JP2019173161A - Method for manufacturing sintered ore - Google Patents

Method for manufacturing sintered ore Download PDF

Info

Publication number
JP2019173161A
JP2019173161A JP2019034406A JP2019034406A JP2019173161A JP 2019173161 A JP2019173161 A JP 2019173161A JP 2019034406 A JP2019034406 A JP 2019034406A JP 2019034406 A JP2019034406 A JP 2019034406A JP 2019173161 A JP2019173161 A JP 2019173161A
Authority
JP
Japan
Prior art keywords
raw material
charging
sintered
sintered ore
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019034406A
Other languages
Japanese (ja)
Other versions
JP6874780B2 (en
Inventor
裕起 永山
Yuki Nagayama
裕起 永山
侯寿 森
Kimitoshi Mori
侯寿 森
友司 岩見
Tomoji Iwami
友司 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019173161A publication Critical patent/JP2019173161A/en
Application granted granted Critical
Publication of JP6874780B2 publication Critical patent/JP6874780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for manufacturing sintered ore in which fluctuation of charging density of a charging layer can be made smaller even if the component concentration of a sintering raw material fluctuates during manufacture of sintered ore.SOLUTION: A method for manufacturing sintered ore in which a sintering raw material created by blending at least an iron-containing raw material, a CaO-containing raw material and a coagulation material is pelletized, a pelletized sintering raw material is charged from a raw material charging apparatus of the sintering machine to a pallet carriage to form a charging layer, and the charging layer is sintered by the sintering machine to manufacture sintered ore. The raw material charging apparatus is equipped with a charging gate and a chute. The method has: a measurement process of measuring at least single component concentration out of the iron-containing raw material, the sintering raw material and the pelletized sintering raw material; and an adjustment process of adjusting at least one of an opening level of the charging gate and an inclination angle with respect to a horizontal surface of the chute by using component concentration measured in the measurement process such that the charging density of the charging layer becomes a predetermined charging density.SELECTED DRAWING: Figure 1

Description

本発明は、焼結原料を焼結機のパレット台車に装入することで形成される装入層の状態を調整して焼結鉱を製造できる焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore that can produce a sintered ore by adjusting the state of a charging layer formed by charging a sintering raw material into a pallet carriage of a sintering machine.

高炉製鉄法では、現在、鉄源として、焼結鉱や塊鉄鉱石、ペレットなどを高炉原料に用いている。ここで、焼結鉱は、粒径が10mm以下の鉄鉱石の他に、製鉄所内で発生するダスト、スラッジ、返鉱等などの雑鉄源と、石灰石、生石灰、スラグなどのCaO含有原料と、珪石や蛇紋岩、ドロマイトや精錬ニッケルスラグなどからなるSiO源やMgO源としての副原料と、粉コークスや無煙炭などからなる凝結材である固体燃料(炭材)と含む焼結原料を、ドラムミキサーで水を添加しながら混合・造粒し、焼結した塊成鉱の一種である。 In the blast furnace ironmaking method, sintered ore, massive iron ore, pellets, and the like are currently used as blast furnace raw materials as iron sources. Here, the sintered ore is not only iron ore having a particle size of 10 mm or less, but also miscellaneous iron sources such as dust, sludge and return ore generated in the steel mill, and CaO-containing raw materials such as limestone, quicklime and slag. Sintered raw materials including SiO 2 source and MgO source composed of silica, serpentine, dolomite and refined nickel slag, etc., and solid fuel (carbon material) which is a coagulant composed of powdered coke and anthracite, It is a kind of agglomerated mineral that is mixed, granulated and sintered while adding water with a drum mixer.

焼結原料は、焼結機のパレット台車に装入されて装入層が形成される。装入層の層厚や装入密度は、焼結時の通気性に大きく影響し、焼結鉱の品質、生産性および歩留りを左右する。特に、シュートに磁気ブレーキが設けられた焼結機を用いる場合、焼結原料に含まれるFeOによって焼結原料の装入速度が変化する。このため、装入層の装入状態を予制御するには、磁気ブレーキの磁束密度の調整を行うことが必要になる。   The sintering raw material is charged into a pallet truck of a sintering machine to form a charging layer. The layer thickness and charging density of the charging layer greatly affect the air permeability during sintering, and influence the quality, productivity and yield of the sintered ore. In particular, when using a sintering machine in which a magnetic brake is provided on the chute, the charging speed of the sintering raw material varies depending on FeO contained in the sintering raw material. For this reason, in order to pre-control the charging state of the charging layer, it is necessary to adjust the magnetic flux density of the magnetic brake.

磁気ブレーキの磁束密度を調整する技術として、特許文献1には、磁気シュートの磁力を調整して焼結原料の装入速度を特定の範囲内とし、これにより、通気性を悪化させる着磁性微粉原料を装入層の上層側に偏析装入させて通気性の悪化を最小限とする焼結機の操業方法が開示されている。特許文献2には、スローピングシュート先端に配した磁力内臓ドラム表面の磁束密度を調整し、装入層の上層部に返鉱やミルスケールなどの強磁性物を多く偏在させる焼結原料の装入方法が開示されている。   As a technique for adjusting the magnetic flux density of the magnetic brake, Patent Document 1 discloses a magnetic fine powder that adjusts the magnetic force of the magnetic chute to make the charging speed of the sintered material within a specific range, thereby deteriorating the air permeability. A method of operating a sintering machine is disclosed in which the raw material is segregated and charged on the upper layer side to minimize deterioration in air permeability. In Patent Document 2, the magnetic flux density on the surface of the built-in magnetic drum arranged at the tip of the sloping chute is adjusted, and the charging of the sintered raw material in which a large amount of ferromagnetic materials such as return or mill scale is unevenly distributed in the upper layer of the charging layer A method is disclosed.

特開2016−89268号公報Japanese Patent Laid-Open No. 2006-89268 特開2001−234257号公報JP 2001-234257 A

近年、鉄鉱石の鉄分濃度が低下し、代わりにSiOやAlといった脈石成分の濃度が増加しており、同じパイルから取り出された鉄鉱石であってもその成分濃度が異なる場合もあるほど鉄鉱石の成分濃度が不安定になってきている。また、製鉄所内で発生する各種ダストに関しても、発生量の変動やダスト自体の成分変動が大きく、焼結原料の成分濃度の管理が非常に難しくなっている。特許文献1および特許文献2には、磁気ブレーキの磁力を調整して装入層の装入状態を調整する技術が開示されているが、焼結鉱製造中において焼結原料の成分濃度が変動すると、磁気ブレーキの磁力を調整しても装入層の装入状態を調整できない、といった課題があった。 In recent years, the iron concentration of iron ore has decreased, and the concentration of gangue components such as SiO 2 and Al 2 O 3 has increased instead. Even if iron ores taken from the same pile have different component concentrations The more or less the iron ore component concentration is becoming unstable. In addition, regarding various types of dust generated in the steelworks, fluctuations in the amount of generation and fluctuations in the components of the dust itself are large, making it very difficult to manage the component concentration of the sintering raw material. Patent Documents 1 and 2 disclose a technique for adjusting the charging state of the charging layer by adjusting the magnetic force of the magnetic brake, but the concentration of the components of the sintering raw material varies during the production of the sintered ore. Then, even if it adjusted the magnetic force of the magnetic brake, the subject that the charging state of a charging layer could not be adjusted occurred.

本発明は、このような従来技術の問題点を鑑みてなされたものであり、その目的は、焼結鉱製造中に焼結原料の成分濃度が変動したとしても、装入層の装入密度の変動を小さくできる焼結鉱の製造方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and its purpose is to provide a charging density of the charging layer even if the component concentration of the sintering raw material fluctuates during the production of the sintered ore. An object of the present invention is to provide a method for producing a sintered ore that can reduce the fluctuation of the sinter.

このような課題を解決する本発明の特徴は、以下の通りである。
(1)少なくとも鉄含有原料、CaO含有原料および凝結材が配合された焼結原料を造粒し、造粒された前記焼結原料を焼結機の原料装入装置からパレット台車に装入して装入層を形成させ、前記装入層を焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、
前記原料装入装置は、装入ゲートと、シュートとを備え、前記鉄含有原料、前記焼結原料および前記造粒された焼結原料のうち少なくとも1つの成分濃度を測定する測定工程と、前記測定工程で測定された成分濃度を用いて、前記装入層の装入密度が予め定められた装入密度になるように前記装入ゲートの開度および前記シュートの水平面に対する傾斜角度のうち少なくとも1つを調整する調整工程と、を有する、焼結鉱の製造方法。
(2)前記測定工程では、少なくともCaOの成分濃度を測定する、(1)に記載の焼結鉱の製造方法。
(3)少なくとも鉄含有原料、CaO含有原料および凝結材が配合された焼結原料を造粒し、造粒された前記焼結原料を焼結機の原料装入装置からパレット台車に装入して装入層を形成させ、前記装入層を焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、前記鉄含有原料、前記焼結原料および前記造粒された焼結原料のうち少なくとも1つの成分濃度を測定する測定工程と、前記測定工程で測定された成分濃度を用いて、前記装入層の装入密度が予め定められた装入密度になるように前記装入ゲートの開度、前記シュートの水平面に対する傾斜角度および前記磁気ブレーキの磁力のうち少なくとも1つを調整する調整工程と、を有する、焼結鉱の製造方法。
(4)前記測定工程では、少なくともFeOの成分濃度を測定する、(3)に記載の焼結鉱の製造方法。
(5)前記測定工程で測定されたCaOの成分濃度が高くなるほど、前記調整工程では前記装入ゲートの開度および前記シュートの水平面に対する傾斜角度のうち少なくとも1つを増加させる、(2)に記載の焼結鉱の製造方法。
(6)前記測定工程で測定されたFeOの成分濃度が高くなるほど、前記調整工程では前記装入ゲートの開度を増加させる、前記シュートの水平面に対する傾斜角度を増加させる、および、前記磁気ブレーキの磁力を弱める、のうち少なくとも1つを実施する、(4)に記載の焼結鉱の製造方法。
The features of the present invention that solve such problems are as follows.
(1) Granulate a sintered raw material containing at least an iron-containing raw material, a CaO-containing raw material and a coagulant, and charge the granulated sintered raw material from a raw material charging device of a sintering machine to a pallet truck. Forming a charge layer, sintering the charge layer with a sintering machine to produce a sintered ore,
The raw material charging apparatus includes a charging gate and a chute, and measures a concentration of at least one of the iron-containing raw material, the sintered raw material, and the granulated sintered raw material, Using the component concentration measured in the measurement step, at least one of the opening degree of the charging gate and the inclination angle of the chute with respect to the horizontal plane so that the charging density of the charging layer becomes a predetermined charging density. A method for producing sintered ore, comprising: an adjusting step for adjusting one.
(2) The method for producing a sintered ore according to (1), wherein in the measurement step, at least a CaO component concentration is measured.
(3) Granulate a sintered raw material containing at least an iron-containing raw material, a CaO-containing raw material, and a coagulant, and charge the granulated sintered raw material from a raw material charging device of a sintering machine to a pallet truck. Forming a charge layer and sintering the charge layer with a sintering machine to produce a sintered ore, the iron-containing raw material, the sintered raw material, and the granulation The charging density of the charging layer becomes a predetermined charging density by using a measuring step for measuring the concentration of at least one component of the sintered raw material thus obtained and the concentration of the component measured in the measuring step. And adjusting the at least one of the opening of the charging gate, the inclination angle of the chute with respect to the horizontal plane, and the magnetic force of the magnetic brake.
(4) The method for producing a sintered ore according to (3), wherein at least the component concentration of FeO is measured in the measurement step.
(5) As the component concentration of CaO measured in the measurement step increases, at least one of the opening degree of the charging gate and the inclination angle of the chute with respect to the horizontal plane is increased in the adjustment step. The manufacturing method of the sintered ore as described.
(6) As the FeO component concentration measured in the measurement step increases, the adjustment step increases the opening of the charging gate, increases the inclination angle of the chute with respect to the horizontal plane, and the magnetic brake The method for producing a sintered ore according to (4), wherein at least one of weakening the magnetic force is performed.

