JP6493561B2 - High entropy alloy member, method for producing the alloy member, and product using the alloy member - Google Patents

High entropy alloy member, method for producing the alloy member, and product using the alloy member Download PDF

Info

Publication number
JP6493561B2
JP6493561B2 JP2017554978A JP2017554978A JP6493561B2 JP 6493561 B2 JP6493561 B2 JP 6493561B2 JP 2017554978 A JP2017554978 A JP 2017554978A JP 2017554978 A JP2017554978 A JP 2017554978A JP 6493561 B2 JP6493561 B2 JP 6493561B2
Authority
JP
Japan
Prior art keywords
alloy member
entropy alloy
atomic
atomic percent
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017554978A
Other languages
Japanese (ja)
Other versions
JPWO2017098848A1 (en
Inventor
正 藤枝
藤枝  正
孝介 桑原
孝介 桑原
守 広田
広田  守
青田 欣也
欣也 青田
隆彦 加藤
隆彦 加藤
千葉 晶彦
晶彦 千葉
雄一郎 小泉
雄一郎 小泉
謙太 山中
謙太 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2017098848A1 publication Critical patent/JPWO2017098848A1/en
Application granted granted Critical
Publication of JP6493561B2 publication Critical patent/JP6493561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Description

本発明は、ハイエントロピー合金の技術に関し、特に、粉末積層造形法により作製したハイエントロピー合金部材および該合金部材の製造方法、ならびに該合金部材を用いた製造物に関するものである。   The present invention relates to a technology of a high entropy alloy, and particularly relates to a high entropy alloy member produced by a powder additive manufacturing method, a method for producing the alloy member, and a product using the alloy member.

近年、従来の合金(例えば、1〜3種類の主要成分元素に複数種の副成分元素を微量添加した合金)の技術思想とは一線を画した新しい技術思想の合金として、ハイエントロピー合金(High Entropy Alloys:HEA)が提唱されている。HEAとは、5種類以上の主要金属元素(それぞれ5〜35原子%)から構成された合金と定義されており、次のような特徴が発現することが知られている。   In recent years, high-entropy alloys (High Entropy Alloys) have been developed as alloys with a new technical concept that is completely different from the technical concept of conventional alloys (for example, alloys obtained by adding a small amount of multiple subcomponent elements to one to three main component elements). Entropy Alloys (HEA) has been proposed. HEA is defined as an alloy composed of five or more kinds of main metal elements (each 5 to 35 atomic%), and is known to exhibit the following characteristics.

(a)ギブスの自由エネルギー式における混合エントロピー項が負に増大することに起因する混合状態の安定化、(b)複雑な微細構造による拡散遅延、(c)構成原子のサイズ差に起因する高格子歪みに起因する高硬度化や機械的特性の温度依存性低下、(d)多種元素共存による複合影響(カクテル効果とも言う)による耐食性の向上。   (A) Stabilization of the mixed state due to negative increase of the mixing entropy term in Gibbs free energy equation, (b) Diffusion delay due to complex fine structure, (c) High due to size difference of constituent atoms Increased hardness due to lattice distortion, reduced temperature dependence of mechanical properties, and (d) improved corrosion resistance due to combined effects (also called cocktail effect) due to coexistence of multiple elements.

例えば、特許文献1(特開2002-173732)には、複数種類の金属元素をキャスティングあるいは合成してなるハイエントロピー多元合金において、該合金が5種類から11種類の主要金属元素を含有し、各一種類の主要金属元素のモル数が合金総モル数の5%から30%とされたことを特徴とするハイエントロピー多元合金が開示されている。また、前記主要金属元素は、アルミニウム、チタン、バナジウム、クロム、鉄、コバルト、ニッケル、銅、ジルコニウム、モリブデン、パラジウム、銀を含む金属元素群より選択されることが記載されている。   For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-173732) discloses a high-entropy multicomponent alloy obtained by casting or synthesizing a plurality of types of metal elements, the alloy containing 5 to 11 types of main metal elements, A high-entropy multicomponent alloy is disclosed in which the number of moles of one main metal element is 5% to 30% of the total number of moles of the alloy. Further, it is described that the main metal element is selected from a metal element group including aluminum, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zirconium, molybdenum, palladium, and silver.

特許文献1によると、キャスト状態において、従来のカーボンスチールや合金カーボンスチールよりも高い硬度、高い耐熱性および高い耐食性を兼ね備えたハイエントロピー多元合金を提供できるとされている。   According to Patent Document 1, it is said that a high entropy multi-component alloy having higher hardness, higher heat resistance and higher corrosion resistance than conventional carbon steel and alloy carbon steel can be provided in a cast state.

特開2002−173732号公報JP 2002-173732 A

しかしながら、本発明者等がHEAについて種々研究したところ、HEAは、合金組成の複雑さに起因して鋳造時の元素偏析や組織斑が生じ易く、均質な鋳塊を得ることが難しいものであった。合金部材における元素偏析や組織斑は、部位による特性のばらつきにつながることから解決すべき課題である。   However, the present inventors conducted various studies on HEA, and as a result, HEA is prone to element segregation and texture spots during casting due to the complexity of the alloy composition, and it is difficult to obtain a homogeneous ingot. It was. Element segregation and texture spots in alloy members are problems to be solved because they lead to variations in characteristics depending on the part.

また、HEAは、高硬度・焼き戻し軟化抵抗性を有するが故に難加工性であり、機械加工により所望形状部材を作製することが難しいという問題があった。これは、HEA部材を実用化・商用化する上での大きな障害であり、解決すべき課題である。   In addition, HEA has high hardness and resistance to tempering softening, so that it is difficult to process, and there is a problem that it is difficult to produce a desired shape member by machining. This is a major obstacle to commercialization and commercialization of HEA members, and a problem to be solved.

一方、前述したように、HEAは従来合金では得られない魅力的な特徴を有していることから、合金組成・微細組織の均質性に優れ、かつ形状制御性に優れるHEA部材、およびその製造方法の開発が強く求められている。   On the other hand, as mentioned above, HEA has attractive features that cannot be obtained with conventional alloys. Therefore, HEA members with excellent alloy composition / microstructure homogeneity and shape controllability, and their manufacture There is a strong need for method development.

したがって、本発明の目的は、上記要求を満たすべく、高機械的強度・高耐食性を有するハイエントロピー合金(HEA)を用い、合金組成・微細組織の均質性に優れ、かつ形状制御性に優れたHEA部材、その製造方法、および該HEA部材を用いた製造物を提供することにある。   Accordingly, the object of the present invention is to use a high-entropy alloy (HEA) having high mechanical strength and high corrosion resistance to satisfy the above requirements, and is excellent in alloy composition / microstructure homogeneity and in shape controllability. An object of the present invention is to provide a HEA member, a manufacturing method thereof, and a product using the HEA member.

(I)本発明の一態様は、ハイエントロピー合金からなる合金部材であって、
Co(コバルト)、Cr(クロム)、Fe(鉄)、Ni(ニッケル)、Ti(チタン)の各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMo(モリブデン)を0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる化学組成を有し、
前記合金部材は、母相結晶中に針状結晶の金属間化合物相が分散析出していることを特徴とするハイエントロピー合金部材を提供する。
(I) One aspect of the present invention is an alloy member made of a high-entropy alloy,
Co (cobalt), Cr (chromium), Fe (iron), Ni (nickel), Ti (titanium) elements each in the range of 5 atomic percent to 35 atomic percent, and Mo (molybdenum) 0 atoms In a range of more than 8% and less than 8 atomic%, with the remainder consisting of inevitable impurities,
The alloy member provides a high entropy alloy member in which an intermetallic compound phase of needle-like crystals is dispersed and precipitated in a matrix crystal.

