JP2018145514A - 発電所の防食方法及び発電所 - Google Patents

発電所の防食方法及び発電所 Download PDF

Info

Publication number
JP2018145514A
JP2018145514A JP2017044915A JP2017044915A JP2018145514A JP 2018145514 A JP2018145514 A JP 2018145514A JP 2017044915 A JP2017044915 A JP 2017044915A JP 2017044915 A JP2017044915 A JP 2017044915A JP 2018145514 A JP2018145514 A JP 2018145514A
Authority
JP
Japan
Prior art keywords
pressure turbine
power plant
steam
extraction system
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017044915A
Other languages
English (en)
Inventor
柴崎 理
Osamu Shibazaki
理 柴崎
宇広 原
Takahiro Hara
宇広 原
雅人 岡村
Masahito Okamura
雅人 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017044915A priority Critical patent/JP2018145514A/ja
Publication of JP2018145514A publication Critical patent/JP2018145514A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

【課題】発電所の抽気系における防食性を高めることのできる発電所の防食方法及び発電所を提供する。
【解決手段】給水を加熱して蒸気を発生させる蒸気発生機構と、前記蒸気発生機構にて発生した蒸気を導入して仕事をさせる高圧タービンと、前記高圧タービンを通過した蒸気を導入して仕事をさせる低圧タービンと、前記高圧タービンから抽気する高圧タービン抽気系と、前記低圧タービンから抽気する低圧タービン抽気系とを具備した発電所の防食方法であって、前記蒸気発生機構内の温度よりも沸点が低く、かつ、前記高圧タービン抽気系内の温度よりも沸点が高いとともに、水に溶解した水溶液状態において7よりも高いpHを示す第1の防食用薬剤を含む注入剤を、前記給水内に注入する。
【選択図】図1

