JP2018145456A - Alloy member, manufacturing method of the alloy member and manufactured article using the alloy member - Google Patents

Alloy member, manufacturing method of the alloy member and manufactured article using the alloy member Download PDF

Info

Publication number
JP2018145456A
JP2018145456A JP2017039169A JP2017039169A JP2018145456A JP 2018145456 A JP2018145456 A JP 2018145456A JP 2017039169 A JP2017039169 A JP 2017039169A JP 2017039169 A JP2017039169 A JP 2017039169A JP 2018145456 A JP2018145456 A JP 2018145456A
Authority
JP
Japan
Prior art keywords
atomic
alloy
alloy member
less
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017039169A
Other languages
Japanese (ja)
Other versions
JP6937491B2 (en
Inventor
正 藤枝
Tadashi Fujieda
藤枝  正
浩史 白鳥
Hiroshi Shiratori
浩史 白鳥
孝介 桑原
Kosuke Kuwabara
孝介 桑原
青田 欣也
Kinya Aota
欣也 青田
隆彦 加藤
Takahiko Kato
隆彦 加藤
雄一郎 小泉
Yuichiro Koizumi
雄一郎 小泉
謙太 山中
Kenta Yamanaka
謙太 山中
千葉 晶彦
Masahiko Chiba
晶彦 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Hitachi Ltd
Original Assignee
Tohoku University NUC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Hitachi Ltd filed Critical Tohoku University NUC
Priority to JP2017039169A priority Critical patent/JP6937491B2/en
Publication of JP2018145456A publication Critical patent/JP2018145456A/en
Application granted granted Critical
Publication of JP6937491B2 publication Critical patent/JP6937491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an alloy member excellent in homogeneity of alloy composition and fine structure, excellent in shape control property, by using a high entropy alloy with high mechanical strength and high corrosion resistance.SOLUTION: The alloy member has a chemical composition consisting of each element of Co, Cr, Fe, Ni in a range of 5 atom% to 35 atom% respectively, Ti and Al in a range of 1 atom% to 10 atom% respectively, Mo in a range of 5 atom%, and the balance inevitable impurities, and having a deposit phase of face-centered cubic crystal having at least average particle diameter of 500 nm or less dispersed in a crystal of a parent phase.SELECTED DRAWING: Figure 4

Description

本発明は、ハイエントロピー合金を用いて粉末積層造形法により作製した合金部材および該合金部材の製造方法、ならびに該合金部材を用いた製造物に関するものである。   The present invention relates to an alloy member produced by a powder additive manufacturing method using a high-entropy alloy, a method for producing the alloy member, and a product using the alloy member.

近年、従来の合金(例えば、1〜3種類の主要成分元素に複数種の副成分元素を微量添加した合金)の技術思想とは一線を画した新しい技術思想の合金として、ハイエントロピー合金(High Entropy Alloy:HEA)が提唱されている。HEAとは、4種類以上の主要金属元素(それぞれ5〜35原子%)から構成された合金と定義されており、次のような特徴が発現することが知られている。   In recent years, high-entropy alloys (High Entropy Alloys) have been developed as alloys with a new technical concept that is completely different from the technical concept of conventional alloys (for example, alloys obtained by adding a small amount of multiple subcomponent elements to one to three main component elements). Entropy Alloy (HEA) has been proposed. HEA is defined as an alloy composed of four or more kinds of main metal elements (each 5 to 35 atomic%), and is known to exhibit the following characteristics.

(a)ギブスの自由エネルギー式における混合エントロピー項が負に増大することに起因する混合状態の安定化、(b)複雑な微細構造による拡散遅延、(c)構成原子のサイズ差に起因する高格子歪みに起因する高硬度化や機械的特性の温度依存性低下、(d)多種元素共存による複合影響(カクテル効果とも言う)による耐食性の向上。   (A) Stabilization of the mixed state due to negative increase of the mixing entropy term in Gibbs free energy equation, (b) Diffusion delay due to complex fine structure, (c) High due to size difference of constituent atoms Increased hardness due to lattice distortion, reduced temperature dependence of mechanical properties, and (d) improved corrosion resistance due to combined effects (also called cocktail effect) due to coexistence of multiple elements.

例えば、特許文献1(特開2002-173732)には、複数種類の金属元素をキャスティングあるいは合成してなるハイエントロピー多元合金において、該合金が5種類から11種類の主要金属元素を含有し、各一種類の主要金属元素のモル数が合金総モル数の5%から30%とされたことを特徴とするハイエントロピー多元合金が開示されている。また、前記主要金属元素は、アルミニウム、チタン、バナジウム、クロム、鉄、コバルト、ニッケル、銅、ジルコニウム、モリブデン、パラジウム、銀を含む金属元素群より選択されることが記載されている。   For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-173732) discloses a high-entropy multicomponent alloy obtained by casting or synthesizing a plurality of types of metal elements, the alloy containing 5 to 11 types of main metal elements, A high-entropy multicomponent alloy is disclosed in which the number of moles of one main metal element is 5% to 30% of the total number of moles of the alloy. Further, it is described that the main metal element is selected from a metal element group including aluminum, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zirconium, molybdenum, palladium, and silver.

特許文献1によると、キャスト状態において、従来のカーボンスチールや合金カーボンスチールよりも高い硬度、高い耐熱性および高い耐食性を兼ね備えたハイエントロピー多元合金を提供できるとされている。   According to Patent Document 1, it is said that a high entropy multi-component alloy having higher hardness, higher heat resistance and higher corrosion resistance than conventional carbon steel and alloy carbon steel can be provided in a cast state.

特開2002−173732号公報JP 2002-173732 A

しかしながら、本発明者等がHEAについて種々研究したところ、HEAは、合金組成の複雑さに起因して鋳造時の元素偏析や組織斑が生じ易く、均質な鋳塊を得ることが難しいものであった。合金部材における元素偏析や組織斑は、部位による特性のばらつきにつながることから解決すべき課題である。   However, the present inventors conducted various studies on HEA, and as a result, HEA is prone to element segregation and texture spots during casting due to the complexity of the alloy composition, and it is difficult to obtain a homogeneous ingot. It was. Element segregation and texture spots in alloy members are problems to be solved because they lead to variations in characteristics depending on the part.

また、HEAは、高硬度・焼き戻し軟化抵抗性を有するが故に難加工性であり、機械加工により所望形状部材を作製することが難しいという問題があった。これは、HEA部材を実用化・商用化する上での大きな障害であり、解決すべき課題である。   In addition, HEA has high hardness and resistance to tempering softening, so that it is difficult to process, and there is a problem that it is difficult to produce a desired shape member by machining. This is a major obstacle to commercialization and commercialization of HEA members, and a problem to be solved.

一方、前述したように、HEAは従来合金では得られない魅力的な特徴を有していることから、合金組成・微細組織の均質性に優れ、かつ形状制御性に優れるHEA部材、およびその製造方法の開発が強く求められている。   On the other hand, as mentioned above, HEA has attractive features that cannot be obtained with conventional alloys. Therefore, HEA members with excellent alloy composition / microstructure homogeneity and shape controllability, and their manufacture There is a strong need for method development.

したがって、本発明の目的は、上記要求を満たすべく、高機械的強度・高耐食性を有するハイエントロピー合金(HEA)を用い、合金組成・微細組織の均質性に優れ、かつ形状制御性に優れた合金部材、その製造方法、および該合金部材を用いた製造物を提供することにある。   Accordingly, the object of the present invention is to use a high-entropy alloy (HEA) having high mechanical strength and high corrosion resistance to satisfy the above requirements, and is excellent in alloy composition / microstructure homogeneity and in shape controllability. An alloy member, a manufacturing method thereof, and a product using the alloy member.

(I)本発明の一態様は、ハイエントロピー合金を用いた合金部材であって、
Co(コバルト)、Cr(クロム)、Fe(鉄)、Ni(ニッケル)の各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、Ti(チタン)およびAl(アルミ)をそれぞれ1原子%以上10原子%以下の範囲で含み、かつMo(モリブデン)を5原子%以下の範囲で含み、残部が不可避不純物からなる化学組成を有し、
母相の結晶中に平均粒径500 nm以下の面心立方晶(FCC)の析出相が分散していることを特徴とする合金部材を提供する。
(I) One aspect of the present invention is an alloy member using a high-entropy alloy,
Co (cobalt), Cr (chromium), Fe (iron), Ni (nickel) each in the range of 5 atomic percent to 35 atomic percent, Ti (titanium) and Al (aluminum) 1 atom each In a range of not less than 10% and not more than 10 atom%, and Mo (molybdenum) in a range of not more than 5 atom%, with the balance being inevitable impurities,
Provided is an alloy member characterized in that a face-centered cubic (FCC) precipitation phase having an average particle size of 500 nm or less is dispersed in a matrix phase crystal.

(II)本発明の他の一態様は、上記の合金部材の製造方法であって、
前記合金の原料を混合・溶解して溶湯を形成する原料混合溶解工程と、
前記溶湯から合金粉末を形成するアトマイズ工程と、
前記合金粉末を用いた金属粉末積層造形法により所望形状を有する合金積層造形体を形成する積層造形工程を有することを特徴とする合金部材の製造方法を提供する。
(II) Another aspect of the present invention is a method for producing the above alloy member,
A raw material mixing and melting step of mixing and melting the raw materials of the alloy to form a molten metal;
An atomizing step of forming alloy powder from the molten metal;
There is provided a manufacturing method of an alloy member, characterized by including an additive manufacturing process for forming an alloy additive manufacturing body having a desired shape by a metal powder additive manufacturing method using the alloy powder.