本発明の焼結鉱の製造方法の実施することで、焼結鉱製造中に焼結原料の成分濃度が変動したとしても、装入層の装入密度の変動を小さくでき、焼結鉱の生産ベースの低下の抑制が実現できる。   By carrying out the method for producing a sintered ore of the present invention, even if the component concentration of the sintering raw material fluctuates during the production of the sintered ore, the fluctuation in the charging density of the charging layer can be reduced, Reduction of the production base can be realized.

第1の実施形態に係る焼結鉱の製造方法が実施できる焼結鉱製造装置10の一例を示す模式図である。It is a schematic diagram which shows an example of the sintered ore manufacturing apparatus 10 which can implement the manufacturing method of the sintered ore which concerns on 1st Embodiment. 焼結原料装入装置42を示す側面断面模式図である。It is a side surface cross-section schematic diagram which shows the sintering raw material charging device. 第2の実施形態に係る焼結鉱の製造方法で使用される焼結原料装入装置43の側面断面模式図である。It is a side cross-sectional schematic diagram of the sintering raw material charging device 43 used with the manufacturing method of the sintered ore which concerns on 2nd Embodiment. 発明例1におけるCaO濃度と、擬似粒子径と、装入ゲートの開度と、装入厚と、生産ベースの変動を示すグラフである。It is a graph which shows the fluctuation | variation of the CaO density | concentration in the invention example 1, a pseudo particle diameter, the opening degree of a charging gate, charging thickness, and a production base. 比較例1におけるCaO濃度と、擬似粒子径と、装入ゲートの開度と、装入厚と、生産ベースの変動を示すグラフである。It is a graph which shows the fluctuation | variation of the CaO density | concentration in the comparative example 1, a pseudo particle diameter, the opening degree of a charging gate, charging thickness, and a production base. 発明例2におけるFeO濃度と、装入ゲートの開度と、装入層の装入厚と、生産ベースの変動を示すグラフである。It is a graph which shows the fluctuation | variation of the FeO density | concentration in the example 2, the opening degree of a charging gate, the charging thickness of a charging layer, and a production base. 比較例2におけるFeO濃度と、装入ゲートの開度と、装入層の装入厚と、生産ベースの変動を示すグラフである。It is a graph which shows the fluctuation | variation of the FeO density | concentration in the comparative example 2, the opening degree of a charging gate, the charging thickness of a charging layer, and a production base.

以下、発明の実施形態を通じて本発明を説明する。図1は、第1の実施形態に係る焼結鉱の製造方法が実施できる焼結鉱製造装置10の一例を示す模式図である。ヤード11に原料パイルで保管された鉄含有原料12は、搬送コンベア14によって配合槽22に搬送される。鉄含有原料12は、種々の銘柄の鉄鉱石および製鉄所内発生ダストを含む。製鉄所内発生ダストにはCaOが含まれ、その成分濃度は変動する。このため、製鉄所内発生ダストを含む鉄含有原料12のCaOの成分濃度も変動する。   Hereinafter, the present invention will be described through embodiments of the invention. Drawing 1 is a mimetic diagram showing an example of the sintered ore manufacturing device 10 which can carry out the manufacturing method of the sintered ore concerning a 1st embodiment. The iron-containing raw material 12 stored in the yard 11 as a raw material pile is transported to the blending tank 22 by the transport conveyor 14. The iron-containing raw material 12 includes various brands of iron ore and dust generated in the steelworks. The dust generated in the steelworks contains CaO, and its component concentration varies. For this reason, the CaO component concentration of the iron-containing raw material 12 including the dust generated in the ironworks also varies.

原料供給部20は、複数の配合槽22、24、25、26、28を備える。配合槽22には、鉄含有原料12が貯留される。配合槽24には、石灰石や生石灰等を含むCaO含有原料16、配合槽25にはドロマイトや精錬ニッケルスラグ等を含むMgO含有原料17がそれぞれ貯留される。配合槽26には、ロッドミルを用いて粒径1mm以下に破砕された粉コークスや無煙炭を含む凝結材18が貯留される。また、配合槽28には、焼結鉱の篩下となった粒径5mm以下の返鉱(焼結鉱篩下粉)が貯留される。原料供給部20の配合槽22〜28から、各原料が所定量切り出され、これらが配合されて焼結原料となる。焼結原料は、搬送コンベア30によってドラムミキサー36に搬送される。なお、MgO含有原料17は、任意配合原料であって、焼結原料に配合されてもよく、配合されなくてもよい。   The raw material supply unit 20 includes a plurality of blending tanks 22, 24, 25, 26, and 28. The iron-containing raw material 12 is stored in the blending tank 22. The compounding tank 24 stores a CaO-containing raw material 16 containing limestone or quicklime, and the compounding tank 25 stores an MgO-containing raw material 17 containing dolomite, refined nickel slag, or the like. The blending tank 26 stores a coagulant 18 containing powdered coke and anthracite that have been crushed to a particle size of 1 mm or less using a rod mill. Further, the blending tank 28 stores return mineral (sintered ore sieving powder) having a particle size of 5 mm or less that has been sieved under the sintered ore. A predetermined amount of each raw material is cut out from the mixing tanks 22 to 28 of the raw material supply unit 20, and these are mixed to become a sintered raw material. The sintered raw material is transported to the drum mixer 36 by the transport conveyor 30. In addition, the MgO containing raw material 17 is an arbitrary mixing raw material, Comprising: It may be mix | blended with a sintering raw material and does not need to be mix | blended.

配合槽28とドラムミキサー36の間の搬送コンベア30には、赤外線分析計32が設けられている。赤外線分析計32を用いて測定工程が実施される。測定工程では、搬送コンベア30上を搬送される焼結原料に含まれる水分およびCaOの成分濃度を連続測定する。但し、焼結原料の水分濃度は、ほとんど変動しないので、焼結原料の水分濃度を測定せずに過去の実績値を用いてもよい。   An infrared analyzer 32 is provided on the conveyor 30 between the mixing tank 28 and the drum mixer 36. A measurement process is performed using the infrared analyzer 32. In the measurement step, the moisture and CaO component concentrations contained in the sintered raw material conveyed on the conveyor 30 are continuously measured. However, since the moisture concentration of the sintering raw material hardly fluctuates, the past actual value may be used without measuring the moisture concentration of the sintering raw material.

赤外線分析計32は、0.5〜50.0μmの範囲内の波長の赤外線を焼結原料に照射して、焼結原料からの反射光を受光する。焼結原料に含まれるCaOの分子振動は、照射された赤外線の固有の波長成分を吸収するので、これらの成分は反射赤外線に固有の波長成分を付与する。このため、照射赤外線と反射赤外線とを分析することで焼結原料におけるCaOの成分濃度を測定できる。   The infrared analyzer 32 irradiates the sintering raw material with infrared rays having a wavelength in the range of 0.5 to 50.0 μm, and receives reflected light from the sintering raw material. Since the molecular vibration of CaO contained in the sintering raw material absorbs the intrinsic wavelength component of the irradiated infrared ray, these components give the intrinsic wavelength component to the reflected infrared ray. For this reason, the component concentration of CaO in the sintering raw material can be measured by analyzing the irradiated infrared rays and the reflected infrared rays.

赤外線分析計32は、例えば、1分間に128回の頻度で20以上の波長の赤外線を照射でき、焼結原料に反射された反射光を受光できる。このように短時間に赤外線を照射できるので、赤外線分析計32は、搬送コンベア30上を搬送される焼結原料の成分濃度をオンラインで連続測定できる。なお、赤外線分析計32は、焼結原料の成分濃度を測定する分析装置の一例であり、反射光を分光する方式の装置に限らず、透過光を分光する方式の装置を用いてもよい。さらに、赤外線分析計32に代えて、レーザーを測定対象に照射するレーザー分析計、中性子を測定対象に照射する中性子分析計、または、マイクロ波を測定対象に照射するマイクロ波分析計を用いてもよい。本実施形態において、測定工程の測定頻度は、例えば1分間に128回であり、当該128回の成分濃度の平均値を1分間に1回算出した。   For example, the infrared analyzer 32 can irradiate infrared rays having a wavelength of 20 or more at a frequency of 128 times per minute, and can receive reflected light reflected by the sintering material. Thus, since infrared rays can be irradiated in a short time, the infrared analyzer 32 can continuously measure the component concentration of the sintering raw material conveyed on the conveyor 30 on-line. The infrared analyzer 32 is an example of an analyzer that measures the component concentration of the sintering raw material, and is not limited to a device that divides the reflected light, but may use a device that scatters the transmitted light. Further, instead of the infrared analyzer 32, a laser analyzer that irradiates the measurement target with a laser, a neutron analyzer that irradiates the measurement target with neutrons, or a microwave analyzer that irradiates the measurement target with microwaves may be used. Good. In the present embodiment, the measurement frequency of the measurement process is, for example, 128 times per minute, and the average value of the component concentration of 128 times is calculated once per minute.

