WO2022065536A1 - Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor - Google Patents

Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor Download PDF

Info

Publication number
WO2022065536A1
WO2022065536A1 PCT/KR2020/012830 KR2020012830W WO2022065536A1 WO 2022065536 A1 WO2022065536 A1 WO 2022065536A1 KR 2020012830 W KR2020012830 W KR 2020012830W WO 2022065536 A1 WO2022065536 A1 WO 2022065536A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
atomic
aluminum
component
component alloy
Prior art date
Application number
PCT/KR2020/012830
Other languages
French (fr)
Korean (ko)
Inventor
모리시타유토
황선태
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2020/012830 priority Critical patent/WO2022065536A1/en
Publication of WO2022065536A1 publication Critical patent/WO2022065536A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the embodiment is applied to an automobile member, an electronic component, a building material, and the like, and relates to a light-weight polyvalent alloy containing aluminum and a transition metal having light weight and strength, and a method for manufacturing the same.
  • Metal materials are used in various automobile parts, mechanical parts, building materials, etc., and are used according to their mechanical properties and uses.
  • Steel materials have excellent mechanical properties, and they are often used for mechanical parts that require high hardness due to high wear, such as molds and bearings.
  • the surface hardness is improved by subjecting the steel material to additional surface treatment such as induction hardening, nitriding treatment, plating, etc., thereby extending the life of the parts.
  • additional surface treatment such as induction hardening, nitriding treatment, plating, etc.
  • the steel material is a material containing iron as a main component, it is dense and heavy.
  • aluminum alloys, magnesium alloys, etc. are often used as substitute materials for steel materials, but their use is limited because of insufficient hardness compared to steel materials.
  • HEA high entropy alloy
  • HEA is defined as an alloy in which five or more kinds of main component elements are each composed of 5 atomic% to 35 atomic%. Moreover, when the mixing entropy ⁇ S calculated from the alloy composition shown in the following formula is 1.5R or more, it is classified as HEA.
  • ⁇ S when ⁇ S is 1.0R or more and 1.5R or less, it is classified as a medium entropy alloy (MEA), and when it is 1.0R or less, it is classified as a low entropy alloy (LEA).
  • MMA medium entropy alloy
  • LEA low entropy alloy
  • HEA or MEA A major feature of HEA or MEA is that elements with different atomic sizes are irregularly arranged in the crystal structure, so it is believed to have an effect of increasing strength and hardness due to large lattice strain.
  • the mixed entropy term in the Gibbs free energy equation takes a large value, and it is considered to have an effect of generating a solid solution because of its excellent chemical stability.
  • HEA is currently being actively researched as a structural material or aircraft material requiring high strength.
  • HEA and MEA reported at the present time are mainly composed of 3d transition metal elements. Therefore, the density of the alloy exceeds 7 g/cc, and the density is high and heavy. Low-density and light HEA or MEA have not been reported at this time.
  • Patent Document 1 contains 5 to 11 main metallic elements, these main metallic elements contain titanium, vanadium, iron, nickel, copper, aluminum, molybdenum, zirconium, cobalt, HEA is disclosed which is composed of at least one element selected from the group consisting of chromium and palladium, while the number of moles of each major metal element is 5% to 30% of the total number of moles of the alloy.
  • Patent Document 2 JP2011-32514 discloses a surface treatment method in which a nitrogen-containing compound layer with a Vickers hardness of 550 HV or higher, obtained after forming a chemical conversion film on a nitrogen compound layer formed through nitriding treatment of a steel material, and then uniformly remaining after high frequency heating is starting.
  • this surface treatment method after forming the nitrogen compound layer by salt bath softening treatment, chemical conversion treatment of the nitrogen compound layer with a chemical treatment solution, and then heating with high frequency quenching equipment for 0.3 seconds to less than 5 seconds After reaching 750 ° C to 860 ° C by the
  • Patent Document 3 discloses a method for surface treatment of a nickel plating film having a Vickers hardness of 500 HV to 900 HV.
  • Patent Document 4 discloses a rolling bearing with high wear resistance in which a Vickers hardness of 720 HV or more is obtained through quenching and forging of a steel material.
  • Patent Documents 2 to 4 are surface treatment methods for steel materials, but since surface treatment is required to improve the surface hardness of the base material, all processes are cumbersome, and delicate process management is required.
  • the base material is a material containing iron as a main component, it has a high density and is heavy.
  • Steel materials have excellent mechanical properties and are often used for mechanical parts such as molds and bearings that require hardness.
  • the surface treatment process for increasing the lifespan of parts requires cumbersome or delicate management as in the above patent document, the surface treatment process is unnecessary and a material having high hardness is required.
  • a light alloy such as a magnesium alloy, an aluminum alloy, or a titanium alloy is attracting attention as a lightweight alloy material in consideration of the global environment.
  • These lightweight alloys have a low density compared to steel materials, so they are lightweight, but they have insufficient hardness compared to steel materials, so their range of use is limited, and they are not a material that can replace steel materials. Therefore, a lightweight material having a hardness equal to or higher than that of a steel material subjected to surface treatment is required.
  • aluminum (Al) is 50 atomic% to 55 atomic%, manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni) at least two elements selected from 12 atomic% to 25 atomic %, the balance has a chemical composition composed of impurities, the Vickers hardness is 550 HV or more to 700 HV or less, and the density of the alloy is less than 5.5 g/cc.
  • the alloy of the present invention is a multi-component alloy having a smaller density and lighter weight than a steel material, and having hardness equal to or greater than that of a steel material. In particular, it has a very high hardness equivalent to that of a material subjected to surface treatment of a steel material. Therefore, there is no need to perform a separate surface treatment process for the alloy of the present invention. Accordingly, the multi-component alloy of the present invention may be lightweight and high in hardness with sufficient potential to become a base material to be a substitute material for a steel material requiring surface treatment.
  • Example 1 is a view showing the results of X-ray diffraction analysis according to Example 9.
  • aluminum is 50 atomic% to 55 atomic%
  • manganese (Mn), iron (Fe), cobalt (Co), and two or more elements selected from nickel (Ni) are 12 to 25 atomic%
  • the balance is inevitable It has a chemical composition composed of impurities, whereby it is possible to provide a light-weight and high-hardness multi-component alloy.
  • the reason that the composition range is limited is that a composition outside the composition range has a low Vickers hardness and cannot achieve sufficient hardness.
  • aluminum is 50 atomic% to 55 atomic%, manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni) 12 to 17 atomic% of three or more elements selected from the group consisting of It is more preferable to have a chemical composition composed of atomic % and the remainder of unavoidable impurities.
  • aluminum is 50 to 55 atomic %
  • manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni) are 12 to 13 atomic %, and the balance is unavoidable. It is desirable to have a chemical composition composed of impurities.
  • the alloy of the present invention has a hardness equal to or greater than that of steel materials, but according to a recent study by HEA, if elements with different atomic sizes are irregularly arranged in the crystal structure in a multi-component alloy, large lattice deformation occurs. It is believed to be effective in increasing hardness.
  • the mixing entropy calculated from the alloy composition is 1.0R or more and 1.5R or less, which corresponds to MEA, but hardness may be increased by the same effect as HEA.
  • the multi-component alloy of the present invention may be prepared by synthesis through heating.
  • the raw material is melted through an infrared heating furnace, but the embodiment is not limited thereto, and equipment such as a vacuum melting furnace and a high frequency melting furnace may be used as the melting equipment.
  • equipment such as a vacuum melting furnace and a high frequency melting furnace may be used as the melting equipment.
  • synthesis through powder sintering is possible, and hot press, metal injection molding equipment (MIM), hot isostatic pressure equipment (HIP), additive molding equipment (AM), etc. can be used.
  • MIM metal injection molding equipment
  • HIP hot isostatic pressure equipment
  • AM additive molding equipment
  • the multi-component alloy of the present invention prepared as described above may be applied to components of a compressor.
  • the weighed powder was mixed in a mortar, put in a MgO crucible, and heated in an infrared heating furnace to obtain an ingot through solidification in the crucible.
  • the heating conditions at this time were a temperature increase rate of 50°C/min, a temperature of 1400°C, and a holding time of 10 minutes in an argon gas flow atmosphere.
  • this sintered body was polished with a polishing paper of #400 to #2000 with a polishing machine, and buff-polished with an alumina polishing liquid as a final finishing polishing to obtain a surface with a metallic luster.
  • the Vickers hardness was measured at 10 points on this metallic luster surface with a Vickers hardness meter, the average value of the Vickers hardness was measured, and the calculated density obtained by calculating the density of the alloy from atomic percent was measured.
  • metal powder aluminum powder and nickel powder, which are raw material powders of each element, were prepared, and 10 g of these powders were weighed in total at the following composition ratios.
  • the weighed powder was mixed in a mortar, put in a MgO crucible, and heated in an infrared heating furnace to obtain an ingot through solidification in the crucible.
  • the heating conditions at this time were an argon gas flow atmosphere, a temperature increase rate of 50°C/min, a temperature of 1600°C, and a holding time of 10 minutes.
  • this sintered compact was polished with a polishing paper of #400 to #2000 with a polishing machine, and buff-polished with an alumina polishing liquid as a final finishing polishing to obtain a metallic luster surface.
  • the Vickers hardness was measured at 10 points on this metallic luster surface with a Vickers hardness meter, the average value of the Vickers hardness was measured, and the calculated density calculated from the atomic percent density of the alloy was measured.
  • Example 9 is a measurement result using an X-ray diffraction apparatus according to Example 9 and powder diffraction data of AlNi. As can be seen from Figure 1, Example 9 has the same crystal structure as the AlNi alloy, while it can be seen that the single-phase structure.
  • the alloy of the present invention was subjected to crystal structure analysis through an X-ray diffraction apparatus for all alloys of Examples 1 to 11, and it was confirmed that all of them had a single-phase structure.
  • elements having different atomic sizes are arranged in one crystal structure, and the hardness of the alloy may be increased due to the large crystal deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