(III)本発明の更に他の一態様は、上記の合金部材を用いた製造物であって、
前記製造物が、流体機械のインペラであることを特徴とする合金部材を用いた製造物を提供する。
(III) Still another embodiment of the present invention is a product using the above alloy member,
Provided is a product using an alloy member, wherein the product is an impeller of a fluid machine.

本発明によれば、高機械的強度・高耐食性を有するハイエントロピー合金を用い、合金組成・微細組織の均質性に優れ、かつ形状制御性に優れた合金部材、その製造方法、および該合金部材を用いた製造物を提供することができる。   According to the present invention, a high-entropy alloy having high mechanical strength and high corrosion resistance, an alloy member excellent in alloy composition / microstructure homogeneity and excellent in shape controllability, a manufacturing method thereof, and the alloy member A product using can be provided.

本発明に係る合金部材の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the alloy member which concerns on this invention. 電子ビーム溶融法の粉末積層造形装置の構成および積層造形方法の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the powder additive manufacturing apparatus of an electron beam melting method, and the example of an additive manufacturing method. 本発明における合金積層造形体の縦断面の微細組織例を示す走査型電子顕微鏡(SEM)観察像である。It is a scanning electron microscope (SEM) observation image which shows the example of a fine structure of the longitudinal section of an alloy lamination fabrication object in the present invention. 本発明における合金積層造形体の横断面の微細組織例を示すSEM観察像である。It is a SEM observation image which shows the example of a fine structure of the cross section of the alloy lamination fabrication object in the present invention. 本発明における合金積層造形体の微細組織の一例を示す透過型電子顕微鏡(TEM)観察結果であり、(a)析出相を含む明視野像、(b)a中の析出相から得られた電子線回折パターン、(c)a中の母相から得られた電子線回折パターンである。It is a transmission electron microscope (TEM) observation result which shows an example of the fine structure of the alloy lamination modeling body in this invention, (a) The bright field image containing a precipitation phase, (b) The electron obtained from the precipitation phase in a (C) An electron diffraction pattern obtained from the parent phase in (a). 本発明に係る合金積層造形体における析出相周辺の高角散乱環状暗視野走査透過型電子顕微鏡像(HAADF-STEM像)とSTEM-EDX(エネルギー分散型X線分光分析器)による元素マッピング像である。It is an element mapping image by a high angle scattering annular dark field scanning transmission electron microscope image (HAADF-STEM image) and STEM-EDX (energy dispersive X-ray spectroscopic analyzer) around the precipitation phase in the alloy laminate model according to the present invention. . 本発明に係る合金部材を用いた製造物の一例であり、流体機械のインペラを示す写真である。It is an example of the product using the alloy member which concerns on this invention, and is a photograph which shows the impeller of a fluid machine. 本発明に係る合金部材を用いた製造物の他の一例であり、本発明のインペラが組み込まれた遠心圧縮機を示す断面模式図である。It is a cross-sectional schematic diagram which is another example of the product using the alloy member which concerns on this invention, and shows the centrifugal compressor incorporating the impeller of this invention. 熱間鍛造による合金部材の微細組織例であり、FM-2の微細組織を示すSEM観察像である。It is an example of the microstructure of the alloy member by hot forging, and is an SEM observation image showing the microstructure of FM-2.

本発明は、前述した合金部材(I)において、以下のような改良や変更を加えることができる。
(i)前記母相の組織は、平均粒径100μm以下の柱状晶が林立した局所急冷凝固組織である。
(ii)前記析出相は、前記Ni成分、前記Ti成分および前記Al成分が前記母相の結晶よりも濃化している結晶性粒子である。
(iii)前記化学組成は、前記Coを20原子%以上30原子%以下で、前記Crを10原子%以上25原子%以下で、前記Feを10原子%以上25原子%以下で、前記Niを20原子%以上30原子%以下で、前記Tiを2原子%以上10原子%以下で、前記Alを2原子%以上10原子%以下で含み、残部が前記不可避不純物からなる。
(iv)前記化学組成は、前記Coを25原子%以上30原子%以下で、前記Crを15原子%以上23原子%以下で、前記Feを15原子%以上23原子%以下で、前記Niを25原子%以上30原子%以下で、前記Tiを1原子%以上5原子%以下で、前記Alが1原子%以上10原子%以下で、前記Moを1原子%以上3原子%以下で含み、残部が前記不可避不純物からなる。
(v)引張強さが1000 MPa以上であり、破断伸びが5%以上である。
(vi)前記母相の結晶構造が単純立方晶(SC)である。
The present invention can add the following improvements and changes to the above-described alloy member (I).
(I) The structure of the parent phase is a local rapidly solidified structure in which columnar crystals having an average particle size of 100 μm or less are grown.
(Ii) The precipitated phase is a crystalline particle in which the Ni component, the Ti component, and the Al component are concentrated more than the crystals of the parent phase.
(Iii) The chemical composition is such that the Co is 20 atomic% to 30 atomic%, the Cr is 10 atomic% to 25 atomic%, the Fe is 10 atomic% to 25 atomic%, and the Ni is 20 atomic% to 30 atomic%, Ti includes 2 atomic% to 10 atomic%, Al includes 2 atomic% to 10 atomic%, and the balance consists of the inevitable impurities.
(Iv) The chemical composition includes 25 to 30 atomic percent of Co, 15 to 23 atomic percent of Cr, 15 to 23 atomic percent of Fe, Ni 25 atomic% to 30 atomic%, Ti is 1 atomic% to 5 atomic%, Al is 1 atomic% to 10 atomic%, Mo is 1 atomic% to 3 atomic%, The balance consists of the inevitable impurities.
(V) Tensile strength is 1000 MPa or more and elongation at break is 5% or more.
(Vi) The crystal structure of the matrix is simple cubic (SC).

本発明は、前述した合金部材を用いた製造物(III)において、以下のような改良や変更を加えることができる。
(vii)前記製造物は、前記インペラを組み込んだ遠心圧縮機である。
The present invention can be improved or changed as follows in the product (III) using the above-described alloy member.
(Vii) The product is a centrifugal compressor incorporating the impeller.

(本発明の基本思想)
前述したように、ハイエントロピー合金(HEA)は、従来合金では得られない魅力的な特徴(例えば、高硬度、焼き戻し軟化抵抗性)を有しているが、難加工性であり、所望形状部材を作製することが難しいという問題があった。
(Basic idea of the present invention)
As described above, high-entropy alloys (HEA) have attractive characteristics (such as high hardness and temper softening resistance) that cannot be obtained with conventional alloys, but they are difficult to process and have the desired shape. There was a problem that it was difficult to produce a member.

本発明者等は、HEAとしての特徴を犠牲にすることなく、形状制御性や延性に優れるHEA部材を開発すべく、合金組成と形状制御方法について鋭意研究を重ねた。その結果、Co-Cr-Fe-Ni-Ti-Al-(Mo)系合金の粉末を用いた金属粉末積層造形法により合金積層造形体を形成することで、特許文献1のような普通鋳造HEA材よりも形状制御性や延性に優れるHEA部材を得られる可能性が見出された。   The present inventors conducted extensive research on alloy compositions and shape control methods in order to develop HEA members having excellent shape controllability and ductility without sacrificing the characteristics of HEA. As a result, a normal cast HEA as disclosed in Patent Document 1 is formed by forming an alloy layered structure by a metal powder layered manufacturing method using a Co—Cr—Fe—Ni—Ti—Al— (Mo) alloy powder. The possibility of obtaining HEA members with better shape controllability and ductility than materials was found.

以下、本発明の実施形態について、図面を参照しながら合金部材の製造手順に沿って説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。   Hereinafter, an embodiment of the present invention will be described along a manufacturing procedure of an alloy member with reference to the drawings. However, the present invention is not limited to the embodiments described here, and can be appropriately combined with or improved based on known techniques without departing from the technical idea of the invention. It is.

[合金部材の製造方法]
図1は、本発明に係る合金部材の製造方法の一例を示す工程図である。図1に示したように、本発明の製造方法は、原料混合溶解工程とアトマイズ工程と積層造形工程と取出工程を有する。以下、本発明の実施形態をより具体的に説明する。
[Method for producing alloy member]
FIG. 1 is a process diagram showing an example of a method for producing an alloy member according to the present invention. As shown in FIG. 1, the manufacturing method of this invention has a raw material mixing melt | dissolution process, an atomization process, an additive manufacturing process, and an extraction process. Hereinafter, embodiments of the present invention will be described more specifically.

(原料混合溶解工程)
まず、所望のHEA組成(Co-Cr-Fe-Ni-Ti-Al-(Mo))となるように原料を混合・溶解して溶湯10を形成する原料混合溶解工程を行う。原料の混合方法や溶解方法に特段の限定はなく、高強度・高耐食性合金の製造における従前の方法を利用できる。例えば、溶解方法として真空溶解を好適に利用できる。また、真空炭素脱酸法などを併用して、溶湯10を精錬することが好ましい。
(Raw material mixing and dissolution process)
First, a raw material mixing and dissolving step is performed in which raw materials are mixed and dissolved to form a molten metal 10 so as to have a desired HEA composition (Co—Cr—Fe—Ni—Ti—Al— (Mo)). There are no particular limitations on the method of mixing and melting the raw materials, and conventional methods in the production of high strength and high corrosion resistance alloys can be used. For example, vacuum melting can be suitably used as a melting method. Further, it is preferable to refine the molten metal 10 together with a vacuum carbon deoxidation method or the like.