ドラムミキサー36に搬送された焼結原料は、ドラムミキサー36に投入され、適量の水34が添加されて、例えば、平均粒径3.0〜6.0mmの擬似粒子に造粒される。造粒された焼結原料は、搬送コンベア38によって焼結機40の焼結原料装入装置42に搬送される。なお、ドラムミキサー36は、焼結原料を造粒する造粒装置の一例であり、ドラムミキサー36は複数あってもよく、ドラムミキサー36に代えて、ペレタイザー造粒機を用いてもよい。また、ドラムミキサー36とペレタイザー造粒機の両方を用いてもよく、ドラムミキサー36の上流に高速撹拌機を設置して、造粒前に焼結原料を撹拌してもよい。なお、本実施形態において、平均粒径は算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。以後の説明において、擬似粒子の平均粒径を擬似粒子径と記載する場合がある。   The sintering raw material conveyed to the drum mixer 36 is put into the drum mixer 36, and an appropriate amount of water 34 is added, and granulated into, for example, pseudo particles having an average particle diameter of 3.0 to 6.0 mm. The granulated sintered raw material is conveyed to the sintered raw material charging device 42 of the sintering machine 40 by the conveying conveyor 38. The drum mixer 36 is an example of a granulating apparatus that granulates the sintering raw material, and there may be a plurality of drum mixers 36, and a pelletizer granulator may be used instead of the drum mixer 36. Further, both the drum mixer 36 and the pelletizer granulator may be used, and a high-speed stirrer may be installed upstream of the drum mixer 36 to stir the sintered raw material before granulation. In this embodiment, the average particle diameter is an arithmetic average particle diameter, and Σ (Vi × di) (where Vi is the abundance ratio of particles in the i-th particle size range, and di is the i-th particle diameter range) The particle size is defined by the following formula: In the following description, the average particle size of the pseudo particles may be described as a pseudo particle size.

焼結機40は、例えば、下方吸引式のドワイトロイド焼結機である。焼結機40は、焼結原料装入装置42と、無端移動式のパレット台車44と、点火炉46と、気体燃料供給装置47と、ウインドボックス48とを有する。   The sintering machine 40 is, for example, a downward suction type dwyroid sintering machine. The sintering machine 40 includes a sintering raw material charging device 42, an endless moving pallet truck 44, an ignition furnace 46, a gaseous fuel supply device 47, and a wind box 48.

図2は、焼結原料装入装置42を示す側面断面模式図である。焼結原料装入装置42は、給鉱ホッパー82と、ドラムフィーダー84と、装入ゲート86と、シュート88とを有する。焼結原料装入装置42に搬送された造粒された焼結原料は、給鉱ホッパー82に投入される。給鉱ホッパー82内の焼結原料は、ドラムフィーダー84によって切り出され、装入ゲート86を通り、シュート88上を矢印90方向に滑り落ちてパレット台車44に装入される。パレット台車44に装入された焼結原料によって焼結原料の装入層が形成される。なお、矢印92は、パレット台車44の進行方向を示す。   FIG. 2 is a schematic side sectional view showing the sintering raw material charging device 42. The sintered raw material charging device 42 includes a feed hopper 82, a drum feeder 84, a charging gate 86, and a chute 88. The granulated sintered raw material conveyed to the sintering raw material charging device 42 is charged into the feed hopper 82. The sintered raw material in the feed hopper 82 is cut out by the drum feeder 84, passes through the charging gate 86, slides down on the chute 88 in the direction of arrow 90, and is loaded into the pallet truck 44. The sintered material charged in the pallet carriage 44 forms a charged layer of the sintered material. An arrow 92 indicates the traveling direction of the pallet carriage 44.

装入ゲート86は、焼結機40の幅方向に沿って複数設けられた板状の部材である。装入ゲート86のそれぞれには、その開度を調整する不図示の開度調整装置が設けられている。装入ゲート86は、当該開度調整装置により装入ゲート86の開度が調整され、これにより、パレット台車44に装入される焼結原料の装入速度および装入状態が調整される。   The charging gate 86 is a plate-like member provided in plural along the width direction of the sintering machine 40. Each charging gate 86 is provided with an opening adjusting device (not shown) for adjusting the opening. In the charging gate 86, the opening degree of the charging gate 86 is adjusted by the opening adjusting device, whereby the charging speed and charging state of the sintered raw material charged in the pallet carriage 44 are adjusted.

シュート88は、焼結機40の幅方向に延在し、水平面に対して所定の傾斜角度αで傾斜した板状の部材である。シュート88には、その傾斜角度αを調整する不図示の角度調整装置が設けられている。シュート88は、当該角度調整装置によりシュート88の傾斜角度αが調整され、これにより、パレット台車44に装入される焼結原料の装入速度および装入状態が調整される。   The chute 88 is a plate-like member that extends in the width direction of the sintering machine 40 and is inclined at a predetermined inclination angle α with respect to the horizontal plane. The chute 88 is provided with an angle adjusting device (not shown) that adjusts the inclination angle α. In the chute 88, the inclination angle α of the chute 88 is adjusted by the angle adjusting device, whereby the charging speed and charging state of the sintered raw material charged in the pallet carriage 44 are adjusted.

再び、図1を参照し、装入層は点火炉46で点火される。ウインドボックス48を通じて空気を吸引することで、装入層は、上方に設けられた気体燃料供給装置47から供給される気体燃料および酸素を装入層に取り込み、装入層内で気体燃料と凝結材18とを燃焼させつつ装入層内の燃焼・溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて焼結ケーキが形成される。本実施形態において気体燃料は、高炉ガス、コークス炉ガス、高炉・コークス炉混合ガス、転炉ガス、都市ガス、天然ガス、メタンガス、エタンガス、プロパンガス、シェールガスおよびそれらの混合ガスのうちから選ばれるいずれかの可燃性ガスである。なお、図1に示した例では、気体燃料供給装置47を有する焼結機40の例を示したが、焼結機40は気体燃料供給装置47を有していなくてもよい。   Referring again to FIG. 1, the charging layer is ignited in the ignition furnace 46. By sucking air through the wind box 48, the charging layer takes in the gaseous fuel and oxygen supplied from the gaseous fuel supply device 47 provided above into the charging layer, and condenses with the gaseous fuel in the charging layer. While burning the material 18, the combustion / melting zone in the charging layer is moved below the charging layer. Thereby, the charging layer is sintered to form a sintered cake. In this embodiment, the gaseous fuel is selected from blast furnace gas, coke oven gas, blast furnace / coke oven mixed gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas, shale gas, and mixed gas thereof. Any flammable gas. In the example shown in FIG. 1, the example of the sintering machine 40 having the gaseous fuel supply device 47 is shown, but the sintering machine 40 may not have the gaseous fuel supply device 47.

焼結ケーキは、破砕機50によって破砕され焼結鉱にされる。破砕機50で破砕された焼結鉱は、冷却機60によって冷却される。冷却機60によって冷却された焼結鉱は、複数の篩を有する篩分け装置70によって篩分けされ、粒径5mm超の成品焼結鉱72と、粒径5mm以下の返鉱74とに篩分けされる。   The sintered cake is crushed by the crusher 50 into a sintered ore. The sintered ore crushed by the crusher 50 is cooled by the cooler 60. The sintered ore cooled by the cooler 60 is sieved by a sieving device 70 having a plurality of sieves, and is sieved into a product sintered ore 72 having a particle size of more than 5 mm and a return ore 74 having a particle size of 5 mm or less. Is done.

成品焼結鉱72は、搬送コンベア76によって高炉80に搬送され、高炉原料として高炉80に装入される。一方、返鉱74は、搬送コンベア78によって原料供給部20の配合槽28に搬送される。なお、成品焼結鉱72は、破砕機50によって破砕された焼結鉱が冷却され、篩分けされたものであるので、成品焼結鉱72と破砕機50によって破砕された焼結鉱とは同じ成分濃度の焼結鉱である。また、本実施形態において、成品焼結鉱72の粒径および返鉱74の粒径は、篩によって篩分けられる粒径を意味し、例えば、粒径5mm超とは、目開き5mmの篩を用いて篩上に篩分けされる粒径であり、粒径5mm以下とは、目開き5mmの篩を用いて篩下に篩分けされる粒径である。さらに、成品焼結鉱72および返鉱74の粒径の各値は、あくまで一例であり、この値に限定するものではない。   The sintered product ore 72 is transported to the blast furnace 80 by the transport conveyor 76 and charged into the blast furnace 80 as a blast furnace raw material. On the other hand, the return ore 74 is transported to the blending tank 28 of the raw material supply unit 20 by the transport conveyor 78. In addition, since the sintered ore 72 crushed by the crusher 50 is cooled and sieved, the product sintered ore 72 is the product ore 72 and the sintered ore crushed by the crusher 50. Sinter with the same component concentration. In this embodiment, the particle size of the sintered product ore 72 and the particle size of the return ore 74 mean the particle size that is sieved by a sieve. For example, the particle size of more than 5 mm means a sieve having an opening of 5 mm. The particle size of 5 mm or less is a particle size that is sieved under a sieve using a sieve having an opening of 5 mm. Furthermore, each value of the particle diameter of the product sintered ore 72 and the return ore 74 is an example to the last, and is not limited to this value.

