JP2018151244A - 芯ズレ検出装置および芯ズレ検出方法 - Google Patents

芯ズレ検出装置および芯ズレ検出方法 Download PDF

Info

Publication number
JP2018151244A
JP2018151244A JP2017047286A JP2017047286A JP2018151244A JP 2018151244 A JP2018151244 A JP 2018151244A JP 2017047286 A JP2017047286 A JP 2017047286A JP 2017047286 A JP2017047286 A JP 2017047286A JP 2018151244 A JP2018151244 A JP 2018151244A
Authority
JP
Japan
Prior art keywords
workpiece
misalignment
unit
edge
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017047286A
Other languages
English (en)
Other versions
JP6794301B2 (ja
Inventor
努 作山
Tsutomu Sakuyama
努 作山
佐々 泰志
Yasushi Sasa
泰志 佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2017047286A priority Critical patent/JP6794301B2/ja
Priority to PCT/JP2017/040739 priority patent/WO2018168068A1/ja
Priority to TW106143370A priority patent/TWI654406B/zh
Publication of JP2018151244A publication Critical patent/JP2018151244A/ja
Application granted granted Critical
Publication of JP6794301B2 publication Critical patent/JP6794301B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークの回転部に対する芯ズレを高精度に検出する。【解決手段】回転部により回転されるワークの外周部の少なくとも1周分を含む画像を撮像する撮像部と、撮像部により撮像された画像に対して二値化処理を施し、ワークの外周部の画像データをエッジ画像データとして抽出する画像処理部と、エッジ画像データに基づいてワークの外周部の形状を示すエッジ波形を求めるエッジ波形導出部と、エッジ波形導出部により導出されたエッジ波形に基づいて回転部に対するワークの芯ズレを算出する芯ズレ演算部と、を備えている。【選択図】図6