本発明のHEA組成は、主要成分としてCo、Cr、Fe、Niの4元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつTiおよびAlをそれぞれ1原子%以上10原子%以下の範囲で含み、かつMoを5原子%以下の範囲で含み、残部が不可避不純物からなるものである。   The HEA composition of the present invention contains 4 elements of Co, Cr, Fe, and Ni as main components in the range of 5 atomic% to 35 atomic%, respectively, and Ti and Al are 1 atomic% to 10 atomic%, respectively. In the range, Mo is included in the range of 5 atomic% or less, and the balance is made of inevitable impurities.

より具体的には、Coが20原子%以上30原子%以下で、Crが10原子%以上25原子%以下で、Feが10原子%以上25原子%以下で、Niが20原子%以上30原子%以下で、Tiが2原子%以上10原子%以下で、Alが2原子%以上10原子%以下であることがより好ましい。これらの組成範囲に制御することにより、延性の向上と機械的強度の向上とを両立することができる。言い換えると、各成分がそれぞれの好ましい組成範囲を外れると、望ましい特性の達成が困難になる。   More specifically, Co is 20 atomic% to 30 atomic%, Cr is 10 atomic% to 25 atomic%, Fe is 10 atomic% to 25 atomic%, and Ni is 20 atomic% to 30 atomic%. It is more preferable that Ti is 2 atomic% or more and 10 atomic% or less, and Al is 2 atomic% or more and 10 atomic% or less. By controlling to these composition ranges, it is possible to achieve both improvement in ductility and improvement in mechanical strength. In other words, when each component is out of its preferred composition range, it is difficult to achieve desirable characteristics.

また、耐食性の向上をより優先する場合、Moを添加するのが好ましく、Coが25原子%以上30原子%以下で、Crが15原子%以上23原子%以下で、Feが15原子%以上23原子%以下で、Niが25原子%以上30原子%以下で、Tiが1原子%以上5原子%以下で、Alが1原子%以上10原子%以下で、前記Moが1原子%以上3原子%以下であることがより好ましい。   In addition, when priority is given to improving corrosion resistance, it is preferable to add Mo, Co is 25 atomic% to 30 atomic%, Cr is 15 atomic% to 23 atomic%, and Fe is 15 atomic% to 23 atomic%. Atomic% or less, Ni is 25 atomic% or more and 30 atomic% or less, Ti is 1 atomic% or more and 5 atomic% or less, Al is 1 atomic% or more and 10 atomic% or less, and Mo is 1 atomic% or more and 3 atoms or less. % Or less is more preferable.

なお、本発明において、不可避不純物とは、完全に排除することは困難な成分であるが、種々の特性に特段の悪影響を及ぼさない程度に含有される成分と定義する。例えば、O(酸素)、N(窒素)、C(炭素)等が挙げられる。   In the present invention, an inevitable impurity is a component that is difficult to eliminate completely, but is defined as a component that is contained to such an extent that no particular adverse effect is exerted on various characteristics. Examples thereof include O (oxygen), N (nitrogen), and C (carbon).

(アトマイズ工程)
次に、溶湯10から合金粉末20を形成するアトマイズ工程を行う。アトマイズ方法に特段の限定はなく、従前の方法を利用できる。例えば、高純度・均質組成・球形状粒子が得られるガスアトマイズ法や遠心力アトマイズ法を好ましく用いることができる。
(Atomizing process)
Next, an atomizing process for forming the alloy powder 20 from the molten metal 10 is performed. There is no particular limitation on the atomizing method, and a conventional method can be used. For example, a gas atomization method or a centrifugal atomization method that can obtain high-purity, homogeneous composition, and spherical particles can be preferably used.

合金粉末20の平均粒径は、ハンドリング性や充填性の観点から、10μm以上500μm以下が好ましく、20μm以上200μm以下がより好ましい。平均粒径が10μm未満になると、次工程の積層造形工程において合金粉末20が舞い上がり易くなり、合金積層造形体の形状精度が低下する要因となる。一方、平均粒径が500μm超になると、次工程の積層造形工程において合金積層造形体の表面粗さが増加したり合金粉末20の溶融が不十分になったりする要因となる。   The average particle size of the alloy powder 20 is preferably 10 μm or more and 500 μm or less, more preferably 20 μm or more and 200 μm or less, from the viewpoints of handling properties and filling properties. When the average particle size is less than 10 μm, the alloy powder 20 is likely to rise in the subsequent layered manufacturing process, which causes a decrease in the shape accuracy of the alloy layered body. On the other hand, when the average particle size exceeds 500 μm, it becomes a factor that the surface roughness of the alloy layered structure is increased or the melting of the alloy powder 20 becomes insufficient in the next layered manufacturing process.

(積層造形工程)
次に、上記で用意した合金粉末20を用いた金属粉末積層造形法により、所望形状を有する合金積層造形体230を形成する積層造形工程を行う。焼結ではなく溶融・凝固によってニアネットシェイプの金属部材を造形する金属粉末積層造形法の適用により、鋳造材と同等以上の機械的強度が得られると共に、複雑形状を有する三次元部材を作製することができる。積層造形方法に特段の限定はなく、従前の方法を利用できる。例えば、電子ビーム溶融(Electron Beam Melting:EBM)法や選択的レーザ溶融(Selective Laser Melting:SLM)法を用いた金属粉末積層造形法を好適に利用できる。
(Laminated modeling process)
Next, an additive manufacturing process for forming an alloy additive manufacturing body 230 having a desired shape is performed by a metal powder additive manufacturing method using the alloy powder 20 prepared above. By applying a metal powder additive manufacturing method that forms a near net shape metal member by melting and solidification instead of sintering, a mechanical strength equal to or higher than that of a cast material can be obtained, and a three-dimensional member having a complicated shape can be produced. be able to. The additive manufacturing method is not particularly limited, and a conventional method can be used. For example, a metal powder additive manufacturing method using an electron beam melting (EBM) method or a selective laser melting (SLM) method can be suitably used.

EBM法を例にとって積層造形工程を説明する。図2は、EBM法の粉末積層造形装置の構成および積層造形方法の例を示す断面模式図である。図2に示したように、EBM粉末積層造形装置100は、電子ビーム制御部110と粉末制御部120とに大別され、全体が真空チャンバーになっている。   The additive manufacturing process will be described using the EBM method as an example. FIG. 2 is a schematic cross-sectional view showing an example of a structure of an EBM method powder additive manufacturing apparatus and an additive manufacturing method. As shown in FIG. 2, the EBM powder additive manufacturing apparatus 100 is roughly divided into an electron beam control unit 110 and a powder control unit 120, and the whole is a vacuum chamber.

1)造形しようとする合金積層造形体230の1層厚さ分(例えば、約30〜200μm)でステージ121を下降させる。ステージ121上面上のベースプレート122上にパウダーホッパー123から合金粉末20を供給し、レーキアーム124により合金粉末20を平坦化して粉末床210(層状粉末)を形成する(粉末床形成工程)。   1) The stage 121 is lowered by the thickness of one layer (for example, about 30 to 200 μm) of the alloy laminate model 230 to be modeled. The alloy powder 20 is supplied from the powder hopper 123 onto the base plate 122 on the upper surface of the stage 121, and the alloy powder 20 is flattened by the rake arm 124 to form a powder bed 210 (layered powder) (powder bed forming step).

2)加熱されたタングステンフィラメント111(例えば、2500℃以上)から熱電子が放出され、アノ−ド112により加速されて(例えば、光速の半分程度)、電子ビーム113を形成する。加速された電子ビーム113は、非点補正装置114で真円化され、フォーカスコイル115により粉末床210へ集束される。   2) Thermoelectrons are emitted from the heated tungsten filament 111 (for example, 2500 ° C. or higher) and accelerated by the anode 112 (for example, about half the speed of light) to form an electron beam 113. The accelerated electron beam 113 is rounded by the astigmatism correction device 114 and focused on the powder bed 210 by the focus coil 115.

3)比較的弱い(緩い)集束ビームを偏向コイル116により走査して粉末床210全体を予備加熱し、粉末床の仮焼結体を形成する。EBM方式では、粉末床を局所溶融・凝固する前に、粉末床の仮焼結体を形成する工程(粉末床仮焼工程)を行うことが好ましい。これは、局所溶融のための集束ビーム照射によって、合金粉末の帯電による粉末床の飛散を防ぐためである。また、本工程の加熱によって、その後の合金積層造形体230の変形が抑制される付加的な作用効果もある。   3) A relatively weak (loose) focused beam is scanned by the deflection coil 116 to preheat the entire powder bed 210 to form a pre-sintered powder bed. In the EBM method, it is preferable to perform a step of forming a pre-sintered powder bed (powder bed calcining step) before locally melting and solidifying the powder bed. This is to prevent scattering of the powder bed due to charging of the alloy powder by irradiation with a focused beam for local melting. In addition, there is an additional effect that the deformation of the alloy laminate model 230 is suppressed by the heating in this step.

粉末床210の仮焼温度は、750℃以上1200℃以下が好ましい。仮焼温度が750℃未満になると、合金粉末粒子同士の焼結がほとんど進行せず、仮焼結体の形成が困難になる。一方、仮焼温度が1200℃超になると、合金粉末同士の焼結が進行し過ぎて、合金積層造形体230の取り出し(合金積層造形体230と仮焼結体との分離)が困難になる。   The calcining temperature of the powder bed 210 is preferably 750 ° C. or higher and 1200 ° C. or lower. When the calcining temperature is less than 750 ° C., the sintering of the alloy powder particles hardly proceeds, and it becomes difficult to form a calcined body. On the other hand, when the calcining temperature exceeds 1200 ° C., the sintering of the alloy powders proceeds excessively, and it is difficult to take out the alloy laminate model 230 (separation between the alloy laminate model 230 and the provisional sintered product). .