A multi-component alloy of the present invention has a chemical composition comprising: 50 atom% to 55 atom% of aluminum (A); 12 atom% to 25 atom% of at least two kinds of elements selected from manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni); and the balance being impurities. The multi-component alloy has a Vickers hardness of 550 HV to 700 HV and a density of less than 5.5 g/cc.

Description

알루미늄과 천이 금속을 포함하는 경량 다원계 합금과 그 제조 방법Lightweight polyvalent alloy containing aluminum and transition metal and method for manufacturing the same
실시예는 자동차 부재, 전자 부품, 건축 자재 등에 적용되고, 경량이면서 강도가 있는 알루미늄과 천이 금속을 포함하느 경량 다원계 합금 및 그 제조 방법에 관한 것이다.The embodiment is applied to an automobile member, an electronic component, a building material, and the like, and relates to a light-weight polyvalent alloy containing aluminum and a transition metal having light weight and strength, and a method for manufacturing the same.
금속 재료는 여러 가지 자동차 부재, 기계 부품, 건축 자재 등에 사용되고 있으며, 그 기계적 성질이나 용도에 따라 구분해 사용되고 있다. Metal materials are used in various automobile parts, mechanical parts, building materials, etc., and are used according to their mechanical properties and uses.
철강 재료는 기계적 성질이 뛰어나며, 금형이나 베어링 등과 같이 마모가 많아 경도가 필요한 기계 부품에는 철강 재료가 사용되는 경우가 많다. 또한, 기계 부품 표면의 마모, 손모가 심해 경도가 불충분한 경우는, 철강 재료를 고주파 담금질, 질화 처리, 도금 등의 추가 표면 처리를 함으로써 표면 경도를 개선해 부품 수명을 늘리고 있다. 그러나, 각종 표면 처리는 공정이 복잡해 섬세한 공정 관리가 필요하다.Steel materials have excellent mechanical properties, and they are often used for mechanical parts that require high hardness due to high wear, such as molds and bearings. In addition, in the case of insufficient hardness due to severe wear and tear on the surface of mechanical parts, the surface hardness is improved by subjecting the steel material to additional surface treatment such as induction hardening, nitriding treatment, plating, etc., thereby extending the life of the parts. However, various surface treatments are complicated and require delicate process management.
또한, 철강 재료는 철이 주성분인 재료이기 때문에 밀도가 높고 무겁다. 최근에는 지구 환경을 생각한 경량 금속 재료로서 알루미늄 합금, 마그네슘 합금 등이 철강 재료의 대체 재료로서 사용되는 경우가 많아지고 있지만, 철강 재료에 비해 경도가 불충분하기 때문에 사용 범위가 제한되고 있다.In addition, since the steel material is a material containing iron as a main component, it is dense and heavy. In recent years, as lightweight metal materials considering the global environment, aluminum alloys, magnesium alloys, etc. are often used as substitute materials for steel materials, but their use is limited because of insufficient hardness compared to steel materials.
따라서, 철강 재료와 동등 이상의 경도를 가지면서 표면 처리 공정이 불필요한 경량 금속 재료가 요구되고 있다.Accordingly, there is a demand for a lightweight metal material having a hardness equal to or higher than that of a steel material and requiring no surface treatment process.
한편, 최근에는 하이 엔트로피 합금(High Entropy Alloy, 이하 HEA)으로 불리는 새로운 합금 설계 컨셉이 제안되고 있다. 단일의 주성분 원소에 대해 미량 원소를 첨가하는 기존 합금과는 달리, 5 종류 이상의 주성분 원소에 의해 단상 고용체를 구성하는 것이 특징인 다원계 합금이며, 지금까지는 생각하지 못했던 완전히 새로운 합금 설계 컨셉이다. On the other hand, recently, a new alloy design concept called a high entropy alloy (hereafter, HEA) has been proposed. Unlike conventional alloys in which trace elements are added to a single main element, it is a multi-component alloy characterized by forming a single-phase solid solution with five or more main element elements, and it is a completely new alloy design concept that has not been considered until now.
HEA는 5 종류 이상의 주성분 원소가 각각 5원자% 내지 35 원자%로 구성되는 합금이라고 정의되고 있다. 또, 다음 식에서 나타내는 합금 조성으로부터 계산되는 혼합 엔트로피ΔS가 1.5R 이상인 경우, HEA로 분류되고 있다.HEA is defined as an alloy in which five or more kinds of main component elements are each composed of 5 atomic% to 35 atomic%. Moreover, when the mixing entropy ΔS calculated from the alloy composition shown in the following formula is 1.5R or more, it is classified as HEA.
[식][ceremony]
Figure PCTKR2020012830-appb-img-000001
Figure PCTKR2020012830-appb-img-000001
(R은 가스 정수, N은 원소 수, ci는 성분 i의 원자 비율이다.)(R is the gas constant, N is the number of elements, and ci is the atomic ratio of component i.)
또, ΔS 가 1.0R 이상이고 1.5R 이하인 경우는 미디엄 엔트로피 합금(Medium Entropy Alloy, 이하 MEA), 1.0R 이하인 경우는 로우 엔트로피 합금(Low Entropy Alloy, 이하 LEA)으로 분류되고 있다. 합금 조성에 대해 원소 수가 증가하고, 각 원소의 원자 비율이 큰 경우, 혼합 엔트로피는 높은 값이 된다. 기존의 합금, 예를 들면 철강 재료, 알루미늄 합금, 마그네슘 합금 등은 단일 금속 원소에 미량 원소를 첨가하고 있는 경우가 많아, 그 대부분의 합금은 LEA에 해당한다.In addition, when ΔS is 1.0R or more and 1.5R or less, it is classified as a medium entropy alloy (MEA), and when it is 1.0R or less, it is classified as a low entropy alloy (LEA). When the number of elements increases with respect to the alloy composition and the atomic ratio of each element is large, the mixing entropy becomes a high value. Existing alloys, for example, steel materials, aluminum alloys, magnesium alloys, etc. often contain trace elements added to a single metal element, and most of the alloys fall under LEA.