本発明は、上記のハイエントロピー合金部材(I)において、以下のような改良や変更を加えることができる。
(i)前記針状結晶は、三次元格子状に分散析出している。
(ii)前記ハイエントロピー合金の化学組成は、前記Coを20原子%以上35原子%以下で、前記Crを10原子%以上25原子%以下で、前記Feを10原子%以上25原子%以下で、前記Niを15原子%以上30原子%以下で、前記Tiを5原子%以上15原子%以下で含む。
(iii)前記ハイエントロピー合金の化学組成は、前記Coを25原子%以上33原子%以下で、前記Crを15原子%以上23原子%以下で、前記Feを15原子%以上23原子%以下で、前記Niを17原子%以上28原子%以下で、前記Tiを5原子%以上10原子%以下で、前記Moを1原子%以上7原子%以下で含む。
(iv)前記ハイエントロピー合金の化学組成は、前記Coを27原子%以上33原子%以下で、前記Crを18原子%以上23原子%以下で、前記Feを18原子%以上23原子%以下で、前記Niを17原子%以上24原子%以下で、前記Tiを5原子%以上8原子%以下で、前記Moを1原子%以上3原子%以下で含む。
(v)前記金属間化合物相は、Ni3Ti相を含む。
(vi)引張強さが1000 MPa以上であり、破断伸びが3%以上である。
(vii)前記母相結晶は、形状が柱状晶であり、その結晶構造が単純立方晶を含む。なお、ここでの「結晶構造が単純立方晶を含む」は、「主たる結晶構造が単純立方晶であること」を意味する。
The present invention can add the following improvements and changes to the high entropy alloy member (I).
(I) The acicular crystals are dispersed and precipitated in a three-dimensional lattice shape.
(Ii) The chemical composition of the high-entropy alloy is such that the Co is 20 atomic% to 35 atomic%, the Cr is 10 atomic% to 25 atomic%, and the Fe is 10 atomic% to 25 atomic%. The Ni is contained in an amount of 15 atomic% to 30 atomic% and the Ti is contained in an amount of 5 atomic% to 15 atomic%.
(Iii) The chemical composition of the high-entropy alloy is such that the Co is 25 atomic% to 33 atomic%, the Cr is 15 atomic% to 23 atomic%, and the Fe is 15 atomic% to 23 atomic%. The Ni is contained in an amount of 17 to 28 atomic%, the Ti is contained in an amount of 5 to 10 atomic%, and the Mo is contained in an amount of 1 to 7 atomic%.
(Iv) The high-entropy alloy has a chemical composition of 27 atomic% to 33 atomic% of Co, 18 atomic% to 23 atomic% of Cr, and 18 atomic% to 23 atomic% of Fe. The Ni is contained in an amount of 17 atom% to 24 atom%, the Ti is contained in an amount of 5 atom% to 8 atom%, and the Mo is contained in an amount of 1 atom% to 3 atom%.
(V) The intermetallic compound phase includes a Ni 3 Ti phase.
(Vi) Tensile strength is 1000 MPa or more and elongation at break is 3% or more.
(Vii) The parent phase crystal has a columnar crystal shape and includes a simple cubic crystal. Here, “the crystal structure includes a simple cubic crystal” means “the main crystal structure is a simple cubic crystal”.

(II)本発明の他の一態様は、上記のハイエントロピー合金部材の製造方法であって、
前記合金の原料を混合・溶解して溶湯を形成する原料混合溶解工程と、
前記溶湯から合金粉末を形成するアトマイズ工程と、
前記合金粉末を用いた金属粉末積層造形法により所望形状を有する合金積層造形体を形成する積層造形工程とを有することを特徴とするハイエントロピー合金部材の製造方法を提供する。
(II) Another aspect of the present invention is a method for producing the high entropy alloy member described above,
A raw material mixing and melting step of mixing and melting the raw materials of the alloy to form a molten metal;
An atomizing step of forming alloy powder from the molten metal;
There is provided a manufacturing method of a high-entropy alloy member, comprising: a layered manufacturing step of forming an alloy layered body having a desired shape by a metal powder layered manufacturing method using the alloy powder.

本発明は、上記のハイエントロピー合金部材の製造方法(II)において、以下のような改良や変更を加えることができる。
(viii)前記積層造形工程は、前記合金粉末の粉末床を形成する粉末床形成工程と、
前記粉末床全体を加熱して粉末床の仮焼結体を形成する粉末床仮焼工程と、
前記仮焼結体を局所加熱して前記合金の微小溶融池を形成すると共に該局所加熱を該仮焼結体の面内で走査しながら前記微小溶融池を移動・逐次凝固させることにより、前記合金の凝固層を形成する局所溶融・凝固層形成工程とを有する。
The present invention can add the following improvements and changes to the above-described high entropy alloy member production method (II).
(Viii) The additive manufacturing process includes a powder bed forming process for forming a powder bed of the alloy powder,
A powder bed calcining step of heating the entire powder bed to form a pre-sintered powder bed;
The temporary sintered body is locally heated to form a micro molten pool of the alloy, and the micro molten pool is moved and sequentially solidified while scanning the local heating in the plane of the temporary sintered body. And a local melting / solidifying layer forming step of forming a solidified layer of the alloy.

(III)本発明の更に他の一態様は、上記のハイエントロピー合金部材を用いた製造物であって、
前記製造物が、流体機械のインペラであることを特徴とするハイエントロピー合金部材を用いた製造物を提供する。
(III) Still another embodiment of the present invention is a product using the above-mentioned high entropy alloy member,
Provided is a product using a high-entropy alloy member, wherein the product is an impeller of a fluid machine.

本発明は、上記のハイエントロピー合金部材を用いた製造物(III)において、以下のような改良や変更を加えることができる。
(ix)前記製造物は、前記インペラを組み込んだ遠心圧縮機である。
In the product (III) using the above-described high-entropy alloy member, the present invention can be improved or changed as follows.
(Ix) The product is a centrifugal compressor incorporating the impeller.

本発明によれば、高機械的強度・高耐食性を有するハイエントロピー合金(HEA)を用い、合金組成・微細組織の均質性に優れ、かつ形状制御性に優れたHEA部材、その製造方法、および該HEA部材を用いた製造物を提供することができる。   According to the present invention, a high-entropy alloy (HEA) having high mechanical strength and high corrosion resistance is used, an HEA member having excellent alloy composition / microstructure homogeneity and excellent shape controllability, and a manufacturing method thereof, and A product using the HEA member can be provided.

本発明に係るハイエントロピー合金部材の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the high entropy alloy member which concerns on this invention. 電子ビーム溶融法の粉末積層造形装置の構成および積層造形方法の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the powder additive manufacturing apparatus of an electron beam melting method, and the example of an additive manufacturing method. 本発明に係るHEAからなる合金積層造形体の横断面の微細組織例を示す電子顕微鏡観察像である。It is an electron microscope observation image which shows the example of the fine structure of the cross section of the alloy lamination-modeling body which consists of HEA which concerns on this invention. 本発明に係るHEAからなる合金積層造形体の縦断面の微細組織例を示す電子顕微鏡観察像である。It is an electron microscope observation image which shows the example of the fine structure of the longitudinal section of the alloy lamination-modeling body which consists of HEA which concerns on this invention. 本発明に係るHEA部材を用いた製造物の一例であり、流体機械のインペラを示す写真である。It is an example of the product using the HEA member which concerns on this invention, and is a photograph which shows the impeller of a fluid machine. 本発明に係るHEA部材を用いた製造物の他の一例であり、本発明のインペラが組み込まれた遠心圧縮機を示す断面模式図である。It is a cross-sectional schematic diagram which is another example of the product using the HEA member which concerns on this invention, and shows the centrifugal compressor incorporating the impeller of this invention. HEA部材1cの微細組織例を示す電子顕微鏡観察像である。It is an electron microscope observation image which shows the example of the fine structure of the HEA member 1c.

(本発明の基本思想)
前述したように、ハイエントロピー合金(HEA)は、従来合金では得られない魅力的な特徴(例えば、高硬度、焼き戻し軟化抵抗性)を有しているが、難加工性であり、所望形状部材を作製することが難しいという問題があった。また、本発明者等がHEAについて種々研究したところ、従来の普通鋳造組織を有するHEA鋳塊は、変形抵抗が高い上に延性に乏しいことが判った。
(Basic idea of the present invention)
As described above, high-entropy alloys (HEA) have attractive characteristics (such as high hardness and temper softening resistance) that cannot be obtained with conventional alloys, but they are difficult to process and have the desired shape. There was a problem that it was difficult to produce a member. Further, as a result of various studies on HEA by the present inventors, it has been found that a HEA ingot having a conventional ordinary cast structure has high deformation resistance and poor ductility.

そこで、本発明者等は、HEAとしての特徴を犠牲にすることなく、形状制御性や延性に優れるHEA部材を開発すべく、合金組成と形状制御方法とについて鋭意研究を重ねた。その結果、Co-Cr-Fe-Ni-Ti-Mo系合金の粉末を用いた金属粉末積層造形法により合金積層造形体を形成することで、課題を解決するHEA部材が得られることを見出した。本発明は、当該知見に基づいて完成されたものである。   Accordingly, the present inventors have conducted extensive research on alloy compositions and shape control methods in order to develop HEA members having excellent shape controllability and ductility without sacrificing the characteristics of HEA. As a result, it was found that an HEA member that solves the problem can be obtained by forming an alloy additive manufacturing body by a metal powder additive manufacturing method using powder of a Co-Cr-Fe-Ni-Ti-Mo alloy. . The present invention has been completed based on this finding.