4)粉末床の仮焼結体に対し、造形しようとする合金積層造形体230の3D-CADデータから変換された2Dスライスデータに基づいて、局所溶融のための強い集束ビームを照射して合金の微小溶融池を形成すると共に、該集束ビームを走査して微小溶融池を移動・逐次凝固させることにより、2Dスライス形状の凝固層220を形成する(局所溶融・凝固層形成工程)。   4) Based on the 2D slice data converted from the 3D-CAD data of the alloy layered object 230 to be shaped, the presintered body of the powder bed is irradiated with a strong focused beam for local melting and alloyed In addition, a 2D slice-shaped solidified layer 220 is formed by scanning the focused beam and moving and sequentially solidifying the fine molten pool (local melting / solidified layer forming step).

5)上記1)〜4)を繰り返して、所望形状を有する合金積層造形体230を造形する。   5) The above-described 1) to 4) are repeated to form an alloy laminate model 230 having a desired shape.

(取出工程)
上記工程で造形した合金積層造形体230は仮焼結体中に埋没しているため、次に、合金積層造形体230を取り出す取出工程を行う。合金積層造形体230の取り出し方法(合金積層造形体230と仮焼結体との分離方法、合金積層造形体230とベースプレート122との分離方法)に特段の限定はなく、従前の方法を利用できる。例えば、合金粉末20を用いたサンドブラストを好ましく用いることができる。合金粉末20を用いたサンドブラストは、除去した仮焼結体を吹き付けた合金粉末20と共に解砕することで、合金粉末20として再利用することができる利点がある。
(Removal process)
Since the alloy layered product 230 formed in the above process is buried in the temporary sintered body, an extraction step of taking out the alloy layered model 230 is performed next. There is no particular limitation on the method for taking out the alloy laminate model 230 (the separation method between the alloy laminate model 230 and the temporary sintered body, the separation method between the alloy laminate model 230 and the base plate 122), and the conventional method can be used. . For example, sand blasting using the alloy powder 20 can be preferably used. Sandblasting using the alloy powder 20 has an advantage that it can be reused as the alloy powder 20 by crushing together with the alloy powder 20 sprayed with the removed pre-sintered body.

[合金部材]
取出工程の後、合金積層造形体230から微細組織観察用の試料を採取し、走査型電子顕微鏡(SEM)を用いて、該試料の微細組織を観察した。図3Aは、本発明における合金積層造形体の縦断面(積層方向に沿った面、積層方向に垂直な法線を有する面)の微細組織例を示すSEM観察像であり、図3Bは、当該合金積層造形体の横断面(積層方向に垂直の面、積層方向が法線となる面)の微細組織例を示すSEM観察像である。
[Alloy members]
After the extraction step, a sample for observing the microstructure was collected from the alloy laminate model 230, and the microstructure of the sample was observed using a scanning electron microscope (SEM). FIG. 3A is an SEM observation image showing an example of a microstructure of a longitudinal section (a surface along the stacking direction, a surface having a normal line perpendicular to the stacking direction) of the alloy laminate model according to the present invention, and FIG. It is a SEM observation image which shows the example of the fine structure of the cross section (surface perpendicular | vertical to a lamination direction, surface where a lamination direction becomes a normal line) of an alloy lamination modeling body.

図3A〜図3Bに示したように、合金積層造形体230の母相は、微細な柱状晶(平均粒径100μm以下)が合金積層造形体230の積層方向に沿って林立した組織(いわゆる、急冷凝固組織)を有することが確認される。なお、本発明において、柱状晶の結晶粒径は、柱状の短軸方向(積層方向に垂直方向)の長さと定義する。   As shown in FIGS. 3A to 3B, the parent phase of the alloy laminate model 230 has a structure in which fine columnar crystals (average particle size of 100 μm or less) are forested along the lamination direction of the alloy laminate model 230 (so-called It is confirmed that it has a rapidly solidified structure. In the present invention, the crystal grain size of columnar crystals is defined as the length of the columnar minor axis direction (perpendicular to the stacking direction).

さらに、合金積層造形体230の微細組織をより詳細に調査するために、透過型電子顕微鏡(TEM)および走査透過型電子顕微鏡−エネルギー分散型X線分光分析器(STEM-EDX)を用いて微細組織観察を行った。その結果、合金積層造形体230は、その母相結晶中に平均粒径500 nm以下のサイコロ状のFCC(面心立方晶)の析出相が分散している様子が観察された。   Furthermore, in order to investigate the microstructure of the alloy laminate model 230 in more detail, a transmission electron microscope (TEM) and a scanning transmission electron microscope-energy dispersive X-ray spectrometer (STEM-EDX) Tissue observation was performed. As a result, it was observed that in the alloy laminate model 230, the precipitated phase of dice-like FCC (face-centered cubic) having an average particle diameter of 500 nm or less was dispersed in the parent phase crystal.

図4は、本発明における合金積層造形体の微細組織の一例を示すTEM観察結果であり、(a)析出相を含む明視野像、(b)a中の析出相から得られた電子線回折パターン、(c)a中の母相から得られた電子線回折パターンである。図4(b)に示した電子線回折パターンにおけるサテライトスポットの強度が、図4(c)に示した母相(マトリクス)の電子線回折パターンに比して増大していることから、図4(b)のサテライトスポットは微細析出物に起因していると考えられると共に、該微細析出物はマトリクスに対して整合析出していると考えられる。   FIG. 4 is a TEM observation result showing an example of a microstructure of an alloy laminate model according to the present invention, (a) a bright-field image including a precipitated phase, and (b) an electron beam diffraction obtained from the precipitated phase in a. Pattern (c) Electron diffraction pattern obtained from the parent phase in a. The intensity of the satellite spot in the electron beam diffraction pattern shown in FIG. 4B is increased as compared with the electron beam diffraction pattern of the matrix (matrix) shown in FIG. The satellite spot (b) is considered to be caused by fine precipitates, and the fine precipitates are considered to be aligned with the matrix.

また、図4(b)におけるサテライトスポットの指数付けにより、析出相の結晶構造はFCC(a≒0.359 nm)と同定された。図4(c)におけるマトリクス由来のメインスポットの指数付けにより、マトリクスの結晶構造は単純立方晶(SC、a≒0.358 nm)と同定された。   Further, the crystal structure of the precipitated phase was identified as FCC (a≈0.359 nm) by indexing the satellite spots in FIG. The crystal structure of the matrix was identified as simple cubic (SC, a≈0.358 nm) by indexing the main spot derived from the matrix in FIG.

図5は、本発明に係る合金積層造形体における析出相周辺の高角散乱環状暗視野走査透過型電子顕微鏡像(HAADF-STEM像)およびSTEM-EDXによる元素マッピング像である。なお、個々の元素マッピング像において、白色に近いほど原子濃度が相対的に高く、黒色に近いほど原子濃度が相対的に低いことを示す。   FIG. 5 is a high-angle scattering annular dark-field scanning transmission electron microscope image (HAADF-STEM image) and an element mapping image by STEM-EDX in the vicinity of the precipitation phase in the alloy laminate model according to the present invention. In each element mapping image, the closer to white, the higher the atomic concentration, and the closer to black, the lower the atomic concentration.

図5に示したように、Ni、TiおよびAlが濃化している粒径200〜300 nm程度のサイコロ状の析出相の他に、NiとTiとが濃化している極微細な析出相も存在することが確認された。極微細な析出相の結晶構造は、TEMの電子線回折パターンの指数付けにより、サイコロ状の析出相と同じFCC(a≒0.359 nm)と同定された。   As shown in FIG. 5, in addition to a dice-like precipitation phase having a particle size of about 200 to 300 nm in which Ni, Ti, and Al are concentrated, an extremely fine precipitation phase in which Ni and Ti are concentrated is also present. It was confirmed to exist. The crystal structure of the ultrafine precipitate phase was identified as the same FCC (a≈0.359 nm) as the dice-like precipitate phase by indexing the electron diffraction pattern of TEM.

[合金部材を用いた製造物]
図6は、本発明に係る合金部材を用いた製造物の一例であり、流体機械のインペラを示す写真である。本発明の合金製造物は金属粉末積層造形法により製造されることから、図6に示したような複雑形状物でも容易に造形することができる。また、本発明の合金部材を用いたインペラは、高い機械的特性と高い耐食性とを兼ね備えることから、厳しい応力・腐食環境下でも優れた耐久性を示すことができる。
[Products using alloy members]
FIG. 6 is a photograph showing an impeller of a fluid machine, which is an example of a product using an alloy member according to the present invention. Since the alloy product of the present invention is manufactured by the metal powder additive manufacturing method, even a complex shape as shown in FIG. 6 can be easily modeled. Moreover, since the impeller using the alloy member of the present invention has both high mechanical properties and high corrosion resistance, it can exhibit excellent durability even under severe stress / corrosion environments.

図7は、本発明に係る合金部材を用いた製造物の他の一例であり、本発明のインペラが組み込まれた遠心圧縮機を示す断面模式図である。厳しい応力・腐食環境下でも優れた耐久性を示す本発明のインペラを使用することにより、遠心圧縮機の長期信頼性の向上に寄与することができる。   FIG. 7 is a schematic cross-sectional view showing a centrifugal compressor in which the impeller of the present invention is incorporated, which is another example of a product using the alloy member according to the present invention. By using the impeller of the present invention exhibiting excellent durability even under severe stress / corrosion environment, it is possible to contribute to improvement of long-term reliability of the centrifugal compressor.

以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples.

