JP2018150780A - Construction method of underground structure - Google Patents

Construction method of underground structure Download PDF

Info

Publication number
JP2018150780A
JP2018150780A JP2017049750A JP2017049750A JP2018150780A JP 2018150780 A JP2018150780 A JP 2018150780A JP 2017049750 A JP2017049750 A JP 2017049750A JP 2017049750 A JP2017049750 A JP 2017049750A JP 2018150780 A JP2018150780 A JP 2018150780A
Authority
JP
Japan
Prior art keywords
box
construction method
roof
underground structure
friction cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017049750A
Other languages
Japanese (ja)
Other versions
JP6542825B2 (en
Inventor
植村 誠
Makoto Uemura
誠 植村
賢治郎 植村
Kenjiro Uemura
賢治郎 植村
丸田 新市
Shinichi Maruta
新市 丸田
智哉 中村
Tomoya Nakamura
智哉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017049750A priority Critical patent/JP6542825B2/en
Publication of JP2018150780A publication Critical patent/JP2018150780A/en
Application granted granted Critical
Publication of JP6542825B2 publication Critical patent/JP6542825B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction method of an underground structure applicable to a water retaining layer through improving a construction method (SFT construction method) of an underground structure, which is to push out sediment in a working face together with box type roofs to advance a concrete box body after the box type roofs are pressed-in.SOLUTION: A construction method of an underground structure comprises: placing a friction cut plate on an outer side surface to apply its weight; assembling and positioning in rectangular arrays on a lower layer, side layers, and an upper layer corresponding to the outer configuration of a concrete box body of which box type roofs are advanced by pressed-in in the ground integrally with the friction cut plate; and pushing out sediment within rectangular arrays of box type roofs together with the rectangular arrays of box type roofs, remaining the friction plate as the box body advances and is tracked, which are positioned such that a tip of the box body is arrayed with an edge of the box type roof after the box type roofs are pressed-in to the ground, wherein a cut-off structure is configured by overlapping side ends of the corresponding friction cut plates.SELECTED DRAWING: Figure 1

Description

本発明は、鉄道、道路などの下部地中に大幅員の地下構造物を横断方向に掘進建設する際に上部交通に支障を与えることなく施工することができる地下構造物の施工法に関するものである。   The present invention relates to a method for constructing an underground structure that can be constructed without hindering the upper traffic when excavating and constructing a significant underground structure in a lower ground such as a railway or a road. is there.

鉄道、道路などの下部地中に大幅員の地下構造物を横断方向に掘進させるには、上部交通を支承するための防護工が必要となり、鋼管等を水平に並列させるパイプルーフを設けることなどがあげられる。   In order to excavate a large number of underground structures in the lower ground such as railroads and roads in the transverse direction, a protective work is required to support the upper traffic, and a pipe roof that horizontally aligns steel pipes, etc. is provided. Can be given.

しかし、先に別工事としてパイプルーフを形成し、地下構造物を函体(ボックスカルバート)として構築し、パイプルーフ下を推進させるようにしたのでは、このパイプルーフが存在する分だけ土被りが厚くなる。しかも、パイプルーフ施工の防護工が地下構造物埋設の本工事と別工事となり、工費、工期が大である。   However, if the pipe roof was formed as a separate construction first, the underground structure was constructed as a box (box culvert) and propelled under the pipe roof, the earth covering would be as much as this pipe roof existed. Become thicker. Moreover, the protective work for pipe roof construction is separate from the main construction for underground structure burial, and the construction cost and construction period are large.

また、地下構造物を推進させるのに切羽部の掘削を行ってから前進させている。よって、切羽部を掘削する工程を必要とし、この分だけ、工費がかさむだけでなく、工期もその分だけ長いものになる。   In order to promote the underground structure, it is advanced after excavating the face. Therefore, a process for excavating the face portion is required, which not only increases the construction cost, but also increases the construction period accordingly.

しかも切羽部の掘削作業は切羽崩壊などの危険を伴うものであり、切羽安定のための安定処理などの地盤改良のための作業も必要としていた。   Moreover, the excavation work of the face part involves danger such as the face collapsing, and the work for ground improvement such as a stable treatment for stabilizing the face face is also required.

かかる不都合を解消するものとして、本発明者等は、下記特許文献に示すように箱形ルーフを圧入後、コンクリート函体を推進させる場合、函体の推進とともに切羽部の土砂をルーフと一緒に押し出すので、切羽部を掘削する作業を別途必要とせず、コスト削減と工期短縮を図ることができ、また、危険を伴う切羽部の掘削作業を省くことで安全性も向上でき、しかも、函体を推進するための反力抵抗を分散することで、大掛かりな設備を必要としない地下構造物の施工法を出願し、特許権を取得した。
特許第3887383号公報 特許第4134089号公報 特許第4317843号公報
In order to eliminate such inconvenience, the present inventors, as shown in the following patent document, press the box-shaped roof and then propel the concrete box. Because it extrudes, it does not require additional work to excavate the face, reducing costs and shortening the work period.In addition, safety can be improved by eliminating the work of excavating the face with danger. By distributing the reaction force resistance for propelling the project, we applied for a construction method for an underground structure that does not require large-scale equipment and obtained a patent.
Japanese Patent No. 3887383 Japanese Patent No. 4134089 Japanese Patent No. 4317843