以下、本発明の実施形態について、図面を参照しながらHEA部材の製造手順に沿って説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, an embodiment of the present invention will be described along a manufacturing procedure of an HEA member with reference to the drawings. However, the present invention is not limited to the embodiments described here, and can be appropriately combined and improved without departing from the technical idea of the present invention.

[HEA部材の製造方法]
図1は、本発明に係るハイエントロピー合金部材の製造方法の一例を示す工程図である。図1に示したように、本発明の製造方法は、原料混合溶解工程とアトマイズ工程と積層造形工程と取出工程とを有する。以下、本発明の実施形態をより具体的に説明する。
[Method for manufacturing HEA members]
FIG. 1 is a process diagram showing an example of a method for producing a high-entropy alloy member according to the present invention. As shown in FIG. 1, the manufacturing method of this invention has a raw material mixing melt | dissolution process, an atomizing process, an additive manufacturing process, and an extraction process. Hereinafter, embodiments of the present invention will be described more specifically.

(原料混合溶解工程)
図1に示したように、まず、所望のHEA組成(Co-Cr-Fe-Ni-Ti-Mo)となるように原料を混合・溶解して溶湯10を形成する原料混合溶解工程を行う。原料の混合方法や溶解方法に特段の限定はなく、高強度・高耐食性合金の製造における従前の方法を利用できる。例えば、溶解方法として真空溶解を好適に利用できる。また、真空炭素脱酸法などを併用して、溶湯10を精錬することが好ましい。
(Raw material mixing and dissolving process)
As shown in FIG. 1, first, a raw material mixing and dissolving step is performed in which raw materials are mixed and dissolved to form a molten metal 10 so as to have a desired HEA composition (Co—Cr—Fe—Ni—Ti—Mo). There are no particular limitations on the method of mixing and melting the raw materials, and conventional methods in the production of high strength and high corrosion resistance alloys can be used. For example, vacuum melting can be suitably used as a melting method. Further, it is preferable to refine the molten metal 10 together with a vacuum carbon deoxidation method or the like.

本発明のHEA組成は、主要成分としてCo、Cr、Fe、Ni、Tiの5元素をそれぞれ5原子%以上35原子%以下の範囲で含み、副成分としてMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなるものである。   The HEA composition of the present invention includes 5 elements of Co, Cr, Fe, Ni, and Ti as main components in a range of 5 atomic% to 35 atomic%, respectively, and Mo as an auxiliary component is more than 0 atomic% and less than 8 atomic%. And the remainder consists of inevitable impurities.

より具体的には、Co成分は、20原子%以上35原子%以下が好ましく、25原子%以上33原子%以下がより好ましく、27原子%以上33原子%以下が更に好ましい。   More specifically, the Co component is preferably 20 atom% or more and 35 atom% or less, more preferably 25 atom% or more and 33 atom% or less, and further preferably 27 atom% or more and 33 atom% or less.

Cr成分は、10原子%以上25原子%以下が好ましく、15原子%以上23原子%以下がより好ましく、18原子%以上23原子%以下が更に好ましい。   The Cr component is preferably 10 atomic percent to 25 atomic percent, more preferably 15 atomic percent to 23 atomic percent, and still more preferably 18 atomic percent to 23 atomic percent.

Fe成分は、10原子%以上25原子%以下が好ましく、15原子%以上23原子%以下がより好ましく、18原子%以上23原子%以下が更に好ましい。   The Fe component is preferably 10 atom% or more and 25 atom% or less, more preferably 15 atom% or more and 23 atom% or less, and further preferably 18 atom% or more and 23 atom% or less.

Ni成分は、15原子%以上30原子%以下が好ましく、17原子%以上28原子%以下がより好ましく、17原子%以上24原子%以下が更に好ましい。   The Ni component is preferably 15 atomic percent to 30 atomic percent, more preferably 17 atomic percent to 28 atomic percent, and still more preferably 17 atomic percent to 24 atomic percent.

Ti成分は、5原子%以上15原子%以下が好ましく、5原子%以上10原子%以下がより好ましく、5原子%以上8原子%以下が更に好ましい。   The Ti component is preferably 5 atom% or more and 15 atom% or less, more preferably 5 atom% or more and 10 atom% or less, and further preferably 5 atom% or more and 8 atom% or less.

Mo成分は、0原子%超8原子%以下が好ましく、1原子%以上7原子%以下がより好ましく、1原子%以上3原子%以下が更に好ましい。   The Mo component is preferably more than 0 atom% and not more than 8 atom%, more preferably 1 atom% to 7 atom%, still more preferably 1 atom% to 3 atom%.

上記の各成分がそれぞれの好ましい組成範囲を外れると、望ましい特性の達成が困難になる。   If the above components are out of their preferred composition ranges, it will be difficult to achieve desirable properties.

(アトマイズ工程)
次に、溶湯10から合金粉末20を形成するアトマイズ工程を行う。アトマイズ方法に特段の限定はなく、従前の方法を利用できる。例えば、高純度・均質組成・球形状粒子が得られるガスアトマイズ法や遠心力アトマイズ法を好ましく用いることができる。
(Atomizing process)
Next, an atomizing process for forming the alloy powder 20 from the molten metal 10 is performed. There is no particular limitation on the atomizing method, and a conventional method can be used. For example, a gas atomization method or a centrifugal atomization method that can obtain high-purity, homogeneous composition, and spherical particles can be preferably used.

合金粉末20の平均粒径は、ハンドリング性や充填性の観点から、10μm以上1 mm以下が好ましく、20μm以上500μm以下がより好ましい。平均粒径が10μm未満になると、次工程の積層造形工程において合金粉末20が舞い上がり易くなり、合金積層造形体の形状精度が低下する要因となる。一方、平均粒径が1 mm超になると、次工程の積層造形工程において合金積層造形体の表面粗さが増加したり合金粉末20の溶融が不十分になったりする要因となる。   The average particle size of the alloy powder 20 is preferably 10 μm or more and 1 mm or less, and more preferably 20 μm or more and 500 μm or less from the viewpoints of handling properties and filling properties. When the average particle size is less than 10 μm, the alloy powder 20 is likely to rise in the subsequent layered manufacturing process, which causes a decrease in the shape accuracy of the alloy layered body. On the other hand, when the average particle diameter exceeds 1 mm, it becomes a factor that the surface roughness of the alloy laminate model is increased or the alloy powder 20 is insufficiently melted in the next laminate modeling process.

(積層造形工程)
次に、上記で用意した合金粉末20を用いた金属粉末積層造形法により、所望形状を有する合金積層造形体230を形成する積層造形工程を行う。焼結ではなく溶融・凝固によってニアネットシェイプの金属部材を造形する金属粉末積層造形法の適用により、鋳造材と同等以上の硬度とともに、複雑形状を有する三次元部材を作製することができる。積層造形方法に特段の限定はなく、従前の方法を利用できる。例えば、電子ビーム溶融(Electron Beam Melting:EBM)法や選択的レーザ溶融(Selective Laser Melting:SLM)法を用いた金属粉末積層造形法を好適に利用できる。
(Laminated modeling process)
Next, an additive manufacturing process for forming an alloy additive manufacturing body 230 having a desired shape is performed by a metal powder additive manufacturing method using the alloy powder 20 prepared above. By applying a metal powder additive manufacturing method for forming a near net shape metal member by melting and solidification instead of sintering, a three-dimensional member having a complex shape with a hardness equal to or higher than that of a cast material can be produced. The additive manufacturing method is not particularly limited, and a conventional method can be used. For example, a metal powder additive manufacturing method using an electron beam melting (EBM) method or a selective laser melting (SLM) method can be suitably used.

EBM法を例にとって積層造形工程を説明する。図2は、EBM法の粉末積層造形装置の構成および積層造形方法の例を示す断面模式図である。図2に示したように、EBM粉末積層造形装置100は、電子ビーム制御部110と粉末制御部120とに大別され、全体が真空チャンバーになっている。   The additive manufacturing process will be described using the EBM method as an example. FIG. 2 is a schematic cross-sectional view showing an example of a structure of an EBM method powder additive manufacturing apparatus and an additive manufacturing method. As shown in FIG. 2, the EBM powder additive manufacturing apparatus 100 is roughly divided into an electron beam control unit 110 and a powder control unit 120, and the whole is a vacuum chamber.