HEA 또는 MEA의 큰 특징은, 결정 구조에서 원자 사이즈가 다른 원소가 불규칙하게 배치되어 있기 때문에 큰 격자변형에 기인해 강도 및 경도를 높이는 효과가 있다고 여겨지고 있다. 또한 주성분 원소가 많은 합금계이기 때문에 깁스 자유에너지식에서의 혼합 엔트로피항이 큰 값을 취해 화학적 안정성이 뛰어나기에 고용체를 생성하는 효과가 있다고 여겨지고 있다. A major feature of HEA or MEA is that elements with different atomic sizes are irregularly arranged in the crystal structure, so it is believed to have an effect of increasing strength and hardness due to large lattice strain. In addition, since it is an alloy system with many main constituent elements, the mixed entropy term in the Gibbs free energy equation takes a large value, and it is considered to have an effect of generating a solid solution because of its excellent chemical stability.
이에 따라, HEA는 현재 높은 강도가 필요한 구조용 재료나 항공기용 재료로서 주목을 받아 활발하게 연구가 이루어지고 있다.Accordingly, HEA is currently being actively researched as a structural material or aircraft material requiring high strength.
그러나, 현시점에서 보고되어 있는 HEA나 MEA는 주로 3d 천이 금속 원소로 구성되어 있다. 그렇기 때문에 합금 밀도로서는 7g/cc를 넘어 밀도가 높고 무겁다. 밀도가 낮고 가벼운 HEA나 MEA는 현시점에서는 보고되지 않았다. However, HEA and MEA reported at the present time are mainly composed of 3d transition metal elements. Therefore, the density of the alloy exceeds 7 g/cc, and the density is high and heavy. Low-density and light HEA or MEA have not been reported at this time.
JP2002-173732(특허문헌1)에는 5 종류에서 11 종류의 주요 금속 원소를 함유하고, 이들 주요 금속 원소는 티탄, 바나듐, 철, 니켈을 함유함과 동시에, 구리, 알루미늄, 몰리브덴, 지르코늄, 코발트, 크롬, 팔라듐으로 구성되는 그룹에서 선택된 1종 이상의 원소로 구성되는 한편, 각 1종류의 주요 금속 원소의 몰 수가 합금 총 몰 수의 5%에서 30%인 것이 특징인 HEA가 개시되고 있다.JP2002-173732 (Patent Document 1) contains 5 to 11 main metallic elements, these main metallic elements contain titanium, vanadium, iron, nickel, copper, aluminum, molybdenum, zirconium, cobalt, HEA is disclosed which is composed of at least one element selected from the group consisting of chromium and palladium, while the number of moles of each major metal element is 5% to 30% of the total number of moles of the alloy.
그렇지만, 실시예에서도 알 수 있듯이 구성 원소는 거의 3d 천이 금속 원소가 차지하고 있고 그 전부가 밀도 5.5 g/cc 이상이다. However, as can be seen from the Examples, almost all of the constituent elements are occupied by 3d transition metal elements, all of which have a density of 5.5 g/cc or more.
JP2011-32514(특허문헌2)에는 철강 재료의 질화 처리를 통해 형성된 질소 화합물층상에 화성 피막을 형성한 다음에 고주파 가열 후에 얻을 수 있는 빅커스 경도 550HV 이상의 질소 함유 화합물층이 균일하게 잔존하는 표면 처리 방법을 개시하고 있다. 이 표면 처리 방법은 실시예를 봐도 알 수 있듯이 염욕 연질화 처리로 질소 화합물층을 형성한 후, 질소 화합물층을 화성 처리액으로 화성 처리하고, 그 다음에 고주파 담금질 장비로 0.3초 내지 5초 미만의 가열에 의해서 750℃ 내지 860℃에 도달한 후, 곧바로 수냉에 의한 담금질을 실시하는 방법이지만, 결코 간단한 공정이 아니며, 0.1초 단위의 공정 관리가 필요하다.JP2011-32514 (Patent Document 2) discloses a surface treatment method in which a nitrogen-containing compound layer with a Vickers hardness of 550 HV or higher, obtained after forming a chemical conversion film on a nitrogen compound layer formed through nitriding treatment of a steel material, and then uniformly remaining after high frequency heating is starting As can be seen from the examples, in this surface treatment method, after forming the nitrogen compound layer by salt bath softening treatment, chemical conversion treatment of the nitrogen compound layer with a chemical treatment solution, and then heating with high frequency quenching equipment for 0.3 seconds to less than 5 seconds After reaching 750 ° C to 860 ° C by the
JP2017-8357(특허문헌3)에는 빅커스 경도 500HV 내지 900HV를 가진 니켈 도금 피막의 표면 처리 방법이 개시되어 있다.JP2017-8357 (Patent Document 3) discloses a method for surface treatment of a nickel plating film having a Vickers hardness of 500 HV to 900 HV.
WO01/018273(특허문헌4)에는 철강 재료를 담금질과 단조법을 통해 빅커스 경도 720HV 이상이 되는 내마모성이 높은 구름 베어링이 개시되어 있다.WO01/018273 (Patent Document 4) discloses a rolling bearing with high wear resistance in which a Vickers hardness of 720 HV or more is obtained through quenching and forging of a steel material.
상기 특허 문헌 2 내지 4는 모두 철강 재료에 대한 표면 처리 방법이지만, 모재의 표면 경도를 향상시키기 위해서 표면 처리가 필요하기에 모든 공정이 번거롭고, 섬세한 공정 관리가 필요하다. 또한, 모재는 철을 주성분으로 하는 재료이기 때문에 밀도가 높고 무겁다. All of the above Patent Documents 2 to 4 are surface treatment methods for steel materials, but since surface treatment is required to improve the surface hardness of the base material, all processes are cumbersome, and delicate process management is required. In addition, since the base material is a material containing iron as a main component, it has a high density and is heavy.
철강 재료는 기계적 성질이 뛰어나 경도가 필요한 금형이나 베어링 등의 기계 부품에 사용되는 일이 많다. 그러나, 부품 수명을 늘리기 위한 표면 처리 공정은 상기 특허 문헌과 같이 번거롭거나 섬세한 관리가 필요하기 때문에 표면 처리 공정이 불필요하고 경도가 높은 소재가 요구되고 있다.Steel materials have excellent mechanical properties and are often used for mechanical parts such as molds and bearings that require hardness. However, since the surface treatment process for increasing the lifespan of parts requires cumbersome or delicate management as in the above patent document, the surface treatment process is unnecessary and a material having high hardness is required.
