JP2018141228A - Electrolytic copper foil having villus-like copper particles and production method of circuit board component - Google Patents
Electrolytic copper foil having villus-like copper particles and production method of circuit board component Download PDFInfo
- Publication number
- JP2018141228A JP2018141228A JP2017172762A JP2017172762A JP2018141228A JP 2018141228 A JP2018141228 A JP 2018141228A JP 2017172762 A JP2017172762 A JP 2017172762A JP 2017172762 A JP2017172762 A JP 2017172762A JP 2018141228 A JP2018141228 A JP 2018141228A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- treatment
- plating
- villi
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 293
- 239000011889 copper foil Substances 0.000 title claims abstract description 168
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 123
- 239000010949 copper Substances 0.000 title claims abstract description 123
- 239000002245 particle Substances 0.000 title claims abstract description 107
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 238000007747 plating Methods 0.000 claims abstract description 106
- 238000011282 treatment Methods 0.000 claims abstract description 64
- 238000007788 roughening Methods 0.000 claims abstract description 59
- 239000010410 layer Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 49
- 239000002335 surface treatment layer Substances 0.000 claims abstract description 33
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000413 arsenic oxide Inorganic materials 0.000 claims abstract description 9
- 229960002594 arsenic trioxide Drugs 0.000 claims abstract description 9
- KTTMEOWBIWLMSE-UHFFFAOYSA-N diarsenic trioxide Chemical compound O1[As](O2)O[As]3O[As]1O[As]2O3 KTTMEOWBIWLMSE-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 43
- 229920005989 resin Polymers 0.000 claims description 34
- 239000011347 resin Substances 0.000 claims description 34
- 239000000243 solution Substances 0.000 claims description 22
- 239000008151 electrolyte solution Substances 0.000 claims description 12
- 230000003078 antioxidant effect Effects 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 230000004308 accommodation Effects 0.000 claims description 9
- 239000003963 antioxidant agent Substances 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 9
- 239000000853 adhesive Substances 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 8
- 238000005868 electrolysis reaction Methods 0.000 claims description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 229910000077 silane Inorganic materials 0.000 claims description 4
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 3
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 2
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 4
- -1 tungstate ions Chemical class 0.000 abstract description 3
- 230000003746 surface roughness Effects 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- 238000004381 surface treatment Methods 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010884 ion-beam technique Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/384—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0058—Laminating printed circuit boards onto other substrates, e.g. metallic substrates
- H05K3/0064—Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a polymeric substrate
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
本発明は、電解銅箔及び回路基板部品の製造方法に関し、特に、表層に絨毛構造を有する電解銅箔の製造方法、及び、表層に絨毛構造を有する電解銅箔を使用する回路基板部品の製造方法に関する。 The present invention relates to an electrolytic copper foil and a method for manufacturing a circuit board component, and more particularly, a method for manufacturing an electrolytic copper foil having a villi structure on a surface layer, and a manufacturing of a circuit board component using the electrolytic copper foil having a villi structure on a surface layer. Regarding the method.
プリント基板に適用される従来の銅箔は、めっきによって陰極ドラムに原箔が形成された上で、後続の処理プロセスを経て最終的な製品として形成される。後続の処理には、原箔の粗面に粗化処理を実行することで、原箔の粗面に複数の銅粒子を形成することによって、銅箔と回路基板との間の接着強度を向上させる。即ち、後続の処理には銅箔の剥離強度を向上させる工程が含まれる。 A conventional copper foil applied to a printed circuit board is formed as a final product through a subsequent processing process after an original foil is formed on a cathode drum by plating. In subsequent processing, the roughening treatment is performed on the rough surface of the original foil, thereby forming a plurality of copper particles on the rough surface of the original foil, thereby improving the adhesive strength between the copper foil and the circuit board. Let That is, the subsequent process includes a step of improving the peel strength of the copper foil.
しかしながら、近年、電子製品は高周波化、高速化の傾向があり、高周波信号伝送時に、いわゆる表皮効果(skin effect)が生じる。特許文献1(特許第5116943号)において、高周波回路用銅箔及びその製造方法が開示されている。特許文献1には、銅箔表面の形状が伝送損失に大きく影響し、粗さの大きい銅箔は、信号の伝播距離が長くなり、信号の減衰や遅延の問題が生じることが説明されている。言い換えれば、銅箔の表面が平滑であるほど信号の導体における伝送損失は小さくなる。従って、銅箔表面の平滑性は非常に重要な役割を果たすことになる。銅箔表面の粗さが高いほど、高周波信号伝送時に損失が生じやすくなる。 However, in recent years, electronic products tend to have higher frequencies and higher speeds, and a so-called skin effect occurs during high-frequency signal transmission. In patent document 1 (patent No. 5116943), the copper foil for high frequency circuits and its manufacturing method are disclosed. Patent Document 1 explains that the copper foil surface shape greatly affects transmission loss, and that a copper foil having a large roughness increases the signal propagation distance and causes signal attenuation and delay problems. . In other words, the smoother the surface of the copper foil, the smaller the transmission loss in the signal conductor. Therefore, the smoothness of the copper foil surface plays a very important role. The higher the roughness of the copper foil surface, the easier it is to lose during high frequency signal transmission.
図1は、従来技術における銅箔の局部断面図である。図1に示すように、従来技術において、銅箔F1の表面に形成される複数の銅粒子F10は略球状であり、且つ大部分の球状銅粒子F10は水平方向の最大寸法が垂直方向における最大寸法よりも大きい。そのため、銅箔の粗さを所定値に維持することはできるものの、銅箔を高周波基板と接着させた場合に、銅箔の剥離強度が不足する問題が生じる。 FIG. 1 is a local sectional view of a copper foil in the prior art. As shown in FIG. 1, in the prior art, the plurality of copper particles F10 formed on the surface of the copper foil F1 are substantially spherical, and most of the spherical copper particles F10 have a maximum horizontal dimension that is the maximum in the vertical direction. Greater than dimensions. Therefore, although the roughness of the copper foil can be maintained at a predetermined value, there arises a problem that the peel strength of the copper foil is insufficient when the copper foil is bonded to the high-frequency substrate.
しかしながら、銅箔表面の粗さを低減することによって高周波信号の伝送損失を低減しようとすると、銅箔と回路基板との圧着の剥離強度が低下する。従って、如何にして銅箔の剥離強度を向上させると同時に銅箔表面の平滑性を維持できるようにするかが、現在、本分野における重要な課題となっている。 However, if it is attempted to reduce the transmission loss of the high-frequency signal by reducing the roughness of the copper foil surface, the peel strength of the crimping between the copper foil and the circuit board is lowered. Therefore, how to improve the peel strength of the copper foil and maintain the smoothness of the copper foil surface is now an important issue in this field.
本発明が解決しようとする技術課題は、従来技術における欠点を解消し得る、絨毛状様銅粒子を有する電解銅箔及び回路基板部品の製造方法を提供することにある。 The technical problem to be solved by the present invention is to provide an electrolytic copper foil having villi-like copper particles and a method for producing a circuit board component, which can eliminate the drawbacks in the prior art.
上記課題を解決するために、本発明に係る絨毛状様銅粒子を有する電解銅箔の製造方法は、以下の工程を含む。電解方法によって、所定の表面を有する銅箔層を形成する。次いで、表層に絨毛様構造を有する電解銅箔を形成するように、銅箔層の所定の表面に表面処理層を形成する。表面処理層は、複数の絨毛状様の銅粒子を含み、且つ各2つの隣接する絨毛状様の銅粒子の間に絨毛状様の収容空間を形成する。表面処理層を形成するステップは、第1回目のめっき粗化処理を実行する工程と、第1回目のめっき硬化処理を実行する工程とを更に含む。第1回目のめっき粗化処理に使用する第1のめっき液には、3〜40g/Lの銅、100〜120g/Lの硫酸、20ppm以下の酸化ヒ素及び5〜20ppmのタングステン酸イオンが含まれる。 In order to solve the above-mentioned subject, the manufacturing method of the electrolytic copper foil which has the villi-like copper particle concerning the present invention includes the following processes. A copper foil layer having a predetermined surface is formed by an electrolysis method. Next, a surface treatment layer is formed on a predetermined surface of the copper foil layer so as to form an electrolytic copper foil having a villi-like structure on the surface layer. The surface treatment layer includes a plurality of villi-like copper particles, and forms a villi-like accommodation space between each two adjacent villi-like copper particles. The step of forming the surface treatment layer further includes a step of executing the first plating roughening treatment and a step of executing the first plating hardening treatment. The first plating solution used for the first plating roughening treatment contains 3 to 40 g / L of copper, 100 to 120 g / L of sulfuric acid, 20 ppm or less of arsenic oxide and 5 to 20 ppm of tungstate ion. It is.