1)造形しようとする合金積層造形体230の1層厚さ分(例えば、約30〜800μm)でステージ121を下降させる。ステージ121上面上のベースプレート122上にパウダーホッパー123から合金粉末20を供給し、レーキアーム124により合金粉末20を平坦化して粉末床210(層状粉末)を形成する(粉末床形成工程)。   1) The stage 121 is lowered by the thickness of one layer (for example, about 30 to 800 μm) of the alloy laminate model 230 to be modeled. The alloy powder 20 is supplied from the powder hopper 123 onto the base plate 122 on the upper surface of the stage 121, and the alloy powder 20 is flattened by the rake arm 124 to form a powder bed 210 (layered powder) (powder bed forming step).

2)加熱されたタングステンフィラメント111(例えば、2500℃以上)から熱電子が放出され、アノ−ド112により加速されて(例えば、光速の半分程度)、電子ビーム113を形成する。加速された電子ビーム113は、非点補正装置114で真円化され、フォーカスコイル115により粉末床210へ集束される。   2) Thermoelectrons are emitted from the heated tungsten filament 111 (for example, 2500 ° C. or higher) and accelerated by the anode 112 (for example, about half the speed of light) to form an electron beam 113. The accelerated electron beam 113 is rounded by the astigmatism correction device 114 and focused on the powder bed 210 by the focus coil 115.

3)比較的弱い(緩い)集束ビームを偏向コイル116により走査して粉末床210全体を予備加熱し、粉末床の仮焼結体を形成する。EBM方式では、粉末床を局所溶融・凝固する前に、粉末床の仮焼結体を形成する工程(粉末床仮焼工程)を行うことが好ましい。これは、局所溶融のための集束ビーム照射によって、合金粉末の帯電による粉末床の飛散を防ぐためである。また、本工程の加熱によって、その後の合金積層造形体230の変形が抑制される付加的な作用効果もある。   3) A relatively weak (loose) focused beam is scanned by the deflection coil 116 to preheat the entire powder bed 210 to form a pre-sintered powder bed. In the EBM method, it is preferable to perform a step of forming a pre-sintered powder bed (powder bed calcining step) before locally melting and solidifying the powder bed. This is to prevent scattering of the powder bed due to charging of the alloy powder by irradiation with a focused beam for local melting. In addition, there is an additional effect that the deformation of the alloy laminate model 230 is suppressed by the heating in this step.

粉末床210の仮焼温度は、900℃以上1000℃以下が好ましい。仮焼温度が900℃未満になると、合金粉末の焼結がほとんど進行せず、仮焼結体の形成が困難になる。一方、仮焼温度が1000℃超になると、合金粉末の焼結が進行し過ぎて、合金積層造形体230の取り出し(合金積層造形体230と仮焼結体との分離)が困難になる。   The calcining temperature of the powder bed 210 is preferably 900 ° C. or higher and 1000 ° C. or lower. When the calcining temperature is less than 900 ° C., the sintering of the alloy powder hardly proceeds, and it becomes difficult to form a calcined body. On the other hand, when the calcining temperature exceeds 1000 ° C., the sintering of the alloy powder proceeds so much that it is difficult to take out the alloy laminate model 230 (separation between the alloy laminate model 230 and the provisional sintered product).

4)粉末床の仮焼結体に対し、造形しようとする合金積層造形体230の3D-CADデータから変換された2Dスライスデータに基づいて、局所溶融のための強い集束ビームを照射して合金の微小溶融池を形成すると共に、該集束ビームを走査して微小溶融池を移動・逐次凝固させることにより、2Dスライス形状の凝固層220を形成する(局所溶融・凝固層形成工程)。   4) Based on the 2D slice data converted from the 3D-CAD data of the alloy layered object 230 to be shaped, the presintered body of the powder bed is irradiated with a strong focused beam for local melting and alloyed In addition, a 2D slice-shaped solidified layer 220 is formed by scanning the focused beam and moving and sequentially solidifying the fine molten pool (local melting / solidified layer forming step).

5)上記1)〜4)を繰り返して、所望形状を有する合金積層造形体230を造形する。   5) The above-described 1) to 4) are repeated to form an alloy laminate model 230 having a desired shape.

(取出工程)
上記工程で造形した合金積層造形体230は仮焼結体中に埋没しているため、次に、合金積層造形体230を取り出す取出工程を行う。合金積層造形体230の取り出し方法(合金積層造形体230と仮焼結体との分離方法、合金積層造形体230とベースプレート122との分離方法)に特段の限定はなく、従前の方法を利用できる。例えば、合金粉末20を用いたサンドブラストを好ましく用いることができる。合金粉末20を用いたサンドブラストは、除去した仮焼結体を吹き付けた合金粉末20と共に解砕することで、合金粉末20として再利用することができる利点がある。
(Removal process)
Since the alloy layered product 230 formed in the above process is buried in the temporary sintered body, an extraction step of taking out the alloy layered model 230 is performed next. There is no particular limitation on the method for taking out the alloy laminate model 230 (the separation method between the alloy laminate model 230 and the temporary sintered body, the separation method between the alloy laminate model 230 and the base plate 122), and the conventional method can be used. . For example, sand blasting using the alloy powder 20 can be preferably used. Sandblasting using the alloy powder 20 has an advantage that it can be reused as the alloy powder 20 by crushing together with the alloy powder 20 sprayed with the removed pre-sintered body.

[HEA部材]
取出工程の後、合金積層造形体230から微細組織観察用の試料を採取し、光学顕微鏡および電子顕微鏡を用いて、該試料の微細組織を観察した。その結果、合金積層造形体230の母相は、微細な柱状晶(平均粒径100μm以下)が合金積層造形体230の積層方向に沿って林立した組織(いわゆる、急冷凝固組織)を有していた。さらに微細に観察したところ、合金積層造形体230は、その母相結晶中に金属間化合物相の針状結晶が格子状に分散析出している様子が観察された。
[HEA material]
After the extraction step, a sample for observing the microstructure was collected from the alloy laminate model 230, and the microstructure of the sample was observed using an optical microscope and an electron microscope. As a result, the parent phase of the alloy laminate model 230 has a structure in which fine columnar crystals (average particle size of 100 μm or less) are forested along the lamination direction of the alloy laminate model 230 (so-called rapid solidification structure). It was. As a result of further observation, it was observed that in the alloy laminate model 230, acicular crystals of an intermetallic compound phase were dispersed and precipitated in a lattice pattern in the parent phase crystal.

図3Aは、本発明に係るHEAからなる合金積層造形体の横断面(積層方向に垂直の面、積層方向が法線となる面)の微細組織例を示す電子顕微鏡観察像である。図3Bは、本発明に係るHEAからなる合金積層造形体の縦断面(積層方向に沿った面、積層方向に垂直な法線を有する面)の微細組織例を示す電子顕微鏡観察像である。   FIG. 3A is an electron microscope observation image showing an example of a microstructure of a cross section (a surface perpendicular to the stacking direction and a surface in which the stacking direction is a normal line) of an alloy laminate model formed of HEA according to the present invention. FIG. 3B is an electron microscope observation image showing an example of a microstructure of a longitudinal section (a surface along the stacking direction, a surface having a normal line perpendicular to the stacking direction) of the alloy laminate shaped body made of HEA according to the present invention.

図3A、図3Bに示したように、合金積層造形体230の横断面および縦断面のいずれにおいても、針状結晶が格子状に分散析出していることから、当該針状結晶は、三次元格子状に分散析出していると考えられた。   As shown in FIG. 3A and FIG. 3B, since the acicular crystals are dispersed and precipitated in a lattice shape in both the cross section and the longitudinal section of the alloy laminate model 230, the acicular crystals are three-dimensional. It was thought that it was dispersed and precipitated in a lattice form.

[HEA部材を用いた製造物]
図4は、本発明に係るHEA部材を用いた製造物の一例であり、流体機械のインペラを示す写真である。本発明のHEA製造物は金属粉末積層造形法により製造されることから、図4に示したような複雑形状物でも容易に造形することができる。また、本発明のHEA部材を用いたインペラは、高い機械的特性と高い耐食性とを兼ね備えることから、厳しい応力・腐食環境下でも優れた耐久性を示すことができる。
[Products using HEA components]
FIG. 4 is a photograph showing an impeller of a fluid machine as an example of a product using the HEA member according to the present invention. Since the HEA product of the present invention is manufactured by the metal powder additive manufacturing method, even a complicated shape as shown in FIG. 4 can be easily modeled. Further, since the impeller using the HEA member of the present invention has both high mechanical properties and high corrosion resistance, it can exhibit excellent durability even under severe stress / corrosion environments.

