JP2018153042A - パワー素子の異常検知機能を備えたモータ駆動装置 - Google Patents

パワー素子の異常検知機能を備えたモータ駆動装置 Download PDF

Info

Publication number
JP2018153042A
JP2018153042A JP2017049022A JP2017049022A JP2018153042A JP 2018153042 A JP2018153042 A JP 2018153042A JP 2017049022 A JP2017049022 A JP 2017049022A JP 2017049022 A JP2017049022 A JP 2017049022A JP 2018153042 A JP2018153042 A JP 2018153042A
Authority
JP
Japan
Prior art keywords
power element
power
voltage
detection target
target power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017049022A
Other languages
English (en)
Other versions
JP6426783B2 (ja
Inventor
真一 水上
Shinichi Mizukami
真一 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2017049022A priority Critical patent/JP6426783B2/ja
Priority to US15/908,860 priority patent/US10326380B2/en
Priority to DE102018001826.2A priority patent/DE102018001826B4/de
Priority to CN201810208628.9A priority patent/CN108574449B/zh
Publication of JP2018153042A publication Critical patent/JP2018153042A/ja
Application granted granted Critical
Publication of JP6426783B2 publication Critical patent/JP6426783B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4826Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/07Motor variable determination based on the ON-resistance of a power switch, i.e. the voltage across the switch is measured during the ON state of the switch and used to determine the current in the motor and to calculate the speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】パワー素子の発熱による異常を正確に検知する低コストのモータ駆動装置を実現する。【解決手段】モータ駆動装置1は、交流電源3からの交流電力を直流電力に変換してDCリンクへ出力する順変換器11と、上アーム及び下アームに設けられた各パワー素子がゲート電圧に応じてオンオフ制御されることで、DCリンクの直流電力をモータ駆動用の交流電力に変換して出力する逆変換器12と、DCリンクに設けられるコンデンサ13と、交流電源3と順変換器11との間の電路を開閉する遮断回路14と、逆変換器12内のパワー素子のうちの検知対象パワー素子に、直流電力が蓄積されたコンデンサ13を供給源とする定電流が流れるよう制御する定電流制御部15と、検知対象パワー素子に定電流が流れている期間中における検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態に基づいて、検知対象パワー素子の異常を検知する異常検知部16とを備える。【選択図】図1