또한, 철강 재료는 밀도가 높아 중량이 크기 때문에, 최근에는 지구 환경을 생각한 경량의 합금 소재로서 마그네슘 합금, 알루미늄 합금이나 티탄 합금 등의 경량 합금이 주목되고 있다. 이러한 경량 합금은 철강 재료에 비해 밀도가 작아 경량이지만 철강 재료에 비해 경도가 불충분하기 때문에 사용 범위에 제한이 있어, 철강 재료를 대체할 수 있는 소재는 아니다. 그렇기 때문에, 표면 처리를 한 철강 재료와 동등 이상의 경도를 가진 경량인 소재가 요구되고 있다.In addition, since a steel material has a high density and a large weight, in recent years, a light alloy such as a magnesium alloy, an aluminum alloy, or a titanium alloy is attracting attention as a lightweight alloy material in consideration of the global environment. These lightweight alloys have a low density compared to steel materials, so they are lightweight, but they have insufficient hardness compared to steel materials, so their range of use is limited, and they are not a material that can replace steel materials. Therefore, a lightweight material having a hardness equal to or higher than that of a steel material subjected to surface treatment is required.
본 발명의 다원계 합급은 알루미늄(Al)이 50 원자% 내지 55 원자%, 망간(Mn), 철(Fe), 코발트(Co) 및 니켈(Ni) 중에서 선택되는 2 종류 이상의 원소가 12 원자% 내지 25 원자%, 잔부가 불순물로 구성되는 화학 조성을 가지고, 빅커스 경도가 550HV이상 내지 700HV 이하이고, 합금의 밀도가 5.5g/cc 미만이다.In the multi-component alloy of the present invention, aluminum (Al) is 50 atomic% to 55 atomic%, manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni) at least two elements selected from 12 atomic% to 25 atomic %, the balance has a chemical composition composed of impurities, the Vickers hardness is 550 HV or more to 700 HV or less, and the density of the alloy is less than 5.5 g/cc.
본 발명의 합금은 철강 재료보다 밀도가 작고 경량이며, 철강 재료와 동등 이상의 경도를 가지는 다원계 합금이다. 특히, 철강 재료를 표면 처리한 재료와 동일한 정도의 매우 높은 경도를 가진다. 따라서, 본 발명의 합금에 대해서 별도 표면 처리 공정을 할 필요가 없다. 이에 따라, 본 발명의 다원계 합금은 표면 처리가 필요한 철강 재료의 대체 재료가 되는 기초 소재가 될 가능성이 충분한 경량이면서 경도가 높을 수 있다.The alloy of the present invention is a multi-component alloy having a smaller density and lighter weight than a steel material, and having hardness equal to or greater than that of a steel material. In particular, it has a very high hardness equivalent to that of a material subjected to surface treatment of a steel material. Therefore, there is no need to perform a separate surface treatment process for the alloy of the present invention. Accordingly, the multi-component alloy of the present invention may be lightweight and high in hardness with sufficient potential to become a base material to be a substitute material for a steel material requiring surface treatment.
도 1은 실시예 9에 따른 X선 회절 분석 결과를 도시한 도면이다.1 is a view showing the results of X-ray diffraction analysis according to Example 9.
본 발명은 알루미늄이 50 원자% 내지 55 원자%, 망간(Mn), 철(Fe), 코발트(Co) 및 니켈(Ni) 중에서 선택된 2 종류 이상의 원소가 12 원자% 내지 25 원자%, 잔부가 불가피한 불순물로 구성되는 화학 조성을 가진다, 이에 의해 경량이면서 경도가 높은 다원계 합금을 제공할 수 있다. 상기 조성 범위를 한정하고 있는 것은, 조성 범위를 벗어난 조성은 빅커스 경도가 낮아져 충분한 경도를 달성할 수 없기 때문이다.In the present invention, aluminum is 50 atomic% to 55 atomic%, manganese (Mn), iron (Fe), cobalt (Co), and two or more elements selected from nickel (Ni) are 12 to 25 atomic%, the balance is inevitable It has a chemical composition composed of impurities, whereby it is possible to provide a light-weight and high-hardness multi-component alloy. The reason that the composition range is limited is that a composition outside the composition range has a low Vickers hardness and cannot achieve sufficient hardness.
보다 높은 경도가 요구되는 경우, 알루미늄이 50 원자% 내지 55 원자%, 망간(Mn), 철(Fe), 코발트(Co) 및 니켈(Ni)로부터 선택되는 3 종류 이상의 원소가 12 원자% 내지 17 원자%, 잔부가 불가피한 불순물로 구성되는 화학 조성을 가지는 것이 보다 바람직하다.When higher hardness is required, aluminum is 50 atomic% to 55 atomic%, manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni) 12 to 17 atomic% of three or more elements selected from the group consisting of It is more preferable to have a chemical composition composed of atomic % and the remainder of unavoidable impurities.
보다 더 높은 경도가 요구되는 경우, 알루미늄이 50 원자% 내지 55 원자%, 망간(Mn), 철(Fe), 코발트(Co) 및 니켈(Ni)이 12 원자% 내지 13 원자%, 잔부가 불가피한 불순물로 구성되는 화학 조성을 가지는 것이 바람직하다.When higher hardness is required, aluminum is 50 to 55 atomic %, manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni) are 12 to 13 atomic %, and the balance is unavoidable. It is desirable to have a chemical composition composed of impurities.
본 발명의 합금이 왜 철강 재료와 동등 이상의 경도를 가지는 지는 현시점에서는 불분명하지만, 최근의 HEA의 연구에 따르면 다원계 합금에서 원자 사이즈가 다른 원소가 그 결정 구조에서 불규칙하게 배치되면, 큰 격자변형에 기인하여 경도를 높이는 효과가 있다고 여겨지고 있다.It is unclear at present why the alloy of the present invention has a hardness equal to or greater than that of steel materials, but according to a recent study by HEA, if elements with different atomic sizes are irregularly arranged in the crystal structure in a multi-component alloy, large lattice deformation occurs. It is believed to be effective in increasing hardness.