本発明に係る回路基板部品の製造方法は、以下の工程を含む。先ず、上述した絨毛状様銅粒子を有する電解銅箔の製造方法によって形成された絨毛状様銅粒子を有する電解銅箔を提供する。次いで、上述した絨毛状様銅粒子を有する電解銅箔を樹脂基板に向かい合わせに圧着することで、回路基板部品を形成する。絨毛状様銅粒子を有する電解銅箔は、表面処理層が樹脂基板に面している。 The method for manufacturing a circuit board component according to the present invention includes the following steps. First, the electrolytic copper foil which has the villi-like copper particle formed by the manufacturing method of the electrolytic copper foil which has the above-mentioned villi-like copper particle is provided. Next, the electrolytic copper foil having the above-mentioned villi-like copper particles is pressure-bonded to the resin substrate so as to form a circuit board component. In the electrolytic copper foil having the villi-like copper particles, the surface treatment layer faces the resin substrate.
本発明の効果は、上述した絨毛状様銅粒子を有する電解銅箔の製造方法によって、電解銅箔の表面処理層が複数の絨毛状銅粒子又は絨毛状様の銅粒子を有するようにすることができる点にある。即ち、絨毛状銅粒子又は絨毛状様の銅粒子の幅は、従来技術における球状銅粒子の幅よりも小さい。従って、表層に絨毛様構造を有する電解銅箔と樹脂基板とを接着した場合に、従来技術における球状銅粒子を有する電解銅箔に比べ、表層に絨毛様構造を有する電解銅箔は樹脂基板との間により大きい接触面積を有しているため、より高い剥離強度を有することができる。 The effect of the present invention is that the surface treatment layer of the electrolytic copper foil has a plurality of villi-like copper particles or villi-like copper particles by the above-described method for producing an electrolytic copper foil having villi-like copper particles. There is in point that can. That is, the width of the villi-like copper particles or villi-like copper particles is smaller than the width of the spherical copper particles in the prior art. Therefore, when the electrolytic copper foil having a villi-like structure on the surface layer and the resin substrate are bonded, the electrolytic copper foil having the villi-like structure on the surface layer is compared with the resin substrate in comparison with the electrolytic copper foil having the spherical copper particles in the prior art. Since it has a larger contact area between the two, it can have a higher peel strength.
本発明の特徴及び技術内容を更に理解することができるように、以下、図面を用いながら本発明を詳しく説明する。但し、図面は参考のため及び説明の便宜上、提示するものにすぎず、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings so that the features and technical contents of the present invention can be further understood. However, the drawings are merely presented for reference and convenience of description, and do not limit the present invention.
以下、特定の実施例によって、本発明に係る絨毛状様銅粒子を有する電解銅箔及び回路基板部品の製造方法の実施形態を説明する。本発明の実施例に係る製造方法によって、低粗度及び高剥離強度を有する、絨毛状様銅粒子を有する電解銅箔を得ることができる。また、当該製造方法によって製造された絨毛状様銅粒子を有する電解銅箔と樹脂基板とが互いに接着することで形成される回路基板部品は、高周波信号の伝送に適用されることができる。 Hereinafter, an embodiment of an electrolytic copper foil having a villi-like copper particle and a method for manufacturing a circuit board component according to the present invention will be described by specific examples. By the manufacturing method according to the embodiment of the present invention, an electrolytic copper foil having villi-like copper particles having low roughness and high peel strength can be obtained. Further, the circuit board component formed by bonding the electrolytic copper foil having the villi-like copper particles and the resin substrate manufactured by the manufacturing method can be applied to transmission of a high frequency signal.
図2及び図3を用いて説明する。図2は、本発明の実施例に係る絨毛状様銅粒子を有する電解銅箔の製造方法のフローチャートである。図3は、図2の絨毛状様銅粒子を有する電解銅箔の製造方法を実行するための機器を示す図である。 This will be described with reference to FIGS. FIG. 2 is a flowchart of a method for producing an electrolytic copper foil having chilli-like copper particles according to an embodiment of the present invention. FIG. 3 is a view showing an apparatus for carrying out the method for producing an electrolytic copper foil having the villi-like copper particles of FIG.
先ず、図2に示すように、ステップS100において、電解方法によって銅箔層を形成する。当該銅箔層は所定の表面を有する。 First, as shown in FIG. 2, in step S100, a copper foil layer is formed by an electrolysis method. The copper foil layer has a predetermined surface.
図3に示すように、電解方法によって銅箔層を形成するステップは、製箔装置1を提供する工程を含む。製箔装置1は、少なくとも電解槽10、陽極板11、陰極ドラム12及びローラ13を含む。 As shown in FIG. 3, the step of forming the copper foil layer by the electrolysis method includes a step of providing the foil making apparatus 1. The foil making apparatus 1 includes at least an electrolytic cell 10, an anode plate 11, a cathode drum 12, and a roller 13.
更に、電解槽10は、電解液L0を入れるのに用いられる。陽極板11は、電解槽10内に設けられると共に、電源供給装置E1の正極出力端に電気的に接続される。陽極板11は、イリジウム元素又はその酸化物がチタン板にコーティングされることで形成される。陰極ドラム12は、電解槽10に対応して設けられると共に、陽極板11の上方に位置する。また、陰極ドラム12は、電源供給装置E1の負極出力端に電気的に接続される。本実施例において、陰極ドラム12は、チタン製のローラである。 Furthermore, the electrolytic cell 10 is used to fill the electrolytic solution L0. The anode plate 11 is provided in the electrolytic cell 10 and is electrically connected to the positive electrode output terminal of the power supply device E1. The anode plate 11 is formed by coating a titanium plate with an iridium element or an oxide thereof. The cathode drum 12 is provided corresponding to the electrolytic cell 10 and is located above the anode plate 11. The cathode drum 12 is electrically connected to the negative output terminal of the power supply device E1. In this embodiment, the cathode drum 12 is a titanium roller.
また、本実施例において、製箔装置1は、電解槽10の流体と連通する給液配管14を更に含む。上述した電解液L0は、給液配管14を経て電解槽10内に注入され、陽極板11を完全に浸漬させると共に、陰極ドラム12の一部が電解液L0中に浸漬される。 In the present embodiment, the foil making apparatus 1 further includes a liquid supply pipe 14 that communicates with the fluid in the electrolytic cell 10. The above-described electrolytic solution L0 is injected into the electrolytic cell 10 through the liquid supply pipe 14, and the anode plate 11 is completely immersed, and a part of the cathode drum 12 is immersed in the electrolytic solution L0.
次いで、図3に示すように、電源供給装置E1が陽極板11及び陰極ドラム12に対して直流を出力して、電解液L0に電流を印加することで、電解液L0における銅イオンを陰極ドラム12の表面に析出し、銅箔層30を形成する。 Next, as shown in FIG. 3, the power supply device E1 outputs a direct current to the anode plate 11 and the cathode drum 12 and applies a current to the electrolyte L0, thereby converting the copper ions in the electrolyte L0 into the cathode drum. The copper foil layer 30 is deposited on the surface of 12.
また、電解液L0を電解して銅箔層30を形成する際には、電解液L0を電解槽10内に継続して供給する。具体的には、電解槽10内の電解液L0の銅イオン濃度を維持するように、電解液L0を給液配管14経由で電解槽10内に流入させることができる。図3に示すように、陰極ドラム12の表面に形成される銅箔層30は、陰極ドラム12の表面から剥離されると共に、ローラ13を通ることで、後続のプロセスが行われる。 Further, when the electrolytic solution L0 is electrolyzed to form the copper foil layer 30, the electrolytic solution L0 is continuously supplied into the electrolytic cell 10. Specifically, the electrolytic solution L0 can be caused to flow into the electrolytic cell 10 via the liquid supply pipe 14 so as to maintain the copper ion concentration of the electrolytic solution L0 in the electrolytic cell 10. As shown in FIG. 3, the copper foil layer 30 formed on the surface of the cathode drum 12 is peeled off from the surface of the cathode drum 12 and passes through a roller 13 to perform subsequent processes.