Description

この発明は、対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークを検出対象物とし、回転部に対するワークの芯ズレを検出する芯ズレ検出技術に関するものである。
対称軸のまわりに回転対称なワークの外観を検査する装置として、例えば特許文献1に記載されたワーク検査装置が知られている。このワーク検査装置では、モータに連結されたホルダ部によりワークが保持される。そして、上記モータによりワークを回転させながら当該ワークを複数台のカメラで撮像し、それらの撮像画像に基づいてワークの外観を検査する。
特開2012−63268号公報
特許文献1に記載の装置は、歯車をワークとするものであり、歯車に傷や欠陥などが存在していないかを検査する。この装置では、ホルダ部は、ワークを軸方向に貫通する貫通孔に通される軸部と、ワークを軸部と同軸でクランプするクランプ機構とを有している。そして、モータの回転軸が回転することで軸部とワークとが一体に回転する。ここで、ワークの外周面が平滑面であれば、クランプ機構によって保持されたワークの対称軸とモータの回転軸とが一致していない場合であっても、撮像された画像を処理することで上記検査を比較的高い精度で検査することは可能である。これに対し、例えば歯車のように外周面に対して凹部と凸部が周期的に繰り返されるワークを検査対象とする場合、単なる画像処理で上記検査を行うことは難しい。そこで、このようなワークを精度良く検査するためには、モータに対するワークの芯ズレを正確に把握することが望まれる。しかしながら、上記芯ズレを高精度に検出する技術は従来存在しなかった。
この発明は上記課題に鑑みなされたものであり、対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークの回転部に対する芯ズレを高精度に検出する芯ズレ検出技術を提供することを目的とする。
この発明の一の態様は、対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークを回転させる、回転部に対するワークの芯ズレを検出する芯ズレ検出装置であって、回転部により回転されるワークの外周部の少なくとも1周分を含む画像を撮像する撮像部と、撮像部により撮像された画像に対して二値化処理を施し、ワークの外周部の画像データをエッジ画像データとして抽出する画像処理部と、エッジ画像データに基づいてワークの外周部の形状を示すエッジ波形を求めるエッジ波形導出部と、エッジ波形導出部により導出されたエッジ波形に基づいて回転部に対するワークの芯ズレを算出する芯ズレ演算部と、を備えることを特徴としている。
また、この発明の他の態様は、芯ズレ検出方法であって、対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークをワーク保持部により保持する第1工程と、ワークを保持したワーク保持部を回転部により回転させることでワークを回転部の回転軸まわりに回転させる第2工程と、回転部によるワークの回転中にワークの外周部の少なくとも1周分を含む画像を取得する第3工程と、第3工程により取得された画像に対して二値化処理を施し、ワークの外周部の画像データをエッジ画像データとして抽出する第4工程と、エッジ画像データに基づいてワークの外周部の形状を示すエッジ波形を求める第5工程と、エッジ波形に基づいて回転部に対するワークの芯ズレを算出する第6工程と、を備えることを特徴としている。
このように構成された発明では、回転部によりワークを回転させながらワークの外周部の少なくとも1周分を含む画像が取得される。ここで、回転部に対するワークの芯ズレが発生している場合には、その芯ズレを反映した情報が上記画像に含まれる。ただし、本発明では、ワークの外周部には、凸部と凹部とが周期的に繰り返して設けられており、上記画像には凹凸情報も含まれているため、上記画像から直ちに芯ズレを検出することは困難である。そこで、本発明では、上記画像に対して二値化処理を施し、ワークの外周部の画像データ、つまりエッジ画像データを抽出するとともに、当該エッジ画像データに基づいてワークの外周部の形状を示すエッジ波形を求めている。そして、エッジ波形に基づいて回転部に対するワークの芯ズレを算出している。
上記のように、本発明によれば、ワークの外周部の少なくとも1周分を含む画像からワークの外周部の形状を示すエッジ波形を求め、当該エッジ波形に基づいて回転部に対するワークの芯ズレを算出するため、回転部に対するワークの芯ズレを高精度に検出することができる。
本発明に係る芯ズレ検出装置の一実施形態を装備する検査装置の全体構成を示す図である。 図1に示す検査装置の電気的構成を示すブロック図である。 ワーク保持ユニットの構成を示す斜視図である。 図1に示す検査装置によるワークの検査動作を示すフローチャートである。 検査動作を模式的に示す図である。 本発明に係る芯ズレ検出方法の一実施形態である芯ズレの検出工程を示すフローチャートである。 図6に示す芯ズレの検出方法で取得される各種波形の一例を示す図である。
図1は、本発明に係る芯ズレ検出装置の第1実施形態を装備する検査装置の全体構成を示す図である。また、図2は、図1に示す検査装置の電気的構成を示すブロック図である。この検査装置100は、歯車や羽根車などのように対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークWの外観を検査する装置であり、ローディングユニット1、ワーク保持ユニット2、撮像ユニット3、アンローディングユニット4および制御ユニット5を有している。なお、ここでは、ワークWは図1に示すように軸部Waの上部に歯車Wbを設けた機械部品であり、例えば鍛造や鋳造処理によって形成される。そして、部品製造後に当該ワークWは外部搬送ロボットあるいはオペレータによってローディングユニット1に搬送される。
ローディングユニット1には、テーブルやストッカーなどのワーク収容部(図示省略)が設けられている。そして、外部搬送ロボットなどによりワークWがワーク収容部に一時的に収容されると、ワーク収容部に設けられたワーク検出センサ11(図2)がワークWを検出し、その旨の信号を装置全体を制御する制御ユニット5に送信する。また、ローディングユニット1には、ローダ12(図2)が設けられており、制御ユニット5からの動作指令に応じてワーク収容部に収容されている未検査のワークWを受け取り、ワーク保持ユニット2に搬送する。
