JP2018151127A - ヒートポンプサイクルシステム - Google Patents

ヒートポンプサイクルシステム Download PDF

Info

Publication number
JP2018151127A
JP2018151127A JP2017047744A JP2017047744A JP2018151127A JP 2018151127 A JP2018151127 A JP 2018151127A JP 2017047744 A JP2017047744 A JP 2017047744A JP 2017047744 A JP2017047744 A JP 2017047744A JP 2018151127 A JP2018151127 A JP 2018151127A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
pump cycle
internal space
cycle system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017047744A
Other languages
English (en)
Other versions
JP6819374B2 (ja
Inventor
三枝 弘
Hiroshi Saegusa
弘 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017047744A priority Critical patent/JP6819374B2/ja
Publication of JP2018151127A publication Critical patent/JP2018151127A/ja
Application granted granted Critical
Publication of JP6819374B2 publication Critical patent/JP6819374B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】冷房性能及び暖房性能を確保することのできるヒートポンプサイクルシステムを提供する。【解決手段】ヒートポンプサイクルシステム20は、熱交換器24と、減圧器26と、バイパス流路Wbと、第3流路W3と、開閉弁25とを備える。熱交換器24は、第1減圧器23を通過した冷媒が第1流路W1を介して一端部から流入するメインコア部240a、メインコア部240aの他端部から流出する液相冷媒を貯める貯液部243、及び貯液部243に接続されるサブコア部240bを有する。減圧器26は、サブコア部240bから第2流路W2を介して流出する冷媒を減圧させる。バイパス流路Wbは、第1流路W1及び第2流路W2を接続し、熱交換器24をバイパスする。第3流路W3は、貯液部243及びアキュームレータ28を接続する。開閉弁25は、第3流路W3を開閉させる。【選択図】図1

Description

本開示は、ヒートポンプサイクルシステムに関する。
従来、特許文献1に記載の車両用空調装置がある。特許文献1に記載の車両用空調装置は、車室内の冷房及び暖房の双方を行うことの可能なヒートポンプサイクルシステムを備えている。ヒートポンプサイクルシステムの室外熱交換器は、メインコア部と、レシーバタンクと、サブクールコア部とを備えている。メインコア部は、空気と冷媒との間で熱交換を行う。レシーバタンクには、メインコア部を通過した冷媒が流入する。サブクール部は、レシーバタンクを流通した液冷媒を空気との熱交換により過冷却する。
この車両用空調装置では、冷房時に室外熱交換器が凝縮器として用いられる。この場合、室外熱交換器では、メインコア部、レシーバ部、サブクール部の順で冷媒が流通する。また、暖房時に室外熱交換器が蒸発器として用いられる。この場合、室外熱交換器では、レシーバタンクをバイパスして、メインコア部、サブクール部の順で冷媒が流通する。
特開2014−113975号公報
ところで、特許文献1に記載の熱交換器では、メインコア部と比較してサブクール部が小さい。そのため、暖房時に室外熱交換器が蒸発器として用いられる場合、メインコア部にて蒸発した冷媒がサブクール部を通過する際に冷媒に発生する圧力損失が大きくなり易い。これが、ヒートポンプサイクルシステムにおける暖房性能の低下を招いている。
一方、冷媒の圧力損失を回避するためには、例えば熱交換器が蒸発器として用いられる際にサブクール部をバイパスするように冷媒を流すという方法も考えられる。しかしながら、このような方法を採用すると、サブクール部を実質的に蒸発器として利用することができないため、改善の余地を残すものとなっている。
本開示は、こうした実情に鑑みてなされたものであり、その目的は、冷房性能及び暖房性能を確保することのできるヒートポンプサイクルシステムを提供することにある。
上記課題を解決するヒートポンプサイクルシステム(20)は、圧縮機(21)と、放熱器(22)と、第1減圧器(23)と、熱交換器(24)と、第2減圧器(26)と、蒸発器(27)と、アキュームレータ(28)と、バイパス流路(Wb)と、第3流路(W3)と、開閉弁(25)と、を備える。圧縮機は、冷媒を圧縮して吐出する。放熱器は、圧縮機から吐出される冷媒の有する熱を、空調対象空間に吹き出される空調用空気に放熱させる。第1減圧器は、放熱器から流出した冷媒を減圧させることができる。熱交換器は、第1減圧器を通過した冷媒が第1流路(W1)を介して一端部から流入するメインコア部(240a)、メインコア部の他端部から流出する液相冷媒を貯める貯液部(243)、及び貯液部に接続されるサブコア部(240b)を有し、メインコア部及びサブコア部を流れる冷媒と空気との間で熱交換を行う。第2減圧器は、サブコア部から第2流路(W2)を介して流出する冷媒を減圧させる。蒸発器は、第2減圧器から流出する冷媒と空調用空気との間で熱交換を行うことにより、空調用空気を冷却するとともに、冷媒を蒸発させる。アキュームレータは、蒸発器を通過した冷媒を気相冷媒及び液相冷媒に分離して蓄えるとともに、分離された気相冷媒が圧縮機に吸入される。バイパス流路は、第1流路及び第2流路を接続し、熱交換器をバイパスする。第3流路は、貯液部及びアキュームレータを接続する。開閉弁は、第3流路を開閉させる。
この構成によれば、開閉弁を閉状態にすることにより、熱交換器を凝縮器として用いることができる。この場合、熱交換器のメインコア部を流れる気相冷媒と空気との間で熱交換が行われることにより、気相冷媒が凝縮して液相冷媒が生成される。この液相冷媒が貯液部に流れることにより、貯液部に液相冷媒が貯まるとともに、この液相冷媒がサブコア部に流入する。液相冷媒がサブコア部を流れる際に、液相冷媒が空気と熱交換することにより更に冷却される。すなわち、サブコア部は過冷却部として機能する。これにより、ヒートポンプサイクルシステムの冷房性能を確保することができる。
一方、上記構成によれば、開閉弁を開状態にすることにより、熱交換器を蒸発器として用いることができる。この場合、第1減圧器を通過した冷媒が、第1流路を介してメインコア部に流入するとともに、バイパス流路及び第2流路を介してサブコア部にも流入する。よって、メインコア部及びサブコア部の両方に冷媒が流れるため、冷媒を蒸発させ易くなる。したがって、ヒートポンプサイクルシステムの暖房性能を確保することもできる。
なお、上記手段、及び特許請求の範囲に記載の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
本開示によれば、冷房性能及び暖房性能を確保することの可能なヒートポンプサイクルシステムを提供できる。