이에 따라, 본 발명의 합금은, 합금 조성으로부터 계산되는 혼합 엔트로피는 1.0R 이상 1.5R 이하로, MEA에 해당하지만 HEA와 같은 효과에 의해 경도가 높아질 수 있다.Accordingly, in the alloy of the present invention, the mixing entropy calculated from the alloy composition is 1.0R or more and 1.5R or less, which corresponds to MEA, but hardness may be increased by the same effect as HEA.
본 발명의 다원계 합금은 가열을 통한 합성으로 제조될 수 있다. 이하에서 설명하는 실시예에서는 적외선 가열로를 통해 원료를 용해하고 있지만 실시예는 이에 제한되지 않고 용해 장비로서 진공 용해로, 고주파 용해로 등의 장비를 사용할 수 있다. 또한, 분말 소결을 통한 합성도 가능하고, 핫 프레스, 금속 사출 성형 장비(MIM), 열간 등방압 가압 장비(HIP), 적층 조형 장비(AM) 등을 사용할 수 잇다.The multi-component alloy of the present invention may be prepared by synthesis through heating. In the embodiment described below, the raw material is melted through an infrared heating furnace, but the embodiment is not limited thereto, and equipment such as a vacuum melting furnace and a high frequency melting furnace may be used as the melting equipment. In addition, synthesis through powder sintering is possible, and hot press, metal injection molding equipment (MIM), hot isostatic pressure equipment (HIP), additive molding equipment (AM), etc. can be used.
상기와 같이 제조되는 본 발명의 다원계 합금은 압축기의 부품 등에 적용될 수 있다.The multi-component alloy of the present invention prepared as described above may be applied to components of a compressor.
이하, 실시예들 및 비교예들에 따른 다원계 합금을 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 제조예는 본 발명을 좀더 상세하게 설명하기 위하여 예시로 제시한 것에 불과하다. 따라서 본 발명이 이러한 제조예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through multi-component alloys according to Examples and Comparative Examples. These manufacturing examples are merely presented as examples in order to explain the present invention in more detail. Therefore, the present invention is not limited to these preparation examples.
실시예 1Example 1
금속 분말로서 각 원소의 원료 분말인 알루미늄 분말, 망간 분말, 니켈 분말을 준비하고 이들 분말을 아래의 조성비로 합계 10g으로 칭량하였다Aluminum powder, manganese powder, and nickel powder, which are raw material powders of each element, were prepared as metal powders, and these powders were weighed in a total of 10 g in the following composition ratio.
조성비(at%):50 Al-25 Mn-25 Ni Composition ratio (at%): 50 Al-25 Mn-25 Ni
다음으로 칭량한 분말을 유발로 혼합하고 MgO 도가니에 넣어 적외선 가열로에서 가열해 도가니 내 응고를 통해 잉곳을 얻었다. 이때의 가열 조건은 아르곤 가스 플로우 분위기에서 승온 속도 50℃/분, 온도 1400℃, 유지 시간 10분이었다. Next, the weighed powder was mixed in a mortar, put in a MgO crucible, and heated in an infrared heating furnace to obtain an ingot through solidification in the crucible. The heating conditions at this time were a temperature increase rate of 50°C/min, a temperature of 1400°C, and a holding time of 10 minutes in an argon gas flow atmosphere.
다음으로 이 소결체를 연마기로 #400 내지 #2000의 연마지로 연마하고, 최종 마무리 연마로서 알루미나 연마액으로 버프 연마해 금속 광택을 띤 면을 얻었다. 이 금속 광택을 띤 면을 빅커스 경도계로 빅커스 경도를 10점 측정하여 빅커스 경도의 평균치를 측정하고, 합금의 밀도를 원자%로부터 계산한 계산 밀도를 측정하였다.Next, this sintered body was polished with a polishing paper of #400 to #2000 with a polishing machine, and buff-polished with an alumina polishing liquid as a final finishing polishing to obtain a surface with a metallic luster. The Vickers hardness was measured at 10 points on this metallic luster surface with a Vickers hardness meter, the average value of the Vickers hardness was measured, and the calculated density obtained by calculating the density of the alloy from atomic percent was measured.
실시예 2Example 2
조성비(at%):50 Al-25 Mn-25 Fe로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 50 After preparing a sintered body in the same manner as in Example 1, except that Al-25 Mn-25 Fe was used, Vickers hardness and calculated density were measured.
실시예 3Example 3
조성비(at%):50 Al-16 Mn-17 Fe-17 Ni로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 50 After preparing a sintered body in the same manner as in Example 1, except that Al-16 Mn-17 Fe-17 Ni was used, Vickers hardness and calculated density were measured.
실시예 4Example 4
조성비(at%):55 Al-20 Co-25 Ni로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 55 After preparing a sintered body in the same manner as in Example 1, except that Al-20 Co-25 Ni was used, Vickers hardness and calculated density were measured.
실시예 5Example 5
조성비(at%):50 Al-25 Fe-25 Ni로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 50 After preparing a sintered body in the same manner as in Example 1, except that Al-25 Fe-25 Ni was used, Vickers hardness and calculated density were measured.
실시예 6Example 6
조성비(at%):53 Al-24 Mn-23 Co로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 53 After preparing a sintered body in the same manner as in Example 1, except that Al-24 Mn-23 Co was used, Vickers hardness and calculated density were measured.
실시예 7Example 7