図3はワーク保持ユニットの構成を示す斜視図である。ワーク保持ユニット2は、ローダ12により搬送されてきたワークWを保持する保持テーブル21A、21Bを装備している。これらの保持テーブル21A、21Bはともに同一構成を有し、歯車Wbが水平状態となる姿勢でワークWの軸部Waの一部を把持して保持可能となっている。以下、図3を参照しつつ保持テーブル21Aの構成について説明する一方、保持テーブル21Bは保持テーブル21Aと同一構成であるため、保持テーブル21Bについては同一符号を付して説明を省略する。
保持テーブル21Aでは、図3に示すように、チャック機構22、水平位置決め機構23、回転機構24および鉛直位置決め機構25が鉛直方向に積層配置されている。チャック機構22は、側面視で略L字状の可動部材221〜223と、制御ユニット5からの移動指令に応じて可動部材221〜223を放射状に連動して移動させる移動部224とを有している。各可動部材221〜223の上端面には突起部材225が突設されており、上端面と突起部材225とで軸部Waの段差部位と係合可能となっている。このため、制御ユニット5からの把持指令に応じて移動部224が可動部材221〜223を互いに近接移動させることでチャック機構22の中心軸(図5中の符号AX2)と軸部Waの軸芯とを一致させながらワークWを保持することができる。一方、制御ユニット5からの解放指令に応じて移動部224が可動部材221〜223を互いに離間移動させることで、ローディングユニット1による未検査ワークWのローディングやアンローディングユニット4による検査済ワークWのアンローディングを行うことが可能となる。
このように構成されたチャック機構22は水平位置決め機構23に支持されている。水平位置決め機構23は水平方向において互いに直交する方向に移動させる、いわゆるXYテーブルを有している。このため、制御ユニット5からの移動指令に応じてXYテーブルが駆動されてチャック機構22を水平面で高精度に位置決めすることが可能となっている。なお、XYテーブルとしては、モータとボールネジ機構とを組み合わせたものや、水平方向において互いに直交する2つのリニアモータを組み合わせたものなどを用いることができる。
回転機構24はモータ241を有している。モータ241の回転シャフト(図5中の符号242)が鉛直上方に延設されており、その上端部に水平位置決め機構23が連結されている。このため、制御ユニット5から回転指令が与えられると、モータ241が作動してモータ241の回転軸(図5中の符号AX3)まわりに水平位置決め機構23、チャック機構22、ならびにチャック機構22により把持されたワークWを一体的に回転させる。
ここで、本実施形態では、チャック機構22と回転機構24との間に水平位置決め機構23を設けているが、その技術的意義はチャック機構22の中心軸、チャック機構22に把持されたワークWの歯車Wbの対称軸(図5中の符号AX4)およびモータ241の回転軸の相対的な位置関係を水平位置決め機構23によって調整可能とする点にある。すなわち、チャック機構22の中心軸とモータ241の回転軸とを一致させておくことで、チャック機構22で把持したワークWを軸部Waまわりに回転させることができる。しかしながら、歯車Wbの対称軸が軸部Waから外れている場合には、モータ241に対して芯ズレが発生しており、歯車Wbは偏心して回転してしまう。そこで、水平位置決め機構23を設け、ズレ量とズレ方向を補正するように駆動させることで歯車Wbの対称軸とモータ241の回転軸とを一致させることが可能となる。これによって、撮像ユニット3による歯車Wbの画像を高精度に撮像することが可能となり、ワークWの検査精度を向上させることができる。
鉛直位置決め機構25は、モータ241を保持する保持プレート251と、モータ241の下方位置に配置されたベースプレート252と、保持プレート251およびベースプレート252を連結する4本の連結ピン253と、ベースプレート252を鉛直方向に昇降させる昇降部254とを有している。昇降部254は制御ユニット5からの昇降指令に応じてベースプレート252を昇降させることで鉛直方向において回転機構24、水平位置決め機構23およびチャック機構22を一体的に移動させ、次に説明するプリアライメント位置PAおよび検査位置PIにおいてワークWの高さ位置を適正化することができる。
このように構成された保持テーブル21A、21Bは、図3に示すように、支持プレート261上に一定距離だけ離間して固定されている。また、保持テーブル21A、21Bの中間位置で支持プレート261が旋回駆動部262に支持されている。この旋回駆動部262は制御ユニット5からの旋回指令に応じて鉛直方向に延びる旋回軸AX1まわりに支持プレート261を180゜旋回可能となっており、図3に示すように保持テーブル21A、21Bがそれぞれプリアライメント位置PAおよび検査位置PIに位置する第1ポジションと、保持テーブル21A、21Bがそれぞれ検査位置PIおよびプリアライメント位置PAに位置する第2ポジションとの間で切替可能となっている。例えばプリアライメント位置PAに位置する保持テーブル21Aに保持されたワークWに対してプリアライメント処理を施すのと並行して、旋回駆動部262によって第1ポジションから第2ポジションに切り替えることで保持テーブル21Aがプリアライメント位置PAから検査位置PIにシフトし、プリアライメント処理済のワークWを検査位置PIに位置決めすることができる。また、当該ワークWの検査を終了した後、逆方向に旋回することで保持テーブル21Aが検査位置PIからプリアライメント位置PAにシフトし、検査処理済のワークWをプリアライメント位置PAに位置決めすることができる。このように本実施形態では、支持プレート261および旋回駆動部262によりワークWの位置を切り替えるポジション切替機構26が構成されている。
プリアライメント位置PAは上記したようにプリアライメント処理を行う位置であり、プリアライメント位置PAに位置決めされた保持テーブル21A(または21B)の上方にアライメントカメラ27が配置されている。このアライメントカメラ27は図3に示すようにワークWに対してモータ241の反対側、つまりワークWの上方側に配置されており、ワークWの対称軸AX4に対して径方向外側に延設されたラインセンサ271を有している。このため、ワークWを回転させながら当該ラインセンサ271によりワークWの上面を撮像可能となっており、ワークWを少なくとも1周回転させることで歯車Wbの外周部に形成される凸部(歯末)および凹部(歯元)の全てを含む画像が得られる。
