2016060937A (en) * 2014-09-17 2016-04-25 新日鐵住金株式会社 Pretreatment method of aggregate for sintering
JP2016104901A (en) * 2014-11-21 2016-06-09 新日鐵住金株式会社 Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098403A (en) * 1973-12-31 1975-08-05
JPH05148557A (en) * 1991-11-28 1993-06-15 Kawasaki Steel Corp Production of sintered ore
JPH05239560A (en) * 1992-02-27 1993-09-17 Nisshin Steel Co Ltd Manufacture of sintered ore
JPH0860257A (en) * 1994-08-12 1996-03-05 Kobe Steel Ltd Method for operating iron ore sintering machine
JP2002256348A (en) * 2001-03-06 2002-09-11 Kobe Steel Ltd Method for manufacturing sintered ore
JP2015200007A (en) * 2014-03-31 2015-11-12 新日鐵住金株式会社 Production method of sintered ore
JP2016060937A (en) * 2014-09-17 2016-04-25 新日鐵住金株式会社 Pretreatment method of aggregate for sintering
JP2016104901A (en) * 2014-11-21 2016-06-09 新日鐵住金株式会社 Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same

Also Published As

Publication number Publication date
JP6772935B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
JP2020501014A (en) Apparatus for producing granulated material, apparatus for producing sintered ore provided with the same, and method for producing sintered ore
JP5194378B2 (en) Method for producing sintered ore
US10683562B2 (en) Reduced iron manufacturing method
JP6421666B2 (en) Method for producing sintered ore
KR102217869B1 (en) Method and device for producing granulates
JP2009052141A (en) Method for reducing electric furnace dust
KR102290001B1 (en) Manufacturing method of sintered ore
JP5051317B1 (en) Method for manufacturing raw materials for sintering
US20010030389A1 (en) Apparatus for producing reduced iron
WO1994005817A1 (en) Method for producing sintered ore
JP2018172760A (en) Manufacturing method of sintered ore and manufacturing device of sintered ore
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
US20200102627A1 (en) Method of operating a sinter plant
JP5821362B2 (en) Method for manufacturing raw materials for sintering
KR101320562B1 (en) Apparatus for charging mixture
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP2019173161A (en) Method for manufacturing sintered ore
JP4630091B2 (en) Pretreatment method of sintering raw material
JP5979114B2 (en) Method for producing sintered ore
JP2018066046A (en) Manufacturing method of sintered ore
KR101703042B1 (en) Raw material process apparatus
JP7180406B2 (en) Method for producing sintered ore
JP7095446B2 (en) Sintered ore manufacturing method
JP2019131847A (en) Manufacturing method of sintered ore and blast furnace operation method
JP7147505B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6772935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151