図5は、本発明に係るHEA部材を用いた製造物の他の一例であり、本発明のインペラが組み込まれた遠心圧縮機を示す断面模式図である。厳しい応力・腐食環境下でも優れた耐久性を示す本発明のインペラを使用することにより、遠心圧縮機の長期信頼性の向上に寄与することができる。   FIG. 5 is a schematic cross-sectional view showing a centrifugal compressor in which the impeller of the present invention is incorporated as another example of a product using the HEA member according to the present invention. By using the impeller of the present invention exhibiting excellent durability even under severe stress / corrosion environment, it is possible to contribute to improvement of long-term reliability of the centrifugal compressor.

以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples.

[実験1]
(HEA粉末1〜6の用意)
表1に示す名目組成で原料を混合し、真空溶解法により溶解して溶湯を形成する原料混合溶解工程を行った。次に、ガスアトマイズ法により、溶湯から合金粉末を形成するアトマイズ工程を行った。次に、得られた合金粉末に対して、ふるいによる分級を行って粒径45〜105μmに選別してHEA粉末1〜6を用意した。レーザ回折式粒度分布測定装置を用いて、HEA粉末1〜6の粒度分布を測定したところ、それぞれの平均粒径は約70μmであった。
[Experiment 1]
(Preparation of HEA powder 1-6)
The raw materials were mixed with the nominal composition shown in Table 1, and the raw material mixing and dissolving step was performed in which the molten metal was formed by melting by a vacuum melting method. Next, the atomization process which forms alloy powder from a molten metal was performed by the gas atomization method. Next, the obtained alloy powder was classified by sieving to select a particle size of 45 to 105 μm, and HEA powders 1 to 6 were prepared. When the particle size distribution of the HEA powders 1 to 6 was measured using a laser diffraction particle size distribution analyzer, the average particle size of each was about 70 μm.

Figure 0006493561
Figure 0006493561

[実験2]
(合金積層造形体のHEA部材1e〜6eの作製)
実験1で用意したHEA粉末1に対し、図2に示したような粉末積層造形装置(Arcam AB社製、型式:A2X)を用いて、積層造形工程の手順に沿ってEBM法による合金積層造形体(直径14 mm×高さ85 mmの円柱材、高さ方向が積層方向)を造形した。粉末床の仮焼温度は950℃とした。
[Experiment 2]
(Preparation of HEA members 1e to 6e of an alloy laminate model)
For the HEA powder 1 prepared in Experiment 1, using the powder additive manufacturing equipment (Arcam AB, model: A2X) as shown in Fig. 2, the alloy additive manufacturing using the EBM method is performed according to the procedure of the additive manufacturing process. A body (14 mm diameter x 85 mm high columnar material, height direction is the stacking direction) was modeled. The calcining temperature of the powder bed was 950 ° C.

積層造形工程の後、合金積層造形体の周囲の仮焼結体を、HEA粉末1を用いたサンドブラストにより除去する取出工程を行って、合金積層造形体のHEA部材1eを取り出した。   After the additive manufacturing process, the temporary sintering body around the alloy additive manufacturing body was removed by sandblasting using HEA powder 1, and the HEA member 1e of the alloy additive manufacturing body was taken out.

HEA粉末2〜6に対し、上記と同様にして積層造形工程と取出工程とを行って、合金積層造形体のHEA部材2e〜6eを作製した。   The HEA powders 2 to 6 were subjected to the additive manufacturing process and the extraction process in the same manner as described above, to produce HEA members 2e to 6e of the alloy additive manufacturing object.

[実験3]
(普通鋳造材のHEA部材1c〜4cの作製)
実験1で用意したHEA粉末1に対し、銅製の水冷鋳型を用いたアーク溶解法により、普通鋳造材(幅14 mm×長さ80 mm×高さ15 mmの角柱材)を鋳造して、普通鋳造材のHEA部材1cを作製した。なお、鋳造時の元素偏析や組織斑をできるだけ抑制するため、5回以上繰り返し溶解を行った。
[Experiment 3]
(Preparation of HEA members 1c to 4c of ordinary cast material)
For the HEA powder 1 prepared in Experiment 1, a normal casting (14 mm wide x 80 mm long x 15 mm high prism) is cast by arc melting using a copper water-cooled mold. A cast material HEA member 1c was produced. In order to suppress elemental segregation and texture spots during casting as much as possible, dissolution was repeated 5 times or more.

HEA粉末2〜4に対し、HEA部材1cと同様にして、普通鋳造材のHEA部材2c〜4cを作製した。   For the HEA powders 2 to 4, HEA members 2c to 4c of ordinary cast materials were produced in the same manner as the HEA member 1c.

[実験4]
(HEA部材の微細組織観察)
上記で作製した各HEA部材から微細組織観察用の試験片を採取し、光学顕微鏡、走査型電子顕微鏡(SEM)、X線回折(XRD)装置を用いて、微細組織観察を行った。各HEA部材の作製仕様と共に、微細組織観察結果を表2に示す。
[Experiment 4]
(Microstructure observation of HEA materials)
A specimen for microstructural observation was collected from each HEA member produced above, and microscopic observation was performed using an optical microscope, a scanning electron microscope (SEM), and an X-ray diffraction (XRD) apparatus. Table 2 shows the microstructure observation results together with the production specifications of each HEA member.

Figure 0006493561
Figure 0006493561

表2に示したように、積層造形法で作製したHEA部材1e〜6eの母相組織は、微細な柱状晶(平均粒径100μm以下)が合金積層造形体の積層方向に沿って林立した組織(いわゆる、急冷凝固組織)を有していた。当該柱状晶の結晶構造は、基本的に単純立方晶(SC)であった。なお、XRD測定の結果、SCと面心立方晶(FCC)との判別が困難であった場合(FCCではないと断定することが困難であった場合)には、「SC (FCC)」と表記した。   As shown in Table 2, the matrix structure of the HEA members 1e to 6e produced by the additive manufacturing method is a structure in which fine columnar crystals (average particle size of 100 μm or less) are forested along the stacking direction of the alloy additive manufacturing body. (So-called rapidly solidified structure). The crystal structure of the columnar crystals was basically simple cubic (SC). As a result of XRD measurement, when it is difficult to distinguish between SC and face-centered cubic (FCC) (when it is difficult to determine that it is not FCC), “SC (FCC)” Indicated.

これに対し、普通鋳造法で作製したHEA部材1c〜4cの母相組織は、平均粒径100μm超の等軸晶からなる組織を有していた。当該柱状晶の結晶構造は、明確にFCCを含んでいた。   On the other hand, the parent phase structure of the HEA members 1c to 4c produced by the normal casting method had a structure composed of equiaxed crystals having an average particle diameter of more than 100 μm. The crystal structure of the columnar crystal clearly contained FCC.

これら母相組織の観察結果から、「母相組織が柱状晶からなるか等軸晶からなるか」および「母相の結晶構造が明確にFCCを含むか否か」は、HEAの凝固速度(言い換えると、原子の再配列が可能な温度領域での滞在時間の長短)が強く影響していると考えられた。   From the observation results of these matrix structures, it can be said that “whether the matrix structure consists of columnar crystals or equiaxed crystals” and “whether the crystal structure of the matrix phase clearly contains FCC” indicate the solidification rate of HEA ( In other words, the length of stay in the temperature range where atoms can be rearranged was thought to be strongly affected.

また、金属間化合物の析出に関しては、XRD測定の結果、全てのHEA部材において主析出相がNi3Ti相であることが確認された。なお、XRD測定結果から、NiTi相やNiTi2相の析出を否定できるものではなかった(言い換えると、NiTi相やNiTi2相が少々析出している可能性があった)。Further, regarding the precipitation of intermetallic compounds, as a result of XRD measurement, it was confirmed that the main precipitation phase was a Ni 3 Ti phase in all HEA members. From the XRD measurement results, the precipitation of NiTi phase and NiTi 2 phase could not be denied (in other words, there was a possibility that NiTi phase and NiTi 2 phase were slightly precipitated).

一方、金属間化合物の析出形態では、HEA部材の作製方法によって大きな差異が見られた。先に示した図3A、図3Bは、HEA部材1eの微細組織例を示す電子顕微鏡観察像である。図6は、HEA部材1cの微細組織例を示す電子顕微鏡観察像である。   On the other hand, in the precipitation form of the intermetallic compound, a large difference was observed depending on the method for producing the HEA member. 3A and 3B shown above are electron microscope observation images showing examples of the microstructure of the HEA member 1e. FIG. 6 is an electron microscope observation image showing an example of the microstructure of the HEA member 1c.