また、図3への図示を省略しているが、当該保持テーブル21A(または21B)に保持されたワークWを照明してアライメント処理を良好に行うためのアライメント照明部28(図2)が設けられている。このため、回転機構24によりワークWを回転させるとともに、アライメント照明部28によりワークWを照明しながらアライメントカメラ27によりワークWを撮像することができる。そして、ワークWの画像データが制御ユニット5に送られ、芯ズレを補正して歯車Wbの対称軸とモータ241の回転軸とを一致させる、つまりプリアライメント処理が実行される。
一方、検査位置PIは検査処理を行う位置であり、検査位置PIに位置決めされた保持テーブル21A(または21B)の上方に撮像ユニット3が配置されている。この検査位置PIでは、歯車Wbの対称軸とモータ241の回転軸とが一致した状態でワークWを回転させながらワークWを撮像ユニット3によって撮像することができる。そして、ワークWの画像データが制御ユニット5に送られ、歯車Wbにおける傷や欠陥などの有無を検査する検査処理が実行される。
この撮像ユニット3は、図2に示すように、複数の検査カメラ31と複数の検査照明部32とを有している。この撮像ユニット3では、検査位置PIに位置決めされた保持テーブル21A(または21B)に保持されるワークWを種々の方向から照明するように複数の検査照明部32が配置されている。そして、回転機構24によりワークWを回転させるとともに、検査照明部32によりワークWを照明しながら複数の検査カメラ31によりワークWを種々の方向から撮像することが可能となっている。これら複数の画像データが制御ユニット5に送られ、制御ユニット5によりワークWの検査が実行される。
こうして検査されたワークWを保持する保持テーブル21A(または21B)は上記したようにポジション切替機構26により検査位置PIからプリアライメント位置PAにシフトされる。そして、アンローディングユニット4により保持テーブル21A(または21B)から検査済のワークWが搬出される。なお、アンローディングユニット4は基本的にローディングユニット1と同一である。つまり、アンローディングユニット4は、検査済のワークWを一時的に収容するワーク収容部(図示省略)、ワーク検出センサ41(図2)およびアンローダ42(図2)を有しており、制御ユニット5からの動作指令に応じて検査済のワークWを保持テーブル21A(または21B)からワーク収容部に搬送する。
制御ユニット5は、図2に示すように、論理演算を実行する周知のCPU(Central Processing Unit)、初期設定等を記憶しているROM(Read Only Memory)、装置動作中の様々なデータを一時的に記憶するRAM(Random Access Memory)等から構成されている。制御ユニット5は、機能的には、演算処理部51、メモリ52、駆動制御部53、外部入出力部54、画像処理部55および照明制御部56を備えている。
上記駆動制御部53は、装置各部に設けられた駆動機構、例えばローダ12、チャック機構22などの駆動を制御する。外部入出力部54は、装置各部に装備されている各種センサ類からの信号を入力する一方、装置各部に装備されている各種アクチュエータ等に対して信号を出力する。画像処理部55は、アライメントカメラ27および検査カメラ31から画像データを取り込み、2値化等の画像処理を行う。照明制御部56はアライメント照明部28および検査照明部32の点灯および消灯等を制御する。
上記演算処理部51は、演算機能を有するものであり、上記メモリ52に記憶されているプログラムに従って駆動制御部53、画像処理部55、照明制御部56などを制御することで次に説明する一連の処理を実行する。
なお、図2中の符号6はオペレータとのインターフェースとして機能する表示ユニットであり、制御ユニット5と接続され、検査装置100の動作状態を表示する機能のほか、タッチパネルで構成されてオペレータからの入力を受け付ける入力端末としての機能も有する。また、この構成に限定されるものではなく、動作状態を表示するための表示装置と、キーボードやマウス等の入力端末を採用しても良い。
図4は図1に示す検査装置によるワークの検査動作を示すフローチャートである。また、図5は検査動作を模式的に示す図である。なお、図5においては、保持テーブル21A、21Bの動作を明確に区別するために、保持テーブル21Bおよび当該保持テーブル21Bにより保持されるワークWに対してドットを付している。
この検査装置100では、制御ユニット5のメモリ52に予め記憶された検査プログラムにしたがって演算処理部51が装置各部を制御して以下の動作を実行する。ここでは、1つのワークWに着目して当該ワークWに対して実行される各種動作について図4および図5を参照しつつ説明する。制御ユニット5は、図5の(a)欄に示すようにプリアライメント位置PAに位置している保持テーブル21AにワークWが存在せず、しかもワーク検出センサ11により未検査のワークWがローディングユニット1のワーク収容部に収容されていることを確認すると、保持テーブル21AへのワークWのローディングを開始する(ステップS1)。このローディング工程では、ローダ12がワーク収容部の未検査ワークWを把持し、ローディングユニット1から保持テーブル21Aに搬送する。なお、本実施形態では、ローディング工程および後の芯ズレの検出工程を円滑に行うために、保持テーブル21AへのワークWの搬送前に、図5の(a)欄に示すように水平位置決め機構23によりチャック機構22の中心軸AX2とモータ241の回転軸AX3とを一致させるとともに、3本の可動部材221〜223を互いに離間させてワークWの受け入れ準備を行っている。
ローダ12によりワークWが保持テーブル21Aに搬送されてくると、チャック機構22が上記したように3本の可動部材221〜223を互いに近接移動させてワークWの軸部Waの一部を挟み込んでワークWを把持する。より詳しくは、ローディング動作中に、可動部材221〜223は互いに近接移動し、可動部材221〜223の各上端面と突起部材225とが軸部Waの段差部位に係合してチャック機構22の中心軸AX2と軸部Waの軸芯とを一致させながらワークWを保持する(図5の(b)欄参照)。こうして、ローディング工程が完了し、この完了時点では、モータ241の回転軸AX3、チャック機構22の中心軸AX2および軸部Waの軸芯は一致している。しかしながら、鍛造や鋳造処理によって製造されたワークWでは、例えば図5の(b)欄に示すように歯車Wbの対称軸AX4が軸部Waの軸芯から外れ、モータ241に対するワークWの芯ズレが発生していることがある。