この工法はSFT工法と名付けられ、下記非特許文献1にも掲載されている。なお、SFT工法は、(Simple and Face-Less Method of Construction of Tunnel)は、「シンプルで切羽の無いトンネルの構築工法」の略称である。
インターネットウエブサイトの植村技研工業株式会社及びアンダーパス技術協会のホームページ http://www.uemuragiken.co.jp/tech/sft.html http://underpass.info/sft.html
This construction method is named SFT construction method and is also published in Non-Patent Document 1 below. Note that the SFT method (Simple and Face-Less Method of Construction of Tunnel) is an abbreviation for “construction method of a tunnel that is simple and has no face”.
Homepage of Uemura Giken Co., Ltd. and the Underpass Technology Association of the Internet website http://www.uemuragiken.co.jp/tech/sft.html http://underpass.info/sft.html

SFT工法は、第1工程として図25に示すように鉄道などの上部交通(図示は省略した)の脇に土留鋼矢板2を打設して、発進坑3と到達坑4を築造し、前記発進坑3内に推進機5を設置してこれでルーフ用筒体である箱形ルーフ6を到達坑4に向けて圧入させる。箱形ルーフ6の上面にはフリクションカットプレート7を載せて置き、箱形ルーフ6とともに押出す。   In the SFT method, as shown in FIG. 25, the earth retaining steel sheet pile 2 is placed beside the upper traffic (not shown) such as a railway as shown in FIG. The propulsion device 5 is installed in the start pit 3, and the box-shaped roof 6, which is a roof cylinder, is press-fitted toward the arrival pit 4. A friction cut plate 7 is placed on the upper surface of the box-shaped roof 6 and extruded together with the box-shaped roof 6.

箱形ルーフ6は、図29、30に示すように矩形断面の箱形筒体であり、側面に鉤状または平板状の継手6a,6bを長手方向に連続して形成し、また、上面に平板からなるフリクションカットプレート7を取り付けている。箱形ルーフ6は前後端にボルト接合用のフランジを形成して、長さ方向に順次接続して必要長を埋設することができ、さらに継手6a,6bを介して縦横方向に連続しながら並列させる。   The box-shaped roof 6 is a box-shaped cylindrical body having a rectangular cross section as shown in FIGS. 29 and 30, and has a bowl-shaped or flat-plate joint 6 a, 6 b formed continuously in the longitudinal direction on the side surface, and on the upper surface. A friction cut plate 7 made of a flat plate is attached. The box-shaped roof 6 has flanges for bolting at the front and rear ends and can be sequentially connected in the length direction to embed the required length, and further parallel in the vertical and horizontal directions via the joints 6a and 6b. Let

推進機5の詳細図示は省略するが、土砂排土管を押出し体として元押しジャッキで押し出すことにより箱形ルーフ6を掘進させるもので、箱形ルーフ6の先端切羽の掘削は、人力掘削刃口を設けて行なう場合の他、オーガスクリューなどの掘削機構を設けて行なう場合などがある。   Although the detailed illustration of the propulsion device 5 is omitted, the box roof 6 is dug out by pushing out the earth and sand discharge pipe with the main push jack as an extruded body. In addition to the case where a drilling mechanism such as an auger screw is provided.

箱形ルーフ6は推進させようとするコンクリート函体9の外形に対応するように四角形状に配列設置し、箱形ルーフ6の配列で囲まれた切羽部には土留部材19を配設する。   The box-shaped roof 6 is arranged in a quadrangular shape so as to correspond to the outer shape of the concrete box 9 to be propelled, and a earth retaining member 19 is disposed on the face portion surrounded by the arrangement of the box-shaped roof 6.

図中17は腹起こし材、発進坑3側の土留鋼矢板2と到達坑4側の土留鋼矢板2を結合するタイロット材18で固定する。20は発進台を示す。   In the figure, reference numeral 17 denotes a bellows material, and a tie-lot material 18 that joins the earth retaining steel sheet pile 2 on the start pit 3 side and the earth retaining steel sheet pile 2 on the arrival mine 4 side. Reference numeral 20 denotes a starting stand.

次に第2工程の図26に示すようにコンクリート函体9を発進坑3に設置し、コンクリート函体9の後方の反力壁8との間に推進設備として元押しジャッキ10、ストラット16を配設する。   Next, as shown in FIG. 26 in the second step, the concrete box 9 is installed in the start pit 3, and the main jack 10 and the strut 16 are installed as propulsion equipment between the concrete box 9 and the reaction wall 8 behind the concrete box 9. Arrange.

そして、止め部材14でフリクションカットプレート7を発進坑3側に固定する。このフリクションカットプレート7により箱形ルーフ6およびコンクリート函体9と周辺土砂との縁切りを行う。   Then, the friction cut plate 7 is fixed to the start shaft 3 side by the stop member 14. The friction cut plate 7 cuts the box roof 6 and the concrete box 9 and the surrounding earth and sand.