前述したように、積層造形法で作製したHEA部材1e〜6eは、主析出相の針状結晶が三次元格子状に分散析出していた。これに対し、図6に示したように、普通鋳造法で作製したHEA部材1c〜4cは、針状結晶が無秩序に集合化している様子が観察された。   As described above, in the HEA members 1e to 6e produced by the additive manufacturing method, the acicular crystals of the main precipitation phase were dispersed and precipitated in a three-dimensional lattice shape. On the other hand, as shown in FIG. 6, it was observed that the HEA members 1c to 4c produced by the normal casting method have acicular crystals assembled in a disorderly manner.

[実験5]
(HEA部材の機械的特性および耐食性の測定)
上記で作製した各HEA部材から引張試験用の試験片(平行部直径:4 mm、平行部長さ:20 mm)を採取した。なお、積層造形法で作製したHEA部材1e〜6eは、試験片長手方向が積層造形方向と一致するように採取した。
[Experiment 5]
(Measuring mechanical properties and corrosion resistance of HEA materials)
A specimen for a tensile test (parallel part diameter: 4 mm, parallel part length: 20 mm) was collected from each HEA member produced above. In addition, HEA members 1e to 6e produced by the additive manufacturing method were collected so that the test piece longitudinal direction coincided with the additive manufacturing direction.

各試験片に対して、材料万能試験機を用いて室温引張試験を行い(JIS Z 2241に準拠、ひずみ速度:5×10-5 s-1)、引張強さと破断伸びとを測定した。引張試験の測定結果は、10測定のうちの最大値と最小値とを除いた8測定の平均値として求めた。引張強さの評価は、1000 MPa以上を「合格」と判定し、1000 MPa未満を「不合格」と判定した。また、破断伸びの評価は、3%以上を「合格」と判定し、3%未満を「不合格」と判定した。結果を後述する表3に示す。Each specimen was subjected to a room temperature tensile test using a universal material testing machine (based on JIS Z 2241, strain rate: 5 × 10 −5 s −1 ), and the tensile strength and elongation at break were measured. The measurement result of the tensile test was obtained as an average value of 8 measurements excluding the maximum value and the minimum value of 10 measurements. In the evaluation of tensile strength, 1000 MPa or more was judged as “pass”, and less than 1000 MPa was judged as “fail”. In addition, the evaluation of elongation at break was 3% or more as “pass” and less than 3% as “fail”. The results are shown in Table 3 below.

また、上記で作製した各HEA部材から孔食試験用の分極試験片(縦15 mm×横15 mm×厚さ2 mm)を採取した。孔食試験は、各分極試験片に対してJIS G 0577に準拠して行った。具体的には、「試験面積:1 cm2、分極試験片にすきま腐食防止電極を装着、参照電極:飽和銀塩化銀電極、試験溶液:アルゴンガス脱気した3.5%塩化ナトリウム水溶液、試験温度:30℃、電位掃引速度:20 mV/min」の条件下で分極試験片のアノード分極曲線を測定して、電流密度100μA/cm2に対応する孔食発生電位を求めた。孔食発生電位の評価は、1.0 V以上を「合格」と判定し、1.0 V未満を「不合格」と判定した。孔食試験の結果を表3に併記する。In addition, a polarization test piece (15 mm long × 15 mm wide × 2 mm thick) for pitting corrosion test was collected from each HEA member produced above. The pitting corrosion test was performed on each polarization test piece in accordance with JIS G 0577. Specifically, “Test area: 1 cm 2 , crevice corrosion prevention electrode is attached to polarization test piece, reference electrode: saturated silver chloride electrode, test solution: 3.5% sodium chloride aqueous solution degassed with argon gas, test temperature: The anodic polarization curve of the polarization test piece was measured under the conditions of “30 ° C., potential sweep rate: 20 mV / min”, and the pitting corrosion occurrence potential corresponding to the current density of 100 μA / cm 2 was obtained. In the evaluation of the pitting corrosion occurrence potential, 1.0 V or more was determined as “pass”, and less than 1.0 V was determined as “fail”. The results of the pitting corrosion test are also shown in Table 3.

Figure 0006493561
Figure 0006493561

表3に示したように、本発明の実施例となる積層造形法で作製したHEA部材1e〜3e,5e,6eは、1000 MPa以上の引張強さと3%以上の破断伸びとを示し、良好な機械的特性を有していることが実証された。また、Ni成分とTi成分との含有率が相対的に低いHEA部材5e,6eは、特に破断伸び特性に優れることが確認された。   As shown in Table 3, the HEA members 1e to 3e, 5e, and 6e produced by the additive manufacturing method as an example of the present invention show a tensile strength of 1000 MPa or more and a breaking elongation of 3% or more, which are good. It has been demonstrated that it has excellent mechanical properties. Further, it was confirmed that the HEA members 5e and 6e having relatively low contents of the Ni component and the Ti component are particularly excellent in elongation at break.

これに対し、比較例となる普通鋳造材のHEA部材1c〜4cおよび合金組成が本発明の規定を外れるHEA部材4eは、引張強さが1000 MPa未満および/または破断伸びが3%未満であり、機械的特性全体として不合格であった。また、HEA部材4eは、積層造形法で作製したにもかかわらず機械的特性が不合格になったことから、8原子%超のMo添加が好ましくないことが確認された。   On the other hand, the HEA members 1c to 4c and the HEA member 4e whose alloy composition does not fall within the scope of the present invention have a tensile strength of less than 1000 MPa and / or an elongation at break of less than 3%. The overall mechanical properties were unacceptable. In addition, the HEA member 4e was rejected in spite of being manufactured by the additive manufacturing method, so that it was confirmed that addition of Mo exceeding 8 atomic% was not preferable.

一方、耐食性に関しては、いずれのHEA部材も1.0 V vs. Ag/AgCl以上の孔食発生電位を示し、製造方法や微細組織に依らず、優れた耐食性を有することが確認された。言い換えると、本発明のHEA部材は、その元素の組み合わせ自体(Co-Cr-Fe-Ni-Ti-Mo)によって、優れた耐食性を有すると考えられる。   On the other hand, with respect to corrosion resistance, all HEA members exhibited a pitting corrosion occurrence potential of 1.0 V vs. Ag / AgCl or higher, and it was confirmed that they have excellent corrosion resistance regardless of the manufacturing method and microstructure. In other words, the HEA member of the present invention is considered to have excellent corrosion resistance due to the combination of elements itself (Co—Cr—Fe—Ni—Ti—Mo).

[実験6]
(HEA部材を用いた製造物の作製・検査)
HEA部材1eの製造方法と同様にして(HEA粉末1を用いた積層造形によって)、図4に示したインペラを作製した。得られたインペラに対して、X線CTスキャンによる内部欠陥検査と、寸法測定とを行った。その結果、特段の内部欠陥は認められず、設計寸法に対する変形も認められなかった。本実験から、本発明の有効性が確認された。
[Experiment 6]
(Production and inspection of products using HEA materials)
The impeller shown in FIG. 4 was manufactured in the same manner as the method for manufacturing the HEA member 1e (by layered manufacturing using the HEA powder 1). The obtained impeller was subjected to internal defect inspection by X-ray CT scan and dimension measurement. As a result, no special internal defects were observed, and no deformation with respect to the design dimensions was observed. From this experiment, the effectiveness of the present invention was confirmed.

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   The above-described embodiments and examples are described in order to facilitate understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. That is, according to the present invention, a part of the configurations of the embodiments and examples of the present specification can be deleted, replaced with other configurations, and added with other configurations.

10…溶湯、20…合金粉末、100…EBM粉末積層造形装置、110…電子ビーム制御部、120…粉末制御部、111…タングステンフィラメント、112…アノ−ド、113…電子ビーム、114…非点補正装置、115…フォーカスコイル、116…偏向コイル、121…ステージ、122…ベースプレート、123…パウダーホッパー、124…レーキアーム、210…粉末床、220…凝固層、230…合金積層造形体。   10 ... molten metal, 20 ... alloy powder, 100 ... EBM powder additive manufacturing equipment, 110 ... electron beam controller, 120 ... powder controller, 111 ... tungsten filament, 112 ... anode, 113 ... electron beam, 114 ... astigmatism Correction device, 115 ... focus coil, 116 ... deflection coil, 121 ... stage, 122 ... base plate, 123 ... powder hopper, 124 ... rake arm, 210 ... powder bed, 220 ... solidified layer, 230 ... alloy laminate model.