Description

本発明は、パワー素子の異常検知機能を備えたモータ駆動装置に関する。
工作機械、鍛圧機械、射出成形機、産業機械、あるいは各種ロボット内のモータを駆動するモータ駆動装置においては、交流電源から供給された交流電力を順変換器にて直流電力に一旦変換したのちさらに逆変換器にて交流電力に変換し、この交流電力を駆動軸ごとに設けられたモータの駆動電力として用いている。逆変換器は、パワー素子(半導体スイッチング素子)およびこれに逆並列に接続されたダイオードを有するスイッチ部のブリッジ回路からなり、パワー素子がオンオフ駆動されることで直流電力を交流電力に変換して出力する。
パワー素子が導通すると発熱するが、過度の発熱はパワー素子の破壊といった異常をもたらす。発熱によるパワー素子の異常を検知するためには温度センサが必要であるが、温度センサをパワー素子の半導体チップ上に直接設置することは難しい。
温度センサを別途設置せずにパワー素子の温度を検出するものとして、例えば、ベース端子、コレクタ端子、エミッタ端子を有し、前記ベース端子とエミッタ端子の間にはpn接合によるダイオードを有する電流制御型半導体素子と、前記ベース端子に印加される制御信号がオフのときに、前記ベース端子に前記電流制御型素子が通常のオン状態となるベース電流よりも小さな一定のベース電流を流す第1の手段と、前記通常のオン状態となるベース電流よりも小さな一定のベース電流を流している状態における前記電流制御型素子のベース・エミッタ間順方向電圧に基づいて前記電流制御型素子の温度を検出する第2の手段と、を備え、電流制御型素子のオフ状態時における前記pn接合によるダイオードの順方向電圧の温度依存性を用いて温度検出を行なうことを特徴とするオンチップ温度検出装置が知られている(例えば、特許文献1参照。)。
特開2002−289856号公報
モータ駆動装置の一構成要素である逆変換器内には、パワー素子が複数設けられる。また、工作機械、鍛圧機械、射出成形機、産業機械、あるいは各種ロボット内などにおいては、モータ駆動装置が複数設けられることから、非常に多くのパワー素子が存在することになる。しかしながら、多数のパワー素子の半導体チップそれぞれについて温度センサを設置することは、モータ駆動装置のコストが増大し大型化する問題がある。また、そもそも温度センサをパワー素子の半導体チップ上に直接設置することは難しく、仮に温度センサをパワー素子の半導体チップから離れた位置(例えばパワー素子を収容するケース上など)に設置したとしても、パワー素子の温度を正確に測定することはできない。モータ駆動装置内の逆変換器内のパワー素子の発熱を正確に検知できなければ、パワー素子の交換のタイミングを逸して作業効率が低下したり深刻な事故の発生を招きかねない。これとは逆に、まだ熱破壊されていないパワー素子を不必要に早く交換してしまう事態にもなりかねない。したがって、モータ駆動装置においては、パワー素子の発熱による異常を正確に検知することができる低コストの技術が望まれている。
本開示の一態様は、モータ駆動装置は、交流電源からの交流電力を直流電力に変換してDCリンクへ出力する順変換器と、上アーム及び下アームに設けられた各パワー素子が、印加されたゲート電圧に応じてオンオフ制御されることで、DCリンクの直流電力をモータを駆動するための交流電力に変換して出力する逆変換器と、DCリンクに設けられるコンデンサと、交流電源と順変換器との間の電路を開閉する遮断回路と、逆変換器内のパワー素子のうちの検知対象パワー素子に、直流電力が蓄積されたコンデンサを供給源とする定電流が流れるよう制御する定電流制御部と、検知対象パワー素子に定電流が流れている期間中における検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態に基づいて、検知対象パワー素子の異常を検知する異常検知部と、を備える。
本発明によれば、パワー素子の発熱による異常を正確に検知することができる低コストのモータ駆動装置を実現することができる。また、モータ駆動装置のユーザは、異常検知部の検知結果に基づいて、パワー素子に実際に異常が発生する前、近いうちにパワー素子に異常が発生する恐れがあるということを知ることができる。この結果、パワー素子が稼働不能になる前にパワー素子を交換することができ、パワー素子の交換のタイミングを逸することなく、パワー素子の故障や深刻な事故の発生を未然に防ぐことができる。このようにパワー素子の交換を適切な時期に行うことができるようになることで、不要な設計マージンを削ることができるとともに、パワー素子の在庫を減らすこともできる。
一実施形態によるモータ駆動装置を示す図である。 一実施形態によるモータ駆動装置における定電流制御部の動作例を説明する回路図である。 パワー素子のゲート電圧とコレクタ−エミッタ間の電圧とコレクタ電流との関係を例示する図である。 一実施形態によるモータ駆動装置における異常検出部内の電圧検出部の動作を説明する図である。 検知対象パワー素子に定電流を流したときの検知対象パワー素子内部の温度とコレクタ−エミッタ間の電圧との関係を例示する図である。 一実施形態によるモータ駆動装置における異常検出部による異常検出処理を説明する図であって、(A)は検知対象パワー素子に流れる電流を例示し、(B)は検知対象パワー素子内部の温度を例示し、(C)は検知対象パワー素子内部のコレクタ−エミッタ間の電圧を例示する図である。 一実施形態によるモータ駆動装置の動作フローを示すフローチャートである。
以下図面を参照して、パワー素子の異常検知機能を備えたモータ駆動装置について説明する。各図面において、同様の部材には同様の参照符号が付けられている。また、異なる図面において同じ参照符号が付されたものは同じ機能を有する構成要素であることを意味するものとする。また、理解を容易にするために、これらの図面は縮尺を適宜変更している。
図1は、一実施形態によるモータ駆動装置を示す図である。ここでは、一例として、交流電源3を三相とし、モータ駆動装置1により三相交流のモータ2を制御する場合について説明する。ただし、相数は本発明を特に限定するものではなく、例えば単相であってもよい。また、モータ2の種類についても本発明を特に限定するものではなく、例えば誘導モータであっても同期モータであってもよい。
一実施形態によるサーボモータ駆動装置1を説明するに先立ち、モータ2に対する駆動制御を実行するモータ制御部17について説明する。モータ駆動装置1は、一般的なサーボモータ駆動装置と同様、モータ制御部17及び速度検出部18を備え、DCリンクの直流電力とモータ2の駆動電力もしくは回生電力である交流電力との間で電力変換を行う逆変換器12を制御する。モータ制御部17は、速度検出部18によって検出されたモータ2の(回転子の)速度(速度フィードバック)、モータ2の巻線に流れる電流(電流フィードバック)、所定のトルク指令、及びモータ2の動作プログラムなどに基づいて、モータ2の速度、トルク、もしくは回転子の位置を制御するためのスイッチング指令を生成する。モータ制御部17によって作成されたスイッチング指令に基づいて、逆変換器12による電力変換動作が制御される。
図1に示すように、一実施形態によるモータ駆動装置1は、順変換器11と、逆変換器12と、コンデンサ13と、遮断回路14と、定電流制御部15と、異常検知部16とを備える。
順変換器11は、交流電源3からの交流電力を直流電力に変換してDCリンクへ出力する。図1に示す例では、交流電源3を三相としたので、順変換器11は、三相の整流回路として構成される。順変換器11の例としては、ダイオード整流回路、120度通電型整流回路、あるいは内部にパワー素子(半導体スイッチング素子)を備えるPWMスイッチング制御方式の整流回路などがある。
順変換器11の直流出力側と逆変換器12の直流入力側とを接続するDCリンクには、コンデンサ13が設けられる。コンデンサ13は、一般にDCリンクコンデンサや平滑コンデンサと称されるものであり、DCリンクにおいて直流電力を蓄積する機能及び順変換器11の直流出力の脈動分を抑える機能を有する。
逆変換器12は、上アーム及び下アームに設けられた各パワー素子が、印加されたゲート電圧に応じてオンオフ制御されることで、DCリンクの直流電力をモータを駆動するための交流電力に変換して出力する。逆変換器12は、パワー素子及びこれに逆並列に接続されたダイオードのブリッジ回路からなる。パワー素子は、例えばPWMスイッチング制御方式に基づいて作成されたゲート電圧が印加されてオンオフ制御される。なお、図1に示す例では、逆変換器12は、モータ3を三相交流モータとしたので三相インバータとして構成されるが、単相交流モータである場合は単相インバータとして構成される。