次に先行して押出した箱形ルーフ6の後端にコンクリート函体9の先端を接合し、または当接させて、第3工程として図27に示すように元押しジャッキ10を伸長してコンクリート函体9を前方に押出す。   Next, the leading end of the concrete box 9 is joined or brought into contact with the rear end of the box-shaped roof 6 extruded in advance, and as shown in FIG. The box 9 is pushed forward.

コンクリート函体9の押出しと同時に箱形ルーフ6も押出し、さらに切羽部の掘削は行わず、箱形ルーフ6を押出すときに同時に箱形ルーフ6で囲まれた部分に配設した土留部材19(土留鋼矢板2の一部を使用)を押出すことによりその前方の土砂αも同時に押出す。この場合、前記のようにフリクションカットプレート7により箱形ルーフ6およびコンクリート函体9と周辺土砂との縁切りがなされているから、箱形ルーフ6およびコンクリート函体9はスムーズに推進する。   Simultaneously with the extrusion of the concrete box 9, the box-shaped roof 6 is also extruded, and the face portion is not excavated. When the box-shaped roof 6 is extruded, the earth retaining member 19 disposed at the portion surrounded by the box-shaped roof 6 at the same time. By extruding (using a part of earth retaining steel sheet pile 2), the earth and sand α in front of it is also extruded. In this case, since the box-shaped roof 6 and the concrete box 9 and the surrounding earth and sand are cut off by the friction cut plate 7 as described above, the box-shaped roof 6 and the concrete box 9 are smoothly driven.

このようにして第4工程として図28に示すように箱形ルーフ6とこの箱形ルーフ6に囲まれて同時に押出された土砂が到達坑4に到達したならば、到達坑4で箱形ルーフ6を撤去すると同時に、土砂を掘削して排土する。   In this way, as shown in FIG. 28 as the fourth step, if the box roof 6 and the earth and sand that are simultaneously surrounded and pushed by the box roof 6 reach the access shaft 4, the box roof is formed in the access shaft 4. At the same time as 6 is removed, the soil is excavated and discharged.

そして、さらにコンクリート函体9の先端が到達坑4に達するまで推進してコンクリート函体9の全長の推進が完了する。   Further, the concrete box 9 is further propelled until the tip of the concrete box 9 reaches the reaching pit 4, and the propulsion of the full length of the concrete box 9 is completed.

前記従来のSFT工法では、滞水地盤いわゆる地下水を有する地盤条件では、水対策として薬液注入などの地盤改良を施して施工を行うことが必要となる。   In the conventional SFT method, it is necessary to perform construction by applying ground improvement such as chemical solution injection as a countermeasure against water under the ground condition having the stagnant ground so-called groundwater.

本発明の目的は、滞水地盤でも高価な補助工法を使用せずに施工が可能な地下構造物の施工法を提供することにある。   An object of the present invention is to provide a construction method for an underground structure that can be constructed without using an expensive auxiliary construction method even in stagnant ground.

前記目的を達成するため請求項1記載の本発明は、外側面にフリクションカットプレートを重置きし、このフリクションカットプレートごと箱形ルーフを地中に圧入して推進しようとするコンクリート函体の外形に対応するように下段、側部及び上段の矩形配列に組み配置し、箱形ルーフを地中に圧入した後、前記箱形ルーフ端部に函体の先端部を合わせて函体を配置して函体の推進や牽引とともにフリクションカットプレートを残して、箱形ルーフの矩形配列の内方の土砂を箱形ルーフの矩形配列と一緒に押し出す地下構造物の施工法において、フリクションカットプレートは側端を重ね合わせて止水構造とすることを要旨とするものである。   In order to achieve the above object, the present invention according to claim 1 is directed to an outer shape of a concrete box in which a friction cut plate is placed on the outer surface, and a box roof is pressed into the ground together with the friction cut plate for propulsion. After the box-shaped roof is press-fitted into the ground, the box is placed by aligning the tip of the box with the end of the box-shaped roof. In the construction method of the underground structure that pushes the inner sand and sand in the rectangular arrangement of the box roof together with the rectangular arrangement of the box roof, leaving the friction cut plate together with the box propulsion and traction, the friction cut plate is The gist is to make the water-stopping structure by overlapping the ends.

本発明によれば、横並びになるフリクションカットプレートは重ね合わせて止水構造となるので、侵入しようとする地下水はこのフリクションカットプレートで止められ、コンクリート函体の中に流入することはない。   According to the present invention, since the friction cut plates arranged side by side form a water-stop structure, the groundwater to be invaded is stopped by the friction cut plates and does not flow into the concrete box.

請求項2記載の本発明は、側端を重ね合わせるフリクションカットプレートは間に止水部材を介在させることを要旨とするものである。   The gist of the present invention described in claim 2 is that the friction cut plate for overlapping the side ends has a water stop member interposed therebetween.

請求項2記載の本発明によれば、止水部材を介在させることにより確実な止水構造とすることができる。   According to this invention of Claim 2, it can be set as a reliable water stop structure by interposing a water stop member.