図1は、第1実施形態の車両用空調装置及びヒートポンプサイクルシステムの概略構成を示すブロック図である。 図2は、第1実施形態の熱交換器の正面構造を示す正面図である。 図3は、第1実施形態の車両用空調装置及びヒートポンプサイクルシステムの電気的な構成を示すブロック図である。 図4は、第1実施形態の車両用空調装置及びヒートポンプサイクルシステムの概略構成を示すブロック図である。 図5は、第1実施形態の熱交換器の正面構造を示す正面図である。 図6は、第1実施形態の変形例の車両用空調装置及びヒートポンプサイクルシステムの概略構成を示すブロック図である。 図7は、第2実施形態の熱交換器におけるセパレータ周辺の断面構造を示す断面図である。 図8は、図7のVIII−VIII線に沿った断面構造を示す断面図である。 図9は、第2実施形態の変形例の熱交換器におけるセパレータ周辺の断面構造を示す断面図である。 図10は、第3実施形態の熱交換器におけるセパレータ周辺の断面構造を示す断面図である。 図11は、図10のXI−XI線に沿った断面構造を示す断面図である。 図12は、第4実施形態の熱交換器におけるセパレータ周辺の断面構造を示す断面図である。 図13は、第4実施形態の変形例の熱交換器におけるセパレータ周辺の断面構造を示す断面図である。 図14は、第5実施形態の変形例の熱交換器におけるセパレータ周辺の断面構造を示す断面図である。 図15は、第5実施形態の変形例の熱交換器におけるセパレータ周辺の断面構造を示す断面図である。
以下、ヒートポンプサイクルシステムの実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
<第1実施形態>
はじめに、ヒートポンプサイクルシステムの第1実施形態について説明する。
図1に示されるように、本実施形態のヒートポンプサイクルシステム20は、車両用空調装置10に適用されている。車両用空調装置10は、空調対象空間である車室内に吹き出される空調用空気の温度や風量等を調整することにより車室内の空調を行う装置である。車両用空調装置10は、ヒートポンプサイクルシステム20と、空調ユニット30とを備えている。
ヒートポンプサイクルシステム20は、圧縮機21、水冷コンデンサ22、第1減圧器23、熱交換器24、開閉弁25、第2減圧器26、蒸発器27、及びアキュームレータ28を備えている。ヒートポンプサイクルシステム20を循環する冷媒としては、例えばHFC系冷媒やHFO系冷媒を用いることができる。冷媒には、圧縮機21を潤滑するための潤滑油が混入されている。よって、潤滑油は冷媒と共にヒートポンプサイクルシステム20を循環する。
圧縮機21は、アキュームレータ28から気相冷媒を吸入して圧縮するとともに、圧縮された冷媒を水冷コンデンサ22に吐出する。圧縮機21は、例えば電動式の圧縮機からなる。
水冷コンデンサ22は、周知の水−冷媒熱交換器である。水冷コンデンサ22は、第1熱交換部220と、第2熱交換部221とを有している。第1熱交換部220は、圧縮機21と第1減圧器23との間に設けられている。すなわち、第1熱交換部220には、圧縮機21において圧縮された冷媒が流れる。第2熱交換部221は、冷却水循環回路40の途中に設けられている。冷却水循環回路40には、第2熱交換部221の他、ヒータコア41、冷却ポンプ42、及びエンジン43が設けられている。冷却ポンプ42は、エンジン43を冷却するためのエンジン冷却水を二点鎖線の矢印で示されるように、すなわちエンジン43、第2熱交換部221、ヒータコア41の順で循環させる。
水冷コンデンサ22では、第1熱交換部220を流れる冷媒と、第2熱交換部221を流れるエンジン冷却水との間で熱交換を行うことにより、冷媒の有する熱でエンジン冷却水を加熱する。第1熱交換部220から流出する冷媒は、第1減圧器23に流れる。
冷却水循環回路40では、エンジン43及び第2熱交換部221において加熱された冷媒がヒータコア41を流れることにより、ヒータコア41が加熱される。ヒータコア41は、その内部を流れるエンジン冷却水と、空調ダクト31内を流れる空調用空気との間で熱交換を行うことにより空調用空気を加熱する。したがって、水冷コンデンサ22は、圧縮機21から吐出された冷媒の有する熱をエンジン冷却水及びヒータコア41を介して間接的に空調用空気に放熱させる放熱器として機能している。
第1減圧器23は、膨張弁230と、バイパス流路231と、開閉弁232とを有している。
膨張弁230は、水冷コンデンサ22の第1熱交換部220から流出した冷媒を減圧して吐出する。膨張弁230は、電力の供給に基づき開度の調整が可能な電動式の膨張弁である。膨張弁230により減圧された冷媒は、第1流路W1を通じて熱交換器24へと流れる。
バイパス流路231は、第1熱交換部220から流出した冷媒を、膨張弁230を迂回させて熱交換器24に導く冷媒流路である。
開閉弁232は、バイパス流路231を開閉する電磁弁である。
第1減圧器23では、開閉弁232が開状態である場合、第1熱交換部220から流出した冷媒が膨張弁230を迂回して熱交換器24に流れる。また、開閉弁232が閉状態である場合、第1熱交換部220から流出した冷媒が膨張弁230により減圧された後、熱交換器24に流れる。
熱交換器24は、例えばエンジンルーム内の車両前方側に配置されている。熱交換器24は、ヒートポンプサイクルシステム20において凝縮器又は蒸発器として機能する。すなわち、熱交換器24は、凝縮器として機能する場合、冷媒を空気との間で熱交換させることにより冷媒を凝縮させる。また、熱交換器24は、蒸発器として機能する場合、冷媒を空気との間で熱交換させることにより冷媒を蒸発させる。
具体的には、図2に示されるように、熱交換コア部240と、第1タンク241と、第2タンク242と、貯液部243とを有している。
熱交換コア部240は、矢印z1,z2で示される方向に所定の隙間を有して積層配置される複数のチューブ240cと、隣り合うチューブ240c,240cの間の隙間に配置されるフィン240dとを有している。本実施形態では、矢印z1で示される方向が鉛直方向上方に相当する。また、矢印z2で示される方向が鉛直方向下方に相当する。以下では、矢印z1で示される方向を「鉛直方向上方」とも称する。また、矢印z2で示される方向を「鉛直方向下方」とも称する。さらに、矢印z1,z2で示される方向を「チューブ積層方向」とも称する。
各チューブ240cは、矢印xで示される方向、すなわちチューブ積層方向z1,z2に直交する方向に延びるように形成される扁平状の管からなる。以下では、矢印xで示される方向を「チューブ長手方向」とも称する。各チューブ240cの内部には冷媒が流れている。
フィン240dは、薄く長い金属板をつづら折りに加工した形状を有する、いわゆるコルゲートフィンからなる。フィン240dは、隣接するチューブ240cに対してろう付けにより接合されている。フィン240dは、伝熱面積を増加させることにより熱交換器24の熱交換性能を向上させる機能を有している。
熱交換コア部240は、図中に二点鎖線DLで示される部分でメインコア部240aとサブコア部240bとに区画されている。サブコア部240bは、メインコア部240aに対して鉛直方向下方z2側に配置されている。熱交換コア部240では、各チューブ240cの内部を流れる冷媒と、チューブ240c,240c間の隙間を流れる空気との間で熱交換が行われる。
第1タンク241及び第2タンク242は、チューブ長手方向xにおける熱交換コア部240の両端部にそれぞれ配置されている。第1タンク241及び第2タンク242は、チューブ積層方向z1,z2に延びるように形成されている。