そこで、本実施形態では、アライメント照明部28(図2)により未検査ワークWを照明するとともに、保持テーブル21Aのモータ241により未検査ワークWを回転させながらアライメントカメラ27により歯車Wbを撮像し、その画像データをメモリ52に記憶する(ステップS2)。
この撮像完了後に、旋回駆動部262により第1ポジションから第2ポジションへの切替を行う。すなわち、旋回駆動部262が支持プレート261を旋回軸AX1まわりに180゜旋回させ、これによって図5の(c)欄に示すように未検査のワークWを保持する保持テーブル21Aがプリアライメント位置PAから検査位置PIに移動するとともに昇降部254によってワークWを撮像ユニット3により撮像可能な高さ位置に移動させる(ステップS3)。
また、本実施形態では、上記移動と並行して、メモリ52からワークWの画像データを読み出し、回転機構24(モータ241)に対するワークWの芯ズレ(本実施形態では、ズレ量Δとズレ方向とを含む情報に相当)を検出し(ステップS4)、それに続いて保持テーブル21Aにおける芯ズレ補正を行う(ステップS5)。なお、当該芯ズレの検出工程(ステップS4)については後で詳述する。この芯ズレ補正は上記ステップS4で検出された芯ズレを解消するように水平位置決め機構23によりチャック機構22を移動させる。これによって、図5の(c)欄に示すように、保持テーブル21Aが検査位置PIに到達した時点あるいは到達前後で歯車Wbの対称軸とモータ241の回転軸とが一致し、直ちにワーク撮像工程(ステップS6)を開始することができる。
このステップS6では、検査位置PIに位置決めされた保持テーブル21Aの回転機構24が作動し、ワーク回転を開始する。このとき、保持テーブル21Aに保持されたワークWは上記芯ズレ補正を受けた、いわゆる芯出し状態であり、対称軸AX4まわりに回転する。また、その回転に対応して複数の検査照明部32が点灯して回転中のワークWを複数の方向から照明する。なお、ここではワーク回転後に検査照明部32を点灯させているが、点灯タイミングはこれに限定されるものではなく、回転開始と同時、あるいは回転開始前に検査照明部32の点灯を開始してもよい。
こうしてワークWの回転と照明とを行っている間に、複数の検査カメラ31がワークWを種々の方向から撮像し、複数方向からのワークWの画像(以下「ワーク画像」という)の画像データを制御ユニット5に送信する。一方、制御ユニット5では上記画像データをメモリ52に記憶し、以下のタイミングで当該画像データに基づいてワークWの検査を行う。
こうした画像取得後、保持テーブル21Aではワーク回転が停止され、撮像ユニット3では検査照明部32が消灯される。また、旋回駆動部262が支持プレート261を旋回軸AX1まわりに180゜反転旋回させ、これによって保持テーブル21Aが検査済のワークWを保持したまま検査位置PIからプリアライメント位置PAに移動するとともに昇降部254によってワークWが元の高さ位置に移動する(ステップS7)。このワークWの移動と並行して、制御ユニット5はメモリ52から画像データを読み出し、ワーク画像に基づいて歯車Wbに傷や欠陥などが存在しているか否かを判定して保持テーブル21Aに保持されたワークWについてワーク検査を行う(ステップS8)。
プリアライメント位置PAに戻ってきたワークWはアンローダ42によって把持された後、可動部材221〜223による把持の解除により保持テーブル21Aからアンローダ42に受け渡される。それに続いて、アンローダ42がワークWをアンローディングユニット4に搬送し、ワーク収容部(図示省略)に搬送する(ステップS9)。上記した一連の工程(ステップS1〜S9)が保持テーブル21A、21Bにより交互に繰り返される。
次に、本実施形態において実行される芯ズレの検出工程(ステップS4)について図6および図7を参照しつつ詳述する。図6は本発明に係る芯ズレ検出方法の一実施形態である芯ズレの検出工程を示すフローチャートであり、図7は図6に示す芯ズレの検出方法で取得される各種波形の一例を示す図である。芯ズレの検出工程は、制御ユニット5のメモリ52に予め記憶された芯ズレ検出プログラムにしたがって演算処理部51が以下のように動作することで実行される。
本実施形態では、芯ズレの検出工程を実行するのに先立って、水平位置決め機構23によりチャック機構22の中心軸AX2とモータ241の回転軸AX3とを一致させており、チャック機構22により保持されたワークWの軸部Waはモータ241の回転軸AX3と一致している。しかしながら、鍛造などにより成形されたワークWでは、歯車Wbの対称軸AX4が軸部Waの軸芯からずれ、モータ241に対して芯ズレが発生していることがある。そこで、本実施形態では、以下に詳述する手順によって保持テーブル21AにローディングされたワークWの芯ズレを検出している。なお、保持テーブル21Bに保持されたワークWについても全く同様にして芯ズレが検出されるため、当該ワークWの芯ズレ検出に関する説明については省略する。
保持テーブル21Aへの未検査ワークWのローディングが完了すると、アライメント照明部28によりワークWを照明した状態で当該ワークWを回転させながらアライメントカメラ27により歯車Wbを上方より撮像する。これによって、歯車Wbの1周分のワーク画像I1が取得され、ワーク画像I1の画像データは画像処理部55に送られる(ステップS401)。画像処理部55では、ワーク画像I1を3つ繋げた、ワーク3周分の連続画像I3を作成する(ステップS402)。また、平滑化フィルタ処理によってノイズ成分を除去して平滑化画像Isを作成する(ステップS403)。さらに大津の手法などの二値化処理により平滑化画像Isを二値画像に変換するとともに、ワークWの歯車Wbに相当する領域(以下「エッジ領域」という)の二値画像データをエッジ画像データとして抽出する(ステップS404)。
次に、演算処理部51が以下の一連の処理(ステップS405〜S412)を実行することで、エッジ画像データからワークWの芯ズレを求める。すなわち、エッジ領域を示すエッジ画像データをランレングスデータに変換することで、例えば図7の(a)欄に示すように、3周分のエッジ領域の形状を示すエッジ波形Fを導出する(ステップS405)。なお、図7の(a)欄および(b)欄に示す各グラフにおける横軸Xは平滑化画像Isの画素位置(ワークWの回転角および歯車Wbの周方向における位置に相当)を示し、縦軸Yはラインセンサ271の長手方向(歯車Wbの径方向)におけるエッジ位置を示している。