更に言えば、銅箔層30は、粗面30a及び当該粗面30aと対向する平滑面30bを有する。電解プロセスにおいて、平滑面30bは、銅箔層30における陰極ドラム12と接触する表面であるため、平滑面30bの粗さは比較的一定している。粗面30aは、電解液L0に接触する表面である。銅箔層30の粗面30a又は平滑面30bは、通常複数の粒状突起を有する。1つの実施例において、銅箔層30の粗面30aの十点平均粗さは2μm以下であり、例えば0.9μm〜1.9μmである。 Furthermore, the copper foil layer 30 has a rough surface 30a and a smooth surface 30b facing the rough surface 30a. In the electrolysis process, since the smooth surface 30b is a surface in contact with the cathode drum 12 in the copper foil layer 30, the roughness of the smooth surface 30b is relatively constant. The rough surface 30a is a surface in contact with the electrolytic solution L0. The rough surface 30a or the smooth surface 30b of the copper foil layer 30 usually has a plurality of granular protrusions. In one Example, the ten-point average roughness of the rough surface 30a of the copper foil layer 30 is 2 micrometers or less, for example, 0.9 micrometer-1.9 micrometers.
次いで、図2に示すように、ステップS200において、表面処理層を銅箔層の所定の表面に形成することで、表層に絨毛様構造を有する電解銅箔を形成する。表面処理層は、複数の絨毛状様の銅粒子を含み、且つ各2つの隣接する銅粒子の間には、絨毛状様の収容空間を形成する。 Next, as shown in FIG. 2, in step S200, the surface treatment layer is formed on a predetermined surface of the copper foil layer, thereby forming an electrolytic copper foil having a villi-like structure on the surface layer. The surface treatment layer includes a plurality of villi-like copper particles, and forms a villi-like accommodation space between each two adjacent copper particles.
更に、表面処理層を形成するステップS200は、少なくとも1回のめっき粗化処理及び少なくとも1回のめっき硬化処理を実行する工程を更に含む。本実施例において、銅箔層が2回のめっき粗化処理及び2回のめっき硬化処理を経ることで、銅箔層における所定の表面に表面処理層が形成される。所定の表面とは、粗面又は平滑面のうちの少なくとも1つであってよい。 Furthermore, step S200 of forming the surface treatment layer further includes a step of executing at least one plating roughening treatment and at least one plating hardening treatment. In a present Example, a surface treatment layer is formed in the predetermined surface in a copper foil layer because a copper foil layer passes through the plating roughening process twice and the plating hardening process twice. The predetermined surface may be at least one of a rough surface and a smooth surface.
詳述すると、図2に示すように、1つの実施例において、ステップS100の後、第1回目のめっき粗化処理(ステップS201)、第1回目のめっき硬化処理(ステップS203)、第2回目のめっき粗化処理(ステップS202)及び第2回目のめっき硬化処理(ステップS204)を順次実行する。 More specifically, as shown in FIG. 2, in one embodiment, after step S100, the first plating roughening process (step S201), the first plating hardening process (step S203), and the second time The plating roughening process (step S202) and the second plating hardening process (step S204) are sequentially executed.
他の実施例において、ステップS100の後、第1回目のめっき粗化処理(ステップS201)、第2回目のめっき粗化処理(ステップS202)、第1回目のめっき硬化処理(ステップS203)及び第2回目のめっき硬化処理(ステップS204)を順次実行する。 In another embodiment, after step S100, the first plating roughening process (step S201), the second plating roughening process (step S202), the first plating hardening process (step S203), and the first The second plating hardening process (step S204) is sequentially executed.
更に言えば、めっき粗化処理及びめっき硬化処理の回数が多いほど、電解銅箔と樹脂基板との接着強度を高めることができるが、同時に電解銅箔の表面粗さが増加し、高周波信号の伝送への適用に不利となる。従って、実際の製造プロセスの必要性に応じて、めっき粗化処理及びめっき硬化処理の回数を増減し、順序を調整することができる。 Furthermore, the greater the number of plating roughening treatments and plating hardening treatments, the higher the adhesion strength between the electrolytic copper foil and the resin substrate, but at the same time the surface roughness of the electrolytic copper foil increases, Disadvantageous for transmission applications. Therefore, according to the necessity of an actual manufacturing process, the number of times of plating roughening treatment and plating hardening treatment can be increased or decreased to adjust the order.
図3を参照しながら、第1回目のめっき粗化処理、第1回目のめっき硬化処理、第2回目のめっき粗化処理及び第2回目のめっき硬化処理を順次実行することを例に説明する。 With reference to FIG. 3, an example will be described in which a first plating roughening process, a first plating hardening process, a second plating roughening process, and a second plating hardening process are sequentially performed. .
図3に示すように、ステップS201〜S204を実行する際に用いられる表面処理装置2は、生産ライン上に配置される複数の伝送ユニット20、少なくとも1つの粗化ユニット21(図3においては2つ示す)、少なくとも1つの硬化ユニット22(図3においては2つ示す)及び複数の洗浄槽23を含む。粗化ユニット21、硬化ユニット22及び洗浄槽23の数は、必要に応じて決めることができる。複数の伝送ユニット20は、所定のプロセスフローに基づいて銅箔層30を粗化ユニット21、洗浄槽23及び硬化ユニット22に伝送して各処理を行えるようにする。 As shown in FIG. 3, the surface treatment apparatus 2 used when executing steps S201 to S204 includes a plurality of transmission units 20 arranged on the production line, at least one roughening unit 21 (2 in FIG. 3). 1), at least one curing unit 22 (two are shown in FIG. 3), and a plurality of cleaning baths 23. The number of the roughening unit 21, the curing unit 22, and the cleaning tank 23 can be determined as necessary. The plurality of transmission units 20 transmit the copper foil layer 30 to the roughening unit 21, the cleaning tank 23, and the curing unit 22 based on a predetermined process flow so that each processing can be performed.
粗化ユニット21は、第1のめっき液L1を入れるための粗化槽210と、粗化槽210内に設けられた1組の粗化陽極板211とを含む。図3に示すように、第1回目のめっき粗化処理を実行する際に、銅箔層30を、第1のめっき液L1がすでに入れられた粗化槽210内に投入する。本実施例において使用される第1のめっき液L1は、3〜40g/Lの銅、100〜120g/Lの硫酸、20ppm以下の酸化ヒ素(As2O3)及び5〜20ppmのタングステン酸イオン(WO4 2−)を含む。 The roughening unit 21 includes a roughening tank 210 for containing the first plating solution L1 and a set of roughening anode plates 211 provided in the roughening tank 210. As shown in FIG. 3, when the first plating roughening process is performed, the copper foil layer 30 is put into a roughening tank 210 in which the first plating solution L1 has already been placed. The first plating solution L1 used in this example is 3 to 40 g / L copper, 100 to 120 g / L sulfuric acid, 20 ppm or less arsenic oxide (As 2 O 3 ), and 5 to 20 ppm tungstate ion. (WO 4 2− ) is included.
第1回目のめっき粗化処理を実行した際、粗化陽極板211及び銅箔層30にそれぞれ正電圧及び負電圧を印加することで、第1のめっき液L1内の銅イオンを還元させて、銅箔層30の粗面30aに複数のコブ状銅粒子を形成する。 When the first plating roughening process is performed, a positive voltage and a negative voltage are applied to the roughened anode plate 211 and the copper foil layer 30, respectively, to reduce the copper ions in the first plating solution L1. A plurality of bump-shaped copper particles are formed on the rough surface 30 a of the copper foil layer 30.
本実施例において使用される第1のめっき液L1は、特殊な組成を有する。即ち低濃度の銅を含有しており、コブ状銅粒子の結晶成長方向を制限することができる。また、酸化ヒ素の濃度及びタングステン酸イオンの濃度は20ppm以下である。酸化ヒ素の濃度が高過ぎると、寸法が大きい球状銅粒子が形成される可能性があり、絨毛状様の又は絨毛状の銅粒子を形成するのが難しくなる。 The first plating solution L1 used in this embodiment has a special composition. That is, it contains a low concentration of copper and can limit the crystal growth direction of the bumpy copper particles. The concentration of arsenic oxide and the concentration of tungstate ions are 20 ppm or less. If the concentration of arsenic oxide is too high, spherical copper particles with large dimensions may be formed, making it difficult to form villi-like or villi-like copper particles.