조성비(at%):52 Al-24 Co-24 Fe로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 52 After preparing a sintered body in the same manner as in Example 1, except that Al-24 Co-24 Fe was used, Vickers hardness and calculated density were measured.
실시예 8Example 8
조성비(at%):50 Al-17 Mn-16 Co-17 Ni로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 50 After preparing a sintered body in the same manner as in Example 1, except that Al-17 Mn-16 Co-17 Ni was used, Vickers hardness and calculated density were measured.
실시예 9Example 9
조성비(at%):50 Al-12 Mn-13 Fe-12 Co-12 Ni로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 50 After preparing a sintered body in the same manner as in Example 1, except that Al-12 Mn-13 Fe-12 Co-12 Ni was used, Vickers hardness and calculated density were measured.
실시예 10Example 10
조성비(at%):52 Al-16 Fe-16 Co-16 Ni로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 52 After producing a sintered body in the same manner as in Example 1 except that Al-16 Fe-16 Co-16 Ni was used, Vickers hardness and calculated density were measured.
실시예 11Example 11
조성비(at%):51 Al-17 Mn-16 Fe-16 Co로 하였다는 점을 제외하고는 실시예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 51 After preparing a sintered body in the same manner as in Example 1, except that Al-17 Mn-16 Fe-16 Co was used, Vickers hardness and calculated density were measured.
비교예 1Comparative Example 1
금속 분말로서 각 원소의 원료 분말인 알루미늄 분말, 니켈 분말을 준비하고 이들 분말을 아래의 조성비로 합계 10g 칭량했다As metal powder, aluminum powder and nickel powder, which are raw material powders of each element, were prepared, and 10 g of these powders were weighed in total at the following composition ratios.
조성비(at%):50 Al-50 Ni Composition ratio (at%): 50 Al-50 Ni
다음으로 칭량한 분말을 유발로 혼합하고 MgO 도가니에 넣어 적외선 가열로에서 가열해 도가니 내 응고를 통해 잉곳을 얻었다. 이때의 가열 조건은 아르곤 가스 플로우 분위기, 승온 속도 50℃/분, 온도 1600℃, 유지 시간 10분이었다. Next, the weighed powder was mixed in a mortar, put in a MgO crucible, and heated in an infrared heating furnace to obtain an ingot through solidification in the crucible. The heating conditions at this time were an argon gas flow atmosphere, a temperature increase rate of 50°C/min, a temperature of 1600°C, and a holding time of 10 minutes.
다음으로 이 소결체를 연마기로 #400 내지 #2000의 연마지로 연마하고 최종 마무리 연마로서 알루미나 연마액으로 버프 연마해 금속 광택을 띤 면을 얻었다. 이 금속 광택을 띤 면을 빅커스 경도계로 빅커스 경도를 10점 측정하여 빅커스 경도의 평균치를 측정하고, 합금의 밀도를 원자%로부터 계산한 계산 밀도를 측정하였다.Next, this sintered compact was polished with a polishing paper of #400 to #2000 with a polishing machine, and buff-polished with an alumina polishing liquid as a final finishing polishing to obtain a metallic luster surface. The Vickers hardness was measured at 10 points on this metallic luster surface with a Vickers hardness meter, the average value of the Vickers hardness was measured, and the calculated density calculated from the atomic percent density of the alloy was measured.
비교예 2Comparative Example 2
조성비(at%):45 Al-40 Fe-15 Ni로 하였다는 점을 제외하고는 비교예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 45 After preparing a sintered body in the same manner as in Comparative Example 1 except that Al-40 Fe-15 Ni was used, Vickers hardness and calculated density were measured.
비교예 3Comparative Example 3
조성비(at%):70 Al-10 Co-20 Ni로 하였다는 점을 제외하고는 비교예 1과 동일하게 소결체를 제조한 후, 빅커스 경도 및 계산 밀도를 측정하였다.Composition ratio (at%): 70 After preparing a sintered body in the same manner as in Comparative Example 1, except that Al-10 Co-20 Ni was used, Vickers hardness and calculated density were measured.
Figure PCTKR2020012830-appb-img-000002
Figure PCTKR2020012830-appb-img-000002
상기 표 1을 참조하면, 비교예들에 따른 소결체는 실시예들에 따른 소결체에 비해 경도가 낮은 것을 알 수 있다.Referring to Table 1, it can be seen that the sintered body according to Comparative Examples has lower hardness than the sintered body according to Examples.
도 1은 실시에 9에 따른 X선 회절 장비를 통한 측정 결과 및 AlNi의 분말 회절 데이터이다. 도 1에서도 알 수 있듯이, 실시예 9는 AlNi 합금과 같은 결정 구조를 갖는 한편, 단상 구조인 것을 알 수 있다. 1 is a measurement result using an X-ray diffraction apparatus according to Example 9 and powder diffraction data of AlNi. As can be seen from Figure 1, Example 9 has the same crystal structure as the AlNi alloy, while it can be seen that the single-phase structure.
본 발명의 합금은 실시예 1~11의 모든 합금을 X선 회절 장치를 통한 결정 구조 해석을 실시하였고, 모두 단상 구조를 가진 것을 확인했다. 본 발명의 다원계 합금은 원자 사이즈가 다른 원소가 하나의 결정 구조에 배치되어 있는 것으로, 그 큰 결정변형으로 인해 합금의 경도가 높아질 수 있다.The alloy of the present invention was subjected to crystal structure analysis through an X-ray diffraction apparatus for all alloys of Examples 1 to 11, and it was confirmed that all of them had a single-phase structure. In the multi-component alloy of the present invention, elements having different atomic sizes are arranged in one crystal structure, and the hardness of the alloy may be increased due to the large crystal deformation.