また、このエッジ波形Fに対して移動平均処理を施し、同図の(b)欄に示す移動平均波形Fsを導出する(ステップS406)。ここで、ワークWの歯車Wb(本発明の「ワークの外周部」の一例に相当)においては凸部と凹部とが繰り返して設けられ、周期的な位相が存在することから本実施形態では1位相の画素数(回転角の範囲)をL1とすれば、移動平均フィルタのフィルタサイズを(L1/2)に設定している。こうして得られた移動平均波形Fs中の各位相には、極大値および極小値がそれぞれ1点ずつ存在し、そのうちの一方が歯車Wbの歯先位置に相当し、他方が歯底位置に相当する。
本実施形態では、移動平均波形Fsに含まれる各位相の極大値を抽出し、それらの離散点からワークWの回転に伴う歯先位置(または歯底位置)の変化を示す関数Fnを導出する(ステップS407)。なお、図7の(c)欄に示すグラフが当該関数Fnの一例であり、同グラフの左端部分が急峻となっているのは関数を導出する際のデータ処理上の問題であり、当該部分のデータは歯先位置(歯底位置)を示すものではない。そこで、本実施形態では、当該左端部分の急峻データを除いて、関数Fnの平均値AVを導出する(ステップS408)。ここで、図7の(c)欄から明らかなように、芯ズレが発生していない場合には、歯先位置(歯底位置)はワークWの回転角を問わず平均値AVのライン(図中の破線)上に位置する。一方、芯ズレが発生する場合には、図中の実線で示すようにワークWの回転周期で変動し、平均値AVからの変動量の最大値がズレ量Δ(図5参照)に相当し、最大値を示す回転角がズレ方向に相当する。
そこで、本実施形態では、図7の(d)欄に示すようにワークWの1周分について平均値AVからの相対変動量を示す関数Fzを取り出し(ステップS409)、その関数Fzに基づいてズレ方向を導出する(ステップS410)とともにズレ量Δを導出する(ステップS411)。より具体的には、関数Fzが極大を示す画素位置Xmaxと、ワークWの1周分に相当する画素数Lとに基づきズレ方向を次式
ズレ方向=Xmax/L×360°
により求めている。もちろん、画素位置Xmaxの代わりに関数Fzが極小を示す画素位置Xminを用いてもよい。また、関数Fzの極大値Ymaxと極小値Yminから振幅Aを次式
A=(Ymax−Ymin)/2
にしたがって求め、その振幅Aにラインセンサ271の分解能を掛けて求めた値をズレ量Δとしている。
以上のように、本実施形態では、ワークWを回転させながら撮像して得られたワーク画像I1に基づいて作成された平滑化画像Isからエッジ画像データ(歯車Wbの外周部の画像データ)を抽出するとともに、当該エッジ画像データをランレングスデータに変換してエッジ波形Fを求めている。このエッジ波形Fは歯車Wbの外周部の形状を正確に示しており、当該エッジ波形Fに基づいてモータ241の回転軸AX3に対するワークWの芯ズレを高精度に算出することができる。そして、このようにして導出した芯ズレ(=ズレ方向+ズレ量Δ)を解消するように水平位置決め機構23を駆動することで芯ズレを良好に補正することができる。さらに、芯ズレを補正した後でワークWを回転させながらワークWを撮像してワークWを検査しているので、ワーク検査を高精度に行うことができる。
また、本実施形態では、歯車Wbの1周分のワーク画像I1を3つ繋げて連続画像I3を作成し、当該連続画像I3に基づいて芯ズレを検出しているため、次のような作用効果が得られる。例えばプリアライメント位置PAでワークWを3回転させながら連続画像I3を取得してもよいが、芯ズレ検出のために要するワークWの回転量が多く、芯ズレの検出時間が長くなる。これに対し、本実施形態ではワークWの回転量を1周とすることができ、芯ズレの検出に要する時間を短縮することができる。
このように本実施形態における回転機構24が本発明の「回転部」の一例に相当し、アライメントカメラ27が本発明の「撮像部」の一例に相当している。また、演算処理部51が本発明の「エッジ波形導出部」および「芯ズレ演算部」として機能している。そして、回転機構24、アライメントカメラ27、演算処理部51および画像処理部55により本発明の「芯ズレ検出装置」が構成されている。また、保持テーブル21A、21Bが本発明の「ワーク保持部」の一例に相当している。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば上記実施形態では、歯車Wbの1周分のワーク画像I1を3つ繋げて連続画像I3を作成しているが、連続画像I3は少なくとも1周以上のワーク画像を有しておればよい。
また、上記実施形態では、図7に示すように移動平均波形Fsに含まれる各位相の極大値から関数Fnを導出しているが、極小値から関数Fnを導出してもよい。
また、エッジ波形Fの導出手法は、上記したエッジ画像データのランレングスデータへの変換に限定されるものではなく、その他の手法によりエッジ波形Fを導出してもよい。
また、上記実施形態では歯車Wbを有するワークWを検出対象物としているが、本発明を用いることで対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワーク全般について芯ズレを高精度に検出することができる。
また、上記実施形態では、2つの保持テーブル21A、21Bを交互にプリアライメント位置PAに位置させて芯ズレを検出する検査装置100に本発明に係る芯ズレ検出装置を適用しているが、単一あるいは3つ以上の保持テーブルを有する検査装置に対しても本発明を適用することができる。また、上記実施形態では、プリアライメント位置PAを検査位置PIから離間させた検査装置100に本発明を適用しているが、プリアライメント位置PAを検査位置PIと一致させる、つまり検査位置で芯ズレ検出および芯ズレ補正を行った後で検査処理を行う検査装置にも本発明を適用することができる。また、このように構成された検査装置では、検査カメラ31の一部をアライメントカメラ27としても機能させてもよい。
この発明は、対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークの回転部に対する芯ズレを検出する芯ズレ検出技術全般に適用することができる。
5…制御ユニット
21A,21B…保持テーブル(ワーク保持部)
24…回転機構(回転部)
27…アライメントカメラ(撮像部)
51…演算処理部(エッジ波形導出部、芯ズレ演算部)
55…画像処理部
100…検査装置
241…モータ(回転部)
271…ラインセンサ
AX3…(モータ241の)回転軸
AX4…対称軸
F…エッジ波形
I1…ワーク画像
PA…プリアライメント位置
W…ワーク
Δ…ズレ量