更に言えば、第1回目のめっき粗化処理を実行した際、第1のめっき液L1中の銅濃度が低いため、銅原子は偏った結晶方向(即ち縦方向)にのみ積層されるように制限される。言い換えれば、コブ状銅粒子は銅箔層30の粗面30aに略垂直である方向に偏って成長し、銅箔層30の粗面30aに略平行である方向に偏って、コブ状銅粒子が成長することは容易ではないと言える。従って、第1回目のめっき粗化処理を経た後、銅箔層30の粗面30a上に形成された大部分のコブ状銅粒子の水平方向の寸法は、縦方向の寸法より小さく、各2つの隣接するコブ状銅粒子の間の間隔も広くなる。 Furthermore, when the first plating roughening process is executed, the copper concentration in the first plating solution L1 is low, so that the copper atoms are stacked only in the deviated crystal direction (ie, the vertical direction). Limited. In other words, the bumpy copper particles grow in a direction that is substantially perpendicular to the rough surface 30a of the copper foil layer 30, and are biased in a direction that is substantially parallel to the rough surface 30a of the copper foil layer 30 to form a bumpy copper particle. It can be said that it is not easy to grow. Therefore, after the first plating roughening treatment, the horizontal dimension of most of the bump-shaped copper particles formed on the rough surface 30a of the copper foil layer 30 is smaller than the vertical dimension, and 2 The spacing between two adjacent bumpy copper particles is also increased.
また、1つの実施例において、第1回目のめっき粗化処理を実行した際、銅箔層30の電流密度は15〜40A/dm2であり、寸法の小さいコブ状銅粒子を形成することができる。電流密度がより15A/dm2低くなると、電解銅箔の剥離強度が不十分となり、電流密度が40A/dm2より高くなると、銅粉の落下が生じる可能性がある。また、第1回目のめっき粗化処理を実行した際、第1のめっき液の温度をおおむね摂氏20〜40度に維持する。 Moreover, in one Example, when the 1st plating roughening process was performed, the current density of the copper foil layer 30 is 15-40 A / dm < 2 >, and it can form a bump-shaped copper particle with a small dimension. it can. If the current density is further reduced by 15 A / dm 2 , the peel strength of the electrolytic copper foil becomes insufficient, and if the current density is higher than 40 A / dm 2 , copper powder may be dropped. Further, when the first plating roughening process is executed, the temperature of the first plating solution is maintained at about 20 to 40 degrees Celsius.
第1回目のめっき粗化処理が完了した後、第1回目のめっき硬化処理を実行することで、コブ状銅粒子を被覆する銅保護層を形成することによって、コブ状銅粒子を銅箔層30の粗面30a又は平滑面30bに緊密に固定し、「粉落ち」現象を防止する。 After the first plating roughening treatment is completed, the first plating hardening treatment is performed to form a copper protective layer that covers the bumpy copper particles, thereby forming the copper foil layers into the copper foil layer. Thirty rough surfaces 30a or smooth surface 30b are fixed tightly to prevent the “powder falling” phenomenon.
図3に示すように、第1回目のめっき硬化処理は、硬化ユニット22によって実行する。硬化ユニット22は、第2のめっき液L2を入れるための硬化槽220と、硬化槽220に設けられた1組の硬化陽極板221とを含む。 As shown in FIG. 3, the first plating curing process is performed by the curing unit 22. The curing unit 22 includes a curing tank 220 for containing the second plating solution L2 and a set of cured anode plates 221 provided in the curing tank 220.
本実施例において、粗化槽210において第1回目のめっき粗化処理を行った銅箔層30を、先ず伝送ユニット20によって洗浄槽23に伝送して洗浄した後、第1回目のめっき硬化処理を実行するために硬化槽220に伝送する。 In the present embodiment, the copper foil layer 30 that has been subjected to the first plating roughening process in the roughening tank 210 is first transmitted to the cleaning tank 23 by the transmission unit 20 and cleaned, and then the first plating hardening process. Is transmitted to the curing tank 220 in order to execute.
第1回目のめっき硬化処理を実行した際、硬化陽極板221及び銅箔層30にそれぞれ正電圧及び負電圧を印加することで、第2のめっき液L2内の銅イオンを還元させて、銅箔層30にコブ状銅粒子を被覆する銅保護層を形成する。 When the first plating hardening process is executed, a positive voltage and a negative voltage are applied to the hardening anode plate 221 and the copper foil layer 30 to reduce the copper ions in the second plating solution L2, respectively. A copper protective layer that covers the bump-shaped copper particles is formed on the foil layer 30.
第1回目のめっき硬化処理を実行する際に使用する第2のめっき液L2は、50〜70g/Lの銅、70〜100g/Lの硫酸、及び30ppmより低い酸化ヒ素を含有し、且つ第2のめっき液L2の温度をおおむね摂氏50〜70度に維持する。 The second plating solution L2 used when performing the first plating hardening treatment contains 50 to 70 g / L copper, 70 to 100 g / L sulfuric acid, and arsenic oxide lower than 30 ppm, and The temperature of the second plating solution L2 is maintained at about 50 to 70 degrees Celsius.
第1回目のめっき粗化処理において形成されるコブ状銅粒子の高さは、高くはない。仮に、第1回目のめっき硬化処理の際に、厚い銅保護層を形成した場合、粉落ち現象が発生する確率を低減すると共に、電解銅箔表面の粗さを低減することはできるが、電解銅箔が樹脂基板と接着される表面積が減少して、剥離強度が低下する可能性がある。従って、第1回目のめっき硬化処理を実行した際、電流密度を従来使用される電流密度よりも低くすることで、薄く且つ被覆効果の好ましい銅保護層を形成する。これにより、粉落ちを防止しつつ、電解銅箔が樹脂基板と接着される表面積が減少しないようにすることができる。1つの実施例において、第1回目のめっき硬化処理を実行する場合、電流密度は2〜9A/dm2である。 The height of the bump-shaped copper particles formed in the first plating roughening treatment is not high. If a thick copper protective layer is formed during the first plating hardening process, the probability of occurrence of powder falling phenomenon can be reduced and the roughness of the electrolytic copper foil surface can be reduced. The surface area where the copper foil is bonded to the resin substrate is reduced, and the peel strength may be reduced. Therefore, when the first plating hardening process is executed, the current density is made lower than the current density used conventionally, thereby forming a thin copper protective layer having a favorable covering effect. Thereby, it is possible to prevent the surface area where the electrolytic copper foil is bonded to the resin substrate from being reduced while preventing powder falling. In one embodiment, when the first plating hardening process is executed, the current density is 2 to 9 A / dm2.
1つの実施例において、第1回目のめっき粗化処理及び第1回目のめっき硬化処理を実行した後、表層に絨毛様構造を有する電解銅箔を形成することができる。表面処理層の詳細な構造については、後述する。 In one Example, after performing the 1st plating roughening process and the 1st plating hardening process, the electrolytic copper foil which has a villi-like structure in a surface layer can be formed. The detailed structure of the surface treatment layer will be described later.
次いで、第1回目のめっき硬化処理が済んだ銅箔層30を、伝送ユニット20によって、硬化槽220から先ず洗浄槽23に伝送して洗浄した後、第2回目のめっき粗化処理を行うために次の粗化槽210に伝送する。 Next, the copper foil layer 30 that has been subjected to the first plating hardening process is first transferred from the hardening tank 220 to the cleaning tank 23 and cleaned by the transmission unit 20, and then the second plating roughening process is performed. To the next roughening tank 210.
本実施例において、第2回目のめっき粗化処理のパラメータは、第1回目のめっき粗化処理のパラメータと略同じである。第2回目のめっき粗化処理において、銅箔層30の粗面30aに形成済みの複数のコブ状銅粒子を継続して成長させることができる。また、第2回目のめっき粗化処理においては、第1回目のめっき粗化処理と同じ第1のめっき液L1を使用する。従って、コブ状銅粒子の成長方向は、依然として銅箔層30の粗面30aに略垂直である方向に制限される。これにより、最終的な電解銅箔と樹脂基板との接着面積を更に増加させることができる。 In the present embodiment, the parameters of the second plating roughening process are substantially the same as the parameters of the first plating roughening process. In the second plating roughening treatment, a plurality of bump-shaped copper particles already formed on the rough surface 30a of the copper foil layer 30 can be continuously grown. Further, in the second plating roughening treatment, the same first plating solution L1 as that in the first plating roughening treatment is used. Therefore, the growth direction of the bump-shaped copper particles is still limited to a direction that is substantially perpendicular to the rough surface 30 a of the copper foil layer 30. Thereby, the adhesion area of the final electrolytic copper foil and the resin substrate can be further increased.