逆変換器12内でブリッジ回路を構成するパワー素子は、印加されるゲート電圧の大きさに応じて、導通可能な電流量が変わる半導体スイッチング素子であり、その例としては、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどがある。FETなどのユニポーラトランジスタはその端子としてゲート、ドレイン及びソースを有し、バイポーラトランジスタはその端子としてベース、エミッタ及びコレクタを有し、IGBTはその端子としてゲート、エミッタ及びコレクタを有し、サイリスタ及びGTOはその端子としてゲート、アノード及びカソードを有する。なお、印加される「ゲート電圧」に応じて導通可能な電流量が変わるパワー素子をとして、バイポーラトランジスタを用いる場合は、「ゲート電圧」は「ベース電圧」に読み替えられて、本開示による態様が適用される。これと同様に、用いられるパワー素子に応じて、「ドレイン」及び「ソース」または「アノード」及び「カソード」は、「エミッタ」及び「コレクタ」に読み替えられて、本開示による態様が適用される。
モータ2に対する通常の運転モードでは、逆変換器12は、モータ制御部17から受信したスイッチング指令に基づき内部のパワー素子をスイッチング動作させ、DCリンクを介して順変換器11から供給される直流電力を、モータ2を駆動するための所望の電圧及び所望の周波数の交流電力に変換する(逆変換動作)。これにより、モータ2は、供給された電圧可変及び周波数可変の交流電力に基づいて動作することになる。同じく通常の運転モードにおいては、モータ2の減速時に回生電力が発生したとき、モータ制御部17から受信したスイッチング指令に基づき内部のパワー素子をスイッチング動作させ、モータ2で発生した交流の回生電力を直流電力へ変換してDCリンクへ戻す(順変換動作)。また、詳細については後述するが、通常の運転モードではなく、パワー素子の異常を検知するためのモード(以下、「診断モード」と称する。)においては、逆変換器12は、定電流制御部15により、検知対象パワー素子に微小な定電流が流れるよう制御される。なお、図1では、診断モードにおける定電流制御部15による定電流制御が、モータ制御部17を経由して行われる例を示したが、逆変換器12に対して直接に制御を行ってもよい。
遮断回路14は、後述する遮断指令部21から受信した指令に応じて、交流電源3と順変換器11との間の電路を開閉する。遮断回路14の例としては、電磁接触器やリレーなどがある。モータ2に対する通常の運転モードにおいては、一般的なサーボモータ駆動装置と同様、交流電源3と順変換器11との間の電路において過電流が発生した場合に、遮断指令部21から受信した指令に応じて、交流電源3と順変換器11との間の電路を開路し、交流電源3から順変換器11への交流電力の供給を遮断する。診断モード時における遮断回路14の動作については後述する。
検知対象パワー素子の異常検知処理を実行する場合は、通常の運転モードから診断モードに切り替えられる。定電流制御部15及び異常検知部16は、主として診断モードにおいて動作する。なお、運転モードから診断モードへの切替えは、例えば、モータ駆動装置1に接続された数値制御装置の操作端末に対する特定のキー操作や、モータ駆動装置1に設けられた操作ボタンの押下操作などにより行われる。
この診断モードでは、定電流制御部15は検知対象パワー素子に定電流を流し、異常検知部16は検知対象パワー素子の異常の発生の有無を判定する。検知対象パワー素子は、逆変換器12内に複数存在するパワー素子の中から選択されるが、定電流制御部15及び異常検知部16による処理は、選択された検知対象パワー素子ごとに実行される。例えば、診断モード中において、複数のパワー素子の中から検知対象パワー素子を順次選択し、全ての検知対象パワー素子にについて定電流制御部15及び異常検知部16による処理を順次実行してもよい。この場合、複数のパワー素子の中から検知対象パワー素子を選択する処理並びに定電流制御部15及び異常検知部16による一連の処理は、例えばソフトウェアプログラムに従って自動的に実行される。また例えば、複数のパワー素子の中から検知対象パワー素子をピンポイントで選択して定電流制御部15及び異常検知部16による処理を実行してもよい。この場合、複数のパワー素子のうちどれを検知対象パワー素子として選択するかについては、モータ駆動装置1に接続された数値制御装置の操作端末に対する特定のキー操作や、モータ駆動装置1に設けられた操作ボタンの押下操作などにより行われればよい。
定電流制御部15は、逆変換器12内のパワー素子のうちの検知対象パワー素子に、直流電力が蓄積されたコンデンサ13を供給源とする定電流が流れるよう制御する。詳細については後述するが、診断モードにおいて、異常検知部16は、定電流が流れている検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態に基づいて、検知対象パワー素子の異常を検知するが、定電流制御部15はこの定電流を生成・制御するためのものである。診断モード時に検知対象パワー素子に流す定電流は、通常の運転モード時にパワー素子に流れる電流に比べて微小でよい。
より詳細には、定電流制御部15は、遮断指令部21と、電流検出部22と、ゲート電圧調整部23とを有する。
遮断指令部21は、遮断回路14に対し、交流電源3と順変換器11との間の電路を開路または閉成する指令を行う。パワー素子の異常を検知する診断モードにおいては、遮断指令部21は、交流電源3から順変換器11への交流電力の供給を遮断するために、遮断回路14に対し、交流電源3と順変換器11との間の電路を開路する指令を行う。なお、上述の通り、モータ2に対する通常の運転モードにおいては、遮断指令部21は、一般的なサーボモータ駆動装置と同様、交流電源3と順変換器11との間の電路において過電流が発生した場合は、遮断回路14に対し、交流電源3と順変換器11との間の電路を開路する指令を行う。
電流検出部22は、逆変換器12からモータ2へ流れる電流を検出する。なお、電流検出部22については、モータ制御部17が逆変換器12を制御する際に用いられる逆変換器12からモータ2へ流れる電流を検出するための電流検出部と共用してもよい。
ゲート電圧調整部23は、遮断指令部21の指令により遮断回路14が交流電源3から順変換器11への交流電力の供給を遮断している期間中(すなわち診断モード中)、直流電力が蓄積されたコンデンサ13を供給源として検知対象パワー素子に定電流が流れるよう、電流検出部22が検出した電流に基づいて、検知対象パワー素子が設けられた相及びアームとは異なる相及びアームに設けられたパワー素子(以下、「ゲート電圧調整対象パワー素子」と称する。)に印加されるゲート電圧を調整する。また、診断モードにおいては、検知対象パワー素子は、電流(すなわち直流電力が蓄積されたコンデンサ13を供給源とする定電流)が流れるようにしておく必要があるので、ゲート電圧調整部23は、検知対象パワー素子については、導通可能となるようなゲート電圧を印加しておく。
遮断指令部21、電流検出部22、及びゲート電圧調整部23を有する定電流制御部15による定電流制御処理の詳細については後述する。
異常検知部16は、検知対象パワー素子に定電流が流れている期間中(すなわち診断モード中)における検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態に基づいて、検知対象パワー素子の異常を検知する。
より詳細には、異常検知部16は、電圧検出部31と、記憶部32と、判定部33とを有する。
電圧検出部31は、各パワー素子のコレクタ−エミッタ間の電圧を検出する。特に、電圧検出部31が検出した複数のパワー素子のうちの検知対象パワー素子のコレクタ−エミッタ間の電圧は、記憶部32に記憶され、判定部33の判定処理に用いられる。
記憶部32は、検知対象パワー素子に定電流が流れている期間中(すなわち診断モード中)に電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態を記憶する。後述するように、検知対象パワー素子のコレクタ−エミッタ間の電圧はパワー素子内部の温度に比例するので、診断モード中において、時間の経過につれてパワー素子内部の温度が徐々に低下すると電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧も徐々に減少していく。記憶部32は、この検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態(すなわち電圧の減少傾向の推移)を、時間を追って記憶していく。記憶部32は、例えば、例えばEEPROM(登録商標)などのような電気的に消去・記録可能な不揮発性メモリ、または、例えばDRAM、SRAMなどのような高速で読み書きのできるランダムアクセスメモリによって構成される。またあるいは、記憶部32は、モータ駆動装置1が通常の運転モードにおいてモータ2を駆動する際に用いられる記憶装置の一部の領域に設けられてもよい。