[実験1]
(HEA粉末P-1〜P-6の用意)
表1に示す名目組成で原料を混合し、真空溶解法により溶解して溶湯を形成する原料混合溶解工程を行った。次に、ガスアトマイズ法により、溶湯から合金粉末を形成するアトマイズ工程を行った。次に、得られた合金粉末に対して、ふるいによる分級を行って粒径45〜105μmに選別してHEA粉末P-1〜P-6を用意した。レーザ回折式粒度分布測定装置を用いて、P-1〜P-6の粒度分布を測定したところ、それぞれの平均粒径は約70μmであった。
[Experiment 1]
(Preparation of HEA powder P-1 to P-6)
The raw materials were mixed with the nominal composition shown in Table 1, and the raw material mixing and dissolving step was performed in which the molten metal was formed by melting by a vacuum melting method. Next, the atomization process which forms alloy powder from a molten metal was performed by the gas atomization method. Next, the obtained alloy powder was classified by sieving to select a particle size of 45 to 105 μm to prepare HEA powders P-1 to P-6. When the particle size distribution of P-1 to P-6 was measured using a laser diffraction particle size distribution analyzer, the average particle size of each was about 70 μm.

Figure 2018145456
Figure 2018145456

[実験2]
(積層造形による合金部材AM-1〜AM-6の作製)
実験1で用意したHEA粉末P-1〜P-6に対し、図2に示したような粉末積層造形装置(Arcam AB社製、型式:A2X)を用いて、積層造形工程の手順に沿ってEBM法による合金積層造形体(直径14 mm×高さ85 mmの円柱材、高さ方向が積層方向)を造形した。粉末床の仮焼温度は850〜980℃とした。
[Experiment 2]
(Production of alloy members AM-1 to AM-6 by additive manufacturing)
For the HEA powders P-1 to P-6 prepared in Experiment 1, using a powder additive manufacturing apparatus (Arcam AB, model: A2X) as shown in FIG. An alloy layered body (14 mm diameter x 85 mm height, height direction is the stacking direction) was modeled by the EBM method. The calcining temperature of the powder bed was 850 to 980 ° C.

積層造形工程の後、合金積層造形体の周囲の仮焼結体を、HEA粉末を用いたサンドブラストにより除去する取出工程を行って、積層造形による合金部材AM-1〜AM-6を取り出した。   After the additive manufacturing process, the temporary sintering body around the alloy additive manufacturing body was removed by sand blasting using HEA powder to take out alloy members AM-1 to AM-6 by additive manufacturing.

[実験3]
(熱間鍛造による合金部材FM-1〜FM-6の作製)
実験1で用意したHEA粉末P-1〜P-6に対し、銅製の水冷鋳型を用いたアーク溶解法により、鋳造材(幅14 mm×長さ80 mm×高さ15 mmの角柱材)を用意した。次に、該鋳造材に対して、大気中で加熱(1160℃×15分間保持)した後にプレス加工(圧下率:30%、圧下速度:30 mm/s)を行う熱間鍛造工程を2回繰り返して、熱間鍛造材を用意した。
[Experiment 3]
(Preparation of alloy members FM-1 to FM-6 by hot forging)
For the HEA powders P-1 to P-6 prepared in Experiment 1, cast material (square column material 14 mm wide x 80 mm long x 15 mm high) is produced by arc melting using a copper water-cooled mold. Prepared. Next, the casting material is heated twice in the air (held at 1160 ° C. for 15 minutes) and then subjected to a hot forging process in which press working (rolling rate: 30%, rolling speed: 30 mm / s) is performed twice. Repeatedly, a hot forging was prepared.

さらに、該熱間鍛造材に対して、溶体化処理(大気中1170℃×3時間保持後、水冷)と、EBMの仮焼工程を模擬した時効処理(大気中980℃×15時間保持)とを施して、熱間鍛造による合金部材FM-1〜FM-6を作製した。これら熱間鍛造による合金部材は、積層造形工程を行っていない試料であり、金属粉末積層造形による作用効果を確認するための基準試料となる。   Furthermore, for the hot forged material, solution treatment (water cooling after holding at 1170 ° C. in the air for 3 hours), and aging treatment (maintaining at 980 ° C. for 15 hours in the air) simulating the calcination process of EBM, Thus, alloy members FM-1 to FM-6 were produced by hot forging. These alloy members obtained by hot forging are samples that have not been subjected to the additive manufacturing process, and serve as reference samples for confirming the effects of the metal powder additive manufacturing.

[実験4]
(合金部材の微細組織観察)
上記で作製した各合金部材から微細組織観察用の試験片を採取し、各種電子顕微鏡(SEM、STEM-EDX)およびX線回折(XRD)装置を用いて、微細組織観察を行った。各合金部材の作製仕様と共に、微細組織観察結果を表2、図8、図3A〜図3Bに示す。
[Experiment 4]
(Microstructure observation of alloy members)
A specimen for microstructural observation was collected from each of the alloy members produced above, and microstructural observation was performed using various electron microscopes (SEM, STEM-EDX) and an X-ray diffraction (XRD) apparatus. Table 2, FIG. 8, FIG. 3A to FIG. 3B show the microstructure observation results together with the production specifications of each alloy member.

図8は、熱間鍛造による合金部材の微細組織例であり、FM-2の微細組織を示すSEM観察像である。前述した図3A〜図3Bは、積層造形による合金部材AM-2の微細組織を示すSEM観察像である。   FIG. 8 is an example of the microstructure of the alloy member by hot forging, and is an SEM observation image showing the microstructure of FM-2. FIG. 3A to FIG. 3B described above are SEM observation images showing the microstructure of the alloy member AM-2 by additive manufacturing.

Figure 2018145456
Figure 2018145456

表2、図8に示したように、熱間鍛造による合金部材FM-1〜FM-6では、母相組織が等軸晶からなる組織(いわゆる鍛造組織)を有しており、平均粒径が約400μmであった。XRD測定およびSTEM観察の結果、当該等軸晶の結晶構造は、単純立方晶(SC)からなるとほぼ見なすことができた。また、FM-1〜FM-6での析出物は、FCC結晶構造のNi3(Ti,Al)相であった。ただし、当該析出物の分散形態は、不均一に分散析出していた。 As shown in Table 2 and FIG. 8, in the alloy members FM-1 to FM-6 by hot forging, the parent phase structure has a structure composed of equiaxed crystals (so-called forged structure), and the average particle diameter Was about 400 μm. As a result of XRD measurement and STEM observation, the crystal structure of the equiaxed crystal was almost regarded as consisting of simple cubic crystals (SC). The precipitates in FM-1 to FM-6 were Ni 3 (Ti, Al) phases having an FCC crystal structure. However, the dispersion form of the precipitate was dispersed and precipitated unevenly.

これらに対し、表2、図3A〜図3Bに示したように、積層造形による合金部材AM-1〜AM-6では、微細な柱状晶(平均粒径100μm以下)が積層造形体の積層方向に沿って林立した組織(いわゆる急冷凝固組織)を有していた。XRD測定およびSTEM観察の結果、当該柱状晶の結晶構造も、SCからなるとほぼ見なすことができた。また、AM-1〜AM-6での析出物は、FCC結晶構造のNi3(Ti,Al)相であり、ほぼ均等に分散析出しているように観察された。 On the other hand, as shown in Table 2 and FIGS. 3A to 3B, in the alloy members AM-1 to AM-6 by the layered modeling, fine columnar crystals (average particle size of 100 μm or less) are stacked in the layered molded body stacking direction. It had a forest (so-called rapidly solidified tissue) that was forested along the line. As a result of XRD measurement and STEM observation, the crystal structure of the columnar crystal was almost regarded as being composed of SC. Further, the precipitates at AM-1 to AM-6 were observed to be Ni 3 (Ti, Al) phases having an FCC crystal structure and dispersed and precipitated almost uniformly.

[実験5]
(合金部材の機械的特性および耐食性の測定)
上記で作製した各合金部材から引張試験用の試験片(平行部直径:4 mm、平行部長さ:20 mm)を採取した。なお、積層造形による合金部材は、試験片長手方向が積層造形方向と一致するように採取した。
[Experiment 5]
(Measurement of mechanical properties and corrosion resistance of alloy members)
A specimen for a tensile test (parallel part diameter: 4 mm, parallel part length: 20 mm) was collected from each alloy member produced above. In addition, the alloy member by lamination modeling was extract | collected so that a test piece longitudinal direction might correspond with a lamination modeling direction.

各試験片に対して、材料万能試験機を用いて室温引張試験を行い(JIS Z 2241に準拠、ひずみ速度:5×10-5 s-1)、引張強さと破断伸びとを測定した。引張試験の測定結果は、10測定のうちの最大値と最小値とを除いた8測定の平均値として求めた。引張強さの評価は、1000 MPa以上を「合格」と判定し、1000 MPa未満を「不合格」と判定した。また、破断伸びの評価は、5%以上を「合格」と判定し、5%未満を「不合格」と判定した。結果を後述する表3に示す。 Each specimen was subjected to a room temperature tensile test using a universal material testing machine (based on JIS Z 2241, strain rate: 5 × 10 −5 s −1 ), and the tensile strength and elongation at break were measured. The measurement result of the tensile test was obtained as an average value of 8 measurements excluding the maximum value and the minimum value of 10 measurements. In the evaluation of tensile strength, 1000 MPa or more was judged as “pass”, and less than 1000 MPa was judged as “fail”. In addition, the evaluation of elongation at break was 5% or more as “pass” and less than 5% as “fail”. The results are shown in Table 3 below.