その後、第2回目のめっき粗化処理が終了した銅箔層30を、伝送ユニット20によって、粗化槽210から他の洗浄槽23に伝送して洗浄した後、第2回目のめっき硬化処理を行うために他の硬化槽220に伝送する。第2回目のめっき硬化処理における第2のめっき液L2の組成は、第1回目のめっき硬化処理の第2のめっき液L2の組成と同じであってよい。また、第2回目のめっき硬化処理を実行する電流密度も、第1回目のめっき硬化処理の際の電流密度と同様、約2〜9A/dm2であってよい。第2回目のめっき硬化処理を実行することによって、粉落ちが生じないように、銅保護層を更に提供することができる。 Thereafter, the copper foil layer 30 that has been subjected to the second plating roughening treatment is transferred from the roughening vessel 210 to the other washing vessel 23 and washed by the transmission unit 20, and then the second plating hardening treatment is performed. Transmit to another curing tank 220 to do. The composition of the second plating solution L2 in the second plating hardening treatment may be the same as the composition of the second plating solution L2 in the first plating hardening treatment. Further, the current density at which the second plating curing process is executed may be about 2 to 9 A / dm 2 , similar to the current density in the first plating curing process. By performing the second plating curing treatment, a copper protective layer can be further provided so that powder does not fall off.
図4及び図5を用いて説明する。図4は、本発明の実施例に係る電解銅箔の局部断面図である。図5は、図4の電解銅箔における領域Vを示す局部拡大図である。 This will be described with reference to FIGS. FIG. 4 is a partial cross-sectional view of the electrolytic copper foil according to the embodiment of the present invention. FIG. 5 is a local enlarged view showing a region V in the electrolytic copper foil of FIG. 4.
上述した絨毛状様銅粒子を有する電解銅箔の製造方法によって製造された電解銅箔3は、表層に絨毛状構造を有しており、樹脂基板と接着される面積が増加されている。詳述すると、本発明の実施例に係る電解銅箔3は、銅箔層30及び銅箔層30上に位置する表面処理層31を含む。 The electrolytic copper foil 3 produced by the method for producing an electrolytic copper foil having the villi-like copper particles described above has a villi-like structure on the surface layer, and the area bonded to the resin substrate is increased. More specifically, the electrolytic copper foil 3 according to the embodiment of the present invention includes a copper foil layer 30 and a surface treatment layer 31 located on the copper foil layer 30.
表面処理層31は、銅箔層30の粗面30a又は平滑面30b上に位置する。1つの実施例において、電解銅箔3の総厚みTは、6〜400μmであり、必要に応じて決めることができる。 The surface treatment layer 31 is located on the rough surface 30a or the smooth surface 30b of the copper foil layer 30. In one Example, the total thickness T of the electrolytic copper foil 3 is 6-400 micrometers, and can be determined as needed.
図5に示すように、本実施例において、表面処理層31は、複数の絨毛状又は絨毛状様の銅粒子310を含み、且つ各絨毛状又は絨毛状様の銅粒子310は、粗面30a又は平滑面30bに平行ではない長軸方向に沿って延在される。 As shown in FIG. 5, in this embodiment, the surface treatment layer 31 includes a plurality of villi-like or villi-like copper particles 310, and each villi-like or villi-like copper particle 310 has a rough surface 30a. Or it extends along the long axis direction which is not parallel to the smooth surface 30b.
また、各絨毛状又は絨毛状様の銅粒子310は、長軸の最大直径D1及び短軸の最大直径D2を有する。1つの実施例において、長軸の最大直径D1は、0.5μm〜1.5μmであり、前記短軸の最大直径D2は、0.1μm〜1.0μmである。また、各2つの隣接する銅粒子310の間には絨毛状様の収容空間S1を形成する。 Each villi-like or villi-like copper particle 310 has a long axis maximum diameter D1 and a short axis maximum diameter D2. In one embodiment, the long axis has a maximum diameter D1 of 0.5 μm to 1.5 μm, and the short axis has a maximum diameter D2 of 0.1 μm to 1.0 μm. In addition, a villi-like accommodation space S1 is formed between each two adjacent copper particles 310.
図1及び図5を比較すると分かるように、従来技術における球状銅粒子の短軸方向の寸法は、長軸方向の寸法より大きく、且つ密集して分布している。それに比べると、本発明に係る電解銅箔3の複数の絨毛状又は絨毛状様の銅粒子310は、短軸方向(即ち銅箔層30の粗面30a又は平滑面30bに平行な方向)の直径が、長軸方向の直径よりも小さい。好ましい実施例において、絨毛状銅粒子310の短軸の最大直径D2と長軸の最大直径D1との比は0.2〜0.7である。 As can be seen by comparing FIG. 1 and FIG. 5, the dimension in the minor axis direction of the spherical copper particles in the prior art is larger than the dimension in the major axis direction and is densely distributed. In comparison, the plurality of villi-like or villi-like copper particles 310 of the electrolytic copper foil 3 according to the present invention is in the short axis direction (that is, the direction parallel to the rough surface 30a or the smooth surface 30b of the copper foil layer 30). The diameter is smaller than the diameter in the major axis direction. In a preferred embodiment, the ratio of the short axis maximum diameter D2 to the long axis maximum diameter D1 of the chorionic copper particles 310 is 0.2 to 0.7.
本実施例において、絨毛状又は絨毛状様の銅粒子310の長軸の最大直径D1は、従来の球状銅粒子の直径より大きくない。従って、本実施例における電解銅箔3の表面粗さは、銅粒子の形状が変わることによって大幅に増加することはない。1つの実施例において、表面処理層31の厚みtは、およそ0.1〜4μmであり、表面処理層31の十点平均表面粗さ(Rz)は、およそ1〜4μmである。これにより、本実施例の電解銅箔3は、依然として高周波基板と組み合わせて、高周波信号を伝送するのに適用することができる。 In this example, the maximum diameter D1 of the major axis of the villi-like or villi-like copper particles 310 is not larger than the diameter of the conventional spherical copper particles. Therefore, the surface roughness of the electrolytic copper foil 3 in the present embodiment is not significantly increased by changing the shape of the copper particles. In one embodiment, the thickness t of the surface treatment layer 31 is approximately 0.1 to 4 μm, and the ten-point average surface roughness (R z ) of the surface treatment layer 31 is approximately 1 to 4 μm. Thereby, the electrolytic copper foil 3 of a present Example can be applied to transmit a high frequency signal still combining with a high frequency board | substrate.
また、本実施例の電解銅箔3において、各2つの隣接する絨毛状又は絨毛状様の銅粒子310の間の間隔P1も広い。言い換えれば、本実施例の絨毛状又は絨毛状様の銅粒子310も低い密度を有する。1つの実施例において、各2つの隣接する絨毛状又は絨毛状様の銅粒子310の間の間隔P1は、0.1〜0.4μmであり、これらの絨毛状又は絨毛状様の銅粒子310の分布密度は、1平方マイクロメートルあたり2〜5個である。 Moreover, in the electrolytic copper foil 3 of the present embodiment, the interval P1 between each two adjacent villi-like or villi-like copper particles 310 is also wide. In other words, the villi-like or villi-like copper particles 310 of this embodiment also have a low density. In one embodiment, the spacing P1 between each two adjacent villi-like or villi-like copper particles 310 is 0.1 to 0.4 μm, and these villi-like or villi-like copper particles 310. The distribution density is 2 to 5 per square micrometer.
図6及び図7を用いて説明する。図6は、本発明の実施例に係る電解銅箔を撮影した走査型電子顕微鏡(SEM)写真であり、図7は、比較例の電解銅箔を撮影した走査型電子顕微鏡写真である。 This will be described with reference to FIGS. FIG. 6 is a scanning electron microscope (SEM) photograph obtained by photographing an electrolytic copper foil according to an example of the present invention, and FIG. 7 is a scanning electron microscope photograph obtained by photographing an electrolytic copper foil of a comparative example.
比較例の電解銅箔を製作する際、めっき粗化処理を実行する時のパラメータは本発明の実施例と略同じである。但し、めっき粗化処理を実行する時に使用しためっき液組成中には40g/Lよりも高い濃度の銅を含有する。 When manufacturing the electrolytic copper foil of the comparative example, the parameters for executing the plating roughening treatment are substantially the same as those of the example of the present invention. However, the plating solution composition used when performing the plating roughening treatment contains copper having a concentration higher than 40 g / L.