第1タンク241には、熱交換コア部240の各チューブ240cの一端部が接続されている。第1タンク241の内部には、その内部空間を第1内部空間A11と第2内部空間A12とに区画するセパレータ244が設けられている。第1内部空間A11は、メインコア部240aの各チューブ240cの一端部に接続されている。第2内部空間A12は、サブコア部240bの各チューブ240cの一端部に接続されている。
第1タンク241には、第1流路W1に接続される第1コネクタ部245と、第2流路W2に接続される第2コネクタ部246とが設けられている。第1コネクタ部245は、第1流路W1と第1タンク241の第1内部空間A11とを連通させている。第2コネクタ部246は、第2流路W2と第1タンク241の第2内部空間A12とを連通させている。図1に示されるように、第1流路W1は、第1減圧器23に接続されている。第2流路W2は、第2減圧器26に接続されている。
図2に示されるように、第2タンク242には、熱交換コア部240の各チューブ240cの他端部が接続されている。第2タンク242の内部には、その内部空間を第1内部空間A21と第2内部空間A22とに区画するセパレータ247が設けられている。第1内部空間A21は、メインコア部240aの各チューブ240cの他端部に接続されている。第2内部空間A22は、サブコア部240bの各チューブ240cの他端部に接続されている。
貯液部243は、筒状に形成されている。貯液部243の内部空間は、配管248a,248bを介して第2タンク242の第1内部空間A21に連通されている。また、貯液部243の内部空間は、配管248cを介して第2タンク242の第2内部空間A22に連通されている。熱交換器24が凝縮器として機能している場合、メインコア部240aから配管248a,248bを介して貯液部243に液相冷媒及び気相冷媒が流入する。貯液部243は、流入した液相冷媒を貯めるとともに、貯めた液相冷媒を、配管248cを介してサブコア部240bに導く。
図1に示されるように、開閉弁25は、第3流路W3に設けられている。すなわち、開閉弁25が開状態である場合、熱交換器24からアキュームレータ28への冷媒の流れが許容される。また、開閉弁25が閉状態である場合、熱交換器24からアキュームレータ28への冷媒の流れが規制される。
第2減圧器26には、熱交換器24の第2コネクタ部246から冷媒が流入する。第2減圧器26は、流入した冷媒を減圧して蒸発器27に吐出する。第2減圧器26は、電力の供給に基づき開度の調整が可能な電動式の膨張弁である。
蒸発器27は、第2減圧器26から吐出される冷媒と、空調ダクト31内を流れる空調用空気との間で熱交換を行うことにより、空調用空気を冷却する熱交換器である。蒸発器27では、空調用空気との熱交換により冷媒が蒸発する。蒸発器27は、第4流路W4を介して、第3流路W3における開閉弁25の下流側の部分に接続されている。したがって、蒸発器27において蒸発した冷媒は、第4流路W4及び第3流路W3を介してアキュームレータ28へと流れる。
アキュームレータ28は、第3流路W3を介して熱交換器24及び蒸発器27から流入する冷媒を気相冷媒及び液相冷媒に分離して蓄える。アキュームレータ28において分離された気相冷媒は、圧縮機21に吸入される。
ヒートポンプサイクルシステム20は、第1流路W1と第2流路W2とを接続して熱交換器24をバイパスするバイパス流路Wbと、第2流路W2に設けられる逆止弁50とを更に備えている。バイパス流路Wbには、絞り機構29が設けられている。逆止弁50は、第2流路W2におけるバイパス流路Wbとの接続部分よりも下流側に配置されている。逆止弁50は、熱交換器24から第2減圧器26に向かう方向の冷媒の流れを許容しつつ、その逆方向の冷媒の流れを規制する。
空調ユニット30は、空調ダクト31と、エアミックスドア32とを備えている。
空調ダクト31内には、空調用空気が矢印Aで示される方向に流れている。空調ダクト31内には、空気流れ方向Aの上流側から下流側に向かって、蒸発器27、ヒータコア41が順に配置されている。空調ダクト31における蒸発器27の下流側には、ヒータコア41の配置される温風通路33と、ヒータコア41の配置されていない冷風通路34とが設けられている。温風通路33は、蒸発器27を通過した空調用空気をヒータコア41により加熱する空気通路である。冷風通路34は、蒸発器27を通過することにより冷却された空調用空気を、ヒータコア41を迂回させて流す空気通路である。
エアミックスドア32は、図中に実線で示される第1ドア位置と、図中に一点鎖線で示される第2ドア位置とに変位可能に構成されている。第1ドア位置は、冷風通路34を塞ぐ一方で温風通路33を開放する位置である。第2ドア位置は、温風通路33を塞ぐ一方で冷風通路34を開放する位置である。
空調ダクト31における温風通路33及び冷風通路34の空気流れ方向Aの下流側には、車室内に開口する図示しない複数の開口部が形成されている。したがって、温風通路33を通過した空気、及び冷風通路34を通過した空気は、複数の開口部から車室内に吹き出される。エアミックスドア32は、温風通路33を通過する空気の風量と、冷風通路34を通過する空気の風量とを調整することにより、車室内に吹き出される空気の温度を調整する。
次に、車両用空調装置10の電気的な構成について説明する。
図3に示されるように、車両用空調装置10は、操作装置60と、センサ群61と、空調ECU62とを備えている。
操作装置60は、車両の乗員により操作される。操作装置60には、例えば空調用空気の冷却の実行及び停止を切り替えるためのA/Cスイッチや、車室内の目標温度を設定する温度設定スイッチ等が設けられている。操作装置60の操作情報は、空調ECU62に送信される。
センサ群61は、例えば車室内の温度を検出する温度センサや、車室内の温度を検出する温度センサ、日射量を検出する日射センサ等により構成されている。センサ群61は、車両用空調装置10の制御に必要な各種状態量を検出するとともに、検出された状態量に応じた信号を空調ECU62に出力する。
空調ECU62は、演算装置や記憶装置等を有するマイクロコンピュータとその周辺回路とにより構成されている。空調ECU62は、操作装置60の操作情報に基づいてA/Cスイッチのオン/オフ状態や車室内の設定温度等の情報を取得するとともに、センサ群61の出力信号に基づいて各種状態量の情報を取得する。空調ECU62は、取得したこれらの情報に基づいて圧縮機21や第1減圧器23の開閉弁232、開閉弁25、第2減圧器26、エアミックスドア32等を制御することにより、車両用空調装置10を冷房モードあるいは暖房モードで作動させる。冷房モードは、冷却された空調用空気を車室内に吹き出すことにより、車室内を冷房する運転モードである。暖房モードは、加熱された空調用空気を車室内に吹き出すことにより、車室内を暖房する運転モードである。次に、各モードにおける車両用空調装置10の動作について説明する。
(a)冷房モード
空調ECU62は、車両用空調装置10を冷房モードで作動させる場合、エアミックスドア32を、図1に一点鎖線で示される第2ドア位置に変位させる。また、空調ECU62は、第1減圧器23の開閉弁232を開状態にするとともに、開閉弁25を閉状態にする。これにより、ヒートポンプサイクルシステム20では、図1に実線の矢印で示されるように冷媒が循環するようになる。すなわち、冷媒は、「圧縮機21→水冷コンデンサ22の第1熱交換部220→第1減圧器23の開閉弁232→熱交換器24→逆止弁50→第2減圧器26→蒸発器27→アキュームレータ28→圧縮機21」の順で循環する。