Description

本発明の実施形態は、発電所の防食方法及び発電所に関する。
腐食は機器構造材料が環境中の液体、気体等と化学反応を起こし、金属状態からイオンなど他の化学形態に変化する現象であり、構造材料としての機能が低下する経年劣化事象である。鉄構造材を例に水環境で発生する代表的な腐食反応を式1に示す。
Fe→Fe2++2e 式1
式1に示す反応は構造材であるFeの酸化反応であるとともに、反応生成物として電子が放出される反応である。電子は単独での存在が不安定であることから、通常の構造材環境においては腐食反応と同時に電子を消費する反応が対となって発生する。水環境で発生する電子消費反応の例を式2、式3に示す。式2の反応は酸素、式3の反応は水素イオンが酸化剤として反応し、腐食反応により発生した電子を消費する反応である。
2HO+O +4e →4OH 式2
2H +2e →H 式3
これらの式で表されるように、腐食は酸化剤の電子消費反応と対で発生する。そのため、発電所などの環境では、腐食性を低減するため、酸化剤を極力低減する処理が行われている。腐食に寄与する酸化剤としては、大気中の酸素などが挙げられる。
大気に接する環境の水は、およそ7−10ppmの酸素が溶解し含まれている。発電所では、この酸素濃度を数ppbまで下げることで、腐食性を低減している。さらに水素、アンモニアなどを添加することで環境の酸化性を低減し、腐食性をさらに低減することができる。
水素、アンモニアなどの成分は、液相のみの環境では液相内に存在する。しかし、高温で気相が共存する環境では、大部分が気相に移行し、液相内の水素、アンモニア濃度が低下する。水素には気相に移行しやすい特性があることから、酸化性低減を目的とした水素施工が可能な対象機器は、発電所の復水器、給水配管、給水加熱器、原子炉の炉内構造物、火力発電所のボイラーなど、内部が水環境となる機器となる。
これに対し、タービンと給水加熱器をつなげる抽気系配管は、水蒸気の気相と、凝縮した水の2相環境である。このため、水素、アンモニアなどの成分は気相に移行してしまうので、液相の酸化性が増大し腐食性が高い環境である。この抽気系に対する水処理技術としては、不純物除去を目的とした除去フィルタに関する技術、除去フィルタの運用方法に関する技術、抽気系の異物沈殿除去に関する技術など、異物除去に関する技術が提案されている。しかしながら、これらの技術は、不純物除去や異物除去を目的としたものであり、防食性を高めることを目的としたものではない。
特開2006−199600号公報 特開2012−43802号公報 特開2009−289170号公報
上記のとおり、発電所の抽気系においては、水中に注入されている防食効果を示す揮発成分が凝縮した液相に移行しないため、防食が不十分となっているという課題がある。
本発明の目的は、発電所の抽気系における防食性を高めることのできる発電所の防食方法及び発電所を提供することにある。
実施形態の発電所の防食方法は、給水を加熱して蒸気を発生させる蒸気発生機構と、前記蒸気発生機構にて発生した蒸気を導入して仕事をさせる高圧タービンと、前記高圧タービンを通過した蒸気を導入して仕事をさせる低圧タービンと、前記高圧タービンから抽気する高圧タービン抽気系と、前記低圧タービンから抽気する低圧タービン抽気系とを具備した発電所の防食方法である。前記蒸気発生機構内の温度よりも沸点が低く、かつ、前記高圧タービン抽気系内の温度よりも沸点が高いとともに、水に溶解した水溶液状態において7よりも高いpHを示す第1の防食用薬剤を含む注入剤を、前記給水内に注入する。
第1実施形態における発電所の構成を示す図。 第2実施形態における発電所の構成を示す図。
以下、発電所の防食方法及び発電所の実施形態について、図面を参照して説明する。まず、図1を参照して第1実施形態について説明する。図1は、発電所100として、加圧水型原子力発電所の二次系の構成を模式的に示すものである。
発電所100において、復水器101で水に戻された冷却水は、給水配管102によって、復水器101から送出される。給水配管102には、低圧給水加熱器103、低圧給水加熱器104、脱気器105、高圧給水加熱器106が介挿されており、冷却水はこれらによって加熱及び脱気された後、蒸気発生器107へ送られる。
蒸気発生器107は、加圧水型原子炉で発生させた熱により蒸気を発生させる。この蒸気は、高圧タービン108に送られ、高圧タービン108を駆動した後、湿分分離器109を経て低圧タービン110に送られる。そして、低圧タービン110を駆動した後、復水器101で水に戻される。
低圧タービン110には、低圧給水加熱器103に接続された低圧タービン抽気系配管111が設けられている。また、湿分分離器109には、低圧給水加熱器104に接続された湿分分離器抽気系配管112が設けられている。さらに、高圧タービン108には、脱気器105及び高圧給水加熱器106に接続された高圧タービン抽気系配管113が設けられている。
上記構成の発電所100では、各機器で腐食により発生した鉄酸化物が、冷却水とともに移行し、蒸気発生器107に蓄積する。蒸気発生器107への鉄酸化物の堆積は、熱効率の低下や、腐食の局所化等の問題を起こすことから、鉄酸化物を低減することが求められる。
一般に、加圧水型原子力発電所では、腐食低減対策として、揮発成分による水化学技術適用を行っている。具体的には、アンモニアによる高pH環境、ヒドラジンによる脱酸素を実施している。これらの対策では、機器構造材である鉄等の金属の腐食を低減することができるとともに、注入する薬剤が揮発性であることから蒸気発生器107への堆積も発生しない。
一方、腐食発生する鉄酸化物のうち、およそ半分は高圧タービン108、低圧タービン110、低圧タービン抽気系配管111、湿分分離器抽気系配管112、高圧タービン抽気系配管113などの気液二相部環境で使用される機器から発生している。これらの機器にアンモニアなどの揮発成分が移行した場合、気相部にアンモニアが移行してしまい、腐食反応の発生する液相部に溶解しないため、腐食低減の効果を得ることができない。