また、上記で作製した各合金部材から孔食試験用の分極試験片(縦15 mm×横15 mm×厚さ2 mm)を採取した。孔食試験は、各分極試験片に対してJIS G 0577に準拠して行った。具体的には、「試験面積:1 cm2、分極試験片にすきま腐食防止電極を装着、参照電極:飽和銀塩化銀電極、試験溶液:アルゴンガス脱気した3.5%塩化ナトリウム水溶液、試験温度:80℃、電位掃引速度:20 mV/min」の条件下で分極試験片のアノード分極曲線を測定して、電流密度100μA/cm2に対応する孔食発生電位を求めた。孔食発生電位の評価は、0.50 V以上を「合格」と判定し、0.50 V未満を「不合格」と判定した。孔食試験の結果を表3に併記する。 In addition, polarization test pieces (15 mm long × 15 mm wide × 2 mm thick) for pitting corrosion tests were collected from each of the alloy members produced above. The pitting corrosion test was performed on each polarization test piece in accordance with JIS G 0577. Specifically, “Test area: 1 cm 2 , crevice corrosion prevention electrode is attached to polarization test piece, reference electrode: saturated silver chloride electrode, test solution: 3.5% sodium chloride aqueous solution degassed with argon gas, test temperature: The anodic polarization curve of the polarization test piece was measured under the conditions of “80 ° C., potential sweep rate: 20 mV / min” to determine the pitting corrosion occurrence potential corresponding to a current density of 100 μA / cm 2 . In the evaluation of the pitting corrosion occurrence potential, 0.50 V or more was determined as “pass”, and less than 0.50 V was determined as “fail”. The results of the pitting corrosion test are also shown in Table 3.

Figure 2018145456
Figure 2018145456

表3に示したように、積層造形工程を行っていない試料である熱間鍛造による合金部材FM-1〜FM-6は、引張強さが1000 MPa未満かつ破断伸びが5%未満であり、機械的特性が不合格であった。一方、積層造形による合金部材AM-1〜AM-6は、1000 MPa以上の引張強さを有し、破断伸びは5%以上であった。   As shown in Table 3, the alloy members FM-1 to FM-6 by hot forging, which are samples not subjected to the additive manufacturing process, have a tensile strength of less than 1000 MPa and an elongation at break of less than 5%. The mechanical properties were unacceptable. On the other hand, the alloy members AM-1 to AM-6 formed by additive manufacturing had a tensile strength of 1000 MPa or more and an elongation at break of 5% or more.

耐食性については、HEA粉末P-1〜P-3を用いた合金部材において、熱間鍛造による合金部材と積層造形による合金部材との間で差異がみられた。具体的には、熱間鍛造による合金部材FM-1〜FM-3は耐食性評価が不合格であったのに対し、同じ粉末を用いた積層造形による合金部材AM-1〜AM-3は、耐食性評価が合格であった。この結果から、本発明に係る合金部材は、優れた耐食性を有することが確認された。   Regarding the corrosion resistance, in the alloy members using HEA powders P-1 to P-3, a difference was observed between the alloy members by hot forging and the alloy members by additive manufacturing. Specifically, the alloy members FM-1 to FM-3 by hot forging failed the corrosion resistance evaluation, whereas the alloy members AM-1 to AM-3 by additive manufacturing using the same powder were The corrosion resistance evaluation was acceptable. From this result, it was confirmed that the alloy member according to the present invention has excellent corrosion resistance.

また、Mo成分を含むHEA粉末P-4〜P-6を用いた合金部材(FM-4〜FM-6、AM-4〜AM-6)は、いずれも良好な耐食性を有していた。この結果から、本発明に係る合金部材は、その元素の組み合わせ自体(Co-Cr-Fe-Ni-Ti-Al-Mo)によって、優れた耐食性を示すことが確認された。   Moreover, the alloy members (FM-4 to FM-6, AM-4 to AM-6) using HEA powders P-4 to P-6 containing Mo component all had good corrosion resistance. From this result, it was confirmed that the alloy member according to the present invention exhibits excellent corrosion resistance by the combination of elements itself (Co—Cr—Fe—Ni—Ti—Al—Mo).

[実験6]
(合金部材を用いた製造物の作製・検査)
積層造形による合金部材AM-2の製造方法と同様の手順により、図7に示したインペラを作製した。得られたインペラに対して、X線CTスキャンによる内部欠陥検査と、寸法測定とを行った。その結果、機械的特性に悪影響を及ぼすような内部欠陥は認められず、設計寸法に対する変形も認められなかった。本実験から、本発明の有効性が確認された。
[Experiment 6]
(Production and inspection of products using alloy members)
The impeller shown in FIG. 7 was produced by the same procedure as the manufacturing method of alloy member AM-2 by additive manufacturing. The obtained impeller was subjected to internal defect inspection by X-ray CT scan and dimension measurement. As a result, no internal defects that adversely affect the mechanical properties were observed, and no deformation with respect to the design dimensions was observed. From this experiment, the effectiveness of the present invention was confirmed.

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。   The above-described embodiments and examples are described in order to facilitate understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, it is possible to replace a part of the configuration of the embodiment with the configuration of common technical knowledge of those skilled in the art, and it is also possible to add the configuration of technical common sense of those skilled in the art to the configuration of the embodiment. That is, according to the present invention, a part of the configurations of the embodiments and examples of the present specification may be deleted, replaced with other configurations, and added with other configurations without departing from the technical idea of the invention. Is possible.

10…溶湯、20…合金粉末、
100…EBM粉末積層造形装置、110…電子ビーム制御部、120…粉末制御部、
111…タングステンフィラメント、112…アノ−ド、113…電子ビーム、
114…非点補正装置、115…フォーカスコイル、116…偏向コイル、
121…ステージ、122…ベースプレート、123…パウダーホッパー、
124…レーキアーム、
210…粉末床、220…凝固層、230…合金積層造形体。
10 ... molten metal, 20 ... alloy powder,
100 ... EBM powder additive manufacturing equipment, 110 ... electron beam control unit, 120 ... powder control unit,
111 ... tungsten filament, 112 ... anod, 113 ... electron beam,
114 ... Astigmatism correction device, 115 ... Focus coil, 116 ... Deflection coil,
121 ... Stage, 122 ... Base plate, 123 ... Powder hopper,
124 ... Rake arm,
210 ... powder bed, 220 ... solidified layer, 230 ... alloy laminate model.

Claims (10)

合金部材であって、
Co、Cr、Fe、Niの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、TiおよびAlをそれぞれ1原子%以上10原子%以下の範囲で含み、かつMoを5原子%以下の範囲で含み、残部が不可避不純物からなる化学組成を有し、
母相の結晶中に平均粒径500 nm以下の面心立方晶の析出相が分散していることを特徴とする合金部材。
An alloy member,
Each element of Co, Cr, Fe, and Ni is included in the range of 5 atomic% to 35 atomic%, Ti and Al are included in the range of 1 atomic% to 10 atomic%, respectively, and Mo is 5 atomic% or less. In the range, the remainder has a chemical composition consisting of inevitable impurities,
An alloy member characterized in that a face-centered cubic precipitated phase having an average grain size of 500 nm or less is dispersed in a matrix phase crystal.
請求項1に記載の合金部材において、
前記母相の組織は、平均粒径100μm以下の柱状晶が林立した急冷凝固組織であることを特徴とする合金部材。
The alloy member according to claim 1,
2. The alloy member according to claim 1, wherein the microstructure of the matrix is a rapidly solidified structure in which columnar crystals having an average particle diameter of 100 μm or less are formed.
請求項1又は請求項2に記載の合金部材において、
前記析出相は、前記Ni成分と前記Ti成分と前記Al成分とが前記母相の結晶よりも濃化している結晶性粒子であることを特徴とする合金部材。
In the alloy member according to claim 1 or 2,
The alloy phase, wherein the precipitation phase is a crystalline particle in which the Ni component, the Ti component, and the Al component are concentrated more than the crystal of the parent phase.
請求項1乃至請求項3のいずれか一項に記載の合金部材において、
前記化学組成は、前記Coを20原子%以上30原子%以下で、前記Crを10原子%以上25原子%以下で、前記Feを10原子%以上25原子%以下で、前記Niを20原子%以上30原子%以下で、前記Tiを2原子%以上10原子%以下で、前記Alを2原子%以上10原子%以下で含み、残部が前記不可避不純物からなることを特徴とする合金部材。
In the alloy member according to any one of claims 1 to 3,
The chemical composition includes 20 to 30 atomic percent of Co, 10 to 25 atomic percent of Cr, 10 to 25 atomic percent of Fe, and 20 atomic percent of Ni. An alloy member characterized by comprising 30 atomic% or less, Ti containing 2 atomic% or more and 10 atomic% or less, Al containing 2 atomic% or more and 10 atomic% or less, and the balance comprising the inevitable impurities.
請求項1乃至請求項3のいずれか一項に記載の合金部材において、
前記化学組成は、前記Coを25原子%以上30原子%以下で、前記Crを15原子%以上23原子%以下で、前記Feを15原子%以上23原子%以下で、前記Niを25原子%以上30原子%以下で、前記Tiを1原子%以上5原子%以下で、前記Alが1原子%以上10原子%以下で、前記Moを1原子%以上3原子%以下で含み、残部が前記不可避不純物からなることを特徴とする合金部材。
In the alloy member according to any one of claims 1 to 3,
The chemical composition includes 25 to 30 atomic percent of Co, 15 to 23 atomic percent of Cr, 15 to 23 atomic percent of Fe, and 25 atomic percent of Ni. 30 atomic% or less, Ti is 1 atomic% or more and 5 atomic% or less, Al is 1 atomic% or more and 10 atomic% or less, Mo is 1 atomic% or more and 3 atomic% or less, and the balance is the above An alloy member comprising inevitable impurities.
請求項1乃至請求項5のいずれか一項に記載の合金部材において、
引張強さが1000 MPa以上であり、破断伸びが5%以上であることを特徴とする合金部材。
In the alloy member according to any one of claims 1 to 5,
An alloy member having a tensile strength of 1000 MPa or more and an elongation at break of 5% or more.
請求項1乃至請求項6のいずれか一項に記載の合金部材において、
前記母相の結晶構造が単純立方晶であることを特徴とする合金部材。
In the alloy member according to any one of claims 1 to 6,
An alloy member, wherein the crystal structure of the matrix is a simple cubic crystal.
請求項1乃至請求項7のいずれか一項に記載の合金部材の製造方法であって、
前記合金の原料を混合・溶解して溶湯を形成する原料混合溶解工程と、
前記溶湯から合金粉末を形成するアトマイズ工程と、
前記合金粉末を用いた金属粉末積層造形法により所望形状を有する合金積層造形体を形成する積層造形工程を特徴とする合金部材の製造方法。
A method for producing an alloy member according to any one of claims 1 to 7,
A raw material mixing and melting step of mixing and melting the raw materials of the alloy to form a molten metal;
An atomizing step of forming alloy powder from the molten metal;
The manufacturing method of the alloy member characterized by the additive manufacturing process which forms the alloy additive manufacturing body which has a desired shape by the metal powder additive manufacturing method using the said alloy powder.
合金部材を用いた製造物であって、
前記合金部材が、請求項1乃至請求項8のいずれか一項に記載の合金部材であり、
前記製造物が、流体機械のインペラであることを特徴とする合金部材を用いた製造物。
A product using an alloy member,
The alloy member is an alloy member according to any one of claims 1 to 8,
A product using an alloy member, wherein the product is an impeller of a fluid machine.
請求項9に記載の前記インペラを組み込んでいることを特徴とする遠心圧縮機。   A centrifugal compressor incorporating the impeller according to claim 9.
JP2017039169A 2017-03-02 2017-03-02 An alloy member, a method for manufacturing the alloy member, and a product using the alloy member. Active JP6937491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039169A JP6937491B2 (en) 2017-03-02 2017-03-02 An alloy member, a method for manufacturing the alloy member, and a product using the alloy member.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039169A JP6937491B2 (en) 2017-03-02 2017-03-02 An alloy member, a method for manufacturing the alloy member, and a product using the alloy member.