この冷房モード時のヒートポンプサイクルシステム20では、圧縮機21から吐出される高温及び高圧の気相冷媒が水冷コンデンサ22の第1熱交換部220に流入する。そのため、水冷コンデンサ22及びエンジン43で加熱されたエンジン冷却水がヒータコア41に流入する。この際、エアミックスドア32が温風通路33を閉塞しているため、ヒータコア41に流入するエンジン冷却水は、空調用空気との熱交換をほとんど行うことなく、ヒータコア41から流出する。
水冷コンデンサ22の第1熱交換部220から流出した気相冷媒は、第1減圧器23に流入する。この際、開閉弁232が開状態となっているため、水冷コンデンサ22の第1熱交換部220から流出した気相冷媒は、膨張弁230により減圧されることなく、第1流路W1を介して熱交換器24の第1コネクタ部245に流入する。
熱交換器24は、冷房モードで作動しているヒートポンプサイクルシステム20において凝縮器として機能する。この際、熱交換器24には、図2に実線の矢印で示されるように冷媒が流れる。すなわち、熱交換器24では、第1コネクタ部245に気相冷媒が流入すると、この気相冷媒が第1タンク241の第1内部空間A11を介してメインコア部240aの各チューブ240cに分配されることにより、メインコア部240aの各チューブ240cの内部に気相冷媒が流れる。メインコア部240aの各チューブ240cの内部を気相冷媒が流れる際、チューブ240cの外部を流れる空気と気相冷媒との間で熱交換が行われることにより気相冷媒が凝縮されて液相冷媒が生成される。これにより、第2タンク242の第1内部空間A21には、各チューブ240cから流出する気相冷媒及び液相冷媒が集められる。
第2タンク242の第1内部空間A21に集められた液相冷媒及び気相冷媒は、配管248a,248bを介して貯液部243に流入する。開閉弁25が閉状態であるため、貯液部243の内部に流れた液相冷媒は、第3流路W3へと流れることなく、貯液部243の内部空間の鉛直方向下方z2側の部分に貯まる。
貯液部243に貯まった液相冷媒は、配管248cを介して第2タンク242の第2内部空間A22に流入した後、サブコア部240bの各チューブ240cに分配される。サブコア部240bの各チューブ240cの内部を液相冷媒が流れる際、チューブ240cの外部を流れる空気と液相冷媒との間で熱交換が行われることにより、液相冷媒が更に冷却される。したがって、熱交換器24が凝縮器として動作している場合、サブコア部240bは、液相冷媒を過冷却する部分として機能する。サブコア部240bのチューブ240cを通過することにより更に冷却された冷媒は、第1タンク241の第2内部空間A12に集められた後、第2コネクタ部246を介して第2流路W2へと流れる。図1に示されるように、熱交換器24から第2流路W2に流出した液相冷媒は、第2減圧器26へと流れる。
なお、第1流路W1を流れる冷媒の一部及び潤滑油がバイパス流路Wbを介して第2流路W2に流入する可能性がある。バイパス流路Wbを介して第2流路W2に流入する冷媒は、熱交換器24において凝縮されないため、ヒートポンプサイクルシステム20の冷房性能を低下させる可能性がある。この点、本実施形態のヒートポンプサイクルシステム20では、第1流路W1に気相冷媒が流れているため、第1流路W1における冷媒の密度が小さい。したがって、絞り機構29によりバイパス流路Wbの圧力損失を増加させることにより、第1流路W1からバイパス流路Wbを介して第2流路W2への冷媒の漏洩を抑制することができる。結果的に、ヒートポンプサイクルシステム20の冷房性能の低下を抑制することができる。
第2減圧器26は、第2流路W2を介して流入する液相冷媒を低圧冷媒となるまで減圧する。この低圧冷媒は、蒸発器27に流入することにより、空調ダクト31を流れる空調用空気と熱交換を行って蒸発する。この際に発生する蒸発潜熱により空調用空気が冷却される。冷却された空調用空気が冷風通路34を通じて車室内へと流れることにより、車室内の冷房が行われる。
蒸発器27から流出した冷媒は、アキュームレータ28において気相冷媒及び液相冷媒に分離されて蓄えられる。アキュームレータ28に蓄えられている気相冷媒は、圧縮機21に吸入されて再度圧縮される。
(b)暖房モード
空調ECU62は、車両用空調装置10を暖房モードで作動させる場合、エアミックスドア32を、図4に実線で示される第1ドア位置に変位させる。また、空調ECU62は、第1減圧器23の開閉弁232を閉状態にするとともに、開閉弁25を開状態にする。さらに、空調ECU62は、第2減圧器26を閉状態にする。これにより、ヒートポンプサイクルシステム20では、図4に実線の矢印で示されるように冷媒が循環するようになる。すなわち、冷媒は、「圧縮機21→水冷コンデンサ22の第1熱交換部220→第1減圧器23の膨張弁230→熱交換器24→アキュームレータ28→圧縮機21」の順で循環する。
この暖房モード時のヒートポンプサイクルシステム20では、圧縮機21から吐出される高温及び高圧の気相冷媒が水冷コンデンサ22の第1熱交換部220に流入する。そのため、水冷コンデンサ22及びエンジン43で加熱されたエンジン冷却水がヒータコア41に流入する。この際、エアミックスドア32が温風通路33を開放しているため、ヒータコア41に流入するエンジン冷却水は、空調用空気と熱交換を行うことにより放熱する。これにより、空調用空気が加熱される。加熱された空調用空気が車室内に流れることで、車室内の暖房が行われる。また、水冷コンデンサ22の第1熱交換部220を流れる気相冷媒がエンジン冷却水に放熱することにより凝縮し、液相冷媒が生成される。これにより、第1減圧器23には、気相冷媒及び液相冷媒が流入する。
第1減圧器23では開閉弁232が閉状態であるため、水冷コンデンサ22の第1熱交換部220から流出した気相冷媒及び液相冷媒は、膨張弁230により減圧される。膨張弁230により減圧された気相冷媒及び液相冷媒は、第1流路W1を介して熱交換器24の第1コネクタ部245に流入する。また、膨張弁230により減圧された気相冷媒及び液相冷媒は、バイパス流路Wb及び第2流路W2を介して第2コネクタ部246にも流入する。この際、通過する冷媒が下方(望ましくは略鉛直方向下方)に流れるように絞り機構29を配置することにより、液相冷媒を優先的に第2コネクタ部246に導くことができる。
熱交換器24は、暖房モードで作動しているヒートポンプサイクルシステム20において蒸発器として機能する。この際、熱交換器24には、図5に実線の矢印で示されるように冷媒が流れる。すなわち、熱交換器24では、第1コネクタ部245及び第2コネクタ部246に気相冷媒及び液相冷媒が流入すると、それらの気相冷媒及び液相冷媒が第1タンク241の第1内部空間A11及び第2内部空間A12を介して、メインコア部240a及びサブコア部240bのそれぞれのチューブ240cに分配される。メインコア部240a及びサブコア部240bのそれぞれのチューブ240cを液相冷媒が流れる際、チューブ240cの外部を流れる空気と各冷媒との間で熱交換が行われることにより、液相冷媒が蒸発して気相冷媒が生成される。これにより、第2タンク242の第1内部空間A21及び第2内部空間A22には、各チューブ240cから流出する気相冷媒が集められる。
第2タンク242の第1内部空間A21及び第2内部空間A22に集められた気相冷媒は、配管248a〜248cを介して貯液部243に流入する。開閉弁25が開状態であるため、貯液部243に流入した気相冷媒は、第3コネクタ部249を介して第3流路W3に流入する。図4に示されるように、第3流路W3に流入した気相冷媒は、アキュームレータ28を介して圧縮機21に吸入されることにより、再度圧縮される。