判定部33は、記憶部32に記憶された、電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態と、当該電圧の変化状態が検出された期間よりも以前である定電流が流れている期間中(すなわち、当該電圧の変化状態が検出された診断モードよりも以前の診断モード)に電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態との相違量が、所定の閾値を超えた場合、検知対象パワー素子に異常が発生したと判定する。ここで、上記「当該電圧の変化状態が検出された診断モードよりも以前の診断モード」は、逆変換器12が新品(すなわちパワー素子も新品)に近い状態のときに実行された診断モードであることが好ましい。すなわち、新品状態の逆変換器12の各パワー素子について異常検知部16による処理を実行し、各パワー素子について電圧検出部31が検出したコレクタ−エミッタ間の電圧の変化状態を、初期情報として記憶部32に予め記憶しておく。そして、その後の診断モードにおいては、異常判定部33は、記憶部32に記憶された電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態と、初期情報として記憶された検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態とを比較し、比較の結果得られた相違量が、所定の閾値を超えた場合、検知対象パワー素子に異常が発生したと判定する。
なお、判定部33による判定結果は、モータ駆動装置1のユーザに報知される。ユーザに対する報知の手段の例としては、パソコン、携帯端末、タッチパネルなどのディスプレイやモータ駆動装置1内に設けられる数値制御装置(図示せず)に付属のディスプレイなどがあり、「パワー素子に異常が発生した」または「パワー素子は正常」といった判定結果を例えば文字や絵柄でディスプレイに表示する。また例えば、報知の手段を、音声、スピーカ、ブザー、チャイムなどのような音を発する音響機器にて実現してもよい。またあるいは、プリンタを用いて紙面等にプリントアウトして表示させる形態をとってもよい。またあるいは、これらを適宜組み合わせて実現してもよい。
続いて、遮断指令部21、電流検出部22及びゲート電圧調整部23を有する定電流制御部15による定電流制御処理の詳細について、図2及び図3を参照して説明する。
図2は、一実施形態によるモータ駆動装置における定電流制御部の動作例を説明する回路図である。図2において、モータ駆動装置1についての逆変換器12及びコンデンサ13以外の構成要素については図示を省略している。また、図3は、パワー素子のゲート電圧とコレクタ−エミッタ間の電圧とコレクタ電流との関係を例示する図である。
図2に示す逆変換器12は、三相フルブリッジインバータとして構成される。R相の上アームのパワー素子をSWRU、R相の下アームのパワー素子をSWRL、S相の上アームのパワー素子をSWSU、S相の下アームのパワー素子をSWSL、T相の上アームのパワー素子をSWTU、T相の下アームのパワー素子をSWTLで表す。各パワー素子にはダイオードが逆並列に接続される。複数のパワー素子のうち検査対象パワー素子をR相の上アームのパワー素子SWRUとした場合、次のように定電流制御処理を行う。
印加されるゲート電圧の大きさに応じて、導通可能な電流量が変わる半導体スイッチング素子であるパワー素子は、図3に示すような電圧−電流特性を有する。なお、図3に示す数値はあくまでも一例であり、実際には個々のパワー素子に固有の値を有する。また、図3では、一例としてゲート電圧VGを5V、10V、15V、20V、25Vといったように離散的に示したが、当然のことながらゲート電圧VGはこれら離散的な数値のみに限定されるわけではなく、それ以外の値例えば5V〜10Vの間の値もゲート電圧VGとしてとり得る値である。図3に示すように、例えば、パワー素子に5Vのゲート電圧VGを印加した場合、コレクタ−エミッタ間の電圧VCEが0V〜約2Vの間は、コレクタ−エミッタ間の電圧VCEが増加するにつれコレクタ電流ICは増加するが、コレクタ−エミッタ間の電圧VCEが約2Vを超えると、コレクタ電流ICは飽和し、約25Aの定電流となる。例えば、パワー素子に10Vのゲート電圧VGを印加した場合、コレクタ−エミッタ間の電圧VCEが0V〜約4Vの間は、コレクタ−エミッタ間の電圧VCEが増加するにつれコレクタ電流ICは増加するが、コレクタ−エミッタ間の電圧VCEが約4Vを超えると、コレクタ電流ICは飽和し、約90Aの定電流となる。また例えば、パワー素子に15Vのゲート電圧VGを印加した場合は、コレクタ−エミッタ間の電圧VCEが0〜約5Vの間であってもコレクタ電流ICは増加傾向にある。このように、パワー素子は、印加されるゲート電圧VGの大きさ及びコレクタ−エミッタ間の電圧VCEに応じてコレクタ電流ICの電流量が変わる特性を有する。そこで、本開示の一態様では、ゲート電圧調整部23は、このパワー素子の特性を利用して、検知対象パワー素子に定電流が流れるように調整する。
直流電力が蓄積されたコンデンサ13を供給源(発生源)とする定電流は、次のようにして生成される。
モータ2に対する通常の運転モードでは、逆変換器12は、DCリンクを介して順変換器11から供給される直流電力を、モータ2を駆動するための所望の電圧及び所望の周波数の交流電力に変換するが、このときDCリンクに設けられたコンデンサ13には直流電力が蓄積されている。通常の運転モードから診断モードに切り替えられると、遮断指令部21は、遮断回路14に対し、交流電源3と順変換器11との間の電路の開路を指令し、交流電源3から順変換器11への交流電力の供給が遮断される。これにより、コンデンサ13には、直流電力が蓄積された状態となる。そして、ゲート電圧調整部23により、検知対象パワー素子が設けられたS相の上アームとは異なる相及びアームに設けられたゲート電圧調整対象パワー素子に印加されるゲート電圧を調整することで、ゲート電圧調整対象パワー素子、検知対象パワー素子、モータ2及びコンデンサ13からなる電流経路が構成されるようにする。直流電力が蓄積されたコンデンサ13が供給源となり、この電流経路を定電流が流れる。
図2(A)は、検知対象パワー素子SWRUが設けられたS相とは異なる相としてT相に設けられ、かつ、検知対象パワー素子SWRUが設けられた上アームとは異なるアームとして下アームに設けられたパワー素子SWTLをゲート電圧調整対象パワー素子とした例を示している。また、図2(B)に示すように、検知対象パワー素子SWRUが設けられたS相とは異なる相としてS相に設けられ、かつ、検知対象パワー素子SWRUが設けられた上アームとは異なるアームとして下アームに設けられたパワー素子SWSLも、ゲート電圧調整対象パワー素子となり得る。このように、1つの検知対象パワー素子について、ゲート電圧調整対象パワー素子は2つ存在する。ゲート電圧調整対象パワー素子はこれら2つのうちの少なくとも一方であればよい。
定電流の大きさは、ゲート電圧調整部23による次のような処理によって制御される。
図2(A)に示すように、ゲート電圧調整部23は、検知対象パワー素子SWRUに対して導通可能となるようなゲート電圧を印加しかつパワー素子SWTLに対してゲート電圧を調整する場合、図中太線の点線に示されるような、コンデンサ13、検知対象パワー素子SWRU、モータ2のR相端子、モータ2のT相端子、及びゲート電圧調整対象パワー素子SWTLからなる電流経路が構成される。この結果、検知対象パワー素子SWRU及びゲート電圧調整対象パワー素子SWTLには、直流電力が蓄積されたコンデンサ13を供給源(発生源)とした電流が流れる。検知対象パワー素子SWRU及びゲート電圧調整対象パワー素子SWTLに流れる電流は、電流検出部22によって検出される。そこで、ゲート電圧調整部23は、電流検出部22により検出される電流が定電流となるように、ゲート電圧を調整する。