発明者らは、焼結鉱製造装置10を用いた焼結鉱の製造において、焼結原料のCaOの成分濃度が高くなると焼結鉱の生産ベースが低下する傾向があることを発見した。ここで、焼結鉱の生産ベースとは、焼結鉱の1時間あたりの生産量(t/h)であり、この生産ベースが多いほど焼結鉱製造の操業状態が良好であることを示す。焼結原料のCaOの成分濃度が高くなると焼結鉱の生産ベースが低下する機構を究明するため、焼結工程の前工程である造粒工程を含めて焼結原料の挙動を観察したところ、焼結原料のCaOの成分濃度が高いほど造粒工程で造粒される疑似粒子の径が大きくなって装入層の装入密度が低下し、焼結鉱の生産ベースが低下することをつきとめた。このことから、CaOの成分濃度が高くなった場合には焼結機への焼結原料の1時間あたりの切り出し体積(m/h)を増加させて装入層の装入密度の変動を抑制し、これにより、焼結鉱の生産ベースの低下を抑制することに着想した。 The inventors have discovered that in the production of sintered ore using the sintered ore production apparatus 10, the production base of the sintered ore tends to decrease as the CaO component concentration of the sintering raw material increases. Here, the production base of sintered ore is the production amount (t / h) of sintered ore per hour, and the more this production base, the better the operating condition of the production of sintered ore. . In order to investigate the mechanism by which the production base of sintered ore declines when the CaO component concentration of the sintering raw material increases, the behavior of the sintering raw material including the granulation step, which is the previous step of the sintering step, was observed. It has been found that the higher the CaO component concentration of the sintering raw material, the larger the diameter of the pseudo particles granulated in the granulation process, the lower the charging density of the charging layer, and the lower the production base of sintered ore. It was. From this, when the CaO component concentration becomes high, the cut volume per hour (m 3 / h) of the sintering raw material to the sintering machine is increased to change the charging density of the charging layer. The idea was to suppress, and thereby suppress the decline in the production base of sintered ore.

このため、第1の実施形態に係る焼結鉱の製造方法では、さらに、測定工程で連続測定されたCaOの成分濃度を用いて、装入層の装入状態が予め定められた状態になるように装入ゲート86の開度およびシュート88の水平面に対する傾斜角度のうち少なくとも1つを調整する調整工程が実施される。本実施形態において、測定工程で連続測定されたCaOの成分濃度と、予め設定されているドラムミキサー36の造粒条件とから擬似粒子の平均粒径と装入層の装入密度とを推測し、装入層の装入密度が予め定められた装入密度になるように調整工程が実施される。このように、装入層の装入密度が予め定められた装入密度になるように調整することで装入層の装入密度の変動は小さくなる。   For this reason, in the manufacturing method of the sintered ore which concerns on 1st Embodiment, the charging state of a charging layer will be in the state defined beforehand further using the component density | concentration of CaO continuously measured by the measurement process. As described above, an adjustment step is performed to adjust at least one of the opening degree of the charging gate 86 and the inclination angle of the chute 88 with respect to the horizontal plane. In the present embodiment, the average particle diameter of the pseudo particles and the charging density of the charging layer are estimated from the CaO component concentration continuously measured in the measurement process and the preset granulation conditions of the drum mixer 36. The adjustment step is performed so that the charging density of the charging layer becomes a predetermined charging density. Thus, the fluctuation of the charging density of the charging layer is reduced by adjusting the charging density of the charging layer to be a predetermined charging density.

例えば、焼結原料のCaO濃度が基準となるCaO濃度より高い場合には焼結原料の造粒性が向上するので平均粒径の大きな擬似粒子が造粒される。平均粒径の大きな擬似粒子によって形成される装入層は、平均粒径の小さな擬似粒子によって形成される装入層よりも粒子間の空隙が大きくなるので装入層の通気性は向上するものの装入密度は低下する。   For example, when the CaO concentration of the sintering raw material is higher than the reference CaO concentration, the granulation property of the sintering raw material is improved, so that pseudo particles having a large average particle diameter are granulated. The charge layer formed by pseudo particles having a large average particle diameter has a larger gap between the particles than the charge layer formed by pseudo particles having a small average particle diameter, so that the air permeability of the charge layer is improved. The charging density decreases.

このように、焼結原料のCaO濃度が高くなると装入層の装入密度が低下して焼結鉱の生産ベースが低下する。このため、焼結原料のCaO濃度が基準となるCaO濃度より高くなった場合には、装入ゲート86の開度およびシュート88の傾斜角度のうち少なくとも1つを増加させ、焼結原料の装入速度を速めて装入層の装入密度を高める。これにより、装入層の装入密度の低下が抑制され、焼結鉱の生産ベースの低下が抑制される。   Thus, when the CaO concentration of the sintering raw material increases, the charging density of the charging layer decreases and the production base of the sintered ore decreases. For this reason, when the CaO concentration of the sintering raw material becomes higher than the reference CaO concentration, at least one of the opening degree of the charging gate 86 and the inclination angle of the chute 88 is increased, and the sintering raw material is charged. Increase the charging speed by increasing the charging speed. Thereby, the fall of the charging density of a charging layer is suppressed, and the fall of the production base of a sintered ore is suppressed.

装入ゲート86の開度およびシュート88の傾斜角度の調整は、基準となる焼結原料のCaO濃度と、測定工程で測定された焼結原料のCaO濃度に基づいて実施される。基準となるCaO濃度は、基準となる装入ゲート86の開度およびシュート88の傾斜角度で目標とする装入密度の装入層が形成される擬似粒子の平均粒径を求め、当該平均粒径の擬似粒子が造粒される焼結原料のCaO濃度から定めてよい。   Adjustment of the opening degree of the charging gate 86 and the inclination angle of the chute 88 is performed based on the CaO concentration of the sintering raw material serving as a reference and the CaO concentration of the sintering raw material measured in the measurement process. The reference CaO concentration is obtained by calculating the average particle diameter of the pseudo particles on which the charging layer having the target charging density is formed based on the opening of the charging gate 86 and the inclination angle of the chute 88. You may determine from the CaO density | concentration of the sintering raw material by which the pseudo particle of a diameter is granulated.

一方、測定工程で測定された焼結原料のCaO濃度が基準となる焼結原料のCaO濃度よりも低い場合には焼結原料の造粒性が低下するので平均粒径の小さな擬似粒子が造粒される。平均粒径の小さな擬似粒子によって形成される装入層は、平均粒径の大きな擬似粒子によって形成される装入層よりも粒子間の空隙が小さくなるので装入層の通気性は低下し、装入密度は向上する。   On the other hand, when the CaO concentration of the sintered raw material measured in the measurement process is lower than the CaO concentration of the sintering raw material as a reference, the granulation property of the sintered raw material is lowered, so that pseudo particles having a small average particle diameter are formed. Grained. The charge layer formed by the pseudo particles having a small average particle diameter has a smaller gap between the particles than the charge layer formed by the pseudo particles having a large average particle diameter, so the air permeability of the charge layer is reduced. The charging density is improved.

このように、焼結原料のCaO濃度が低くなると装入層の装入密度が向上して装入層の通気性が低下する。このため、焼結原料のCaO濃度が基準となるCaO濃度より低くなった場合には、装入ゲート86の開度およびシュート88の傾斜角度のうち少なくとも1つを小さくし、焼結原料の装入速度を遅くして装入層の装入密度を低くする。これにより、装入層の通気性の悪化が抑制され、焼結鉱の生産ベースの低下を抑制できる。   Thus, when the CaO concentration of the sintered raw material is lowered, the charging density of the charging layer is improved and the air permeability of the charging layer is lowered. For this reason, when the CaO concentration of the sintering raw material is lower than the reference CaO concentration, at least one of the opening degree of the charging gate 86 and the inclination angle of the chute 88 is reduced, and the sintering raw material is charged. Decrease the charging speed to lower the charging density of the charging layer. Thereby, the deterioration of the air permeability of the charging layer is suppressed, and the decrease in the production base of the sintered ore can be suppressed.

以上、説明したように第1の実施形態に係る焼結鉱の製造方法では、焼結原料の造粒性に影響を及ぼすCaOの成分濃度を連続測定し、当該成分濃度から擬似粒子の平均粒径と装入層の装入密度とを推測し、装入層の装入密度が予め定められた装入密度になるように調整工程が実施される。これにより、装入層の装入密度の変動は小さくなり、焼結鉱の生産ベースの低下が抑制される。   As described above, in the method for producing sintered ore according to the first embodiment, the CaO component concentration affecting the granulation property of the sintered raw material is continuously measured, and the average particle size of the pseudo particles is determined from the component concentration. The adjustment step is performed so that the diameter and the charging density of the charging layer are estimated and the charging density of the charging layer becomes a predetermined charging density. Thereby, the fluctuation | variation of the charging density of a charging layer becomes small, and the fall of the production base of a sintered ore is suppressed.

装入層の装入密度の変動が大きくなると、焼結機の機長方向の通気性の偏差が生じ、焼結原料の焼結完了位置が変動する。この焼結完了位置の変動により焼結鉱の歩留が低下する。また、パレット台車44の進行速度を変更して、焼結完了位置を調整する場合には生産ベースが低下する。このように、装入層の装入密度の変動が大きくなることは、焼結鉱の生産ベースの低下につながる。   When the variation of the charging density of the charging layer becomes large, a deviation in air permeability in the length direction of the sintering machine occurs, and the sintering completion position of the sintering raw material varies. The yield of sintered ore decreases due to the fluctuation of the sintering completion position. Further, when the traveling speed of the pallet carriage 44 is changed to adjust the sintering completion position, the production base is lowered. Thus, the increase in the charging density of the charging layer leads to a decrease in the production base of the sintered ore.

なお、図1に示した例において、赤外線分析計32を搬送コンベア30に設けて、連続測定工程を実施する例を示したがこれに限られない。例えば、赤外線分析計32を搬送コンベア14に設けて測定工程を実施してもよく、赤外線分析計32を配合槽22と配合槽24との間の搬送コンベア30に設けて測定工程を実施してもよい。この場合に、測定工程では、配合槽22に搬送される鉄含有原料12のCaOの成分濃度を連続測定する。   In addition, in the example shown in FIG. 1, although the infrared analyzer 32 was provided in the conveyance conveyor 30 and the example which implements a continuous measurement process was shown, it is not restricted to this. For example, the infrared analyzer 32 may be provided on the conveyor 14 to perform the measurement process, or the infrared analyzer 32 may be provided on the conveyor 30 between the mixing tank 22 and the mixing tank 24 to perform the measurement process. Also good. In this case, in the measurement step, the CaO component concentration of the iron-containing raw material 12 conveyed to the blending tank 22 is continuously measured.