このような課題に対応するためには、第一に蒸気発生器107で揮発し堆積しないこと、第二に腐食予防対象である抽気系で液相に存在すること、第三に水溶液状態で高pH等の防食環境を提供できることの3点の特徴を持つ防食用薬剤の注入により対応することが可能である。なお、抽気系の温度は、高圧タービン抽気系配管113が一番高く、次に、湿分分離器抽気系配管112、そして低圧タービン抽気系配管111が一番低くなる。
第一の条件である、蒸気発生器107での堆積防止のためには防食用薬剤の沸点が蒸気発生器温度以下であることが求められる。また、第二の条件である抽気系で液相として存在するためには、防食用薬剤の沸点が抽気系配管温度以上、あるいは、同環境での薬剤の水への溶解度が1%以上であることのいずれかが必要である。
加圧水型原子力発電所の二次系の場合、蒸気発生器温度は、例えば270℃程度である。また、抽気系のうち、一番温度の高い高圧タービン抽気系配管113内の温度は200℃以上、例えば220℃程度が想定されることから、求められる防食用薬剤の沸点は、200℃以上、270℃以下、さらに好ましくは220℃以上、270℃以下の条件となる。
また、第三の条件である高pHとなる薬剤としては、アミノ基を持つ有機化合物が考えられる。これらの3つの条件をいずれも満たす防食用薬剤として、例えば、ウンデシルアミン(沸点242℃)、ヘキサノールアミン(沸点206℃)、ヘプチノールアミン(沸点222℃)などが挙げられる。
これらの防食用薬剤の注入を行った場合、蒸気発生器107でこれらの防食作用物質は揮発し、蒸気と共にタービン系へ移行する。タービン系では蒸気の仕事により温度が低下するため、これらの防食用薬剤は液体に変化し、凝縮水とともに高圧タービン抽気系配管113などの抽気系に移行する。防食用薬剤の一部は水溶し、液性を高pHとするため、抽気系の腐食性を低下させ、腐食生成の鉄酸化物が低減されるため、蒸気発生器107への鉄酸化物移行を低減することができる。
本実施形態の発電所100では、高圧給水加熱器106と蒸気発生器107との間の給水配管102に、注入剤注入機構114が配設されている。そして、この注入剤注入機構114によって、給水配管102内を流通する給水内に、上記の防食用薬剤を含む注入剤を注入する。これによって、高圧タービン抽気系配管113などの抽気系における防食性を高めることができる。
この場合、注入剤の注入量が微量であってもある程度の効果を得ることができるので、給水中の防食用薬剤の濃度は、0%より高ければよい。また、防食用薬剤の溶解度以上に注入しても効果を高めることができないため、注入量の上限は実質的に防食用薬剤の溶解度によって決定される。具体的には、防食用薬剤の濃度は、例えば、13ppm程度とすることが好ましい。
ところで、上記した沸点が、200℃以上、270℃以下の防食用薬剤(第1の防食用薬剤)を注入した場合、防食用薬剤の多くが高圧タービン抽気系配管113で液化し、下流の低圧タービン抽気系配管111、湿分分離器抽気系配管112における防食用薬剤の効果が不十分になる可能性がある。これらの機器における防食性をより高めるためには、各抽気系温度で凝縮、あるいは水溶するとともに、水溶時に高pHとなる他の防食用薬剤を同時に注入することが好ましい。
具体的には、湿分分離器抽気系配管112内の温度、例えば170℃から190℃の範囲に沸点を持ちアミノ基を持つ防食用薬剤(第2の防食用薬剤)、及び低圧タービン抽気系配管111内の温度、例えば25℃から120℃の範囲に沸点を持ちアミノ基を持つ防食用薬剤(第3の防食用薬剤)を第1の防食用薬剤とともに注入する。
上記の条件を満たす第2の防食用薬剤としては、例えば、アミノオクチン(沸点178℃)、プロパノールアミン(沸点188℃)、エタノールアミン(沸点170℃)などが挙げられる。これらのいずれか1つ以上を第2の防食用薬剤として注入することが好ましい。
また、上記の条件を満たす第3の防食用薬剤としては、例えば、アミノブチン(沸点77℃)が挙げられる。このような第3の防食用薬剤を注入することが好ましい。
上記のように、第1の防食用薬剤に加えて、第2の防食用薬剤及び第3の防食用薬剤を注入することによって、さらに発電所100の各部の防食性を高めることができる。
なお、上述した第1〜3の防食用薬剤は、腐食性の低い高pH環境とするための薬剤であり、これに脱酸素効果のあるヒドラジンなどの脱酸素剤を加えることで、より高い防食性能とすることができる。ヒドラジンは揮発性であるが、抽気系上流での脱酸素が行われるため、抽気系においても低酸化性の低腐食環境とすることができる。
次に、図2を参照して第2実施形態について説明する。図2は、第2実施形態に係る発電所200として、火力発電所の構成を模式的に示すものである。第2実施形態に係る発電所200では、図1に示した第1実施形態に係る発電所100の蒸気発生器107に換えてボイラーにおける燃料の燃焼による熱によって蒸気を発生させる蒸気発生器207としたものである。その他の部分の構成は、図1に示した第1実施形態に係る発電所100と同様であるので、対応する部分には同一の符号を付して重複した説明は省略する。
防食用薬剤の効果も同様であり、蒸気発生器207でこれらの防食用薬剤は揮発し、蒸気と共にタービン系へ移行する。タービン系では蒸気の仕事により温度が低下するため、これらの防食用薬剤は液体に変化し、凝縮水とともに高圧タービン抽気系配管113などの抽気系統に移行する。防食用薬剤の一部は水溶し、液性を高pHとするため、高圧タービン抽気系配管113などの抽気系統の腐食性を低下させ、腐食生成の鉄酸化物が低減されるため、腐食発生を低減することができる。なお、火力発電所のボイラーによる蒸気発生器207内の温度、抽気系温度は、加圧水型原子力発電所の二次系における蒸気発生器107内の温度、抽気系温度と異なっており、防食用薬剤に求められる沸点の条件も異なるため、これに合わせた、薬剤を選定する必要がある。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100,200……発電所、101……復水器、102……給水配管、103……低圧給水加熱器、104……低圧給水加熱器、105……脱気器、106……高圧給水加熱器、107,207……蒸気発生器、108……高圧タービン、109……湿分分離器、110……低圧タービン、111……低圧タービン抽気系配管、112……湿分分離器抽気系配管、113……高圧タービン抽気系配管、114……注入剤注入機構。