例えば、図2(A)に示されるような電流経路が構成されている診断モードにおいて、パワー素子SWTLの電圧−電流特性が図3のように示されたものである場合を考える。検知対象パワー素子SWRUのコレクタ電流ICとして例えば25Aの定電流を流そうとする場合、検知対象パワー素子SWRUのコレクタ−エミッタ間の電圧VCEが3Vのときはゲート電圧調整対象パワー素子SWTLには5Vのゲート電圧VGを印加すればよい。しかしながら、診断モードでは遮断回路14により順変換器11からの直流電力の供給が遮断されているので、時間の経過とともにコンデンサ13は放電し、コンデンサ13に蓄積された直流電力(換言すれば電荷)は徐々に減少してコンデンサ13の両端電圧が徐々に低下し、これによって検知対象パワー素子SWRUのコレクタ−エミッタ間の電圧VCEも徐々に低下する。例えば、検知対象パワー素子SWRUのコレクタ−エミッタ間の電圧が1.4Vまで低下すると、ゲート電圧調整対象パワー素子SWTLに印加されるゲート電圧VGが5Vのままでは、検知対象パワー素子SWRUのコレクタ電流ICを25Aの定電流に維持することができない。そこで、ゲート電圧調整部23は、ゲート電圧調整対象パワー素子SWTLに印加されるゲート電圧VGを10Vに上げる調整を行う。検知対象パワー素子SWRUのコレクタ電流ICが飽和状態にある間は、ゲート電圧調整部23はそのときのゲート電圧調整対象パワー素子SWTLのゲート電圧を維持することになるが、検知対象パワー素子SWRUのコレクタ電流ICが飽和状態から外れると、ゲート電圧調整部23はゲート電圧調整対象パワー素子SWTLのゲート電圧を上げる調整を行う。ここでは、図2(A)に示すようなゲート電圧が調整されるパワー素子をSWTLとした例について説明したが、図2(B)に示すように、ゲート電圧が調整されるパワー素子をSWSLとした場合も同様の調整が行われる。すなわち、検知対象パワー素子SWRUに対し、ゲート電圧調整対象パワー素子がSWTL及びSWSLいずれの場合であっても、ゲート電圧調整部23による調整処理内容に相違はない。
以上説明したように、診断モードでは、時間の経過とともに、コンデンサ13の両端電圧の低下に伴い検知対象パワー素子SWRUのコレクタ−エミッタ間の電圧VCEが低下するので、検知対象パワー素子SWRUに流れるコレクタ電流ICを維持するために、ゲート電圧調整部23は、電流検出部22により検出される電流を監視し、この電流が定電流となるように、ゲート電圧調整対象パワー素子SWTLのゲート電圧を、「維持する」か「上げる」といった調整を行う。なお、上述した通り、ゲート電圧調整対象パワー素子はこれら2つのうちの少なくとも一方であればよいが、この変形例として、ゲート電圧調整部23は、ゲート電圧調整対象パワー素子を、検知対象パワー素子が設けられた相及びアームとは異なる相及びアームに設けられた2つのパワー素子の中で、定期的に切り替えてもよい。この場合、診断モード中のゲート電圧調整対象パワー素子自体の発熱も抑制することができる利点がある。
続いて、電圧検出部31、記憶部32及び判定部33を有する異常検知部16による異常検知処理の詳細について、図4〜図6を参照して説明する。
図4は、一実施形態によるモータ駆動装置における異常検出部内の電圧検出部の動作を説明する図である。電圧検出部31は、診断モードにおいて、定電流が流れている検知対象パワー素子のコレクタ−エミッタ間の電圧を検出する。
図5は、検知対象パワー素子に定電流を流したときの検知対象パワー素子内部の温度とコレクタ−エミッタ間の電圧との関係を例示する図である。診断モードにおいて定電流が流れる検知対象パワー素子の温度は、時間の経過と共に低下し、これに伴い、検知対象パワー素子のコレクタ−エミッタ間の電圧も低下していく。
一般に、パワー素子の内部の温度とコレクタ−エミッタ間の電圧とは、「Kファクタ(K factor)」を比例係数とした比例関係にある。これを式1に示す。
パワー素子内部の温度[℃]=Kファクタ[℃/V]×パワー素子のコレクタ−エミッタ間の電圧[V] ・・・(1)
式1を変形すると式2が得られる。
パワー素子のコレクタ−エミッタ間の電圧[V]=パワー素子内部の温度[℃]/Kファクタ[℃/V] ・・・(2)
式2から分かるように、パワー素子のコレクタ−エミッタ間の電圧は、Kファクタの逆数を比例係数として、パワー素子内部の温度に比例する。つまり、時間の経過につれてパワー素子内部の温度が徐々に低下すると、パワー素子のコレクタ−エミッタ間の電圧も徐々に減少していく。診断モード中における検知対象パワー素子のコレクタ−エミッタ間の電圧の減少傾向は、検知対象パワー素子に異常がなければ(すなわち熱破壊されていなければ)、異なる時期に実行された診断モードでもほぼ同じであると考えられる。しかし、検知対象パワー素子に異常があると、異なる時期に実行された診断モード間で、検知対象パワー素子のコレクタ−エミッタ間の電圧の減少傾向に相違が生じる。そこで、本開示の一態様では、異常検出部16は、検知対象パワー素子に定電流が流れているときの検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態(電圧の減少傾向の推移)を観察し、観察した電圧の変化状態を、過去の電圧の変化状態と比較することで、検知対象パワー素子の異常を検知する。具体例を挙げると次の通りである。
図6は、一実施形態によるモータ駆動装置における異常検出部による異常検出処理を説明する図であって、(A)は検知対象パワー素子に流れる電流を例示し、(B)は検知対象パワー素子内部の温度を例示し、(C)は検知対象パワー素子内部のコレクタ−エミッタ間の電圧を例示する図である。図6では一例として、時刻0から時刻t1までを通常の運転モードとし、時刻t1から時刻t2までを診断モードとしている。通常の運転モードでは、パワー素子(検知対象パワー素子)に電流が流れてその温度が上昇し(図6(B))、この温度に比例するパワー素子(検知対象パワー素子)のコレクタ−エミッタ間の電圧も上昇する(図6(C))。時刻t1で診断モードに切り替えると、定電流制御部15の制御により、順変換器11からの直流電力の供給が遮断され、かつ、直流電力が蓄積されたコンデンサ13を供給源とする定電流が検知対象パワー素子に流れる。診断モードにおいて検知対象パワー素子に流れる定電流は通常の運転モードにおける電流に比べて微小であるので、診断モード中は検知対象パワー素子内部の温度は低下し(図6(B))、この温度に比例するパワー素子(検知対象パワー素子)のコレクタ−エミッタ間の電圧も、温度の同様の傾向にて低下する(図6(C))。診断モード中における検知対象パワー素子のコレクタ−エミッタ間の電圧の減少傾向は、検知対象パワー素子に異常がなければ、異なる時期に実行された診断モードでもほぼ同じであると考えられる。しかし、検知対象パワー素子に異常があると、異なる時期に実行された診断モード間で、検知対象パワー素子のコレクタ−エミッタ間の電圧の減少傾向に相違が発生する、図6(B)では、検知対象パワー素子の異常に起因する温度の変化状態についての、異なる時期に実行された診断モードで発生した相違部分を点線で示し、図6(C)では、検知対象パワー素子の異常に起因する電圧の変化状態についての、異なる時期に実行された診断モードで発生した相違部分を点線で示している。本開示の一態様では、異常検出部16は、この相違量に基づいて、検知対象パワー素子の異常を検知する。
以上説明したように、異常検出部16では、ある診断モード中において検知対象パワー素子に定電流が流れているときの検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態(電圧の減少傾向の推移)を時間を追って観察し、これを記憶部32に記憶する。そして、異常検出部16内の判定部33は、記憶部32に記憶された、診断モード中に電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態と、当該電圧の変化状態が検出された期間よりも以前である定電流が流れている期間中(すなわち、当該電圧の変化状態が検出された診断モードよりも以前の診断モード)に電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態と、を比較しその相違量を計算する。判定部33は、計算により得られた相違量が、所定の閾値を超えた場合、検知対象パワー素子に異常が発生したと判定する。
なお、判定部33による検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態の相違量に基づいた異常判定処理は、例えば、診断モード期間中の検知対象パワー素子のコレクタ−エミッタ間の電圧を時間積分して得られた値を用いて行えばよい。すなわち、記憶部32に記憶された診断モード中に電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧を時間積分して得られた値と、当該診断モードよりも以前の診断モード(好ましくは検知対象パワー素子が新品であった時の診断モード)中に電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧を時間積分して得られた値との差を求め、その差の絶対値を、相違量として用いればよい。この相違量が所定の閾値を超えた場合、判定部33は、検知対象パワー素子に異常が発生したと判定する。またあるいは、相違量として、例えばパワー素子の半導体チップの冷却時の温度時定数を用いてもよい。