請求項3記載の本発明は、土砂を箱形ルーフの矩形配列と一緒に押し出す到達坑では、土留ジャッキを設け、この土留ジャッキで押し出す土砂を抑えながら土留ジャッキを縮小して押し出すことを要旨とするものである。   The gist of the present invention described in claim 3 is that, in the access pit for extruding earth and sand together with the rectangular array of box-shaped roofs, a earth retaining jack is provided, and the earth retaining jack is reduced and extruded while suppressing the earth and sand pushed out by the earth retaining jack. To do.

請求項3記載の本発明によれば、箱形ルーフの矩形配列と一緒に押し出す内方の土砂も帯水性の柔らかなものなので、土留ジャッキで押し出す土砂を抑えながら土留ジャッキを縮小して押し出すことにより安全に押し出すことができる。   According to the third aspect of the present invention, since the inner earth and sand pushed out together with the rectangular array of the box-shaped roof is also water-based soft, the earth retaining jack is reduced and pushed out while suppressing the earth and sand pushed out by the earth retaining jack. Can be pushed out more safely.

以上述べたように本発明の地下構造物の施工法は、滞水地盤でも高価な補助工法を使用せずに施工が可能なものである。   As described above, the construction method of the underground structure of the present invention can be constructed even on stagnant ground without using an expensive auxiliary construction method.

以下、図面について本発明の実施形態を詳細に説明する。図3〜図8は本発明の地下構造物の施工法の第1実施形態を示す各工程の縦断側面図で、前記従来例を示す図25〜図28と同一構成要素には同一参照符号を付したものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 3 to 8 are longitudinal side views of the respective steps showing the first embodiment of the construction method of the underground structure of the present invention. The same reference numerals are given to the same components as those in FIGS. 25 to 28 showing the conventional example. It is attached.

本実施形態は耐水地盤βに地下構造物を施工する場合である。   This embodiment is a case where an underground structure is constructed on the water-resistant ground β.

本発明も従来のSFT工法と同じように第1工程として図1に示すように鉄道などの上部交通(図示は省略した)の脇にシートパイル等の土留鋼矢板2からなる仮土留杭を打設して、発進坑3と到達坑4を築造し、図2に示すように発進坑3に捨石およびベースコンクリート打設による発進台20を形成し、推進機(図示せず、図25参照)を設置してこれでルーフ用筒体である箱形ルーフ6を到達坑4に向けて圧入させる。   In the present invention, as in the conventional SFT method, as shown in FIG. 1, a temporary earth retaining pile made of earth retaining steel sheet piles 2 such as a sheet pile is placed next to an upper traffic such as a railway (not shown). The start pit 3 and the arrival pit 4 are constructed, and as shown in FIG. 2, the start pit 20 is formed on the start pit 3 by rubble and base concrete placement, and a propulsion device (not shown, see FIG. 25) Then, the box-shaped roof 6 that is a roof cylinder is press-fitted toward the access pit 4.

到達坑4にも同じく捨石およびベースコンクリート打設による到達台21を形成してある。   Similarly, the arrival pit 4 is formed with rubble and base concrete placement.

箱形ルーフ6は前記従来例と同じく図29、図30に示すような矩形断面の箱形筒体で、前後端にボルト接合用のフランジを形成して(図示せず)、長さ方向に順次接続して必要長を埋設することができるものである。   The box-shaped roof 6 is a box-shaped cylindrical body having a rectangular cross section as shown in FIGS. 29 and 30 as in the above-described conventional example, and is formed with flanges for bolt connection at the front and rear ends (not shown) in the length direction. The necessary length can be buried by connecting them sequentially.

なお、本発明で使用する箱形ルーフ6は側面に鉤状または平板状の継手6a,6bを長手方向に連続して形成し、また、上面にフリクションカットプレート7を載置している。   In addition, the box-shaped roof 6 used in the present invention has a flange-like or flat-plate joint 6a, 6b formed continuously in the longitudinal direction on the side surface, and a friction cut plate 7 placed on the upper surface.

前記フリクションカットプレート7は帯板状の鋼板であるが、端部を箱形ルーフ6の端部に溶接して一体化しそれ以外は単に載せているだけのものであり、箱形ルーフ6が長さ方向に順次接続してなる場合は、フリクションカットプレート7自体も相互に溶接などで接続して連続するものとする。   The friction cut plate 7 is a strip-shaped steel plate, but its end is welded and integrated with the end of the box-shaped roof 6 and the rest is simply placed. When sequentially connected in the vertical direction, the friction cut plates 7 themselves are also connected to each other by welding or the like to be continuous.

本発明においては、図20、図21に示すように、フリクションカットプレート7は箱形ルーフ6の幅よりも左右に張り出す幅広のものとし、かつ、側端を重ね合わせて止水構造とした。   In the present invention, as shown in FIGS. 20 and 21, the friction cut plate 7 has a width that protrudes to the left and right rather than the width of the box-shaped roof 6, and a water-stopping structure is formed by overlapping the side edges. .

かかる重ね合わせに際しては、フリクションカットプレート7の一方の側端を長さ方向に曲成させ、浮き上がり状のフランジ7aとして形成し、その下に隣のフリクションカットプレート7の一方の側端7bが入り込むようにする。   At the time of such superposition, one side end of the friction cut plate 7 is bent in the length direction to form a floating flange 7a, and one side end 7b of the adjacent friction cut plate 7 enters below. Like that.