Claims (5)

  1. 対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークを回転させる、回転部に対する前記ワークの芯ズレを検出する芯ズレ検出装置であって、
    前記回転部により回転される前記ワークの外周部の少なくとも1周分を含む画像を撮像する撮像部と、
    前記撮像部により撮像された画像に対して二値化処理を施し、前記ワークの外周部の画像データをエッジ画像データとして抽出する画像処理部と、
    前記エッジ画像データに基づいて前記ワークの外周部の形状を示すエッジ波形を求めるエッジ波形導出部と、
    前記エッジ波形導出部により導出された前記エッジ波形に基づいて前記回転部に対する前記ワークの芯ズレを求める芯ズレ演算部と、
    を備えることを特徴とする芯ズレ検出装置。
  2. 請求項1に記載の芯ズレ検出装置であって、
    前記撮像部は、前記ワークに対して前記回転部の反対側で前記ワークの前記対称軸に対して径方向外側に延設されたラインセンサを有する芯ズレ検出装置。
  3. 請求項1または2に記載の芯ズレ検出装置であって、
    前記芯ズレ演算部は、前記回転部の回転軸に対する前記対称軸のズレ量およびズレ方向を前記芯ズレとして求める芯ズレ検出装置。
  4. 請求項1ないし3のいずれか一項に記載の芯ズレ検出装置であって、
    前記エッジ波形導出部は、前記エッジ画像データをランレングスデータに変換して前記エッジ波形を求める芯ズレ検出装置。
  5. 対称軸まわりに回転対称な形状で凸部と凹部とが周期的に繰り返して設けられた外周部を有するワークワークをワーク保持部により保持する第1工程と、
    前記ワークを保持した前記ワーク保持部を回転部により回転させることで前記ワークを前記回転部の回転軸まわりに回転させる第2工程と、
    前記回転部による前記ワークの回転中に前記ワークの外周部の少なくとも1周分を含む画像を取得する第3工程と、
    前記第3工程により取得された画像に対して二値化処理を施し、前記ワークの外周部の画像データをエッジ画像データとして抽出する第4工程と、
    前記エッジ画像データに基づいて前記ワークの外周部の形状を示すエッジ波形を求める第5工程と、
    前記エッジ波形に基づいて前記回転部に対する前記ワークの芯ズレを求める第6工程と、を備えることを特徴とする芯ズレ検出方法。
JP2017047286A 2017-03-13 2017-03-13 芯ズレ検出装置および芯ズレ検出方法 Active JP6794301B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017047286A JP6794301B2 (ja) 2017-03-13 2017-03-13 芯ズレ検出装置および芯ズレ検出方法
PCT/JP2017/040739 WO2018168068A1 (ja) 2017-03-13 2017-11-13 芯ズレ検出装置および芯ズレ検出方法
TW106143370A TWI654406B (zh) 2017-03-13 2017-12-11 軸心偏移檢測裝置及軸心偏移檢測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047286A JP6794301B2 (ja) 2017-03-13 2017-03-13 芯ズレ検出装置および芯ズレ検出方法