なお、判定部33の判定処理に用いられる閾値については、例えば実験によりあるいは実際の運用によりモータ駆動装置1を動作させ、同一規格品のパワー素子についての使用環境や熱破壊の発生頻度などのデータを蓄積しておき、この蓄積データに基づいて適宜設定すればよい。その際、実際に熱破壊が発生した際の電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧を時間積分して得られた値と、当該検知対象パワー素子の新品状態のときに電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧を時間積分して得られた値と、の差の絶対値を計算しておき、この絶対値をよりも小さい値を閾値として設定すればよい。この閾値に用いて判定部33による判定処理を行えば、パワー素子が実際に熱破壊してしまう前に(すなわち異常発生前に)、近いうちにパワー素子に異常が発生する恐れがあることをユーザに知らせることができる。なお、閾値の設定に際しては、モータ駆動装置1を利用するユーザの経験則や要望がさらに考慮されてもよい。
以上説明した本開示の一態様によるモータ駆動装置1によれば、パワー素子の発熱による異常を正確に検知することができる。また、温度センサを用いないので低コストである。また、モータ駆動装置1のユーザは、異常検知部16の検知結果に基づいて、実際にパワー素子に異常が発生する前、「近いうちにパワー素子に異常が発生する恐れがある」ということを知ることができる。この結果、パワー素子が稼働不能になる前にパワー素子を交換することができ、パワー素子の交換のタイミングを逸することなく、パワー素子の故障や深刻な事故の発生を未然に防ぐことができる。このようにパワー素子の交換を適切な時期に行うことができるようになることで、不要な設計マージンを削ることができるとともに、パワー素子の在庫を減らすこともできる。
以上説明した定電流制御部15、異常検知部16及びモータ制御部17は、例えばソフトウェアプログラム形式で構築されてもよく、あるいは各種電子回路とソフトウェアプログラムとの組み合わせで構築されてもよい。例えばこれらをソフトウェアプログラム形式で構築する場合は、このソフトウェアプログラムに従って動作させるためのコンピュータを設けたり、モータ駆動装置1に接続される数値制御装置内の演算処理装置にこのソフトウェアプログラムを動作させたりすることで、上述の各部の機能を実現することができる。またあるいは、定電流制御部15、異常検知部16及びモータ制御部17を、各部の機能を実現するソフトウェアプログラムを書き込んだ半導体集積回路として実現してもよい。
また例えば、モータ駆動装置1が複数設けられ、各モータ駆動装置1の制御系が通信ネットワークを介して接続されている場合は、各モータ駆動装置1における異常検知部16の判定結果を、クラウドサーバ上で共有してもよい。
また例えば、モータ駆動装置1を備える工作機械を含む複数の製造セルが、通信ネットワークを介して接続されている場合、各モータ駆動装置1における異常検知部16の判定結果を、製造セルの上位にあるセルコントローラ、あるいはそのセルコントローラのさらに上位にある生産管理装置で共有してもよい。
製造セルは、製品を製造する複数の工作機械をフレキシブルに組合せた集合である。製造セルは、例えば複数個もしくは複数種類の工作機械により構築されているが、製造セルにおける工作機械の個数は限定されない。例えば、製造セルは、あるワークが複数の工作機械により順次に処理されることによって最終的な製品となる製造ラインでありうる。また例えば、製造セルは、2つ以上の工作機械の各々により処理された2つ以上の工作物(部品)を製造工程の途中で別の工作機械によって組み合せることにより最終的な工作物(製品)を完成させる製造ラインであってもよい。また例えば、2つ以上の製造セルにより処理された2つ以上の工作物を組み合せることにより、最終的な工作物(製品)を完成させてもよい。製造セルとセルコントローラとは、例えばイントラネットなどのような通信ネットワークを介して通信可能に相互接続される。製造セルは、製品を製造する工場に配置されている。これに対して、セルコントローラは、製造セルが配置された工場に配置されてもよく、あるいは工場とは異なる建屋に配置されてもよい。例えば、セルコントローラは、製造セルが配置された工場の敷地にある別の建屋に配置されていてもよい。
また、セルコントローラの上位には生産管理装置が設けられる。生産管理装置は、セルコントローラと相互通信可能に接続され、セルコントローラに生産計画を指示する。生産管理装置は、例えば、工場から遠隔地にある事務所に配置されていてもよい。この場合には、セルコントローラと生産管理装置とは、例えばインターネットの通信ネットワークを介して通信可能に相互接続される。
このような生産システムにおいて、セルコントローラあるいは生産管理装置に設けられたディスプレイ装置に、異常が発生した判定されたパワー素子の識別情報、当該パワー素子が設けられている逆変換器の識別情報、当該逆変換器を含むモータ駆動装置1の識別情報、当該モータ駆動装置1を含む製造セルの識別情報などを、表示させてもよい。またあるいは、ディスプレイ装置に代えてあるいはディスプレイ装置と共に、音響機器にて警報音やブザーを発生させてパワー素子の異常検知をユーザに報知してもよい。これにより、工場で働く作業者や管理者は容易に、パワー素子が実際に熱破壊してしまう前に(すなわち異常発生前に)、近いうちにパワー素子に異常が発生する恐れがあることを知ることができる。この結果、パワー素子が稼働不能になる前にパワー素子を交換することができ、パワー素子の交換のタイミングを逸することなく、パワー素子の故障や深刻な事故の発生を未然に防ぐことができる。
図7は、一実施形態によるモータ駆動装置の動作フローを示すフローチャートである。
ステップS101において、新品状態の逆変換器12の各パワー素子について異常検知部16による処理を実行し、各パワー素子について電圧検出部31が検出したコレクタ−エミッタ間の電圧の変化状態を、初期情報として記憶部32に記憶する。
S102において、モータ駆動装置1によるモータ2の通常の駆動を停止し、運転モードから診断モードに切り替える。ステップS102以降、モータ駆動装置1は診断モードに入る。運転モードから診断モードへの切替えは、例えば、モータ駆動装置1に接続された数値制御装置の操作端末に対する特定のキー操作や、モータ駆動装置1に設けられた操作ボタンの押下操作などにより行われる。
ステップS103において、遮断指令部21は、遮断回路14に対し、交流電源3と順変換器11との間の電路を開路する指令を行う。これにより、交流電源3から順変換器11への交流電力の供給が遮断される。
次いで、ステップS104において、ゲート電圧調整部23は、検知対象パワー素子については、導通可能となるようなゲート電圧を印加する。これにより、検知対象パワー素子はオンする。
ステップS105では、ゲート電圧調整部23は、電流検出部22が検出した電流に基づいて、検知対象パワー素子が設けられた相及びアームとは異なる相及びアームに設けられたゲート電圧調整対象パワー素子に印加されるゲート電圧を調整する。これにより、検知対象パワー素子には、直流電力が蓄積されたコンデンサ13を供給源とした定電流が流れるようになる。
次いで、ステップS106において、電圧検出部31は、検知対象パワー素子のコレクタ−エミッタ間の電圧を検出する。検出された値は記憶部32へ送られる。
ステップS107では、記憶部32は、電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態を記憶する。
続くステップS108では、判定部33は、記憶部32に記憶された電圧検出部31が検出した検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態と、初期情報として記憶された検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態とを比較し、比較の結果得られた相違量が、閾値を超えたか否かを判定する。
ステップS108におい相違量が閾値を超えたと判定された場合、判定部33は、検知対象パワー素子に異常が発生したと判定する(ステップS109)。
ステップS108におい相違量が閾値を超えたと判定されなかった場合、判定部33は、検知対象パワー素子は正常したと判定する(ステップS110)。
ステップS109及びステップS110で得られた判定結果は、モータ駆動装置1のユーザに報知される。
1 モータ駆動装置
2 モータ
3 交流電源
11 順変換器
12 逆変換器
13 コンデンサ
14 遮断回路
15 定電流制御部
16 異常検知部
17 モータ制御部
18 速度検出部
21 遮断指令部
22 電流検出部
23 ゲート電圧調整部
31 電圧検出部
32 記憶部
33 判定部
SWRU、SWRL、SWSU、SWSL、SWTU、SWTL パワー素子