このようにすれば、横並びになるフリクションカットプレート7同士はそのレベルを変えずに並び、かつ、斜めになることなくしっかりと重ね合わせることができる。   In this way, the friction cut plates 7 arranged side by side can be aligned without changing their level and can be firmly overlapped without being inclined.

また、図22〜図24に示すように、前記側端を重ね合わせるフリクションカットプレート7は重ね合わせる部分の間に止水部材22を介在させてもよい。   Further, as shown in FIGS. 22 to 24, the water blocking member 22 may be interposed between the overlapping portions of the friction cut plate 7 that overlaps the side ends.

該止水部材22としては種々のものが採用できるが、成型した合成ゴムによるものが好適である。図24に示すものはシート状本体に山形の縞模様として凹凸を付けたものである。   Various members can be used as the water stop member 22, but a molded synthetic rubber is preferable. FIG. 24 shows a sheet-like main body with projections and depressions as chevron stripes.

図22に示すように、止水部材22は前記浮き上がり状のフランジ7aの裏側に貼り付けておき、フリクションカットプレート7同士を側端を重ね合わせる際には押し潰されて止水をなす。   As shown in FIG. 22, the water stop member 22 is attached to the back side of the raised flange 7a, and when the friction cut plates 7 are overlapped on the side ends, they are crushed to stop water.

図1、図3に示すように、フリクションカットプレート7を重ねてある箱形ルーフ6は発進坑3から到達坑4へと圧入させ、推進しようとするコンクリート函体9の外形に対応するように箱形ルーフ6を下段、側部及び上段の矩形配列に組み配置する。   As shown in FIGS. 1 and 3, the box-shaped roof 6 on which the friction cut plates 7 are stacked is press-fitted from the starting pit 3 to the reaching pit 4 so as to correspond to the outer shape of the concrete box 9 to be propelled. The box-shaped roof 6 is assembled and arranged in a rectangular arrangement of the lower stage, the side part, and the upper stage.

図4に示すように発進坑3で発進台20に設置するコンクリート函体9の先端と土中配列された箱形ルーフ6の端を合致させ、また、発進坑3の反力壁8の前に元押しジャッキ10を設置し、これをコンクリート函体9の後端に押角23を介して当接させる。   As shown in FIG. 4, the front end of the concrete box 9 installed on the start stand 20 in the start pit 3 is matched with the end of the box roof 6 arranged in the soil, and in front of the reaction wall 8 of the start pit 3. The main pushing jack 10 is installed on the rear side of the concrete box 9 and is brought into contact with the rear end of the concrete box 9 through the pushing angle 23.

なお、コンクリート函体9の前端には函体接続工としてのH型鋼材による押角24を取り付ける。   A pressing angle 24 made of an H-shaped steel material as a box connecting work is attached to the front end of the concrete box 9.

前記フリクションカットプレート7は箱形ルーフ6とは端部の結合を解除し(溶接固定を解除する)、土留鋼矢板2と固定するようにする。   The friction cut plate 7 is released from the end of the box-shaped roof 6 (release welding fixing) and fixed to the earth retaining sheet pile 2.

図4に示すように箱形ルーフ6の後端にコンクリート函体9の先端を接合し、または当接させ、元押しジャッキ10でコンクリート函体9を箱形ルーフ6ともどもに押し出す。図中16は押し出しの際に使用するストラットである。   As shown in FIG. 4, the front end of the concrete box 9 is joined or brought into contact with the rear end of the box-shaped roof 6, and the concrete box 9 is pushed out together with the box-shaped roof 6 by the main push jack 10. In the figure, 16 is a strut used for extrusion.

なお、コンクリート函体9は推進させる場合の他、牽引させることもできる。牽引は、函体の前方反力壁を設け、函体の後部に定着装置または牽引ジャッキを取り付け、この定着装置または牽引ジャッキに一端を取り付けた牽引ケーブルの他端を、反力壁に固定した牽引ジャッキまたは定着装置に定着し、牽引ジャッキの牽引で行う。コンクリート函体9の推進や牽引は、いずれか一方を、もしくは、推進と牽引の両方を併用して行ってもよい。   The concrete box 9 can be pulled as well as being propelled. Towing, the front reaction force wall of the box is provided, a fixing device or a traction jack is attached to the rear of the box, and the other end of the traction cable with one end attached to the fixing device or the traction jack is fixed to the reaction force wall. Fix to the tow jack or fixing device and pull the tow jack. The concrete box 9 may be propelled or towed by either one or both propulsion and towing together.

このようにコンクリート函体9は、推進や牽引させるものであり、コンクリート函体9の推進や牽引と同時に箱形ルーフ6も押出し、さらに切羽部の掘削は行わず、箱形ルーフ6を押出すときに箱形ルーフ6の相互間に土砂がない場合はそのまま、また、土砂がある場合はこの土砂も箱形ルーフ6と共に到達坑4に押し出される。   In this way, the concrete box 9 is propelled and towed, and the box-shaped roof 6 is extruded simultaneously with the propulsion and towing of the concrete box 9, and the box-shaped roof 6 is pushed out without excavating the face portion. Sometimes, when there is no earth and sand between the box-shaped roofs 6, the earth and sand are pushed out together with the box-shaped roof 6 to the reaching pit 4.