焼結原料におけるCaOの成分濃度が変動する要因は、製鉄所内発生ダストに含まれるCaOの成分濃度の変動による影響が大きい。予め、原料供給部20から配合される各原料のCaOの成分濃度を測定し、原料供給部20から配合される各原料の質量と各原料に含まれるCaOの質量を把握しておけば、鉄含有原料12のCaOの成分濃度と、原料供給部20から配合される各原料の質量と、配合される各原料に含まれるCaOの質量とから焼結原料のCaOの成分濃度を算出できる。   The factor that causes the CaO component concentration to fluctuate in the sintered raw material is greatly influenced by the variation in the CaO component concentration contained in the dust generated in the steelworks. If the component concentration of CaO of each raw material blended from the raw material supply unit 20 is measured in advance and the mass of each raw material blended from the raw material supply unit 20 and the mass of CaO contained in each raw material are known, iron The CaO component concentration of the sintering raw material can be calculated from the CaO component concentration of the containing raw material 12, the mass of each raw material blended from the raw material supply unit 20, and the mass of CaO contained in each blended raw material.

また、図1に示した例において、赤外線分析計32を搬送コンベア30に設けて、測定工程を実施する例を示したがこれに限られない。例えば、赤外線分析計32を搬送コンベア38に設け、造粒された焼結原料のCaOの成分濃度を連続測定してもよい。   Moreover, in the example shown in FIG. 1, although the infrared analyzer 32 was provided in the conveyance conveyor 30 and the example which implements a measurement process was shown, it is not restricted to this. For example, the infrared analyzer 32 may be provided on the transport conveyor 38, and the CaO component concentration of the granulated sintered raw material may be continuously measured.

次に、第2の実施形態に係る焼結鉱の製造方法について説明する。第2の実施形態に係る焼結鉱の製造方法は、測定工程でFeOの成分濃度を連続測定する点と、調整工程で装入ゲートの開度、シュートの傾斜角度および磁気ブレーキの磁力のうち少なくとも1つを調整する点において第1の実施形態に係る焼結鉱の製造方法と異なる。   Next, the manufacturing method of the sintered ore which concerns on 2nd Embodiment is demonstrated. The sintered ore manufacturing method according to the second embodiment includes a point in which the FeO component concentration is continuously measured in the measurement step, and the charging gate opening, the chute inclination angle, and the magnetic brake magnetic force in the adjustment step. It differs from the method for producing sintered ore according to the first embodiment in that at least one is adjusted.

図3は、第2の実施形態に係る焼結鉱の製造方法で使用される焼結原料装入装置43の側面断面模式図である。図3に示した焼結原料装入装置43において、図2に示した焼結原料装入装置42と同じ構成には同じ参照番号を付して重複する説明を省略する。   FIG. 3 is a schematic side cross-sectional view of a sintering raw material charging device 43 used in the method for producing a sintered ore according to the second embodiment. In the sintering raw material charging apparatus 43 shown in FIG. 3, the same components as those in the sintering raw material charging apparatus 42 shown in FIG.

第2の実施形態に係る焼結鉱の製造方法では、図2に示した焼結原料装入装置42に代えて、図3に示す焼結原料装入装置43を用いる。焼結原料装入装置43は、給鉱ホッパー82と、ドラムフィーダー84と、装入ゲート86と、シュート88と、磁気ブレーキ94とを有する。磁気ブレーキ94は、位置調整装置96と、磁石98とを有する。磁石98の磁力は、シュート88の表面を滑り落ちる焼結原料の着磁性原料(FeO)に作用して、シュート88上を滑り落ちる焼結原料の装入速度を低下させる。   In the method for producing a sintered ore according to the second embodiment, a sintered raw material charging device 43 shown in FIG. 3 is used instead of the sintered raw material charging device 42 shown in FIG. The sintered raw material charging device 43 includes a feed hopper 82, a drum feeder 84, a charging gate 86, a chute 88, and a magnetic brake 94. The magnetic brake 94 includes a position adjusting device 96 and a magnet 98. The magnetic force of the magnet 98 acts on the magnetized raw material (FeO) of the sintered raw material that slides down the surface of the chute 88 and reduces the charging speed of the sintered raw material that slides down on the chute 88.

位置調整装置96は、磁石98のシュート88からの位置を調整する。位置調整装置96により磁石98とシュート88との距離が離れると、シュート88上を滑り落ちる焼結原料に作用する磁力は小さくなるので焼結原料の装入速度は速くなる。一方、位置調整装置96により磁石98とシュート88との距離が近くなると、シュート88上を滑り落ちる焼結原料に作用する磁力は大きくなるので焼結原料の装入速度は遅くなる。このように、磁気ブレーキ94の磁力は、位置調整装置96の位置よって調整でき、これにより、焼結原料の装入速度が調整される。   The position adjusting device 96 adjusts the position of the magnet 98 from the chute 88. When the distance between the magnet 98 and the chute 88 is increased by the position adjusting device 96, the magnetic force acting on the sintered raw material sliding down on the chute 88 is reduced, so that the charging speed of the sintered raw material is increased. On the other hand, when the distance between the magnet 98 and the chute 88 is reduced by the position adjusting device 96, the magnetic force acting on the sintered raw material sliding down on the chute 88 is increased, so that the charging speed of the sintered raw material is reduced. Thus, the magnetic force of the magnetic brake 94 can be adjusted by the position of the position adjusting device 96, thereby adjusting the charging speed of the sintering raw material.

第2の実施形態に係る焼結鉱の製造方法においても、赤外線分析計32を用いた測定工程が実施される。測定工程では、搬送コンベア30上を搬送される焼結原料に含まれるFeOの成分濃度を連続測定する。そして、測定工程で連続測定されたFeOの成分濃度を用いて、磁気ブレーキ94の磁力を調整する調整工程が実施される。本実施形態において、調整工程は、測定工程で連続測定されたFeOの成分濃度と、現在の磁気ブレーキ94の位置とから装入層の装入密度を推測し、装入層の装入密度が予め定められた密度になるように調整工程が実施される。このように、装入層の装入密度が予め定められた密度になるように調整することで装入層の装入密度の変動は小さくなる。   Also in the method for manufacturing a sintered ore according to the second embodiment, a measurement process using the infrared analyzer 32 is performed. In the measurement process, the component concentration of FeO contained in the sintered raw material conveyed on the conveyor 30 is continuously measured. And the adjustment process which adjusts the magnetic force of the magnetic brake 94 using the component density | concentration of FeO continuously measured by the measurement process is implemented. In the present embodiment, the adjusting step estimates the charging density of the charging layer from the FeO component concentration continuously measured in the measuring process and the current position of the magnetic brake 94, and the charging density of the charging layer is An adjustment process is implemented so that it may become a predetermined density. Thus, the fluctuation of the charging density of the charging layer is reduced by adjusting the charging density of the charging layer to be a predetermined density.

例えば、焼結原料のFeO濃度が基準となるFeO濃度より高い場合には焼結原料に作用する磁気ブレーキ94の磁力が大きくなるので、焼結原料の装入速度が遅くなって装入密度が低下する。このように、焼結原料のFeO濃度が高くなると装入層の装入密度が低下して焼結鉱の生産ベースが低下する。   For example, when the FeO concentration of the sintering raw material is higher than the reference FeO concentration, the magnetic force of the magnetic brake 94 acting on the sintering raw material increases, so the charging speed of the sintering raw material becomes slow and the charging density becomes low. descend. Thus, when the FeO concentration of the sintering raw material increases, the charging density of the charging layer decreases and the production base of the sintered ore decreases.

このため、焼結原料のFeO濃度が基準となるFeO濃度より高い場合には、磁気ブレーキ94の磁力を弱めて、装入速度を速めて装入密度を高める。これにより、装入層の装入密度低下が抑制され、焼結鉱の生産ベースの低下が抑制される。   For this reason, when the FeO concentration of the sintering raw material is higher than the reference FeO concentration, the magnetic force of the magnetic brake 94 is weakened to increase the charging speed and increase the charging density. Thereby, the fall of the charging density of a charging layer is suppressed, and the fall of the production base of a sintered ore is suppressed.

磁気ブレーキ94の磁力の調整は、基準となる焼結原料のFeO濃度と、測定工程で測定された焼結原料のFeO濃度とに基づいて実施される。基準となるFeO濃度は、基準となる磁気ブレーキ94の磁力で目標とする装入密度の装入層が形成される装入速度を求め、当該装入速度で装入される焼結原料のFeO濃度から定めてよい。   The magnetic force of the magnetic brake 94 is adjusted based on the reference FeO concentration of the sintering raw material and the FeO concentration of the sintering raw material measured in the measurement process. The reference FeO concentration is determined by determining the charging speed at which a charging layer having a target charging density is formed by the magnetic force of the magnetic brake 94 as a reference, and FeO of the sintered raw material charged at the charging speed. It may be determined from the concentration.

一方、測定工程で測定された焼結原料のFeO濃度が基準となる焼結原料のFeO濃度よりも低い場合には焼結原料に作用する磁気ブレーキ94の磁力が小さくなる。磁気ブレーキ94の磁力が小さくなると焼結原料の装入速度が速くなって装入層の装入密度が高くなり、装入層の通気性が低下する。   On the other hand, when the FeO concentration of the sintering raw material measured in the measurement process is lower than the reference FeO concentration of the sintering raw material, the magnetic force of the magnetic brake 94 acting on the sintering raw material becomes small. When the magnetic force of the magnetic brake 94 is reduced, the charging speed of the sintered raw material is increased, the charging density of the charging layer is increased, and the air permeability of the charging layer is lowered.

このように、焼結原料のFeO濃度が低くなると装入層の装入密度が向上して装入層の通気性が低下する。このため、焼結原料のFeO濃度が基準となるFeO濃度より低くなった場合には、磁気ブレーキ94の磁力を増加させ、装入速度を遅くして装入層の装入密度を低くする。これにより、装入層の通気性の悪化が抑制され、焼結鉱の生産ベースの低下を抑制できる。   As described above, when the FeO concentration of the sintered raw material is lowered, the charging density of the charging layer is improved and the air permeability of the charging layer is lowered. For this reason, when the FeO concentration of the sintering raw material is lower than the reference FeO concentration, the magnetic force of the magnetic brake 94 is increased, the charging speed is decreased, and the charging density of the charging layer is lowered. Thereby, the deterioration of the air permeability of the charging layer is suppressed, and the decrease in the production base of the sintered ore can be suppressed.