Claims (5)

  1. 交流電源からの交流電力を直流電力に変換してDCリンクへ出力する順変換器と、
    上アーム及び下アームに設けられた各パワー素子が、印加されたゲート電圧に応じてオンオフ制御されることで、前記DCリンクの直流電力をモータを駆動するための交流電力に変換して出力する逆変換器と、
    前記DCリンクに設けられるコンデンサと、
    交流電源と前記順変換器との間の電路を開閉する遮断回路と、
    前記逆変換器内の前記パワー素子のうちの検知対象パワー素子に、直流電力が蓄積された前記コンデンサを供給源とする定電流が流れるよう制御する定電流制御部と、
    前記検知対象パワー素子に定電流が流れている期間中における前記検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態に基づいて、前記検知対象パワー素子の異常を検知する異常検知部と、
    を備える、モータ駆動装置。
  2. 前記定電流制御部は、
    前記遮断回路に対し、交流電源から前記順変換器への交流電力の供給の遮断を指令する遮断指令部と、
    前記逆変換器からモータへ流れる電流を検出する電流検出部と、
    前記遮断指令部の指令により前記遮断回路が交流電源から前記順変換器への交流電力の供給を遮断している期間中、直流電力が蓄積された前記コンデンサを供給源として前記検知対象パワー素子に前記定電流が流れるよう、前記電流検出部が検出した電流に基づいて、前記検知対象パワー素子が設けられた相及びアームとは異なる相及びアームに設けられたパワー素子に印加されるゲート電圧を調整するゲート電圧調整部と、
    を有する、請求項1に記載のモータ駆動装置。
  3. 前記ゲート電圧調整部は、ゲート電圧が調整されるパワー素子を、前記検知対象パワー素子が設けられた相及びアームとは異なる相及びアームに設けられたパワー素子の中で、定期的に切り替える、請求項2に記載のモータ駆動装置。
  4. 前記異常検知部は、
    前記パワー素子のコレクタ−エミッタ間の電圧を検出する電圧検出部と、
    前記検知対象パワー素子に前記定電流が流れている期間中に前記電圧検出部が検出した前記検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態を記憶する記憶部と、
    前記記憶部に記憶された、前記電圧検出部が検出した前記検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態と、当該電圧の変化状態が検出された期間よりも以前である前記定電流が流れている期間中に前記電圧検出部が検出した前記検知対象パワー素子のコレクタ−エミッタ間の電圧の変化状態との相違量が、所定の閾値を超えた場合、前記検知対象パワー素子に異常が発生したと判定する判定部と、
    を有する、請求項1〜3のいずれか一項に記載のモータ駆動装置。
  5. 前記パワー素子は、印加されるゲート電圧の大きさに応じて、導通可能な電流量が変わる半導体スイッチング素子である、請求項1〜4のいずれか一項に記載のモータ駆動装置。
JP2017049022A 2017-03-14 2017-03-14 パワー素子の異常検知機能を備えたモータ駆動装置 Active JP6426783B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017049022A JP6426783B2 (ja) 2017-03-14 2017-03-14 パワー素子の異常検知機能を備えたモータ駆動装置
US15/908,860 US10326380B2 (en) 2017-03-14 2018-03-01 Motor drive apparatus with function to detect abnormality in power device
DE102018001826.2A DE102018001826B4 (de) 2017-03-14 2018-03-07 Motorantriebsvorrichtung mit Funktion zum Detektieren einer Störung in einem Leistungsglied
CN201810208628.9A CN108574449B (zh) 2017-03-14 2018-03-14 具有功率元件的异常检查功能的电动机驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049022A JP6426783B2 (ja) 2017-03-14 2017-03-14 パワー素子の異常検知機能を備えたモータ駆動装置