なお、箱形ルーフ6で囲まれた切羽部には土留部材19を配設し、これで土砂を押えながら箱形ルーフ6といっしょに押し出すが、この土留部材19は仮土留杭2を鏡開きして箱形ルーフ6で囲まれた内方の鋼矢板を利用することができる。   A retaining member 19 is disposed on the face surrounded by the box-shaped roof 6 and is pushed out together with the box-shaped roof 6 while holding the earth and sand. The retaining member 19 mirror-opens the temporary retaining pile 2. An inner steel sheet pile surrounded by a box-shaped roof 6 can be used.

また、箱形ルーフ6に重ねたフリクションカットプレート7はコンクリート函体9の推進や牽引と同時に箱形ルーフ6を押出す際に坑口付近に端部を止め、これを残置することで、箱形ルーフ6やコンクリート函体9と地山との縁切りを行うことができる。   Further, the friction cut plate 7 superimposed on the box-shaped roof 6 is stopped at the end near the wellhead when the box-shaped roof 6 is pushed out simultaneously with the propulsion and traction of the concrete box 9, and is left in the box shape. The roof 6 or the concrete box 9 and the natural ground can be cut.

そして、横並びになるフリクションカットプレート7は重ね合わせて筒体としての止水構造となるので、侵入しようとする地下水はこのフリクションカットプレート7で止められ、コンクリート函体9の中に流入することはない。これによりコンクリート函体9は裏込め注入不要である。   Since the friction cut plates 7 arranged side by side are stacked to form a water-stop structure as a cylinder, the groundwater to be invaded is stopped by the friction cut plate 7 and flows into the concrete box 9. Absent. Thereby, the concrete box 9 need not be backfilled.

このようにして箱形ルーフ6が到達坑4に到達したならば、到達坑4で箱形ルーフ6を順次一括撤去する。   When the box-shaped roof 6 reaches the reaching pit 4 in this manner, the box-shaped roof 6 is sequentially removed at the reaching pit 4 one after another.

図8はコンクリート函体9の圧入が完了し、コンクリート函体9を全て設置した段階である。   FIG. 8 shows a state where the concrete box 9 has been press-fitted and the concrete box 9 has been installed.

土砂も箱形ルーフ6とともに到達坑4へ押し抜き、箱形ルーフ6の撤去とともにこれも撤去する。   The earth and sand are also pushed out together with the box-shaped roof 6 to the access pit 4 and removed together with the removal of the box-shaped roof 6.

図9〜図15は本発明の第2実施形態を示すもので、地下構造物の施工長が長く、発進坑3と到達坑4の間の間隔も大きい。箱形ルーフ6も長いものとなる。   FIGS. 9-15 shows 2nd Embodiment of this invention, the construction length of an underground structure is long, and the space | interval between the starting mine 3 and the arrival mine 4 is also large. The box-shaped roof 6 is also long.

このような場合は、図11〜図15に示すように、箱形ルーフ6が到達坑4に到達したならば、到達坑4で箱形ルーフ6を分割撤去する。   In such a case, as shown in FIGS. 11 to 15, if the box-shaped roof 6 reaches the arrival shaft 4, the box-shaped roof 6 is divided and removed at the arrival shaft 4.

このように箱形ルーフ6を分割撤去する際には図16〜図18に示すように土砂を箱形ルーフ6の矩形配列と一緒に押し出す到達坑4では、土留ジャッキ25を設けておく。   In this way, when the box-shaped roof 6 is divided and removed, as shown in FIGS. 16 to 18, the earth retaining jack 25 is provided in the reaching pit 4 that pushes earth and sand together with the rectangular array of the box-shaped roof 6.

そしてこの土留ジャッキ25で土留部材19を押し、押し出す土砂を抑えながら土留ジャッキ25を縮小して押し出す。   The earth retaining member 19 is pushed by the earth retaining jack 25, and the earth retaining jack 25 is reduced and pushed out while suppressing the earth and sand to be pushed out.

押し出した土砂は土留部材19を除いて排除する。   Extruded earth and sand are removed except for the retaining member 19.