以上、説明したように第2の実施形態に係る焼結鉱の製造方法では、焼結原料のFeOの成分濃度を連続測定し、当該成分濃度から装入層の装入密度を推測し、装入層の装入密度が予め定められた装入密度になるように調整工程が実施される。これにより、装入層の装入密度の変動は小さくなり、焼結鉱の生産ベースの低下が抑制される。   As described above, in the method for producing a sintered ore according to the second embodiment, the FeO component concentration of the sintering raw material is continuously measured, the charging density of the charging layer is estimated from the component concentration, The adjustment process is performed so that the charging density of the layer becomes a predetermined charging density. Thereby, the fluctuation | variation of the charging density of a charging layer becomes small, and the fall of the production base of a sintered ore is suppressed.

なお、第2の実施形態では、焼結原料の装入密度が予め定められた装入密度になるように、磁気ブレーキ94の磁力を調整する例を示したがこれに限られない。第1の実施形態で説明したように、装入ゲート86の開度を増加させたりシュート88の傾斜角度を増加させたりすることで装入層の装入密度を高めることができ、装入ゲート86の開度を小さくしたりシュート88の水平面に対する傾斜角度を小さくすることで装入層の装入密度を下げることができる。このため、磁気ブレーキ94の磁力の調整に代えて、また、磁気ブレーキ94の磁力の調整とともに、装入ゲート86の開度およびシュート88の水平面に対する傾斜角度のうち少なくとも1つを調整してもよい。例えば、FeO濃度が基準となるFeO濃度より高い場合に、磁気ブレーキ94の磁力を弱めることに代えて、または、磁気ブレーキ94の磁力を弱めるとともに、装入ゲート86の開度を増加させたり、シュート88の傾斜角度を増加させてもよい。これにより、焼結原料の装入速度が調整され、装入層の装入密度の変動を小さくできる。また、第2の実施形態における測定工程で焼結原料のCaO濃度をさらに測定し、調整工程でFeO濃度およびCaO濃度に基づいて装入層の装入密度が予め定められた装入密度になるように、磁気ブレーキ94の磁力、装入ゲート86の開度およびシュート88の水平面に対する傾斜角度のうち少なくとも1つを調整してもよい。   In the second embodiment, the example in which the magnetic force of the magnetic brake 94 is adjusted so that the charging density of the sintered raw material becomes a predetermined charging density is shown, but the present invention is not limited to this. As described in the first embodiment, the charging density of the charging layer can be increased by increasing the opening of the charging gate 86 or increasing the inclination angle of the chute 88. The charging density of the charging layer can be reduced by decreasing the opening 86 or by reducing the inclination angle of the chute 88 with respect to the horizontal plane. For this reason, instead of adjusting the magnetic force of the magnetic brake 94 or adjusting the magnetic force of the magnetic brake 94, at least one of the opening degree of the charging gate 86 and the inclination angle of the chute 88 with respect to the horizontal plane may be adjusted. Good. For example, when the FeO concentration is higher than the reference FeO concentration, instead of decreasing the magnetic force of the magnetic brake 94 or decreasing the magnetic force of the magnetic brake 94 and increasing the opening of the charging gate 86, The inclination angle of the chute 88 may be increased. Thereby, the charging speed of a sintering raw material is adjusted, and the fluctuation | variation of the charging density of a charging layer can be made small. Further, the CaO concentration of the sintering raw material is further measured in the measurement step in the second embodiment, and the charging density of the charging layer becomes a predetermined charging density based on the FeO concentration and the CaO concentration in the adjusting step. As described above, at least one of the magnetic force of the magnetic brake 94, the opening degree of the charging gate 86, and the inclination angle of the chute 88 with respect to the horizontal plane may be adjusted.

(実施例1)
図2に示した焼結原料装入装置42を有する焼結鉱製造装置10を用いて第1の実施形態に係る焼結鉱の製造方法により成品焼結鉱を48時間製造した実施例1を説明する。実施例1の発明例1では、搬送コンベア30に設けた赤外線分析計32を用いて、焼結原料のCaOの成分濃度を1時間に1回の頻度で連続測定する測定工程を実施した。そして、測定工程で連続測定されたCaOの成分濃度を用いて、装入層の装入密度が予め定められた目標値になるように装入ゲートの開度を1時間に1回の頻度で調整する調整工程を実施しながら焼結鉱を48時間製造した。
Example 1
Example 1 in which the product sintered ore was produced for 48 hours by the method for producing sintered ore according to the first embodiment using the sintered ore producing apparatus 10 having the sintering raw material charging device 42 shown in FIG. explain. In Invention Example 1 of Example 1, the measurement process of continuously measuring the CaO component concentration of the sintering raw material at a frequency of once per hour using the infrared analyzer 32 provided on the conveyor 30 was performed. Then, using the component concentration of CaO continuously measured in the measurement process, the opening of the charging gate is adjusted at a frequency of once every hour so that the charging density of the charging layer becomes a predetermined target value. The sintered ore was produced for 48 hours while carrying out the adjusting step of adjusting.

図4は、発明例1におけるCaO濃度と、擬似粒子径と、装入ゲートの開度と、装入厚と、生産ベースの変動を示すグラフである。図4(a)は、焼結原料CaO濃度(質量%)の変動を示し、図4(b)は擬似粒子径(mm)の変動を示し、図4(c)は装入ゲートの開度(%)の変動を示し、図4(d)は装入厚(mm)の変動を示し、図4(e)は焼結鉱の生産ベース(t/h)の変動を示す。図4(a)〜(d)に共通する横軸は、経過時間(h)である。なお、図4(c)は装入厚の変動を示すが、装入厚が厚くなると装入層の装入密度も高くなり、装入厚が薄くなると装入層の装入密度も低くなる。このように、装入厚と装入密度は1対1で対応するので、装入厚の変動が小さくなれば装入密度の変動も小さくなる。   FIG. 4 is a graph showing variations in CaO concentration, pseudo particle diameter, charging gate opening, charging thickness, and production base in Invention Example 1. 4 (a) shows the fluctuation of the sintering raw material CaO concentration (mass%), FIG. 4 (b) shows the fluctuation of the pseudo particle diameter (mm), and FIG. 4 (c) shows the opening of the charging gate. 4 (d) shows the variation of the charging thickness (mm), and FIG. 4 (e) shows the variation of the production base (t / h) of the sintered ore. The horizontal axis common to FIGS. 4A to 4D is the elapsed time (h). FIG. 4C shows the variation of the charging thickness. When the charging thickness is increased, the charging density of the charging layer is increased, and when the charging thickness is decreased, the charging density of the charging layer is also decreased. . Thus, since the charging thickness and the charging density correspond one-to-one, if the fluctuation of the charging thickness is reduced, the fluctuation of the charging density is also reduced.

鉄含有原料12の原料パイルは、およそ6日に1度の頻度で他の原料パイルに切り換わる。発明例1において、原料パイルの切り換えは、図中の30時間経過時点で実施された。   The raw material pile of the iron-containing raw material 12 is switched to another raw material pile about once every six days. In Invention Example 1, the switching of the raw material pile was performed when 30 hours passed in the figure.

発明例1では、図4(a)に示すように、焼結原料のCaO濃度が増加し、これにより、図4(b)に示すように、擬似粒子径も大きくなった。発明例1では、測定工程によりCaOの成分濃度を連続測定しているので、図4(a)に示したCaOの成分濃度の増加傾向を迅速に把握でき、擬似粒子径が大きくなって装入密度が低下することが予測できる。このため、発明例1では、装入密度が予め定められた目標とする装入密度になるように、図4(c)に示すように、14時間経過後から31時間経過後まで段階的に装入ゲートの開度を増加させる調整工程を実施した。具体的には、発明例1では、以下の表1に示すCaO濃度と装入ゲートの開度の対応表に従いゲート開度を調整した。   In Invention Example 1, as shown in FIG. 4 (a), the CaO concentration of the sintering raw material increased, and as a result, the pseudo particle size also increased as shown in FIG. 4 (b). In Invention Example 1, since the component concentration of CaO is continuously measured by the measurement process, the increasing tendency of the component concentration of CaO shown in FIG. 4A can be quickly grasped, and the pseudo particle size becomes large and charged. It can be predicted that the density will decrease. For this reason, in Invention Example 1, as shown in FIG. 4 (c), step by step from the elapse of 14 hours to the elapse of 31 hours so that the charging density becomes a predetermined target charging density. An adjustment process was performed to increase the opening of the charging gate. Specifically, in Invention Example 1, the gate opening was adjusted according to the correspondence table of CaO concentration and charging gate opening shown in Table 1 below.

装入ゲートの開度を調整しなければ装入層の装入密度は低下する所、発明例1では上述した装入ゲートの開度の調整によって装入密度が高められ、この結果、図4(d)に示すように、装入密度を目標とする装入密度にでき、かつ、装入密度の変動も小さくなった。このように、装入密度を目標とする装入密度にし、かつ、装入密度の変動を小さくすることで発明例1では、図4(e)に示すように、焼結鉱の生産ベースを高い状態で維持できた。   If the opening of the charging gate is not adjusted, the charging density of the charging layer is lowered. In the invention example 1, the charging density is increased by adjusting the opening of the charging gate as described above. As shown in (d), the charge density can be set to the target charge density, and the fluctuation of the charge density is reduced. In this way, by setting the charging density to the target charging density and reducing the fluctuation of the charging density, in Invention Example 1, as shown in FIG. It was maintained at a high level.

実施例1の比較例1では、焼結原料のCaOの成分濃度を連続測定する測定工程を実施していない。比較例1では、30時間経過時点の原料パイルの切り換え時に、オフラインで焼結原料のCaOの成分濃度を測定し、当該測定値を用いて装入層の装入密度が予め定められた目標値になるように装入ゲートの開度を調整して焼結鉱を48時間製造した。   In the comparative example 1 of Example 1, the measurement process which measures continuously the CaO component density | concentration of a sintering raw material is not implemented. In Comparative Example 1, the CaO component concentration of the sintering raw material is measured off-line at the time of switching the raw material pile when 30 hours have elapsed, and the charging density of the charging layer is determined in advance using the measured value. The opening of the charging gate was adjusted so that the sintered ore was produced for 48 hours.