Publications (2)

Publication Number Publication Date
JP2018153042A true JP2018153042A (ja) 2018-09-27
JP6426783B2 JP6426783B2 (ja) 2018-11-21

Family

ID=63372551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049022A Active JP6426783B2 (ja) 2017-03-14 2017-03-14 パワー素子の異常検知機能を備えたモータ駆動装置

Country Status (4)

Country Link
US (1) US10326380B2 (ja)
JP (1) JP6426783B2 (ja)
CN (1) CN108574449B (ja)
DE (1) DE102018001826B4 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420399B1 (ja) * 2017-04-07 2018-11-07 ファナック株式会社 パワー素子の故障検出機能を備えたコンバータ装置及びパワー素子の故障検出方法
US11955959B2 (en) 2019-05-29 2024-04-09 Mitsubishi Electric Corporation Parallel driving device and power conversion device
CN112050782B (zh) * 2020-08-31 2021-11-30 浙江大学 一种基于功率的工业机械臂异常运动在线检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115836A (ja) * 1992-10-06 1994-04-26 Mitsubishi Electric Corp エレベータのインバータ装置
JPH06165480A (ja) * 1992-11-26 1994-06-10 Fuji Electric Co Ltd インバータの故障診断装置
JPH07170754A (ja) * 1993-12-14 1995-07-04 Hitachi Building Syst Eng & Service Co Ltd 電力変換器の保全装置
JPH1066388A (ja) * 1996-08-23 1998-03-06 Mitsubishi Heavy Ind Ltd 主インバータ装置および補機装置
JP2012229971A (ja) * 2011-04-26 2012-11-22 Honda Motor Co Ltd 半導体検査装置、及び半導体検査方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497095A (en) * 1993-11-08 1996-03-05 Honda Giken Kogyo Kabushiki Kaisha Apparatus for inspecting electric component for inverter circuit
JP3534082B2 (ja) 2001-03-27 2004-06-07 日産自動車株式会社 オンチップ温度検出装置
JP4333751B2 (ja) * 2007-02-15 2009-09-16 株式会社デンソー ブラシレスモータの駆動装置
CN101595633B (zh) * 2007-04-16 2012-06-06 三菱电机株式会社 电动机控制装置
DE112009004758T5 (de) * 2009-05-08 2012-12-20 Mitsubishi Electric Corporation Motor-Steuervorrichtung
JP5168307B2 (ja) * 2010-04-07 2013-03-21 株式会社デンソー 電動機制御装置
US20150034097A1 (en) * 2010-06-15 2015-02-05 Nobesity Ltd. Device and method for restraining food in take
JP5201245B2 (ja) * 2010-09-17 2013-06-05 株式会社デンソー 回転機の制御装置
JP2014508809A (ja) * 2011-03-22 2014-04-10 ザ・ポピュレイション・カウンシル,インコーポレイテッド アンドロゲンを用いたミエリン再生
JP5712986B2 (ja) * 2012-08-28 2015-05-07 株式会社デンソー 駆動対象スイッチング素子の駆動回路
US8896251B2 (en) * 2012-10-29 2014-11-25 Calnetix Technologies, Llc Self-diagnostics within power electronics
JP6089967B2 (ja) * 2013-05-28 2017-03-08 株式会社デンソー インバータ装置
CN103500989A (zh) * 2013-10-11 2014-01-08 济南诺顿科技有限公司 一种igbt的保护电路
US9442468B2 (en) * 2013-12-06 2016-09-13 Denso Corporation Control apparatus and shift-by-wire system having the same
JP6311357B2 (ja) * 2014-03-05 2018-04-18 株式会社オートネットワーク技術研究所 防止装置
JP2015223050A (ja) * 2014-05-23 2015-12-10 ファナック株式会社 インバータ及び動力線の故障検出機能を備えたモータ駆動装置
CN104849644B (zh) * 2014-12-10 2018-02-23 北汽福田汽车股份有限公司 Igbt状态检测电路以及igbt状态检测方法
JP6408938B2 (ja) * 2015-03-06 2018-10-17 日立オートモティブシステムズ株式会社 インバータの故障診断装置及び故障診断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115836A (ja) * 1992-10-06 1994-04-26 Mitsubishi Electric Corp エレベータのインバータ装置
JPH06165480A (ja) * 1992-11-26 1994-06-10 Fuji Electric Co Ltd インバータの故障診断装置
JPH07170754A (ja) * 1993-12-14 1995-07-04 Hitachi Building Syst Eng & Service Co Ltd 電力変換器の保全装置
JPH1066388A (ja) * 1996-08-23 1998-03-06 Mitsubishi Heavy Ind Ltd 主インバータ装置および補機装置
JP2012229971A (ja) * 2011-04-26 2012-11-22 Honda Motor Co Ltd 半導体検査装置、及び半導体検査方法

Also Published As

Publication number Publication date
CN108574449A (zh) 2018-09-25
CN108574449B (zh) 2020-03-31
DE102018001826B4 (de) 2020-10-29
JP6426783B2 (ja) 2018-11-21
DE102018001826A1 (de) 2018-09-20
US10326380B2 (en) 2019-06-18
US20180269804A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US10924055B2 (en) Motor drive apparatus having input power supply voltage adjustment function
US10090795B2 (en) Motor drive having function of protecting dynamic braking circuit
JP5574845B2 (ja) 電力変換装置
CN101156312B (zh) 伺服电动机的控制装置
JP2018153042A (ja) パワー素子の異常検知機能を備えたモータ駆動装置
US9601988B2 (en) Power conversion apparatus and method for analyzing for abnormality in power conversion apparatus having cutoff devices
US11211892B2 (en) Motor drive apparatus configured to determine cause of DC link voltage fluctuation
EP3772168A1 (en) Detection of a failure of a power module based on operating conditions
JP2018191416A (ja) Dcリンクコンデンサの初期充電時間を最適化するコンバータ装置
JP2017175886A (ja) 停電検出条件設定機能を有するモータ制御装置
US11223194B2 (en) Motor control apparatus including protection mechanism
CN109088531B (zh) 电力变换单元的驱动电路及驱动方法、电力变换单元以及电力变换装置
JP2020058209A (ja) モータ駆動装置
CN107404276A (zh) 电动机控制装置
US10148206B2 (en) Controlling operation of a power converter based on grid conditions
JP2002262580A (ja) インバ−タ装置
WO2015186233A1 (ja) 電力変換装置およびワイドバンドギャップ半導体素子の制御方法
JP2014034097A (ja) ロボットコントローラ
JP6673124B2 (ja) モータ駆動装置、コンピュータプログラム及びモータ駆動装置の動作方法
JP6678073B2 (ja) 部品実装機のサーボアンプ入力電流制御装置
US11323060B2 (en) Motor control apparatus including protection mechanism
US20230178976A1 (en) Failure detection device that detects failure of parallel-driven switch, and motor drive device
JP6869625B2 (ja) 電力変換装置
CN117813759A (zh) 具有过电压保护电路的马达驱动装置
JP2018152930A (ja) 漏れ電流の発生を判定するモータ駆動装置

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181025

R150 Certificate of patent or registration of utility model

Ref document number: 6426783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150