以上説明した本実施形態のヒートポンプサイクルシステム20によれば、以下の(1)及び(2)に示される作用及び効果を得ることができる。
(1)熱交換器24が凝縮器として作動している場合、サブコア部240bは、液相冷媒を過冷却する過冷却部として機能する。よって、ヒートポンプサイクルシステム20の冷房性能を確保することができる。また、熱交換器24が蒸発器として作動している場合、メインコア部240a及びサブコア部240bの両方に冷媒が流れるため、冷媒を蒸発させ易くなる。よって、ヒートポンプサイクルシステム20の暖房性能を確保することもできる。
(2)バイパス流路Wbには、流路の方向を、通過する冷媒が下方(望ましくは略鉛直方向下方)に流れるように絞り機構29が配置されている。これにより、熱交換器24が凝縮器として作動している場合、第1流路W1を流れる冷媒が第2流路W2に流れ難くなるため、ヒートポンプサイクルシステム20の冷房性能の低下を抑制することができる。また、熱交換器24が蒸発器として作動している場合、第1流路W1を流れる気相冷媒及び液相冷媒のうち、液相冷媒を優先的にサブコア部240bに導くことができるため、熱交換器24における冷媒の蒸発能力を向上させることができる。結果的に、ヒートポンプサイクルシステム20の暖房性能を向上させることができる。
(変形例)
次に、第1実施形態のヒートポンプサイクルシステム20の変形例について説明する。
本変形例の空調ECU62は、車両用空調装置10を除湿暖房モードで更に作動させる。除湿暖房モードは、車室内の暖房及び除湿を行う運転モードである。
具体的には、空調ECU62は、車両用空調装置10を除湿暖房モードで作動させる場合には、エアミックスドア32を、図6に一点鎖線で示される第1位置から第2位置までの範囲で変位させる。また、空調ECU62は、開閉弁25を閉状態にする。
さらに、空調ECU62は、ヒートポンプサイクルシステム20の暖房時の目標負荷に応じて第1減圧器23の開閉弁232の開閉させることにより、熱交換器24を凝縮器又は蒸発器として作動させる。
例えば、空調ECU62は、車室内設定温度や車室内の温度、車室外の温度、日射量等に基づいて設定される目標吹出温度に対して、センサ群61により検出される実際の吹出温度が高い場合、ヒータコア41に供給されている熱量が過剰であると判定する。また、空調ECU62は、目標吹出温度に対して実際の吹出温度が低い場合、ヒータコア41に供給されている熱量が不足していると判定する。
空調ECU62は、ヒータコア41に供給されている熱量が過剰である場合、第1減圧器23の開閉弁232を閉状態にすることにより、熱交換器24を凝縮器として作動させる。この場合、蒸発器27により空調用空気を除湿することができる。
また、空調ECU62は、ヒータコア41に供給されている熱量が不足している場合、第1減圧器23の開閉弁232を閉状態にすることにより、熱交換器24を蒸発器として作動させる。この場合、蒸発器27により空調用空気を除湿することもできる。
このようなヒートポンプサイクルシステム20では、熱交換器24が蒸発器として作動している場合、サブコア部240bにおける冷媒の圧力損失が大きくなる。そのため、サブコア部240bの下流側に配置される蒸発器27における冷媒の圧力損失を所定の圧力に制御するために、冷媒の流量を制限する必要がある。これを解消するためには、例えばサブコア部240bの総面積を大きくするといった方法が考えられるが、この方法を採用すると、熱交換器24の大型化が避けられないものとなる。
この点、本変形例のヒートポンプサイクルシステム20のように、第1流路W1と第2流路W2とがバイパス流路Wbにより接続されていれば、第1流路W1を流れる冷媒の一部を第2流路W2に導くことができる。これにより、サブコア部240bにおける冷媒の圧力損失を低下させるためにサブコア部240bの面積を大きくする必要がなくなる。よって、熱交換器24の大型化を回避することができ、性能低下を防止することもできる。
<第2実施形態>
次に、ヒートポンプサイクルシステム20の第2実施形態について説明する。以下、第1実施形態のヒートポンプサイクルシステム20との相違点を中心に説明する。
図7に示されるように、本実施形態の熱交換器24では、第1タンク241のセパレータ244を板厚方向に貫通する貫通孔によりバイパス流路Wbが構成されている。なお、図7では、フィン240dの図示が省略されている。バイパス流路Wbには、図中の矢印Bで示される方向に、すなわち第1タンク241の第1内部空間A11から第2内部空間A12に向かう方向に冷媒が流れる。図7及び図8に示されるように、メインコア部240a及びサブコア部240bを構成する複数のチューブ240cのそれぞれの一端部は、バイパス流路Wbを流れる冷媒の流れ方向Bにバイパス流路Wbを投影した領域に重なるように配置されている。
なお、本実施形態を含め、以降の実施形態では、第1流路W1が、第1コネクタ部245の内部流路及び第1タンク241の第1内部空間A11を含む部分として定義されている。換言すれば、第1流路W1は、第1減圧器23から熱交換器24のメインコア部240aまでの冷媒の流路と定義することができる。また、第2流路W2は、第2コネクタ部246の内部流路及び第1タンク241の第2内部空間A12を含む部分として定義されている。換言すれば、第2流路W2は、熱交換器24のサブコア部240bから第2減圧器26までの冷媒の流路と定義することができる。
以上説明したヒートポンプサイクルシステム20によれば、以下の(3),(4)に示される作用及び効果を更に得ることができる。
(3)バイパス流路Wbは、熱交換器24に形成されている。より詳しくは、バイパス流路Wbは、第1タンク241のセパレータ244に形成されている。これにより、熱交換器24とは別にバイパス流路Wbが設けられている場合と比較すると、バイパス流路Wbを構成するための配管等が不要となるため、部品点数を削減することができる。
(4)熱交換器24が蒸発器として作動している際、第1減圧器23から吐出される気相冷媒及び液相冷媒が第1コネクタ部245を介して第1タンク241の第1内部空間A11に流入すると、セパレータ244の鉛直方向上方z1の部分に液相冷媒が貯まる。したがって、セパレータ244にバイパス流路Wbを形成すれば、液相冷媒を選択的に第1タンク241の第2内部空間A12に導くことができる。よって、サブコア部240bに液相冷媒が流れ易くなるため、熱交換器24における冷媒の蒸発性能を向上させることができる。
(変形例)
次に、第2実施形態のヒートポンプサイクルシステム20の変形例について説明する。
図9に示されるように、本変形例の熱交換器24では、第1タンク241のセパレータ244を板厚方向に貫通する複数の貫通孔によりバイパス流路Wbが構成されている。このような構成であっても、第2実施形態のヒートポンプサイクルシステム20に類似の作用及び効果を得ることができる。
<第3実施形態>
次に、ヒートポンプサイクルシステム20の第3実施形態について説明する。以下、第2実施形態のヒートポンプサイクルシステム20との相違点を中心に説明する。
図10及び図11に示されるように、本実施形態の熱交換器24は、第1タンク241の第2内部空間A12に配置される多孔質体250を更に備えている。多孔質体250は、円柱状に形成されている。多孔質体250の一端部は、セパレータ244に形成されるバイパス流路Wbに挿入されている。多孔質体250は、バイパス流路Wbに挿入される部分から第2内部空間A12の下端部まで第2内部空間A12の長手方向に延びるように配置されている。
以上説明したヒートポンプサイクルシステム20によれば、以下の(5)〜(7)に示される作用及び効果を更に得ることができる。