Claims (9)

  1. 給水を加熱して蒸気を発生させる蒸気発生機構と、
    前記蒸気発生機構にて発生した蒸気を導入して仕事をさせる高圧タービンと、
    前記高圧タービンを通過した蒸気を導入して仕事をさせる低圧タービンと、
    前記高圧タービンから抽気する高圧タービン抽気系と、
    前記低圧タービンから抽気する低圧タービン抽気系と
    を具備した発電所の防食方法であって、
    前記蒸気発生機構内の温度よりも沸点が低く、かつ、前記高圧タービン抽気系内の温度よりも沸点が高いとともに、水に溶解した水溶液状態において7よりも高いpHを示す第1の防食用薬剤を含む注入剤を、前記給水内に注入する発電所の防食方法。
  2. 前記蒸気発生機構が、加圧水型原子力発電所の二次系に設けられた蒸気発生器である請求項1記載の発電所の防食方法。
  3. 前記蒸気発生機構が、火力発電所のボイラーに設けられた蒸気発生器である請求項1記載の発電所の防食方法。
  4. 前記第1の防食用薬剤の沸点が、200℃以上、270℃以下である請求項2記載の発電所の防食方法。
  5. 前記第1の防食用薬剤が、ウンデシルアミン、ヘキサノールアミン、ヘプチノールアミンのうちの少なくともいずれか1つである請求項4記載の発電所の防食方法。
  6. 前記注入剤が、沸点が170℃乃至190℃の範囲内であるとともに水に溶解した水溶液状態において7よりも高いpHを示す第2の防食用薬剤と、沸点が25℃乃至120℃の範囲内であるとともに水に溶解した水溶液状態において7よりも高いpHを示す第3の防食用薬剤のうちの少なくとも一方を含む請求項4又は5記載の発電所の防食方法。
  7. 前記第2の防食用薬剤が、アミノオクチン、プロパノールアミンの少なくともいずれか1つであり、前記第3の防食用薬剤が、アミノブチンである請求項6記載の発電所の防食方法。
  8. 前記注入剤が、脱酸素剤を含む請求項1乃至7いずれか1項記載の発電所の防食方法。
  9. 給水を加熱して蒸気を発生させる蒸気発生機構と、
    前記蒸気発生機構にて発生した蒸気を導入して仕事をさせる高圧タービンと、
    前記高圧タービンを通過した蒸気を導入して仕事をさせる低圧タービンと、
    前記高圧タービンから抽気する高圧タービン抽気系と、
    前記低圧タービンから抽気する低圧タービン抽気系と、
    前記蒸気発生機構内の温度よりも沸点が低く、かつ、前記高圧タービン抽気系内の温度よりも沸点が高いとともに、水に溶解した水溶液状態において7よりも高いpHを示す第1の防食用薬剤を含む注入剤を前記給水内に注入する注入剤注入機構と、
    を具備した発電所。
JP2017044915A 2017-03-09 2017-03-09 発電所の防食方法及び発電所 Pending JP2018145514A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044915A JP2018145514A (ja) 2017-03-09 2017-03-09 発電所の防食方法及び発電所