Publications (2)

Publication Number Publication Date
JP2018151244A true JP2018151244A (ja) 2018-09-27
JP6794301B2 JP6794301B2 (ja) 2020-12-02

Family

ID=63680872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047286A Active JP6794301B2 (ja) 2017-03-13 2017-03-13 芯ズレ検出装置および芯ズレ検出方法

Country Status (1)

Country Link
JP (1) JP6794301B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567604A (en) * 1978-11-16 1980-05-21 Oosakafu Gear automatic inspection unit
JPH07253375A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 偏心検出方法および装置
JPH10253332A (ja) * 1997-03-12 1998-09-25 Nireco Corp 周期パターン内の欠陥検査方法と装置
JP2002280440A (ja) * 2001-03-16 2002-09-27 Matsushita Electric Ind Co Ltd 検査装置における回転ステージ自動位置補正制御方法
JP2013015336A (ja) * 2011-06-30 2013-01-24 Meidensha Corp 画像処理によるトロリ線摩耗測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567604A (en) * 1978-11-16 1980-05-21 Oosakafu Gear automatic inspection unit
JPH07253375A (ja) * 1994-03-15 1995-10-03 Toshiba Corp 偏心検出方法および装置
JPH10253332A (ja) * 1997-03-12 1998-09-25 Nireco Corp 周期パターン内の欠陥検査方法と装置
JP2002280440A (ja) * 2001-03-16 2002-09-27 Matsushita Electric Ind Co Ltd 検査装置における回転ステージ自動位置補正制御方法
JP2013015336A (ja) * 2011-06-30 2013-01-24 Meidensha Corp 画像処理によるトロリ線摩耗測定装置

Also Published As

Publication number Publication date
JP6794301B2 (ja) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6598898B2 (ja) 芯ズレ検出装置および芯ズレ検出方法
US11175240B2 (en) Inspection apparatus and inspection method
JP6671310B2 (ja) ワーク保持装置、検査装置およびワーク位置補正方法
JP2013086184A (ja) ワーク取出システム、ロボット装置および被加工物の製造方法
JPWO2012127657A1 (ja) ワークの欠陥検出装置
JP6598954B1 (ja) 外観検査装置および外観検査方法
JP6598807B2 (ja) 検査方法および検査装置
WO2018168067A1 (ja) 検査装置および検査方法
JP6794301B2 (ja) 芯ズレ検出装置および芯ズレ検出方法
JP6650420B2 (ja) 芯ズレ検出装置および芯ズレ検出方法
WO2018168068A1 (ja) 芯ズレ検出装置および芯ズレ検出方法
JP7161956B2 (ja) 検査装置および検査方法
JP2007292606A (ja) 表面検査装置
JP2022124812A (ja) 検査装置、検査方法、およびプログラム

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R150 Certificate of patent or registration of utility model

Ref document number: 6794301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250