(5)熱交換器24が凝縮器として作動している場合、第1タンク241の第1内部空間A11に流入する気相冷媒に含まれる潤滑油がセパレータ244の鉛直方向上方z1の部分に貯まる。この潤滑油は、多孔質体250に形成される微小な空隙を通じて第1タンク241の第2内部空間A12に流入する。一方、気相冷媒は、多孔質体250に形成される微小な空隙を通り抜けることが難しい。すなわち、潤滑油のみを選択的に第1タンク241の第2内部空間A12に、換言すれば第2流路W2に導くことができるため、熱交換器24における冷媒の凝縮性能の低下を抑制することができる。
(6)熱交換器24が蒸発器として作動している場合、第1タンク241の第1内部空間A11に流入する気相冷媒及び液相冷媒のうち、液相冷媒がセパレータ244の鉛直方向上方z1の部分に貯まる。この液相冷媒は、多孔質体250に形成される微小な空隙を通じて第1タンク241の第2内部空間A12に流入する。すなわち、液相冷媒をサブコア部240bに選択的に流すことができる。よって、熱交換器24における冷媒の蒸発性能を向上させることができる。
(7)多孔質体250は、第1タンク241の第2内部空間A12の内部に配置されるとともに、第2内部空間A12の長手方向に延びるように形成されている。これにより、第1タンク241の第2内部空間A12に流入する液相冷媒が、多孔質体250に形成される空隙に貯まり易くなる。また、サブコア部240bの各チューブ240cの一端部の近傍に多孔質体250が配置されるようになる。よって、サブコア部240bの各チューブ240cに液相冷媒を分配させ易くなる。
<第4実施形態>
次に、ヒートポンプサイクルシステム20の第4実施形態について説明する。以下、第1実施形態のヒートポンプサイクルシステム20との相違点を中心に説明する。
図12に示されるように、本実施形態の熱交換器24は、第1コネクタ部245及び第2コネクタ部246が一体となったコネクタ部260を備えている。コネクタ部260には、第1連通路263と、第2連通路264と、バイパス流路Wbとが形成されている。
第1連通路263の一端部には、第1接続口261が形成されている。第1接続口261には、第1流路W1が接続される。第1連通路263の他端部は、第1タンク241の第1内部空間A11に連通されている。すなわち、第1連通路263は、第1接続口261と第1タンク241の第1内部空間A11とを連通させる冷媒流路である。第1連通路263の途中には、第1接続口261から鉛直方向上方z1に向かってに屈曲する屈曲部263aが形成されている。
第2連通路264の一端部には、第2接続口262が形成されている。第2接続口262には、第2流路W2が接続されている。第2連通路264の他端部は、第1タンク241の第2内部空間A12に連通されている。すなわち、第2連通路264は、第2接続口262と第1タンク241の第2内部空間A12とを連通させる冷媒流路である。
バイパス流路Wbは、第1連通路263の屈曲部263aと第1タンク241の第2内部空間A12とを連通するように形成されている。バイパス流路Wbにおける第1連通路263に接続される一端部は、第1タンク241の第2内部空間A12に接続される他端部と比較すると、鉛直方向上方z1に位置されている。
以上説明したヒートポンプサイクルシステム20によれば、以下の(8)に示される作用及び効果を更に得ることができる。
(8)第1実施形態の第1コネクタ部245及び第2コネクタ部246を一つのコネクタ部260にまとめることができるため、部品点数を削減することができる。また、コネクタ部260にバイパス流路Wbが設けられているため、バイパス流路Wbを構成するための別途の配管等が不要である。この点でも部品点数の削減が図られている。
(変形例)
次に、第4実施形態のヒートポンプサイクルシステム20の変形例について説明する。
図13に示されるように、本変形例の熱交換器24では、バイパス流路Wbに多孔質体250が設けられている。このような構成によれば、第3実施形態の(5)及び(6)に示される作用及び効果に類似の作用及び効果を得ることができる。
<第5実施形態>
次に、ヒートポンプサイクルシステム20の第4実施形態について説明する。以下、第4実施形態のヒートポンプサイクルシステム20との相違点を中心に説明する。
図14に示されるように、本実施形態のコネクタ部260には、第1接続口261から第1タンク241の第1内部空間A11に向かって直線状に延びるように第1連通路263が形成されている。コネクタ部260には、その外面から第1連通路263を横切るように凹状の挿入穴265が形成されている。
挿入穴265におけるコネクタ部260の外面に開口する部分は、蓋部266により閉塞されている。蓋部266には、挿入穴265の中心軸に沿って延びる円柱状のストッパ部266aが一体的に形成されている。ストッパ部266aの先端部と挿入穴265の底面265aとの間の隙間には、板状の弁体267が配置されている。
挿入穴265の底面265aには、凹状の挿入穴269が形成されている。挿入穴269には、スプリング268が圧縮された状態で挿入されている。スプリング268の一端部には、弁体267が接合されている。弁体267は、スプリング268の弾性力によりストッパ部266aの先端部に向かう方向に付勢されている。本実施形態では、スプリング268が付勢部材に相当する。バイパス流路Wbは、挿入穴269の底面から第1タンク241の第2内部空間A12に延びるように形成されている。
次に、本実施形態のヒートポンプサイクルシステム20の動作例について説明する。
熱交換器24が蒸発器として作動している場合、コネクタ部260の第1連通路263には気相冷媒及び液相冷媒が流れている。このとき、第1タンク241の第1内部空間A11の内圧から第2内部空間A12の内圧を減算した差圧に基づき弁体267に働く力が、スプリング268の弾性力に基づき弁体267に働く力よりも小さければ、弁体267はスプリング268の弾性力によりストッパ部266aに接触した状態となる。すなわち、弁体267は、挿入穴265の底面265aから離座した開状態となる。したがって、第1連通路263を流れる液相冷媒が挿入穴265及びバイパス流路Wbを通じて第1タンク241の第2内部空間A12に流れる。よって、サブコア部240bに液相冷媒が流れ易くなるため、熱交換器24における冷媒の蒸発性能を向上させることができる。
熱交換器24が凝縮器として作動している場合、コネクタ部260の第1連通路263及び第1タンク241の第1内部空間A11には気相冷媒が流れている。また、第1タンク241の第2内部空間A12には、サブコア部240bを通じて過冷却された液相冷媒が流れている。したがって、熱交換器24が蒸発器として作動している場合と比較すると、第1内部空間A11の内圧から第2内部空間A12の内圧を減算した差圧が大きくなる。この差圧に基づき弁体267に働く力が、スプリング268の弾性力に基づき弁体267に働く力よりも大きくなると、図15に示されるように、弁体267がスプリング268の弾性力に抗して挿入穴265の底面265aに着座する。すなわち、弁体267は閉状態になる。したがって、第1連通路263から第1タンク241の第2内部空間A12への冷媒の流出が防止されるため、熱交換器24の凝縮性能の低下を抑制することができる。
以上説明したヒートポンプサイクルシステム20によれば、以下の(9)に示される作用及び効果を更に得ることができる。