Claims (12)

ハイエントロピー合金からなる合金部材であって、
Co、Cr、Fe、Ni、Tiの各元素をそれぞれ5原子%以上35原子%以下の範囲で含み、かつMoを0原子%超8原子%以下の範囲で含み、残部が不可避不純物からなる化学組成を有し、
前記合金部材は、母相結晶中に針状結晶の金属間化合物相が分散析出していることを特徴とするハイエントロピー合金部材。
An alloy member made of a high-entropy alloy,
Chemistry containing each element of Co, Cr, Fe, Ni, and Ti in the range of 5 atomic% to 35 atomic%, Mo in the range of more than 0 atomic% to 8 atomic%, with the balance being inevitable impurities Having a composition,
The alloy member is a high entropy alloy member in which an intermetallic compound phase of needle-like crystals is dispersed and precipitated in a mother phase crystal.
請求項1に記載のハイエントロピー合金部材において、
前記針状結晶は、三次元格子状に分散析出していることを特徴とするハイエントロピー合金部材。
In the high entropy alloy member according to claim 1,
The high entropy alloy member, wherein the acicular crystals are dispersed and precipitated in a three-dimensional lattice shape.
請求項1又は請求項2に記載のハイエントロピー合金部材において、
前記ハイエントロピー合金の化学組成は、前記Coを20原子%以上35原子%以下で、前記Crを10原子%以上25原子%以下で、前記Feを10原子%以上25原子%以下で、前記Niを15原子%以上30原子%以下で、前記Tiを5原子%以上15原子%以下で含むことを特徴とするハイエントロピー合金部材。
In the high entropy alloy member according to claim 1 or 2,
The chemical composition of the high-entropy alloy is such that the Co is 20 atomic% to 35 atomic%, the Cr is 10 atomic% to 25 atomic%, the Fe is 10 atomic% to 25 atomic%, the Ni A high entropy alloy member characterized by containing 15 at% to 30 at% and Ti at 5 at% to 15 at%.
請求項1又は請求項2に記載のハイエントロピー合金部材において、
前記ハイエントロピー合金の化学組成は、前記Coを25原子%以上33原子%以下で、前記Crを15原子%以上23原子%以下で、前記Feを15原子%以上23原子%以下で、前記Niを17原子%以上28原子%以下で、前記Tiを5原子%以上10原子%以下で、前記Moを1原子%以上7原子%以下で含むことを特徴とするハイエントロピー合金部材。
In the high entropy alloy member according to claim 1 or 2,
The high-entropy alloy has a chemical composition of 25 to 33 atomic percent of Co, 15 to 23 atomic percent of Cr, 15 to 23 atomic percent of Fe, Ni A high entropy alloy member comprising: 17 atomic percent to 28 atomic percent, Ti containing 5 atomic percent to 10 atomic percent, and Mo containing 1 atomic percent to 7 atomic percent.
請求項1又は請求項2に記載のハイエントロピー合金部材において、
前記ハイエントロピー合金の化学組成は、前記Coを27原子%以上33原子%以下で、前記Crを18原子%以上23原子%以下で、前記Feを18原子%以上23原子%以下で、前記Niを17原子%以上24原子%以下で、前記Tiを5原子%以上8原子%以下で、前記Moを1原子%以上3原子%以下で含むことを特徴とするハイエントロピー合金部材。
In the high entropy alloy member according to claim 1 or 2,
The high-entropy alloy has a chemical composition of 27 to 33 atomic percent of Co, 18 to 23 atomic percent of Cr, 18 to 23 atomic percent of Fe, Ni A high entropy alloy member comprising: 17 atomic percent to 24 atomic percent; Ti containing 5 atomic percent to 8 atomic percent; and Mo containing 1 atomic percent to 3 atomic percent.
請求項1乃至請求項5のいずれか一項に記載のハイエントロピー合金部材において、
前記金属間化合物相は、Ni3Ti相を含むことを特徴とするハイエントロピー合金部材。
In the high entropy alloy member according to any one of claims 1 to 5,
The high-entropy alloy member, wherein the intermetallic compound phase includes a Ni 3 Ti phase.
請求項1乃至請求項6のいずれか一項に記載のハイエントロピー合金部材において、
引張強さが1000 MPa以上であり、破断伸びが3%以上であることを特徴とするハイエントロピー合金部材。
In the high entropy alloy member according to any one of claims 1 to 6,
A high-entropy alloy member having a tensile strength of 1000 MPa or more and a breaking elongation of 3% or more.
請求項1乃至請求項7のいずれか一項に記載のハイエントロピー合金部材において、
前記母相結晶は、形状が柱状晶であり、その結晶構造が単純立方晶を含むことを特徴とするハイエントロピー合金部材。
In the high entropy alloy member according to any one of claims 1 to 7,
The high-entropy alloy member, wherein the parent phase crystal is a columnar crystal and the crystal structure includes a simple cubic crystal.
請求項1乃至請求項7のいずれか一項に記載のハイエントロピー合金部材の製造方法であって、
前記合金の原料を混合・溶解して溶湯を形成する原料混合溶解工程と、
前記溶湯から合金粉末を形成するアトマイズ工程と、
前記合金粉末を用いた金属粉末積層造形法により所望形状を有する合金積層造形体を形成する積層造形工程とを有することを特徴とするハイエントロピー合金部材の製造方法。
It is a manufacturing method of the high entropy alloy member according to any one of claims 1 to 7,
A raw material mixing and melting step of mixing and melting the raw materials of the alloy to form a molten metal;
An atomizing step of forming alloy powder from the molten metal;
A method of manufacturing a high-entropy alloy member, comprising: an additive manufacturing process for forming an alloy additive manufacturing body having a desired shape by a metal powder additive manufacturing method using the alloy powder.
請求項9に記載のハイエントロピー合金部材の製造方法において、
前記積層造形工程は、前記合金粉末の粉末床を形成する粉末床形成工程と、
前記粉末床全体を加熱して粉末床の仮焼結体を形成する粉末床仮焼工程と、
前記仮焼結体を局所加熱して前記合金の微小溶融池を形成すると共に該局所加熱を該仮焼結体の面内で走査しながら前記微小溶融池を移動・逐次凝固させることにより、前記合金の凝固層を形成する局所溶融・凝固層形成工程とを有することを特徴とするハイエントロピー合金部材の製造方法。
In the manufacturing method of the high entropy alloy member according to claim 9,
The additive manufacturing process includes a powder bed forming process for forming a powder bed of the alloy powder,
A powder bed calcining step of heating the entire powder bed to form a pre-sintered powder bed;
The temporary sintered body is locally heated to form a micro molten pool of the alloy, and the micro molten pool is moved and sequentially solidified while scanning the local heating in the plane of the temporary sintered body. A method for producing a high-entropy alloy member, comprising: a local melting / solidifying layer forming step of forming a solidified layer of an alloy.
ハイエントロピー合金部材を用いた製造物であって、
前記ハイエントロピー合金部材が、請求項1乃至請求項8のいずれか一項に記載のハイエントロピー合金部材であり、
前記製造物が、流体機械のインペラであることを特徴とするハイエントロピー合金部材を用いた製造物。
A product using a high-entropy alloy member,
The high entropy alloy member is the high entropy alloy member according to any one of claims 1 to 8,
A product using a high-entropy alloy member, wherein the product is an impeller of a fluid machine.
請求項11に記載の前記インペラを組み込んでいることを特徴とする遠心圧縮機。   A centrifugal compressor incorporating the impeller according to claim 11.
JP2017554978A 2015-12-10 2016-11-08 High entropy alloy member, method for producing the alloy member, and product using the alloy member Active JP6493561B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015241248 2015-12-10
JP2015241248 2015-12-10
PCT/JP2016/083011 WO2017098848A1 (en) 2015-12-10 2016-11-08 High entropy alloy member, method for producing alloy member, and product using alloy member

Publications (2)

Publication Number Publication Date
JPWO2017098848A1 JPWO2017098848A1 (en) 2018-11-08
JP6493561B2 true JP6493561B2 (en) 2019-04-03

Family

ID=59013061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017554978A Active JP6493561B2 (en) 2015-12-10 2016-11-08 High entropy alloy member, method for producing the alloy member, and product using the alloy member

Country Status (6)