図6及び図7の写真を比較すると分かるように、本発明の実施例において第1のめっき液の組成を調整することによって製造された電解銅箔の銅粒子は寸法が小さく、且つ形状が細長い。それに対し、図7の比較例の電解銅箔の銅粒子は形状が球状であり、且つ大きい。 6 and 7, the copper particles of the electrolytic copper foil produced by adjusting the composition of the first plating solution in the examples of the present invention have small dimensions and long and narrow shapes. . In contrast, the copper particles of the electrolytic copper foil of the comparative example of FIG. 7 are spherical and large in shape.
図8は、集束イオンビーム及び電子ビーム顕微鏡システムによって撮影された本発明の実施例に係る電解銅箔の集束イオンビーム(FIB)の写真である。図8は、本実施例の電解銅箔の局部横断面(cross section)を示す。 FIG. 8 is a photograph of a focused ion beam (FIB) of an electrolytic copper foil according to an embodiment of the present invention, taken by a focused ion beam and electron beam microscope system. FIG. 8 shows a cross section of the electrolytic copper foil of this example.
図6及び図8の写真から証明できるように、本発明の実施例の電解銅箔に表面処理を行うと、複数の絨毛状銅粒子が形成されるのであって、球状銅粒子が形成されるのではない。また、集束イオンビーム及び電子ビーム顕微鏡システムによって本実施例の電解銅箔3を分析すると、電解銅箔の銅結晶の粒は長軸方向の寸法が2.5〜6.0μmであり、短軸方向の寸法が0.2〜2.0μmである。 As can be proved from the photographs of FIG. 6 and FIG. 8, when the surface treatment is performed on the electrolytic copper foil of the embodiment of the present invention, a plurality of villi-like copper particles are formed, and spherical copper particles are formed. Not. Further, when the electrolytic copper foil 3 of this example is analyzed by a focused ion beam and electron beam microscope system, the copper crystal grains of the electrolytic copper foil have a major axis dimension of 2.5 to 6.0 μm and a short axis. The direction dimension is 0.2 to 2.0 μm.
次いで、図2に示すように、本実施例において、ステップS300において、表面処理を実行する。当該表面処理は、耐熱処理、抗酸化処理、シランカップリング剤処理の内の少なくとも1つであってよい。 Next, as shown in FIG. 2, in the present embodiment, surface treatment is performed in step S <b> 300. The surface treatment may be at least one of a heat treatment, an antioxidant treatment, and a silane coupling agent treatment.
表面処理が耐熱処理の場合、電解方法によって表面処理層に亜鉛合金耐熱層を形成すると共に、電解銅箔の耐熱性を高める。1つの実施例において、耐熱処理を実行する際に使用した電解液の組成は1〜4g/Lの亜鉛及び0.3〜2.0g/Lのニッケルを含み、且つ耐熱処理を実行する際に使用した電流密度は0.4〜2.5A/dm2である。 When the surface treatment is a heat treatment, a zinc alloy heat resistant layer is formed on the surface treatment layer by an electrolysis method, and the heat resistance of the electrolytic copper foil is increased. In one embodiment, the composition of the electrolytic solution used when performing the heat treatment includes 1 to 4 g / L zinc and 0.3 to 2.0 g / L nickel, and when performing the heat treatment. the current density used was 0.4~2.5A / dm 2.
表面処理が抗酸化処理の場合、電解方法によって表面処理層に酸化防止層を形成することで、電解銅箔の抗酸化性を高める。抗酸化処理を実行する際に使用した電解液の組成は1〜4g/Lの酸化クロム及び5〜20g/Lの水酸化ナトリウムを含み、且つ抗酸化処理を実行する際に使用した電流密度は0.3〜3.0A/dm2である。 When the surface treatment is an antioxidant treatment, the antioxidant property of the electrolytic copper foil is enhanced by forming an antioxidant layer on the surface treatment layer by an electrolysis method. The composition of the electrolyte used when performing the antioxidant treatment includes 1-4 g / L chromium oxide and 5-20 g / L sodium hydroxide, and the current density used when performing the antioxidant treatment is it is a 0.3~3.0A / dm 2.
表面処理がシランカップリング処理の場合、表面処理層にシランカップリング剤処理層を形成する。シランカップリング処理を実行する際には0.3〜1.5重量%のシランカップリング剤を使用する。 When the surface treatment is a silane coupling treatment, a silane coupling agent treatment layer is formed on the surface treatment layer. When the silane coupling treatment is performed, 0.3 to 1.5% by weight of a silane coupling agent is used.
図9及び図10を用いて説明する。図9は、本実施例の回路基板部品を示す断面図である。図10は、図9の回路基板部品における領域Xを示す局部拡大図である。本実施例の電解銅箔は、例えばリジッドプリント回路基板(PCB)、フレキシブルプリント回路基板(FPC)及びその類似物等の異なる回路基板部品に適用されることができる。 This will be described with reference to FIGS. FIG. 9 is a cross-sectional view showing the circuit board component of the present embodiment. 10 is a local enlarged view showing a region X in the circuit board component of FIG. The electrolytic copper foil of the present embodiment can be applied to different circuit board components such as a rigid printed circuit board (PCB), a flexible printed circuit board (FPC), and the like.
図9の実施例において、回路基板部品M1は、樹脂基板4及び上述した電解銅箔3を向かい合わせに圧着することで形成され、且つ電解銅箔3の表面処理層31が樹脂基板4に面している。 9, the circuit board component M1 is formed by pressing the resin substrate 4 and the above-described electrolytic copper foil 3 face-to-face, and the surface treatment layer 31 of the electrolytic copper foil 3 faces the resin substrate 4. doing.
樹脂基板4は、エポキシ樹脂基板、ポリフェニレンオキシド樹脂基板(PPO)又はフッ素系樹脂基板、又は、ポリイミド、エチレンテレフタレート、ポリカーボネート、液晶ポリマー若しくはポリテトラフルオロエチレン等の材料から成る基板等の高周波基板であってもよい。 The resin substrate 4 is a high frequency substrate such as an epoxy resin substrate, a polyphenylene oxide resin substrate (PPO) or a fluorine resin substrate, or a substrate made of a material such as polyimide, ethylene terephthalate, polycarbonate, liquid crystal polymer, or polytetrafluoroethylene. May be.
図9及び図10の実施例において、樹脂基板4は、プリプレグ基板又は液晶ポリマー基板である。図10から分かるように、本実施例の絨毛状銅粒子310同士の間の間隔が広いため、電解銅箔3と樹脂基板4とを圧着した場合、樹脂基板4は、接触絨毛状又は絨毛状様の銅粒子310の大部分の表面に被覆されると共に接触し、絨毛状様の収容空間S1内の奥深く進入することができる。これにより、電解銅箔3と樹脂基板4との間の接着強度を増強することができる。 9 and 10, the resin substrate 4 is a prepreg substrate or a liquid crystal polymer substrate. As can be seen from FIG. 10, since the space between the villi-shaped copper particles 310 of the present embodiment is wide, when the electrolytic copper foil 3 and the resin substrate 4 are pressure-bonded, the resin substrate 4 has a contact villi shape or villi shape. The surface of most of the copper particles 310 is covered and in contact with the copper particles 310, and can penetrate deeply into the villi-like accommodation space S1. Thereby, the adhesive strength between the electrolytic copper foil 3 and the resin substrate 4 can be enhanced.
図11は、本発明の他の実施例の回路基板部品を示す断面図である。本実施例においては、樹脂基板4と電解銅箔3とを粘接着剤5によって結合させると共に、粘接着剤5の一部を絨毛状様の収容空間内に充填する。 FIG. 11 is a sectional view showing a circuit board component according to another embodiment of the present invention. In the present embodiment, the resin substrate 4 and the electrolytic copper foil 3 are bonded by the adhesive 5 and a part of the adhesive 5 is filled in the villi-like accommodation space.