Claims (6)

  1. 알루미늄(Al)이 50 원자% 내지 55 원자%, 망간(Mn), 철(Fe), 코발트(Co) 및 니켈(Ni) 중에서 선택되는 2 종류 이상의 원소가 12 원자% 내지 25 원자%, 잔부가 불순물로 구성되는 화학 조성을 가지고, Aluminum (Al) is 50 atomic% to 55 atomic%, manganese (Mn), iron (Fe), cobalt (Co), and two or more kinds of elements selected from nickel (Ni) are 12 to 25 atomic%, the balance is having a chemical composition consisting of impurities,
    빅커스 경도가 550HV이상 내지 700HV 이하이고, Vickers hardness is 550 HV or more and 700 HV or less,
    합금의 밀도가 5.5g/cc 미만인 다원계 합금.A multi-component alloy with an alloy density of less than 5.5 g/cc.
  2. 제 1항에 있어서,The method of claim 1,
    알루미늄(Al)이 50 원자% 내지 55 원자%, 망간(Mn), 철(Fe), 코발트(Co) 및 니켈(Ni) 중에서 선택된 3 종류 이상의 원소가 12 원자% 내지 17원자%, 잔부가 불순물로 구성되는 화학 조성을 가지는 다원계 합금.Aluminum (Al) is 50 atomic % to 55 atomic %, manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni) 12 atomic % to 17 atomic % of three or more elements selected from nickel (Ni), the remainder being impurities A multi-component alloy having a chemical composition consisting of
  3. 제 1항에 있어서,The method of claim 1,
    알루미늄(Al)이 50 원자% 내지 55 원자%, 망간(Mn), 철(Fe), 코발트(Co) 및 니켈(Ni)이 12 원자% 내지 13 원자%, 잔부가 불순물로 구성되는 화학 조성을 가지는 다원계 합금.Aluminum (Al) has a chemical composition of 50 atomic% to 55 atomic%, manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni) 12 to 13 atomic%, the balance being impurities plural alloys.
  4. 제 1항 내지 제 3항 중 어느 한 항의 다원계 합금을 제조하는 방법으로서,A method for producing the multi-component alloy of any one of claims 1 to 3, comprising:
    상기 합금의 원료를 혼합한 후, 가열 합성을 하는 합성 공정을 포함하는 다원계 합금의 제조 방법.A method for producing a multi-component alloy comprising a synthesis step of mixing the raw materials of the alloy and then heating and synthesizing.
  5. 제 4항에 의해 제조되는 다원계 합금의 제조물로서,As a product of the multi-component alloy prepared according to claim 4,
    상기 제조물은 압축기의 부품인 다원계 합금의 제조물.The product is a product of a multi-component alloy that is a component of a compressor.
  6. 제 5항에 따른 다원계 합금의 제조물인 압축기의 부품을 내장한 압축기.A compressor having a built-in component of the compressor, which is a product of the multi-component alloy according to claim 5.
PCT/KR2020/012830 2020-09-23 2020-09-23 Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor WO2022065536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/012830 WO2022065536A1 (en) 2020-09-23 2020-09-23 Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/012830 WO2022065536A1 (en) 2020-09-23 2020-09-23 Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor

Publications (1)

Publication Number Publication Date
WO2022065536A1 true WO2022065536A1 (en) 2022-03-31

Family

ID=80845433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012830 WO2022065536A1 (en) 2020-09-23 2020-09-23 Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor

Country Status (1)

Country Link
WO (1) WO2022065536A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023352A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 Alloy structure
US20160201169A1 (en) * 2015-01-09 2016-07-14 Scoperta, Inc. High entropy alloys with non-high entropy second phases
KR20170113258A (en) * 2016-03-24 2017-10-12 영남대학교 산학협력단 Metal complex
JP2018145456A (en) * 2017-03-02 2018-09-20 株式会社日立製作所 Alloy member, manufacturing method of the alloy member and manufactured article using the alloy member
KR20180122806A (en) * 2017-05-04 2018-11-14 포항공과대학교 산학협력단 Method for enhancing workability of Al-containing high-entropy alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023352A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 Alloy structure
US20160201169A1 (en) * 2015-01-09 2016-07-14 Scoperta, Inc. High entropy alloys with non-high entropy second phases
KR20170113258A (en) * 2016-03-24 2017-10-12 영남대학교 산학협력단 Metal complex
JP2018145456A (en) * 2017-03-02 2018-09-20 株式会社日立製作所 Alloy member, manufacturing method of the alloy member and manufactured article using the alloy member
KR20180122806A (en) * 2017-05-04 2018-11-14 포항공과대학교 산학협력단 Method for enhancing workability of Al-containing high-entropy alloys

Similar Documents

Publication Publication Date Title
US4770701A (en) Metal-ceramic composites and method of making
Zhang et al. Synthesis and characterization of MAX phase Cr2AlC based composite coatings by plasma spraying and post annealing
US7311873B2 (en) Process of direct powder rolling of blended titanium alloys, titanium matrix composites, and titanium aluminides
CN115233042B (en) High-temperature oxidation resistant cobalt-based Co-Fe-Ni-Al eutectic medium entropy alloy and preparation method and application thereof
CN111004953A (en) Molten aluminum corrosion resistant cermet material and preparation method and application thereof
CN109234599A (en) A kind of High Performance W alloy bar and preparation method thereof
CN110106456B (en) Amorphous alloy stent and preparation method thereof
CN112725677A (en) High-strength high-toughness TiZrHfNbSc refractory high-entropy alloy and preparation method thereof
WO2022065536A1 (en) Lightweight multi-component alloy comprising aluminum and transition metal and production method therefor
CN102634691A (en) High-strength and high-corrosion-resistance cupronickel alloy and manufacturing method thereof
CN113825855B (en) Nickel-based bulk metallic glass alloy containing a large amount of refractory metal and boron
CN114406258B (en) Thermite reduction reaction powder coated ZTA ceramic particles and preparation method and application thereof
WO2020085586A1 (en) Titanium alloy with high strength and high ductility comprising elements with melting points of 1,900℃ or lower
CN109402469B (en) Aluminum alloy material and application thereof in preparation of cartridge case
CN114959379A (en) Heat-resistant high-strength aluminum alloy suitable for selective laser melting and preparation method thereof
CN1451772A (en) Method for producing high-strength high wear-resistant nickel based alloy
GB2214114A (en) Composite alloy ingot for use in investment casting
WO2019107699A1 (en) Austenite steel having room-temperature and high-temperature strength through chromium (cr) reduction
CN109763054A (en) A kind of multi-element mixed Cutanit and its preparation method and application
CN111020395A (en) Iron-based powder metallurgy composite material and preparation method thereof
CN109487149A (en) A kind of liquefied petroleum gas equipment wear-resisting ductile iron material and preparation method thereof
Yu et al. Microstructure control and mechanical property improvement of Cr3C2-Ni cermets by using solid-solution powders
CN111979454B (en) Tungsten-aluminum alloy and preparation method thereof
CN115341127A (en) Self-lubricating high-entropy alloy and preparation method and application thereof
CN115627393B (en) High-strength ZL114A aluminum alloy and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955334

Country of ref document: EP

Kind code of ref document: A1