(9)バイパス流路Wbには、バイパス流路Wbを開閉させる弁体267と、弁体267を開状態となるように付勢するスプリング268とが設けられている。弁体267は、第1タンク241の第1内部空間A11の内圧から第2内部空間A12の内圧を減算した差圧に基づき作用する力がスプリング268の付勢力を超えることに基づき閉状態になる。これにより、熱交換器24における冷媒の蒸発性能を向上させることができるとともに、凝縮性能の低下を抑制することもできる。
<他の実施形態>
なお、各実施形態は、以下の形態にて実施することもできる。
・第1実施形態のヒートポンプサイクルシステム20では、バイパス流路Wbに絞り機構29が設けられていなくてもよい。
・第5実施形態のヒートポンプサイクルシステム20では、スプリング268に代えて、弁体267を付勢する適宜の付勢部材を用いることができる。
・空調ECU62が提供する手段及び/又は機能は、実体的な記憶装置に記憶されたソフトウェア及びそれを実行するコンピュータ、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組み合わせにより提供することができる。例えば空調ECU62がハードウェアである電子回路により提供される場合、それは多数の論理回路を含むデジタル回路、又はアナログ回路により提供することができる。
・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
A11:第1内部空間
A12:第2内部空間
W1:第1流路
W2:第2流路
W3:第3流路
Wb:バイパス流路
20:ヒートポンプサイクルシステム
21:圧縮機
22:水冷コンデンサ(放熱器)
23:第1減圧器
24:熱交換器
25:開閉弁
26:第2減圧器
27:蒸発器
28:アキュームレータ
29:絞り機構
240a:メインコア部
240b:サブコア部
241:タンク
243:貯液部
244:セパレータ
250:多孔質体
260:コネクタ部
261:第1接続口
262:第2接続口
263:第1連通路
263a:屈曲部
264:第2連通路
267:弁体
268:スプリング(付勢部材)

Claims (10)

  1. 冷媒を圧縮して吐出する圧縮機(21)と、
    前記圧縮機から吐出される冷媒の有する熱を、空調対象空間に吹き出される空調用空気に放熱させる放熱器(22)と、
    前記放熱器から流出した冷媒を減圧させることの可能な第1減圧器(23)と、
    前記第1減圧器を通過した冷媒が第1流路(W1)を介して一端部から流入するメインコア部(240a)、前記メインコア部の他端部から流出する液相冷媒を貯める貯液部(243)、及び前記貯液部に接続されるサブコア部(240b)を有し、前記メインコア部及び前記サブコア部を流れる冷媒と空気との間で熱交換を行う熱交換器(24)と、
    前記サブコア部から第2流路(W2)を介して流出する冷媒を減圧させる第2減圧器(26)と、
    前記第2減圧器から流出する冷媒と前記空調用空気との間で熱交換を行うことにより、前記空調用空気を冷却するとともに、前記冷媒を蒸発させる蒸発器(27)と、
    前記蒸発器を通過した冷媒を気相冷媒及び液相冷媒に分離して蓄えるとともに、分離された気相冷媒が前記圧縮機に吸入されるアキュームレータ(28)と、
    前記第1流路及び前記第2流路を接続し、前記熱交換器をバイパスするバイパス流路(Wb)と、
    前記貯液部及び前記アキュームレータを接続する第3流路(W3)と、
    前記第3流路を開閉させる開閉弁(25)と、
    を備えるヒートポンプサイクルシステム。
  2. 前記バイパス流路は、
    前記熱交換器に形成されている
    請求項1に記載のヒートポンプサイクルシステム。
  3. 前記熱交換器は、
    前記メインコア部及び前記サブコア部のそれぞれの一端部に接続されるタンク(241)を更に有し、
    前記タンクは、
    その内部空間を、前記メインコア部及び前記第1流路に連通される第1内部空間(A11)と、前記サブコア部及び前記第2流路に連通される第2内部空間(A12)とに区画するセパレータ(244)を有し、
    前記バイパス流路は、
    前記セパレータに形成されている
    請求項2に記載のヒートポンプサイクルシステム。
  4. 前記サブコア部を構成する複数のチューブのそれぞれの一端部は、
    前記バイパス流路を流れる冷媒の流れ方向に前記バイパス流路を投影した領域に重なるように配置されている
    請求項3に記載のヒートポンプサイクルシステム。
  5. 前記第2内部空間に配置される多孔質体(250)を更に備え、
    前記多孔質体の一端部は、
    前記バイパス流路に挿入されている
    請求項3又は4に記載のヒートポンプサイクルシステム。
  6. 前記熱交換器は、
    前記メインコア部及び前記サブコア部のそれぞれの一端部に接続されるタンク(241)と、
    前記第1流路が接続される第1接続口(261)、及び前記第2流路が接続される第2接続口(262)が一体的に形成されたコネクタ部(260)と、を更に有し、
    前記バイパス流路は、
    前記コネクタ部に形成されている
    請求項1に記載のヒートポンプサイクルシステム。
  7. 前記タンクは、
    その内部空間を、前記メインコア部及び前記第1流路に連通される第1内部空間(A11)と、前記サブコア部及び前記第2流路に連通される第2内部空間(A12)とに区画するセパレータ(244)を有し、
    前記コネクタ部は、
    前記第1接続口及び前記第1内部空間を連通させるとともに、屈曲部(263a)が形成される第1連通路(263)と、
    前記第2接続口及び前記第2内部空間を連通させる第2連通路(264)と、を有し、
    前記バイパス流路は、
    前記第1連通路の前記屈曲部と前記第2内部空間とを連通するように形成されている
    請求項6に記載のヒートポンプサイクルシステム。
  8. 前記バイパス流路に配置される多孔質体(250)を更に備える
    請求項1,2,6,7のいずれか一項に記載のヒートポンプサイクルシステム。
  9. 前記バイパス流路には、絞り機構(29)が設けられている
    請求項1に記載のヒートポンプサイクルシステム。
  10. 前記熱交換器は、
    前記メインコア部及び前記サブコア部のそれぞれの一端部に接続されるタンク(241)を更に有し、
    前記タンクは、
    その内部空間を、前記メインコア部及び前記第1流路に連通される第1内部空間(A11)と、前記サブコア部及び前記第2流路に連通される第2内部空間(A12)とに区画するセパレータ(244)を有し、
    前記バイパス流路には、
    前記バイパス流路を開閉させる弁体(267)と、
    前記弁体を開状態となるように付勢する付勢部材(268)と、が設けられ、
    前記弁体は、
    前記第1内部空間の内圧から前記第2内部空間の内圧を減算した差圧に基づき作用する力が前記付勢部材の付勢力を超えることに基づき閉状態になる
    請求項1に記載のヒートポンプサイクルシステム。
JP2017047744A 2017-03-13 2017-03-13 ヒートポンプサイクルシステム Active JP6819374B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017047744A JP6819374B2 (ja) 2017-03-13 2017-03-13 ヒートポンプサイクルシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047744A JP6819374B2 (ja) 2017-03-13 2017-03-13 ヒートポンプサイクルシステム