Country Link
US (1) US10787725B2 (en)
EP (1) EP3392359B1 (en)
JP (1) JP6493561B2 (en)
CN (1) CN108431262B (en)
SG (1) SG11201804917QA (en)
WO (1) WO2017098848A1 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11339817B2 (en) 2016-08-04 2022-05-24 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US10640854B2 (en) 2016-08-04 2020-05-05 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11318566B2 (en) 2016-08-04 2022-05-03 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
JP6887896B2 (en) * 2017-06-28 2021-06-16 日本電子株式会社 3D laminated modeling equipment
CN113862543B (en) * 2017-08-09 2022-12-30 日立金属株式会社 Method for manufacturing alloy member
CN111051551B (en) * 2017-10-31 2022-10-11 日立金属株式会社 Alloy material, product using the alloy material, and fluid machine having the product
JP6690790B2 (en) * 2017-10-31 2020-04-28 日立金属株式会社 Alloy material, method for manufacturing the alloy material, product using the alloy material, and fluid machine having the product
CN109797390A (en) * 2017-11-17 2019-05-24 天津大学 A kind of iron-based high-entropy alloy powder of wind power bearing and its cladding layer preparation method
DE102017221126A1 (en) * 2017-11-27 2019-05-29 Sms Group Gmbh rolling mill
CN108004452B (en) * 2017-11-27 2019-06-25 北京理工大学 A kind of CoCrFeNiHfxHigh entropy alloy material and preparation method thereof
CN108161277B (en) * 2018-01-22 2020-08-28 太原理工大学 High-entropy flux-cored wire for aluminum-steel submerged arc welding and preparation method thereof
CN108161278B (en) * 2018-01-22 2020-08-28 太原理工大学 High-entropy flux-cored wire for aluminum-steel MIG welding and preparation method thereof
CN107999991B (en) * 2018-01-22 2020-05-22 太原理工大学 High-entropy flux-cored wire for titanium-steel MIG welding and preparation method thereof
CN108161276B (en) * 2018-01-22 2020-08-28 太原理工大学 High-entropy flux-cored wire for magnesium-steel MIG welding and preparation method thereof
CN108517451B (en) * 2018-05-03 2019-11-08 河北工业大学 A kind of high-strength tenacity high-entropy alloy and preparation method with gradient grain structure
CN108950255B (en) * 2018-06-28 2020-07-28 江苏科技大学 Five-element FeCoNiMoSi series high-entropy alloy and preparation method thereof
US10522324B1 (en) * 2018-08-02 2019-12-31 Expresslo Llc Method of producing lift out specimens for teaching, practice, and training
CN109867525A (en) * 2019-01-28 2019-06-11 广东工业大学 A kind of high-entropy alloy boride ceramics and its preparation method and application
CN109957700B (en) * 2019-04-12 2020-06-16 苏州大学 FeCrCuTiV high-entropy alloy powder for laser melting deposition manufacturing and preparation method thereof
EP3962678A4 (en) * 2019-04-30 2023-01-11 6K Inc. Mechanically alloyed powder feedstock
US11666973B2 (en) 2019-10-18 2023-06-06 Hamilton Sundstrand Corporation Complex concentrated alloy and high entropy alloy additive manufacturing systems and methods
CN110760843A (en) * 2019-12-04 2020-02-07 上海工程技术大学 Laser cladding high-entropy alloy coating
US11353117B1 (en) 2020-01-17 2022-06-07 Vulcan Industrial Holdings, LLC Valve seat insert system and method
US11511375B2 (en) 2020-02-24 2022-11-29 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys
CN111331279B (en) * 2020-03-05 2022-04-12 西安理工大学 High-entropy alloy preform and fusion welding method of titanium and stainless steel
CN111266580A (en) * 2020-03-16 2020-06-12 西安交通大学 Preparation method of high-entropy or medium-entropy alloy micro-columnar crystal manufactured by electron beam additive manufacturing
US11421680B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing bore wear sleeve retainer system
US11421679B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing assembly with threaded sleeve for interaction with an installation tool
US11384756B1 (en) 2020-08-19 2022-07-12 Vulcan Industrial Holdings, LLC Composite valve seat system and method
USD980876S1 (en) 2020-08-21 2023-03-14 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD986928S1 (en) 2020-08-21 2023-05-23 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD997992S1 (en) 2020-08-21 2023-09-05 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
CN112024902B (en) * 2020-09-02 2022-04-26 江苏科技大学 Preparation method of refractory high-entropy alloy framework-copper spontaneous perspiration composite structure
CN112210731A (en) * 2020-10-16 2021-01-12 西北工业大学 Method for regulating and controlling non-uniform structure of high-entropy alloy
US11391374B1 (en) 2021-01-14 2022-07-19 Vulcan Industrial Holdings, LLC Dual ring stuffing box
CN113770377B (en) * 2021-08-25 2022-11-22 清华大学 Method for in-situ synthesis of NiTi shape memory alloy based on electron beam scanning assisted double-wire additive
CN114226750B (en) * 2021-11-22 2024-02-23 南京联空智能增材研究院有限公司 Shell-structure-imitated alloy laser additive manufacturing method
CN114192800B (en) * 2021-12-14 2023-11-28 上海大学 Method for preparing high-density high-strength high-toughness high-entropy alloy by using selected-area electron beam melting technology
CN114737102B (en) * 2022-04-18 2023-04-25 温州大学 High-entropy alloy coating with high-hardness sigma phase and preparation method thereof
US11434900B1 (en) 2022-04-25 2022-09-06 Vulcan Industrial Holdings, LLC Spring controlling valve
US11920684B1 (en) 2022-05-17 2024-03-05 Vulcan Industrial Holdings, LLC Mechanically or hybrid mounted valve seat
CN114888298B (en) * 2022-05-20 2024-01-16 巢湖学院 Two-dimensional high-entropy alloy and preparation method and application thereof
CN114799209B (en) * 2022-05-20 2022-12-16 西北有色金属研究院 Method for preparing high-density high-entropy alloy material through 3D printing in-situ alloying
CN114892064B (en) * 2022-06-28 2023-04-18 湖南三泰新材料股份有限公司 FeCrCuVCo high-entropy alloy and preparation method thereof
US20240014410A1 (en) * 2022-07-11 2024-01-11 University Of Central Florida Research Foundation, Inc. High-entropy alloy for high-performance direct ethanol fuel cells
CN115821141B (en) * 2022-09-23 2023-11-24 哈尔滨工业大学 Laves phase precipitation modified AlCoCrFeNi dual-phase high-entropy alloy and preparation method thereof
CN115652173B (en) * 2022-10-25 2024-04-05 锑玛(苏州)精密工具股份有限公司 Cobalt-free and carbon-free FeCrNiCuAl high-entropy alloy cutter special for nuclear power site sampling and preparation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159914A1 (en) 2000-11-07 2002-10-31 Jien-Wei Yeh High-entropy multielement alloys
JP4190720B2 (en) * 2000-11-29 2008-12-03 國立清華大學 Multi-component alloy
TWI315345B (en) * 2006-07-28 2009-10-01 Nat Univ Tsing Hua High-temperature resistant alloys
CN103252496B (en) * 2013-05-03 2015-06-17 中国人民解放军装甲兵工程学院 High-entropy alloy powder containing amorphous nanocrystalline and fabrication method thereof
US10576538B2 (en) 2014-07-23 2020-03-03 Hitachi Metals, Ltd. Alloy structure and method for producing alloy structure
US10702944B2 (en) * 2014-07-23 2020-07-07 Hitachi Metals, Ltd. Alloy structure and method for producing alloy structure
CN104308153B (en) 2014-10-27 2016-08-03 西安交通大学 A kind of manufacture method of high-entropy alloy turbogenerator hot-end component based on precinct laser fusion
CN104841930B (en) * 2015-06-05 2017-03-01 哈尔滨工程大学 High-entropy alloy powder for 3D printing and apply the method that it prepares high-entropy alloy coating

Also Published As

Publication number Publication date
US20180363104A1 (en) 2018-12-20
EP3392359A4 (en) 2019-07-17
CN108431262B (en) 2020-06-26
JPWO2017098848A1 (en) 2018-11-08
WO2017098848A1 (en) 2017-06-15
EP3392359A1 (en) 2018-10-24
CN108431262A (en) 2018-08-21
US10787725B2 (en) 2020-09-29
EP3392359B1 (en) 2021-02-24
SG11201804917QA (en) 2018-07-30

Similar Documents

Publication Publication Date Title
JP6493561B2 (en) High entropy alloy member, method for producing the alloy member, and product using the alloy member
JP6493568B2 (en) Alloy member, method for manufacturing the alloy member, and product using the alloy member
JP6835139B2 (en) Manufacturing method of alloy members
JP6937491B2 (en) An alloy member, a method for manufacturing the alloy member, and a product using the alloy member.
JP6849128B2 (en) Mixed powder for metal lamination modeling
EP3705590B1 (en) Alloy material, product using said alloy material, and fluid machine having said product
US11401585B2 (en) Multicomponent aluminum alloys for applications such as additive manufacturing
US8778262B2 (en) Alloy having reduced inclusions
JP7311053B2 (en) ALLOY MATERIAL, ALLOY PRODUCT USING SUCH ALLOY MATERIAL, AND MACHINE DEVICE HAVING SUCH ALLOY PRODUCT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6493561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350