本発明の地下構造物の施工法の箱形ルーフの配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning of the box-shaped roof of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法のコンクリート函体を示す正面図である。It is a front view which shows the concrete box of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第1実施形態を示す第1工程の縦断側面図である。It is a vertical side view of the 1st process which shows 1st Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第1実施形態を示す第2工程の縦断側面図である。It is a vertical side view of the 2nd process which shows 1st Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第1実施形態を示す第3工程の縦断側面図である。It is a vertical side view of the 3rd process which shows 1st Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第1実施形態を示す第4工程の縦断側面図である。It is a vertical side view of the 4th process which shows 1st Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第1実施形態を示す第5工程の縦断側面図である。It is a vertical side view of the 5th process which shows 1st Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第1実施形態を示す第6工程の縦断側面図である。It is a vertical side view of the 6th process which shows 1st Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第2実施形態を示す第1工程の縦断側面図である。It is a vertical side view of the 1st process which shows 2nd Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第2実施形態を示す箱形ルーフの分割撤去の第1方式の第1工程の縦断側面図である。It is a vertical side view of the 1st process of the 1st system of division removal of a box-shaped roof which shows a 2nd embodiment of a construction method of an underground structure of the present invention. 本発明の地下構造物の施工法の第2実施形態を示す箱形ルーフの分割撤去の第1方式の第2工程の縦断側面図である。It is a vertical side view of the 2nd process of the 1st system of division removal of a box-shaped roof which shows a 2nd embodiment of a construction method of an underground structure of the present invention. 本発明の地下構造物の施工法の第2実施形態を示す箱形ルーフの分割撤去の第2方式の第2工程の縦断側面図である。It is a vertical side view of the 2nd process of the 2nd system of the division removal of the box-shaped roof which shows 2nd Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第2実施形態を示す箱形ルーフの分割撤去の第2方式の第3工程の縦断側面図である。It is a vertical side view of the 3rd process of the 2nd system of the division removal of the box-shaped roof which shows 2nd Embodiment of the construction method of the underground structure of this invention. 本発明の地下構造物の施工法の第2実施形態を示す箱形ルーフの分割撤去の第3方式の第1工程の縦断側面図である。It is a vertical side view of the 1st process of the 3rd system of division removal of the box-shaped roof which shows a 2nd embodiment of the construction method of the underground structure of the present invention. 本発明の地下構造物の施工法の第2実施形態を示す完成形態の縦断側面図である。It is a vertical side view of the completed form which shows 2nd Embodiment of the construction method of the underground structure of this invention. 到達側土留ジャッキ使用の第1工程の側面図である。It is a side view of the 1st process of using the arrival side earth retaining jack. 到達側土留ジャッキ使用の第2工程の側面図である。It is a side view of the 2nd process of using the arrival side earth retaining jack. 到達側土留ジャッキ使用の第3工程の側面図である。It is a side view of the 3rd process of using the arrival side earth retaining jack. 箱形ルーフとコンクリート函体接続のイメージ図である。It is an image figure of a box-shaped roof and a concrete box connection. 箱形ルーフおよびフリクションカットプレートの端面図である。It is an end view of a box-shaped roof and a friction cut plate. フリクションカットプレートの重ね合わせの説明図である。It is explanatory drawing of the superimposition of a friction cut plate. 止水部材介在の説明図である。It is explanatory drawing of a water stop member intervention. 止水部材介在の説明図である。It is explanatory drawing of a water stop member intervention. 止水部材の端面図である。It is an end view of a water stop member. 従来の地下構造物の施工法の第1工程を示す縦断側面図である。It is a vertical side view which shows the 1st process of the construction method of the conventional underground structure. 従来の地下構造物の施工法の第2工程を示す縦断側面図である。It is a vertical side view which shows the 2nd process of the construction method of the conventional underground structure. 従来の地下構造物の施工法の第3工程を示す縦断側面図である。It is a vertical side view which shows the 3rd process of the construction method of the conventional underground structure. 従来の地下構造物の施工法の第3工程を示す縦断側面図である。It is a vertical side view which shows the 3rd process of the construction method of the conventional underground structure. 箱形ルーフの一例の正面図である。It is a front view of an example of a box-shaped roof. 箱形ルーフの他の例の正面図である。It is a front view of the other example of a box-shaped roof.

2 土留鋼矢板 3 発進坑
4 到達坑 5 推進機
6 箱形ルーフ 6a,6b 継手
7 フリクションカットプレート 7a フランジ
7b 側端 8 反力壁
9 コンクリート函体 10 元押しジャッキ
14 止め部材 16 ストラット
17 腹起こし材 18 タイロット材
19 土留部材 20 発進台
21 到達台 22 止水部材
23 押角 24 押角
25 土留ジャッキ
2 Steel retaining sheet pile 3 Start pit 4 Arrival pit 5 Propeller 6 Box roof 6a, 6b Joint 7 Friction cut plate 7a Flange 7b Side end 8 Reaction force wall 9 Concrete box 10 Main push jack 14 Stopping member 16 Strut 17 Raising Material 18 Tylot material 19 Earth retaining member 20 Start stand 21 Arrival base 22 Water stop member 23 Push angle 24 Push angle 25 Dome jack

Claims (3)