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044915A JP2018145514A (ja) 2017-03-09 2017-03-09 発電所の防食方法及び発電所

Publications (1)

Publication Number Publication Date
JP2018145514A true JP2018145514A (ja) 2018-09-20

Family

ID=63589652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044915A Pending JP2018145514A (ja) 2017-03-09 2017-03-09 発電所の防食方法及び発電所

Country Status (1)

Country Link
JP (1) JP2018145514A (ja)

Similar Documents

Publication Publication Date Title
AU2010222160B2 (en) Method and system for controlling water quality in power generation plant
JP5637867B2 (ja) プラントの運転方法及びシステム
JP2010230183A (ja) 蒸気ボイラ装置およびその運転方法
JP6160741B2 (ja) ボイラの防食方法及び防食剤
JP5059325B2 (ja) 炭素鋼の腐食抑制方法およびその装置
US9890948B2 (en) Method for preheating feed water in steam power plants, with process steam outcoupling
CN108352201B (zh) 核电设备以及核电设备的操作方法
JP2018145514A (ja) 発電所の防食方法及び発電所
JP2017154049A (ja) ボイラ水の水処理方法
CN105420734B (zh) 一种高温蒸汽缓蚀剂及其应用方法
JP6829148B2 (ja) 発電プラントの腐食低減方法およびその腐食低減装置
KR101286687B1 (ko) 발전 플랜트의 방식 관리 방법
JP2012241259A (ja) ボイラ装置内の化学洗浄システム
JP2021127472A (ja) 発電プラントの腐食抑制方法
JPH11236689A (ja) 発電プラントの水処理装置および水処理方法
JP2007131913A (ja) エロージョン・コロージョン低減用防食剤及び低減方法
JP6021739B2 (ja) ボイラ給水系統システム
US20170096353A1 (en) Piping member, nitrogen monoxide cracking unit, and power generation system
JP2016109367A (ja) 蒸気タービン設備の水質管理装置及び方法
JP2006029759A (ja) ボイラプラントの蒸気処理方法およびボイラプラント
JP2007064501A (ja) ボイラプラントの蒸気処理方法、ボイラプラントおよびボイラプラントの蒸気処理装置
JP2004020411A (ja) 原子力発電プラントおよびその運転方法
WO2020230432A1 (ja) 加圧水型原子力プラントおよび加圧水型原子力プラントの運転方法
JP2008150684A (ja) エロージョン・コロージョン低減用防食剤及び低減方法
Fazeli et al. Chemical control of water and its effect on flow-accelerated corrosion (FAC) in combined cycle power plants

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201