本実施例の電解銅箔3と樹脂基板4とを圧着した後、測定を行った結果、剥離強度はいずれも3lb/inより大きかった。具体的には、実験例において、樹脂基板4はガラス繊維板(FR4)であり、ガラス繊維板(FR4)を本実施例の電解銅箔と圧着させ、積層板試験片を形成した。次いで、剥離強度引張試験機を用いて測定した。試験結果によれば、電解銅箔の剥離強度は少なくとも3.5lb/inより大きかった。 As a result of measuring after pressure-bonding the electrolytic copper foil 3 and the resin substrate 4 of the present example, the peel strength was higher than 3 lb / in. Specifically, in the experimental example, the resin substrate 4 was a glass fiber plate (FR4), and the glass fiber plate (FR4) was pressure-bonded to the electrolytic copper foil of this example to form a laminate test piece. Subsequently, it measured using the peeling strength tensile tester. According to the test results, the peel strength of the electrolytic copper foil was at least greater than 3.5 lb / in.
また、本実施例の回路基板部品の製造方法は、電解銅箔3を樹脂基板4に圧着した後、エッチングによって電解銅箔3をパターニングすることで、回路層を形成する工程を更に含んでもよい。 The circuit board component manufacturing method of the present embodiment may further include a step of forming a circuit layer by patterning the electrolytic copper foil 3 by etching after the electrolytic copper foil 3 is pressure-bonded to the resin substrate 4. .
このように、本発明の有益な効果は、本実施例の電解銅箔の製造方法を用いることで、めっき粗化処理における第1のめっき液L1の組成を調整することによって、銅の濃度を低減すると共に酸化ヒ素及びタングステン酸イオンの含有量を20ppm以下にすることができるため、銅粒子の結晶方向及び成長方向を制限することができ、絨毛状又は絨毛状様の銅粒子310を形成することができる点にある。 As described above, the beneficial effect of the present invention is that the copper concentration is adjusted by adjusting the composition of the first plating solution L1 in the plating roughening treatment by using the method for producing the electrolytic copper foil of the present embodiment. Since the content of arsenic oxide and tungstate ion can be reduced to 20 ppm or less, the crystal direction and growth direction of the copper particles can be restricted, and the villi-like or villi-like copper particles 310 are formed. There is a point that can be.
従来技術における球状銅粒子F10に比べ、絨毛状又は絨毛状様の銅粒子310は、横方向(水平方向)の寸法が小さく、電解銅箔3と樹脂基板4との間の接着面積を増加させることができる。また、隣接する2つの絨毛状又は絨毛状様の銅粒子310の間に広い距離が設けられるため、樹脂基板4と電解銅箔3とを接着した場合、樹脂基板4は、銅粒子全体の表面を被覆することができると共に、2つの絨毛状又は絨毛状様の銅粒子310の間の空間の奥深く進入することができ、電解銅箔3と樹脂基板4又は粘接着剤5との間の粘着度が増加する。 Compared to the spherical copper particles F10 in the prior art, the villi-like or villi-like copper particles 310 have a small size in the lateral direction (horizontal direction) and increase the adhesion area between the electrolytic copper foil 3 and the resin substrate 4. be able to. In addition, since a wide distance is provided between two adjacent villi-like or villi-like copper particles 310, when the resin substrate 4 and the electrolytic copper foil 3 are bonded, the resin substrate 4 has the entire surface of the copper particles. And can penetrate deeply into the space between the two villi-like or villi-like copper particles 310, between the electrolytic copper foil 3 and the resin substrate 4 or the adhesive 5. Increases adhesion.
本実施例の電解銅箔3の絨毛状又は絨毛状様の銅粒子310は、垂直方向の寸法が従来技術における球状銅粒子F10の垂直方向の寸法より大きくないため、電解銅箔3の表面粗さは従来の銅箔の表面粗さに比べて更に低い。しかしながら、本実施例の電解銅箔3の剥離強度は、表面粗さの低減によって大幅に低下しておらず、実際に適用する需要を満たしている。 Since the villi-like or villi-like copper particles 310 of the electrolytic copper foil 3 of the present embodiment have a vertical dimension that is not larger than the vertical dimension of the spherical copper particles F10 in the prior art, the surface roughness of the electrolytic copper foil 3 is The thickness is even lower than the surface roughness of the conventional copper foil. However, the peel strength of the electrolytic copper foil 3 of the present embodiment is not greatly reduced due to the reduction in surface roughness, and satisfies the actual application demand.
表1は、本発明の実施例及び比較例の表面粗さ(Roughness)、剥離強度(Peel Strength)及び剥離強度と表面粗さとの比(P/R ratio)を示す。表面粗さは十点平均粗さ(Rz)である。本発明の実施例は絨毛状又は絨毛状様銅粒子を有する電解銅箔であり、比較例は球状銅粒子を有する電解銅箔である。 Table 1 shows the surface roughness (Roughness), the peel strength (Peel Strength), and the ratio of the peel strength to the surface roughness (P / R ratio) of Examples and Comparative Examples of the present invention. The surface roughness is a ten-point average roughness (Rz). An example of the present invention is an electrolytic copper foil having villi-like or villi-like copper particles, and a comparative example is an electrolytic copper foil having spherical copper particles.
表1から分かるように、本発明の実施例に係る電解銅箔の表面粗さは、比較例(寸法が大きい球状銅粒子を有する)の表面粗さに比べて更に低い。従って、本発明の実施例に係る電解銅箔は高周波伝送に適用された場合、更に信号損失を低減することができる。 As can be seen from Table 1, the surface roughness of the electrolytic copper foil according to the example of the present invention is even lower than the surface roughness of the comparative example (having spherical copper particles with large dimensions). Therefore, the electrolytic copper foil according to the embodiment of the present invention can further reduce the signal loss when applied to high frequency transmission.
また、剥離強度と表面粗さとの比が大きいほど、銅箔の剥離強度に対する表面粗さの影響は小さくなり、剥離強度の特性は優れる。表1から分かるように、比較例に比べ、本発明の実施例に係る電解銅箔の剥離強度と表面粗さとの比は大きい。従って、本発明の実施例に係る電解銅箔の剥離強度は、表面粗さが低いことによって過剰な損失は生じない。 Moreover, the larger the ratio between the peel strength and the surface roughness, the smaller the influence of the surface roughness on the peel strength of the copper foil, and the better the peel strength characteristics. As can be seen from Table 1, the ratio of the peel strength and the surface roughness of the electrolytic copper foil according to the example of the present invention is larger than that of the comparative example. Accordingly, the peel strength of the electrolytic copper foil according to the example of the present invention does not cause excessive loss due to the low surface roughness.
以上の記載内容は本発明の好ましい実施例を述べたものに過ぎず、本発明の特許請求の範囲を制限するものではない。従って、本明細書及び図面の内容を運用することで為された等価の技術的変更は、いずれも本発明の特許請求の範囲に含まれる。 The foregoing descriptions are merely preferred embodiments of the present invention, and do not limit the scope of the claims of the present invention. Accordingly, any equivalent technical changes made by operating the contents of this specification and the drawings are included in the claims of the present invention.