Publications (2)

Publication Number Publication Date
JP2018151127A true JP2018151127A (ja) 2018-09-27
JP6819374B2 JP6819374B2 (ja) 2021-01-27

Family

ID=63681491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047744A Active JP6819374B2 (ja) 2017-03-13 2017-03-13 ヒートポンプサイクルシステム

Country Status (1)

Country Link
JP (1) JP6819374B2 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960986A (ja) * 1995-08-22 1997-03-04 Denso Corp 冷凍サイクル装置
JPH10205918A (ja) * 1997-01-16 1998-08-04 Ford Motor Co 大容量凝縮器
JP2003130497A (ja) * 2001-10-17 2003-05-08 Denso Corp 冷凍サイクル装置および凝縮器
JP2005201500A (ja) * 2004-01-14 2005-07-28 Denso Corp 冷凍サイクル装置
JP2006097978A (ja) * 2004-09-29 2006-04-13 Denso Corp 冷凍サイクル
JP2010139094A (ja) * 2008-12-09 2010-06-24 Sanden Corp 冷凍回路用レシーバタンク及びこのレシーバタンクを備えた冷凍回路
JP2011191048A (ja) * 2010-02-16 2011-09-29 Showa Denko Kk コンデンサ
JP2013064592A (ja) * 2011-09-02 2013-04-11 Sanden Corp 熱交換器及びそれを用いたヒートポンプシステム
JP2013107619A (ja) * 2011-11-21 2013-06-06 Hyundai Motor Co Ltd 車両用コンデンサ
JP2013231573A (ja) * 2012-04-02 2013-11-14 Sanden Corp 熱交換器及びそれを用いたヒートポンプシステム
JP2015102311A (ja) * 2013-11-27 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和機
JP2016121858A (ja) * 2014-12-25 2016-07-07 株式会社デンソー 冷凍サイクル装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960986A (ja) * 1995-08-22 1997-03-04 Denso Corp 冷凍サイクル装置
JPH10205918A (ja) * 1997-01-16 1998-08-04 Ford Motor Co 大容量凝縮器
JP2003130497A (ja) * 2001-10-17 2003-05-08 Denso Corp 冷凍サイクル装置および凝縮器
JP2005201500A (ja) * 2004-01-14 2005-07-28 Denso Corp 冷凍サイクル装置
JP2006097978A (ja) * 2004-09-29 2006-04-13 Denso Corp 冷凍サイクル
JP2010139094A (ja) * 2008-12-09 2010-06-24 Sanden Corp 冷凍回路用レシーバタンク及びこのレシーバタンクを備えた冷凍回路
JP2011191048A (ja) * 2010-02-16 2011-09-29 Showa Denko Kk コンデンサ
JP2013064592A (ja) * 2011-09-02 2013-04-11 Sanden Corp 熱交換器及びそれを用いたヒートポンプシステム
JP2013107619A (ja) * 2011-11-21 2013-06-06 Hyundai Motor Co Ltd 車両用コンデンサ
JP2013231573A (ja) * 2012-04-02 2013-11-14 Sanden Corp 熱交換器及びそれを用いたヒートポンプシステム
JP2015102311A (ja) * 2013-11-27 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. 空気調和機
JP2016121858A (ja) * 2014-12-25 2016-07-07 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
JP6819374B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
JP6388045B2 (ja) ヒートポンプシステム
US10118462B2 (en) Heat-pump-type vehicular air-conditioning system
JP4803199B2 (ja) 冷凍サイクル装置
US8528354B2 (en) Vehicle air-conditioning system
WO2015011919A1 (ja) 車両用空調装置
CN111688434A (zh) 车载温度调节装置
JP6415943B2 (ja) ヒートポンプ式車両用空調システム
JPWO2011087001A1 (ja) 車両用空調システム
CN110831796B (zh) 包括具有热交换器的制冷剂回路的用于车辆的制冷设备以及用于这种制冷设备的热交换器
CN113454407B (zh) 用于电动或混合动力机动车辆的热管理的装置
CN111688432A (zh) 车载调温装置
US10611212B2 (en) Air conditioner for vehicle
WO2015008463A1 (ja) 車両用空調装置およびその構成ユニット
JP6537928B2 (ja) 熱交換器及びヒートポンプシステム
CN113424000B (zh) 用于电或混合机动车辆的热管理装置
JP2018151127A (ja) ヒートポンプサイクルシステム
WO2017163563A1 (ja) 熱交換ユニットおよび車両用空調装置
US20200232726A1 (en) Heat exchanger
JP2019027729A (ja) 複合型熱交換器
US11597258B2 (en) Air conditioning device
JP2005042980A (ja) 蓄熱式空気調和装置
KR20240006104A (ko) 차량용 냉난방 시스템
KR20240009004A (ko) 차량용 냉난방 시스템
KR20230108394A (ko) 일체형 냉매 매니폴더 모듈 및 이를 포함하는 차량용 냉난방 시스템
JP2007309582A (ja) エバポレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R151 Written notification of patent or utility model registration

Ref document number: 6819374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151