Publications (2)

Publication Number Publication Date
JP2018145456A true JP2018145456A (en) 2018-09-20
JP6937491B2 JP6937491B2 (en) 2021-09-22

Family

ID=63590789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039169A Active JP6937491B2 (en) 2017-03-02 2017-03-02 An alloy member, a method for manufacturing the alloy member, and a product using the alloy member.

Country Status (1)

Country Link
JP (1) JP6937491B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594002A (en) * 2018-12-03 2019-04-09 江苏科技大学 A kind of more pivot medium entropy alloys and preparation method thereof
WO2019088158A1 (en) * 2017-10-31 2019-05-09 日立金属株式会社 Alloy material, method for producing said alloy material, product using said alloy material, and fluid machine having said product
CN110129649A (en) * 2019-06-19 2019-08-16 辽宁科技大学 A kind of preparation method of high entropy alloy coating powder and nanocrystalline high entropy alloy coating
CN110343928A (en) * 2019-07-31 2019-10-18 太原理工大学 A kind of FeCrNiAlTi system two-phase high-entropy alloy and preparation method thereof
CN110387498A (en) * 2019-07-30 2019-10-29 南京理工大学 One kind is in FexOriginal position TiB is synthesized in CoNiCu high-entropy alloy2Method
CN110904376A (en) * 2019-12-05 2020-03-24 济南大学 High-entropy alloy and preparation method thereof
CN111004945A (en) * 2019-12-31 2020-04-14 东北大学秦皇岛分校 Molybdenum-cobalt-based high-temperature alloy and application thereof
WO2020085697A1 (en) * 2018-10-24 2020-04-30 포항공과대학교 산학협력단 Medium-entropy alloy having high strength and high toughness, and manufacturing method therefor
CN111187964A (en) * 2020-02-10 2020-05-22 东北大学 High-strength-plasticity antibacterial high-entropy alloy and preparation method thereof
CN111254298A (en) * 2020-01-15 2020-06-09 湘潭大学 High-entropy alloy resistant to molten aluminum corrosion and preparation method thereof
CN111286685A (en) * 2018-12-06 2020-06-16 财团法人金属工业研究发展中心 Grain refinement method of high-entropy alloy
KR20200072385A (en) 2018-12-06 2020-06-22 한국생산기술연구원 Manufacturing method of composite using three dimensional printing and articles manufactured by the method
CN111471994A (en) * 2020-05-29 2020-07-31 深圳大学 Electron beam cladding enhanced high-entropy alloy coating and preparation method thereof
JP2020125523A (en) * 2019-02-06 2020-08-20 Tpr株式会社 Porous metal
WO2020188205A2 (en) 2019-03-20 2020-09-24 Safran Superalloy with optimized properties and a limited density
CN111748721A (en) * 2020-07-08 2020-10-09 重庆师范大学 High-entropy alloy/metal glass composite material and preparation method thereof
CN111872388A (en) * 2020-07-27 2020-11-03 上海大学 Method for preparing high-entropy alloy based on selective laser melting technology
CN112475319A (en) * 2020-11-27 2021-03-12 华中科技大学 4D forming method and product of nickel-titanium alloy component with deformation recovery and quick response
CN112828471A (en) * 2020-12-31 2021-05-25 中国人民解放军军事科学院国防科技创新研究院 Method and device for manufacturing refractory high-entropy alloy by laser cladding cable type welding wire additive manufacturing
JPWO2021176910A1 (en) * 2020-03-03 2021-09-10
KR20220001374A (en) * 2020-06-29 2022-01-05 한국재료연구원 High-entropy alloy and its manufacturing method
CN114086049A (en) * 2021-11-17 2022-02-25 沈阳航空航天大学 2.0GPa grade CoCrNi-based medium entropy alloy with ultrahigh yield strength and plasticity and preparation method thereof
CN114192800A (en) * 2021-12-14 2022-03-18 上海大学 Method for preparing high-density, high-toughness and high-entropy alloy by selective electron beam melting technology
WO2022065536A1 (en) * 2020-09-23 2022-03-31 엘지전자 주식회사 Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor
WO2022062102A1 (en) * 2020-09-23 2022-03-31 广东省科学院新材料研究所 Diffusion-resistant high-entropy alloy coating material, heat resistant coating material, preparation method therefor, and application thereof
CN114340820A (en) * 2019-09-20 2022-04-12 日立金属株式会社 Method for producing alloy member, and alloy member
CN114457270A (en) * 2021-12-31 2022-05-10 西安理工大学 L12Medium-entropy alloy with particles strongly plasticized and preparation method thereof
CN115011857A (en) * 2022-06-16 2022-09-06 哈尔滨工业大学 NiCoFeCrAlTi directional solidification high-entropy alloy with high strength and high plasticity and preparation method thereof
CN115233077A (en) * 2022-09-19 2022-10-25 太原理工大学 CoCrNi-based medium entropy alloy with high aluminum content and high titanium content and strengthened nano coherent precipitation and preparation method thereof
CN115491532A (en) * 2022-11-01 2022-12-20 攀枝花学院 High-corrosion-resistance high-entropy alloy and preparation method thereof
CN115747604A (en) * 2022-11-30 2023-03-07 太原理工大学 Mo-based high-entropy alloy and application thereof
CN115821141A (en) * 2022-09-23 2023-03-21 哈尔滨工业大学 Laves phase precipitation modified AlCoCrFeNi two-phase high-entropy alloy and preparation method thereof
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy
CN116287818A (en) * 2023-03-24 2023-06-23 西北有色金属研究院 AlCoCrFeNiTi series high-entropy alloy with high strength and plasticity and preparation method thereof
CN116586590A (en) * 2023-05-15 2023-08-15 西安工业大学 High-gradient directional solidification-based heterogeneous eutectic high-entropy alloy and preparation method thereof
JP7471078B2 (en) 2019-12-24 2024-04-19 山陽特殊製鋼株式会社 A multi-component alloy with excellent resistance to softening, balance of strength and elongation, and excellent wear resistance.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293037A (en) * 1987-10-19 1990-04-03 Sps Technol Inc Alloy containing gamma prime phase and its production
JPH06264168A (en) * 1992-09-18 1994-09-20 Inco Alloys Internatl Inc Thermal expansion control super alloy and heat treatment thereof
JP2016023352A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 Alloy structure
JP2016023366A (en) * 2014-07-25 2016-02-08 株式会社日立製作所 Manufacturing method of alloy structure
JP2016029193A (en) * 2014-07-25 2016-03-03 株式会社日立製作所 Alloy structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293037A (en) * 1987-10-19 1990-04-03 Sps Technol Inc Alloy containing gamma prime phase and its production
JPH06264168A (en) * 1992-09-18 1994-09-20 Inco Alloys Internatl Inc Thermal expansion control super alloy and heat treatment thereof
JP2016023352A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 Alloy structure
JP2016023366A (en) * 2014-07-25 2016-02-08 株式会社日立製作所 Manufacturing method of alloy structure
JP2016029193A (en) * 2014-07-25 2016-03-03 株式会社日立製作所 Alloy structure