外側面にフリクションカットプレートを重置きし、このフリクションカットプレートごと箱形ルーフを地中に圧入して推進しようとするコンクリート函体の外形に対応するように下段、側部及び上段の矩形配列に組み配置し、箱形ルーフを地中に圧入した後、前記箱形ルーフ端部に函体の先端部を合わせて函体を配置して函体の推進や牽引とともにフリクションカットプレートを残して、箱形ルーフの矩形配列の内方の土砂を箱形ルーフの矩形配列と一緒に押し出す地下構造物の施工法において、フリクションカットプレートは側端を重ね合わせて止水構造とすることを特徴とする地下構造物の施工法。   Friction cut plates are placed on the outer surface, and a box-shaped roof is press-fitted into the ground together with the friction cut plates to form a rectangular array of lower, side, and upper stages to correspond to the outer shape of the concrete box to be propelled. After assembling and pressing the box roof into the ground, align the tip of the box with the box roof end and place the box to leave the friction cut plate along with the box propulsion and traction, In the construction method of the underground structure where the inner soil in the rectangular array of the box-shaped roof is pushed out together with the rectangular array of the box-shaped roof, the friction cut plate has a water-stop structure by overlapping the side edges. Construction method for underground structures. 側端を重ね合わせるフリクションカットプレートは間に止水部材を介在させる請求項1記載の地下構造物の施工法。   The construction method for an underground structure according to claim 1, wherein a water cut-off member is interposed between the friction cut plates that overlap the side ends. 土砂を箱形ルーフの矩形配列と一緒に押し出す到達坑では、土留ジャッキを設け、この土留ジャッキで押し出す土砂を抑えながら土留ジャッキを縮小して押し出す請求項1または請求項2記載の地下構造物の施工法。   The underground pit according to claim 1 or 2, wherein a earth retaining jack is provided in a pit that extrudes earth and sand together with a rectangular array of box-shaped roofs, and the earth retaining jack is reduced and pushed out while suppressing the earth and sand pushed out by the earth retaining jack. Construction method.
JP2017049750A 2017-03-15 2017-03-15 Construction method of underground structure Active JP6542825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017049750A JP6542825B2 (en) 2017-03-15 2017-03-15 Construction method of underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049750A JP6542825B2 (en) 2017-03-15 2017-03-15 Construction method of underground structure

Publications (2)

Publication Number Publication Date
JP2018150780A true JP2018150780A (en) 2018-09-27
JP6542825B2 JP6542825B2 (en) 2019-07-10

Family

ID=63681403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049750A Active JP6542825B2 (en) 2017-03-15 2017-03-15 Construction method of underground structure

Country Status (1)

Country Link
JP (1) JP6542825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060042A (en) * 2021-11-30 2022-02-18 上海隧道工程有限公司 Binding structure of concrete pipe joint and construction method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073670A (en) * 1999-09-03 2001-03-21 Makoto Uemura Construction of underground structure and tubular body for roof therefor
JP2006200294A (en) * 2005-01-24 2006-08-03 Toda Constr Co Ltd Joint structure of steel shell element and method of constructing tunnel using the same
JP2007154448A (en) * 2005-12-01 2007-06-21 Uemura Giken Kogyo Kk Construction method for underground structure
JP2007177553A (en) * 2005-12-28 2007-07-12 Okumura Corp Construction method for underground passage
JP2007332724A (en) * 2006-06-19 2007-12-27 East Japan Railway Co Method of constructing impervious wall, and method of preventing liquefaction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073670A (en) * 1999-09-03 2001-03-21 Makoto Uemura Construction of underground structure and tubular body for roof therefor
JP2006200294A (en) * 2005-01-24 2006-08-03 Toda Constr Co Ltd Joint structure of steel shell element and method of constructing tunnel using the same
JP2007154448A (en) * 2005-12-01 2007-06-21 Uemura Giken Kogyo Kk Construction method for underground structure
JP2007177553A (en) * 2005-12-28 2007-07-12 Okumura Corp Construction method for underground passage
JP2007332724A (en) * 2006-06-19 2007-12-27 East Japan Railway Co Method of constructing impervious wall, and method of preventing liquefaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060042A (en) * 2021-11-30 2022-02-18 上海隧道工程有限公司 Binding structure of concrete pipe joint and construction method thereof

Also Published As

Publication number Publication date
JP6542825B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP4317843B2 (en) Construction method for underground structures
US20110129300A1 (en) Steel liners for tunnels
KR100815568B1 (en) The tunel execution method and the using fabric
JP2008223397A (en) Construction method for underground structure
KR20120048144A (en) Non-excavation type constructed tunnels and conduits using arc-shaped divided segments or rugged panels and its constructing method thereof
KR101925828B1 (en) Underground structure pressing system for reducing friction and construction method using the same
JP5498295B2 (en) Construction method for underground structures
JP2018150780A (en) Construction method of underground structure
CN108729469B (en) Construction method of underground structure
CN108979641B (en) Construction method for underground structure
KR101567742B1 (en) PHC pile and construction method of underground structure using the same
JP6445478B2 (en) Construction method for underground structures
KR20120048152A (en) Non-excavation type constructed tunnels and conduits using arc-shaped divided segments or rugged panels and its constructing method thereof
JP4188268B2 (en) Tunnel promotion method
JP6714060B2 (en) Construction method of underground structure
JP6113778B2 (en) Construction method for underground structures
JP4134089B2 (en) Construction method for underground structures
JP3887383B2 (en) Construction method for underground structures
JP6982603B2 (en) Box-shaped roof construction method
KR20150019213A (en) Hydraulic pressure type excavation apparatus
JP6139613B2 (en) Construction method for underground structures
JP5054164B2 (en) Construction method for underground structures
CN110359916B (en) Construction method for underground structure
JP6212087B2 (en) Construction method for underground structures
JP6510432B2 (en) Construction method of underground structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190613

R150 Certificate of patent or registration of utility model

Ref document number: 6542825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250