図5は、比較例1におけるCaO濃度と、擬似粒子径と、装入ゲートの開度と、装入厚と、生産ベースの変動を示すグラフである。図5(a)は、焼結原料CaO濃度(質量%)の変動を示し、図5(b)は擬似粒子径(mm)の変動を示し、図5(c)は装入ゲートの開度(%)の変動を示し、図5(d)は装入厚(mm)の変動を示し、図5(e)は焼結鉱の生産ベース(t/h)の変動を示す。図5(a)〜(d)に共通する横軸は、経過時間(h)である。比較例1においても原料パイルの切り換えは30時間経過時点で実施された。なお、図5(a)において、1時間ごとに○プロットを示しているが、これは測定された成分濃度の値ではなく、パイル切り換え時に測定された各成分濃度を示している。   FIG. 5 is a graph showing variations in CaO concentration, pseudo particle diameter, charging gate opening, charging thickness, and production base in Comparative Example 1. FIG. 5 (a) shows the fluctuation of the sintering raw material CaO concentration (mass%), FIG. 5 (b) shows the fluctuation of the pseudo particle diameter (mm), and FIG. 5 (c) shows the opening of the charging gate. 5 (d) shows the fluctuation of the charging thickness (mm), and FIG. 5 (e) shows the fluctuation of the production base (t / h) of the sintered ore. The horizontal axis common to FIGS. 5A to 5D is the elapsed time (h). Also in Comparative Example 1, the switching of the raw material pile was performed when 30 hours had elapsed. In FIG. 5A, a ◯ plot is shown every hour, but this is not the value of the measured component concentration but the concentration of each component measured at the time of pile switching.

実施例1の比較例1では、30時間経過時点の原料パイルの切り換え時に、オフライン測定で焼結原料のCaOの成分濃度を測定し、当該測定値を用いて装入ゲートの開度を調整した。しかしながら、焼結鉱製造中におけるCaOの成分濃度の変動に対応できず、図5(d)に示すように、比較例1では、装入密度の変動が大きくなった。この装入密度の変動により、比較例1では、図5(e)に示すように、焼結鉱の生産ベースの変動も大きくなり、所々に大きな生産ベースの低下が確認された。   In Comparative Example 1 of Example 1, the CaO component concentration of the sintered raw material was measured by off-line measurement when the raw material pile was switched over after 30 hours, and the opening of the charging gate was adjusted using the measured value. . However, it was not possible to cope with the fluctuations in the CaO component concentration during the production of the sintered ore, and as shown in FIG. Due to this variation in charging density, in Comparative Example 1, as shown in FIG. 5 (e), the variation in the production base of the sintered ore also increased, and a large decrease in the production base was confirmed in some places.

このように、第1の実施形態に係る焼結鉱の製造方法では、焼結鉱製造中における焼結原料のCaOの成分濃度が変動したとしても、当該成分濃度の変動に対応させて装入層の装入密度が予め定められた装入密度になるように装入ゲートの開度を調整する。これにより、装入層の装入密度の変動が小さくなり焼結鉱の生産ベースの低下が抑制されることが確認された。   As described above, in the method for producing a sintered ore according to the first embodiment, even if the CaO component concentration of the sintering raw material during the production of the sintered ore fluctuates, charging is performed according to the fluctuation of the component concentration. The opening of the charging gate is adjusted so that the charging density of the layer becomes a predetermined charging density. Thereby, it was confirmed that the fluctuation of the charging density of the charging layer was reduced, and the decrease in the production base of the sintered ore was suppressed.

(実施例2)
次に、図3に示した焼結原料装入装置43を有する焼結鉱製造装置10を用いて第2の実施形態に係る焼結鉱の製造方法で成品焼結鉱を48時間製造した実施例2を説明する。実施例2の発明例2では、搬送コンベア30に設けた赤外線分析計32を用いて、焼結原料のFeOの成分濃度を1時間に1回の頻度で連続測定する測定工程を実施した。そして、測定工程で連続測定されたFeOの成分濃度を用いて、焼結原料の装入速度が予め定められた目標値になるように装入ゲートの開度を1時間に1回の頻度で調整する調整工程を実施しながら焼結鉱を48時間製造した。
(Example 2)
Next, the product sintered ore was produced for 48 hours by the method for producing sintered ore according to the second embodiment using the sintered ore producing apparatus 10 having the sintering raw material charging device 43 shown in FIG. Example 2 will be described. In Invention Example 2 of Example 2, a measurement process of continuously measuring the FeO component concentration of the sintered raw material at a frequency of once per hour using an infrared analyzer 32 provided on the conveyor 30 was performed. Then, using the FeO component concentration continuously measured in the measurement process, the opening of the charging gate is adjusted at a frequency of once every hour so that the charging speed of the sintering raw material becomes a predetermined target value. The sintered ore was produced for 48 hours while carrying out the adjusting step of adjusting.

図6は、発明例2におけるFeO濃度と、装入ゲートの開度と、装入層の装入厚と、生産ベースの変動を示すグラフである。図6(a)は、焼結原料のFeO濃度(質量%)の変動を示し、図6(b)は装入ゲートの開度(%)を示し、図6(c)は装入厚(mm)の変動を示し、図6(d)は焼結鉱の生産ベース(t/h)の変動を示す。図6(a)〜(d)に共通する横軸は、経過時間(h)である。   FIG. 6 is a graph showing variations in FeO concentration, charging gate opening, charging layer charging thickness, and production base in Invention Example 2. FIG. 6A shows the variation of the FeO concentration (mass%) of the sintering raw material, FIG. 6B shows the opening degree (%) of the charging gate, and FIG. 6C shows the charging thickness ( mm), and FIG. 6 (d) shows the fluctuation of the production base (t / h) of the sintered ore. The horizontal axis common to FIGS. 6A to 6D is the elapsed time (h).

鉄含有原料12の原料パイルは、およそ6日に1度の頻度で他の原料パイルに切り換わる。発明例2において、原料パイルの切り換えは30時間経過時点で実施された。   The raw material pile of the iron-containing raw material 12 is switched to another raw material pile about once every six days. In Invention Example 2, the material pile was changed after 30 hours.

発明例2では、FeOの成分濃度を連続測定しているので、図6(a)に示したFeOの成分濃度の低下傾向を迅速に把握でき、装入速度が速くなって装入層の装入密度が高くなることが予測できる。このため、発明例2では、予め定められた目標とする装入密度になるように、図6(b)に示すように装入ゲートの開度を15時間経過後から段階的に小さくする調整工程を実施した。具体的には、発明例2では、以下の表2に示すFeO濃度と装入ゲートの開度の対応表に従いゲート開度を調整した。   In Invention Example 2, since the component concentration of FeO is continuously measured, it is possible to quickly grasp the decreasing tendency of the component concentration of FeO shown in FIG. It can be predicted that the density will increase. For this reason, in Invention Example 2, the opening of the charging gate is gradually reduced after 15 hours as shown in FIG. 6 (b) so as to obtain a predetermined target charging density. The process was carried out. Specifically, in Invention Example 2, the gate opening was adjusted according to the correspondence table of FeO concentration and charging gate opening shown in Table 2 below.

装入ゲートの開度を調整しなければ、装入速度が速くなって装入層の装入密度が高くなる所、上述した装入ゲートの開度の調整によって装入密度が下げられ、この結果、図6(c)に示すように、装入密度を目標とする装入密度にでき、かつ、装入密度の変動も小さくなった。このように、装入密度を目標とする装入密度にし、かつ、装入密度の変動を小さくすることで発明例2では、図6(d)に示すように、焼結鉱の生産ベースを高い状態で維持できた。   If the opening of the charging gate is not adjusted, the charging speed increases and the charging density of the charging layer increases, and the charging density is lowered by adjusting the opening of the charging gate described above. As a result, as shown in FIG. 6C, the charging density can be set to the target charging density, and the fluctuation of the charging density is reduced. In this way, in the invention example 2 by setting the charging density to the target charging density and reducing the fluctuation of the charging density, as shown in FIG. It was maintained at a high level.

実施例2の比較例2では、焼結原料のFeOの成分濃度を連続測定する測定工程を実施していない。比較例2では、30時間経過時点の原料パイルの切り換え時に、オフラインで焼結原料のFeOの成分濃度を測定し、当該測定値を用いて装入層の装入密度が予め定められた目標値になるように装入ゲートの開度を調整して焼結鉱を48時間製造した。   In the comparative example 2 of Example 2, the measurement process which measures continuously the component density | concentration of FeO of a sintering raw material is not implemented. In Comparative Example 2, the FeO component concentration of the sintering raw material is measured off-line at the time of switching of the raw material pile after 30 hours, and the charging density of the charging layer is determined in advance using the measured value. The opening of the charging gate was adjusted so that the sintered ore was produced for 48 hours.

図7は、比較例2におけるFeO濃度と、装入ゲートの開度と、装入層の装入厚と、生産ベースの変動を示すグラフである。図7(a)は、焼結原料のFeO濃度(質量%)の変動を示し、図7(b)は装入ゲートの開度(%)を示し、図7(c)は装入厚(mm)の変動を示し、図7(d)は、焼結鉱の生産ベース(t/h)の変動を示す。図7(a)〜(d)に共通する横軸は、経過時間(h)である。比較例2においても原料パイルの切り換えは30時間経過時点で実施された。なお、図7(a)において、1時間ごとに○プロットを示しているが、これは測定された成分濃度の値ではなく、原料パイル切り換え時に測定された各成分濃度を示している。   FIG. 7 is a graph showing variations in FeO concentration, charging gate opening, charging layer charging thickness, and production base in Comparative Example 2. FIG. 7 (a) shows the variation of the FeO concentration (mass%) of the sintering raw material, FIG. 7 (b) shows the opening degree (%) of the charging gate, and FIG. 7 (c) shows the charging thickness ( mm), and FIG. 7 (d) shows the fluctuation of the production base (t / h) of the sintered ore. The horizontal axis common to FIGS. 7A to 7D is the elapsed time (h). Also in Comparative Example 2, the switching of the raw material pile was performed when 30 hours had elapsed. In FIG. 7A, a ◯ plot is shown every hour, but this is not the value of the measured component concentration but the concentration of each component measured at the time of material pile switching.

実施例2の比較例2では、30時間経過時点の原料パイルの切り換え時に、オフライン測定で焼結原料のFeOの成分濃度を測定し、当該測定値を用いて装入ゲートの開度を調整した。しかしながら、焼結鉱製造中におけるFeOの成分濃度の変動に対応できず、図7(c)に示すように、比較例2では、装入密度の変動が大きくなった。この装入密度の変動により、比較例2では、図7(d)に示すように、焼結鉱の生産ベースの変動も大きくなり、所々に大きな生産ベースの低下が確認された。   In Comparative Example 2 of Example 2, when the raw material pile was switched over after 30 hours, the FeO component concentration of the sintered raw material was measured by off-line measurement, and the opening of the charging gate was adjusted using the measured value. . However, the variation in the FeO component concentration during the production of the sintered ore could not be accommodated, and as shown in FIG. Due to this variation in charging density, in Comparative Example 2, as shown in FIG. 7 (d), the variation in the production base of the sintered ore also increased, and a large decrease in the production base was confirmed in some places.