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy
JPWO2019088158A1 (en) * 2017-10-31 2020-05-28 日立金属株式会社 Alloy material, method for producing the alloy material, product using the alloy material, and fluid machine having the product
WO2019088158A1 (en) * 2017-10-31 2019-05-09 日立金属株式会社 Alloy material, method for producing said alloy material, product using said alloy material, and fluid machine having said product
US11359638B2 (en) 2017-10-31 2022-06-14 Hitachi Metals, Ltd. Alloy article, method for manufacturing said alloy article, product formed of said alloy article, and fluid machine having said product
WO2020085697A1 (en) * 2018-10-24 2020-04-30 포항공과대학교 산학협력단 Medium-entropy alloy having high strength and high toughness, and manufacturing method therefor
CN109594002A (en) * 2018-12-03 2019-04-09 江苏科技大学 A kind of more pivot medium entropy alloys and preparation method thereof
KR20200072385A (en) 2018-12-06 2020-06-22 한국생산기술연구원 Manufacturing method of composite using three dimensional printing and articles manufactured by the method
CN111286685A (en) * 2018-12-06 2020-06-16 财团法人金属工业研究发展中心 Grain refinement method of high-entropy alloy
JP2020125523A (en) * 2019-02-06 2020-08-20 Tpr株式会社 Porous metal
JP7173491B2 (en) 2019-02-06 2022-11-16 Tpr株式会社 porous metal
WO2020188205A3 (en) * 2019-03-20 2020-11-12 Safran Superalloy with optimized properties and a limited density
CN113614260A (en) * 2019-03-20 2021-11-05 赛峰集团 Superalloy with optimized performance and finite density
WO2020188205A2 (en) 2019-03-20 2020-09-24 Safran Superalloy with optimized properties and a limited density
FR3094018A1 (en) * 2019-03-20 2020-09-25 Safran SUPERALLY WITH OPTIMIZED PROPERTIES AND LIMITED DENSITY
US11821060B2 (en) 2019-03-20 2023-11-21 Safran Superalloy with optimized properties and a limited density
CN110129649A (en) * 2019-06-19 2019-08-16 辽宁科技大学 A kind of preparation method of high entropy alloy coating powder and nanocrystalline high entropy alloy coating
CN110387498B (en) * 2019-07-30 2021-05-04 南京理工大学 In FexIn-situ TiB synthesized in CoNiCu high-entropy alloy2Method (2)
CN110387498A (en) * 2019-07-30 2019-10-29 南京理工大学 One kind is in FexOriginal position TiB is synthesized in CoNiCu high-entropy alloy2Method
CN110343928A (en) * 2019-07-31 2019-10-18 太原理工大学 A kind of FeCrNiAlTi system two-phase high-entropy alloy and preparation method thereof
CN114340820A (en) * 2019-09-20 2022-04-12 日立金属株式会社 Method for producing alloy member, and alloy member
CN110904376A (en) * 2019-12-05 2020-03-24 济南大学 High-entropy alloy and preparation method thereof
JP7471078B2 (en) 2019-12-24 2024-04-19 山陽特殊製鋼株式会社 A multi-component alloy with excellent resistance to softening, balance of strength and elongation, and excellent wear resistance.
CN111004945A (en) * 2019-12-31 2020-04-14 东北大学秦皇岛分校 Molybdenum-cobalt-based high-temperature alloy and application thereof
CN111254298B (en) * 2020-01-15 2021-09-10 湘潭大学 High-entropy alloy resistant to molten aluminum corrosion and preparation method thereof
CN111254298A (en) * 2020-01-15 2020-06-09 湘潭大学 High-entropy alloy resistant to molten aluminum corrosion and preparation method thereof
CN111187964A (en) * 2020-02-10 2020-05-22 东北大学 High-strength-plasticity antibacterial high-entropy alloy and preparation method thereof
CN111187964B (en) * 2020-02-10 2021-10-22 东北大学 High-strength-plasticity antibacterial high-entropy alloy and preparation method thereof
JP7173397B2 (en) 2020-03-03 2022-11-16 日立金属株式会社 Method for manufacturing alloy member, alloy member, and product using alloy member
JPWO2021176910A1 (en) * 2020-03-03 2021-09-10
CN111471994A (en) * 2020-05-29 2020-07-31 深圳大学 Electron beam cladding enhanced high-entropy alloy coating and preparation method thereof
KR20220001374A (en) * 2020-06-29 2022-01-05 한국재료연구원 High-entropy alloy and its manufacturing method
KR102517288B1 (en) * 2020-06-29 2023-04-04 한국재료연구원 High-entropy alloy and its manufacturing method
CN111748721B (en) * 2020-07-08 2022-02-18 重庆师范大学 High-entropy alloy/metal glass composite material and preparation method thereof
CN111748721A (en) * 2020-07-08 2020-10-09 重庆师范大学 High-entropy alloy/metal glass composite material and preparation method thereof
CN111872388A (en) * 2020-07-27 2020-11-03 上海大学 Method for preparing high-entropy alloy based on selective laser melting technology
WO2022065536A1 (en) * 2020-09-23 2022-03-31 엘지전자 주식회사 Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor
WO2022062102A1 (en) * 2020-09-23 2022-03-31 广东省科学院新材料研究所 Diffusion-resistant high-entropy alloy coating material, heat resistant coating material, preparation method therefor, and application thereof
CN112475319A (en) * 2020-11-27 2021-03-12 华中科技大学 4D forming method and product of nickel-titanium alloy component with deformation recovery and quick response
CN112475319B (en) * 2020-11-27 2021-08-03 华中科技大学 4D forming method and product of nickel-titanium alloy component with deformation recovery and quick response
CN112828471A (en) * 2020-12-31 2021-05-25 中国人民解放军军事科学院国防科技创新研究院 Method and device for manufacturing refractory high-entropy alloy by laser cladding cable type welding wire additive manufacturing
CN114086049A (en) * 2021-11-17 2022-02-25 沈阳航空航天大学 2.0GPa grade CoCrNi-based medium entropy alloy with ultrahigh yield strength and plasticity and preparation method thereof
CN114192800B (en) * 2021-12-14 2023-11-28 上海大学 Method for preparing high-density high-strength high-toughness high-entropy alloy by using selected-area electron beam melting technology
CN114192800A (en) * 2021-12-14 2022-03-18 上海大学 Method for preparing high-density, high-toughness and high-entropy alloy by selective electron beam melting technology
CN114457270B (en) * 2021-12-31 2023-01-31 西安理工大学 L1 2 Medium-entropy alloy with strong particle plasticization and preparation method thereof
CN114457270A (en) * 2021-12-31 2022-05-10 西安理工大学 L12Medium-entropy alloy with particles strongly plasticized and preparation method thereof
CN115011857A (en) * 2022-06-16 2022-09-06 哈尔滨工业大学 NiCoFeCrAlTi directional solidification high-entropy alloy with high strength and high plasticity and preparation method thereof
CN115011857B (en) * 2022-06-16 2023-01-24 哈尔滨工业大学 NiCoFeCrAlTi directional solidification high-entropy alloy with high strength and high plasticity and preparation method thereof
CN115233077A (en) * 2022-09-19 2022-10-25 太原理工大学 CoCrNi-based medium entropy alloy with high aluminum content and high titanium content and strengthened nano coherent precipitation and preparation method thereof
CN115821141A (en) * 2022-09-23 2023-03-21 哈尔滨工业大学 Laves phase precipitation modified AlCoCrFeNi two-phase high-entropy alloy and preparation method thereof
CN115821141B (en) * 2022-09-23 2023-11-24 哈尔滨工业大学 Laves phase precipitation modified AlCoCrFeNi dual-phase high-entropy alloy and preparation method thereof
CN115491532B (en) * 2022-11-01 2023-09-05 攀枝花学院 High corrosion-resistant high-entropy alloy and preparation method thereof
CN115491532A (en) * 2022-11-01 2022-12-20 攀枝花学院 High-corrosion-resistance high-entropy alloy and preparation method thereof
CN115747604A (en) * 2022-11-30 2023-03-07 太原理工大学 Mo-based high-entropy alloy and application thereof
CN115747604B (en) * 2022-11-30 2024-02-02 太原理工大学 Mo-based high-entropy alloy and application thereof
CN116287818A (en) * 2023-03-24 2023-06-23 西北有色金属研究院 AlCoCrFeNiTi series high-entropy alloy with high strength and plasticity and preparation method thereof
CN116287818B (en) * 2023-03-24 2024-04-30 西北有色金属研究院 AlCoCrFeNiTi-series high-entropy alloy with high strength and plasticity and preparation method thereof
CN116586590A (en) * 2023-05-15 2023-08-15 西安工业大学 High-gradient directional solidification-based heterogeneous eutectic high-entropy alloy and preparation method thereof

Also Published As

Publication number Publication date
JP6937491B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP6937491B2 (en) An alloy member, a method for manufacturing the alloy member, and a product using the alloy member.
JP6493561B2 (en) High entropy alloy member, method for producing the alloy member, and product using the alloy member
JP6493568B2 (en) Alloy member, method for manufacturing the alloy member, and product using the alloy member
JP6835139B2 (en) Manufacturing method of alloy members
JP6849128B2 (en) Mixed powder for metal lamination modeling
EP3705590B1 (en) Alloy material, product using said alloy material, and fluid machine having said product
US20230332278A1 (en) Alloy Material, Alloy Product Formed of Alloy Material, and Mechanical Device Including Alloy Product
JP7156474B2 (en) Method for manufacturing alloy member
EP4353859A1 (en) Alloy material, alloy product using alloy material, and machine device provided with alloy product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210820

R150 Certificate of patent or registration of utility model

Ref document number: 6937491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150