発明例2と比較例2における装入厚の平均値と、装入厚の変動と、48時間の成品焼結鉱の製造における成品焼結鉱生産率を下記表3に示す。成品焼結鉱生産率とは、図6(d)および図7(d)に示した焼結鉱の生産ベースに、焼結原料から焼結によって気化する成分を除いた割合である焼結歩留と、篩分け装置70による成品焼結鉱歩留とを乗じた値を、焼結機40のパレット台車44の焼結面積で除した値である。
Table 3 below shows the average value of the charging thickness in Invention Example 2 and Comparative Example 2, the fluctuation of the charging thickness, and the product sinter production rate in the production of the product sinter for 48 hours. The product sinter production rate is the ratio of the sintered ore production base shown in Fig. 6 (d) and Fig. 7 (d), excluding the components evaporated from the sintering raw material. It is a value obtained by dividing the value obtained by multiplying the yield and the product sintered ore yield by the sieving device 70 by the sintering area of the pallet truck 44 of the sintering machine 40.

表3に示すように、発明例2の装入厚の変動は比較例2よりも小さくなり、発明例2の成品焼結鉱の生産率は比較例2よりも高くなった。このように、本実施形態に係る焼結鉱の製造方法を実施することで、装入密度を目標とする装入密度にでき、かつ、装入密度の変動を小さくでき、これにより、成品焼結鉱の生産率の向上が実現できることが確認された。   As shown in Table 3, the variation of the charging thickness of Invention Example 2 was smaller than that of Comparative Example 2, and the production rate of the product sintered ore of Invention Example 2 was higher than that of Comparative Example 2. As described above, by implementing the method for producing sintered ore according to the present embodiment, the charging density can be a target charging density, and the fluctuation of the charging density can be reduced. It was confirmed that the production rate of the ore could be improved.

10 焼結鉱製造装置
11 ヤード
12 鉄含有原料
14 搬送コンベア
16 CaO含有原料
17 MgO含有原料
18 凝結材
20 原料供給部
22 配合槽
24 配合槽
25 配合槽
26 配合槽
28 配合槽
30 搬送コンベア
32 赤外線分析計
34 水
36 ドラムミキサー
38 搬送コンベア
40 焼結機
42 焼結原料装入装置
43 焼結原料装入装置
44 パレット台車
46 点火炉
47 気体燃料供給装置
48 ウインドボックス
50 破砕機
60 冷却機
70 篩分け装置
72 成品焼結鉱
74 返鉱
76 搬送コンベア
78 搬送コンベア
80 高炉
82 給鉱ホッパー
84 ドラムフィーダー
86 装入ゲート
88 シュート
90 矢印
92 矢印
94 磁気ブレーキ
96 位置調整装置
98 磁石
DESCRIPTION OF SYMBOLS 10 Sinter production apparatus 11 Yards 12 Iron containing raw material 14 Conveyor 16 CaO containing raw material 17 MgO containing raw material 18 Condensed material 20 Raw material supply part 22 Compounding tank 24 Compounding tank 25 Compounding tank 26 Compounding tank 28 Compounding tank 30 Conveying conveyor 32 Infrared rays Analyzer 34 Water 36 Drum mixer 38 Conveyor 40 Sintering machine 42 Sintering raw material charging device 43 Sintering raw material charging device 44 Pallet cart 46 Ignition furnace 47 Gaseous fuel supply device 48 Wind box 50 Crusher 60 Cooling machine 70 Sieve Sorting device 72 Sintered product ore 74 Return ore 76 Transport conveyor 78 Transport conveyor 80 Blast furnace 82 Feeding hopper 84 Drum feeder 86 Loading gate 88 Chute 90 Arrow 92 Arrow 94 Magnetic brake 96 Position adjusting device 98 Magnet

Claims (6)

少なくとも鉄含有原料、CaO含有原料および凝結材が配合された焼結原料を造粒し、造粒された前記焼結原料を焼結機の原料装入装置からパレット台車に装入して装入層を形成させ、前記装入層を焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、
前記原料装入装置は、装入ゲートと、シュートとを備え、
前記鉄含有原料、前記焼結原料および前記造粒された焼結原料のうち少なくとも1つの成分濃度を測定する測定工程と、
前記測定工程で測定された成分濃度を用いて、前記装入層の装入密度が予め定められた装入密度になるように前記装入ゲートの開度および前記シュートの水平面に対する傾斜角度のうち少なくとも1つを調整する調整工程と、
を有する、焼結鉱の製造方法。
At least iron-containing raw material, CaO-containing raw material, and a sintered raw material mixed with a coagulant are granulated, and the granulated sintered raw material is charged into a pallet truck from a raw material charging device of a sintering machine. Forming a layer and sintering the charge layer with a sintering machine to produce a sintered ore,
The raw material charging device includes a charging gate and a chute,
A measuring step for measuring a concentration of at least one of the iron-containing raw material, the sintered raw material, and the granulated sintered raw material;
Of the opening angle of the charging gate and the inclination angle of the chute with respect to the horizontal plane so that the charging density of the charging layer becomes a predetermined charging density using the component concentration measured in the measuring step An adjustment step of adjusting at least one;
A method for producing sintered ore.
前記測定工程では、少なくともCaOの成分濃度を測定する、請求項1に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 1, wherein in the measuring step, at least a CaO component concentration is measured. 少なくとも鉄含有原料、CaO含有原料および凝結材が配合された焼結原料を造粒し、造粒された前記焼結原料を焼結機の原料装入装置からパレット台車に装入して装入層を形成させ、前記装入層を焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、
前記原料装入装置は、装入ゲートと、シュートと、磁気ブレーキと備え、
前記鉄含有原料、前記焼結原料および前記造粒された焼結原料のうち少なくとも1つの成分濃度を測定する測定工程と、
前記測定工程で測定された成分濃度を用いて、前記装入層の装入密度が予め定められた装入密度になるように前記装入ゲートの開度、前記シュートの水平面に対する傾斜角度および前記磁気ブレーキの磁力のうち少なくとも1つを調整する調整工程と、
を有する、焼結鉱の製造方法。
At least iron-containing raw material, CaO-containing raw material, and a sintered raw material mixed with a coagulant are granulated, and the granulated sintered raw material is charged into a pallet truck from a raw material charging device of a sintering machine. Forming a layer and sintering the charge layer with a sintering machine to produce a sintered ore,
The raw material charging device includes a charging gate, a chute, and a magnetic brake,
A measuring step for measuring a concentration of at least one of the iron-containing raw material, the sintered raw material, and the granulated sintered raw material;
Using the component concentration measured in the measurement step, the charging gate opening degree, the angle of inclination of the chute with respect to the horizontal plane, and the charging so that the charging density of the charging layer becomes a predetermined charging density, An adjustment step of adjusting at least one of the magnetic forces of the magnetic brake;
A method for producing sintered ore.
前記測定工程では、少なくともFeOの成分濃度を測定する、請求項3に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 3, wherein at least the component concentration of FeO is measured in the measuring step. 前記測定工程で測定されたCaOの成分濃度が高くなるほど、前記調整工程では前記装入ゲートの開度および前記シュートの水平面に対する傾斜角度のうち少なくとも1つを増加させる、請求項2に記載の焼結鉱の製造方法。   The firing according to claim 2, wherein, as the CaO component concentration measured in the measurement step increases, at least one of the opening degree of the charging gate and the inclination angle of the chute with respect to the horizontal plane is increased in the adjustment step. Production method of ore. 前記測定工程で測定されたFeOの成分濃度が高くなるほど、前記調整工程では前記装入ゲートの開度を増加させる、前記シュートの水平面に対する傾斜角度を増加させる、および、前記磁気ブレーキの磁力を弱める、のうち少なくとも1つを実施する、請求項4に記載の焼結鉱の製造方法。   As the FeO component concentration measured in the measurement step increases, the adjustment step increases the opening of the charging gate, increases the inclination angle of the chute with respect to the horizontal plane, and weakens the magnetic force of the magnetic brake. 5. The method for producing a sintered ore according to claim 4, wherein at least one of the methods is performed.
JP2019034406A 2018-03-29 2019-02-27 Sintered ore manufacturing method Active JP6874780B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018064669 2018-03-29
JP2018064669 2018-03-29

Publications (2)

Publication Number Publication Date
JP2019173161A true JP2019173161A (en) 2019-10-10
JP6874780B2 JP6874780B2 (en) 2021-05-19

Family

ID=68166552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034406A Active JP6874780B2 (en) 2018-03-29 2019-02-27 Sintered ore manufacturing method

Country Status (1)

Country Link
JP (1) JP6874780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305348A (en) * 2022-07-25 2022-11-08 武汉钢铁有限公司 Method for improving structural distribution uniformity of sintered ore bed of super-thick material bed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305348A (en) * 2022-07-25 2022-11-08 武汉钢铁有限公司 Method for improving structural distribution uniformity of sintered ore bed of super-thick material bed

Also Published As

Publication number Publication date
JP6874780B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
KR102290001B1 (en) Manufacturing method of sintered ore
KR100254281B1 (en) Method of feeding sintering material by use of magnetic forces
JP6686974B2 (en) Sintered ore manufacturing method
JP6988712B2 (en) Sintered ore manufacturing method
JP6874780B2 (en) Sintered ore manufacturing method
JP6519036B2 (en) Blast furnace operation method
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP2007277594A (en) Sintered ore production method
EP3670685B1 (en) Method for manufacturing sintered ore
JP6763412B2 (en) Sintered ore manufacturing method
JP2024048561A (en) Sinter manufacturing method
JP7180406B2 (en) Method for producing sintered ore
JPH0853719A (en) Charging of sintering raw material and its device
JP6314924B2 (en) Operation method of sintering machine
JP5292845B2 (en) Raw material charging method to sintering machine
JP2004018893A (en) Process for manufacturing high strength sintered ore
JP2001271122A (en) Method for charging raw material to be sintered
JP2008169433A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210405

R150 Certificate of patent or registration of utility model

Ref document number: 6874780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250