F1 従来の銅箔
F10 球状銅粒子
1 製箔装置
10 電解槽
11 陽極板
12 陰極ドラム
13 ローラ
L0 電解液
14 給液配管
E1 電源供給装置
2 表面処理装置
20 伝送ユニット
21 粗化ユニット
L1 第1のめっき液
210 粗化槽
211 粗化陽極板
22 硬化ユニット
L2 第2のめっき液
220 硬化槽
221 硬化陽極板
23 洗浄槽
3 電解銅箔
T 総厚み
30 銅箔層
30a 粗面
30b 平滑面
31 表面処理層
310 銅粒子
D1 長軸の最大直径
D2 短軸の最大直径
S1 絨毛状収容空間
t 表面処理層厚み
P1 間隔
M1、M1’ 回路基板部品
4 樹脂基板
5 粘接着剤
S100、S200〜204、S300 プロセスステップ
F1 Conventional copper foil F10 Spherical copper particle 1 Foil making device 10 Electrolytic tank 11 Anode plate 12 Cathode drum 13 Roller L0 Electrolytic solution 14 Supply pipe E1 Power supply device 2 Surface treatment device 20 Transmission unit 21 Roughening unit L1 First Plating solution 210 Roughening tank 211 Roughening anode plate 22 Curing unit L2 Second plating solution 220 Curing tank 221 Curing anode plate 23 Cleaning tank 3 Electrolytic copper foil T Total thickness 30 Copper foil layer 30a Rough surface 30b Smooth surface 31 Surface treatment Layer 310 Copper particle D1 Maximum diameter of major axis D2 Maximum diameter of minor axis S1 Villiform accommodation space t Surface treatment layer thickness P1 Interval M1, M1 ′ Circuit board component 4 Resin substrate 5 Adhesive S100, S200 to 204, S300 Process steps
Claims (15)
前記銅箔層の前記所定の表面に複数の絨毛状様の銅粒子を含むと共に各2つの隣接する前記絨毛状様の銅粒子の間に絨毛状様の収容空間が形成される表面処理層を形成することで、表層に絨毛様構造を有する電解銅箔を形成する工程と、
を含み、
前記表面処理層を形成するステップは、第1回目のめっき粗化処理を実行する工程と第1回目のめっき硬化処理を実行する工程とを更に含み、
前記第1回目のめっき粗化処理に使用する第1のめっき液には、3〜40g/Lの銅、100〜120g/Lの硫酸、20ppm以下の酸化ヒ素及び5〜20ppmのタングステン酸イオンが含まれる
ことを特徴とする絨毛状様銅粒子を有する電解銅箔の製造方法。 Forming a copper foil layer having a predetermined surface by an electrolysis method;
A surface treatment layer containing a plurality of villi-like copper particles on the predetermined surface of the copper foil layer and forming a villi-like accommodation space between each two adjacent villi-like copper particles; Forming an electrolytic copper foil having a villi-like structure on the surface layer by forming,
Including
The step of forming the surface treatment layer further includes a step of executing a first plating roughening treatment and a step of executing a first plating hardening treatment,
The first plating solution used for the first plating roughening treatment includes 3 to 40 g / L copper, 100 to 120 g / L sulfuric acid, 20 ppm or less arsenic oxide, and 5 to 20 ppm tungstate ion. A method for producing an electrolytic copper foil having chilli-like copper particles, characterized in that it is contained.
前記所定の表面は粗面又は平滑面である
ことを特徴とする請求項1に記載の絨毛状様銅粒子を有する電解銅箔の製造方法。 The current density used when performing the first plating roughening treatment is 15 to 40 A / dm 2 ,
The method for producing an electrolytic copper foil having chilli-like copper particles according to claim 1, wherein the predetermined surface is a rough surface or a smooth surface.
前記第2回目のめっき粗化処理のパラメータは前記第1回目のめっき粗化処理のパラメータと同じであり、前記第2回目のめっき硬化処理のパラメータは前記第1回目のめっき硬化処理のパラメータと同じである
ことを特徴とする請求項2に記載の絨毛状様銅粒子を有する電解銅箔の製造方法。 The step of forming the surface treatment layer further includes a step of executing a second plating roughening treatment and a step of executing a second plating hardening treatment,
The parameters of the second plating roughening treatment are the same as the parameters of the first plating roughening treatment, and the parameters of the second plating hardening treatment are the same as the parameters of the first plating hardening treatment. The method for producing an electrolytic copper foil having chilli-like copper particles according to claim 2, which is the same.
前記第1回目のめっき硬化処理を実行する際に使用する電流密度は2〜9A/dm2である
ことを特徴とする請求項1に記載の絨毛状様銅粒子を有する電解銅箔の製造方法。 The second plating solution used when performing the first plating curing treatment includes 50 to 70 g / L copper, 70 to 100 g / L sulfuric acid, and arsenic oxide lower than 30 ppm,
2. The method for producing an electrolytic copper foil having chilli-like copper particles according to claim 1, wherein a current density used when performing the first plating hardening treatment is 2 to 9 A / dm 2. .
前記耐熱処理を実行する際に使用する電解液の組成には、1〜4g/Lの亜鉛及び0.3〜2.0g/Lのニッケルが含まれ、
前記耐熱処理を実行する際に使用する電流密度は0.4〜2.5A/dm2である
ことを特徴とする請求項1に記載の絨毛状様銅粒子を有する電解銅箔の製造方法。 A step of performing a heat treatment so as to form a zinc alloy heat-resistant layer on the surface treatment layer;
The composition of the electrolytic solution used when performing the heat treatment includes 1 to 4 g / L zinc and 0.3 to 2.0 g / L nickel.
2. The method for producing an electrolytic copper foil having chilli-like copper particles according to claim 1, wherein a current density used when performing the heat-resistant treatment is 0.4 to 2.5 A / dm 2 .
前記抗酸化処理を実行する際に使用する電解液の組成には、1〜4g/Lの酸化クロム及び5〜20g/Lの水酸化ナトリウムが含まれ、
前記抗酸化処理を実行する際に使用する電流密度は0.3〜3.0A/dm2である
ことを特徴とする請求項1に記載の絨毛状様銅粒子を有する電解銅箔の製造方法。 Further comprising performing an antioxidant treatment to form an antioxidant layer on the surface treatment layer,
The composition of the electrolytic solution used when performing the antioxidant treatment includes 1 to 4 g / L of chromium oxide and 5 to 20 g / L of sodium hydroxide.
2. The method for producing an electrolytic copper foil having chilli-like copper particles according to claim 1, wherein a current density used when performing the antioxidant treatment is 0.3 to 3.0 A / dm 2. .
前記シランカップリング処理を実行する際に0.3〜1.5重量%のシランカップリング剤を使用する
ことを特徴とする請求項1に記載の絨毛状様銅粒子を有する電解銅箔の製造方法。 A step of performing a silane coupling treatment so as to form a silane coupling agent treatment layer on the surface treatment layer;
The production of an electrolytic copper foil having chilli-like copper particles according to claim 1, wherein 0.3 to 1.5 wt% of a silane coupling agent is used when the silane coupling treatment is performed. Method.
前記長軸の最大直径は0.5μm〜1.5μmであり、前記短軸の最大直径は0.1μm〜1.0μmであり、
前記短軸の最大直径と前記長軸の最大直径との間の比は0.2〜0.7である
ことを特徴とする請求項1に記載の絨毛状様銅粒子を有する電解銅箔の製造方法。 The plurality of villi-like copper particles have a maximum diameter of a major axis and a maximum diameter of a minor axis,
The long axis has a maximum diameter of 0.5 μm to 1.5 μm, the short axis has a maximum diameter of 0.1 μm to 1.0 μm,
2. The electrolytic copper foil having chilli-like copper particles according to claim 1, wherein a ratio between a maximum diameter of the short axis and a maximum diameter of the long axis is 0.2 to 0.7. Production method.
各2つの隣接する前記絨毛状様の銅粒子の間の間隔は0.1〜0.4μmである
ことを特徴とする請求項1に記載の絨毛状様銅粒子を有する電解銅箔の製造方法。 The distribution density of the plurality of villi-like copper particles is 2 to 5 per square micrometer,
2. The method for producing an electrolytic copper foil having chilli-like copper particles according to claim 1, wherein a distance between each two adjacent chilli-like copper particles is 0.1 to 0.4 μm. .
前記電解銅箔における表面処理層が樹脂基板に面するように、前記絨毛状様銅粒子を有する前記電解銅箔を前記樹脂基板に向かい合わせに圧着することで、回路基板部品を形成する工程と
を含むことを特徴とする回路基板部品の製造方法。 The process of providing the electrolytic copper foil which has the villi-like copper particle formed by the manufacturing method of the electrolytic copper foil of any one of Claims 1-11,
Forming a circuit board component by pressing the electrolytic copper foil having the villi-like copper particles face-to-face with the resin substrate so that the surface treatment layer of the electrolytic copper foil faces the resin substrate; A method of manufacturing a circuit board component comprising:
前記粘接着剤の一部を前記絨毛状様の収容空間内に充填する
ことを特徴とする請求項12に記載の回路基板部品の製造方法。 Bonding the electrolytic copper foil having the villi-like copper particles and the resin substrate with an adhesive,
13. The circuit board component manufacturing method according to claim 12, wherein a part of the adhesive is filled in the villi-like accommodation space.
前記絨毛状様銅粒子を有する前記電解銅箔を前記樹脂基板に圧着した際に、前記樹脂基板の一部を前記絨毛状様の収容空間内に充填する
ことを特徴とする請求項12に記載の回路基板部品の製造方法。 The resin substrate is a prepreg substrate or a liquid crystal polymer substrate,
The said viscose-like accommodation space is filled with a part of said resin board | substrate when the said electrolytic copper foil which has the said villi-like copper particle is crimped | bonded to the said resin board | substrate. Circuit board component manufacturing method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106106456A TWI619851B (en) | 2017-02-24 | 2017-02-24 | Manufacturing methods of electrolytic copper foil having needle-shaped copper particles and circuit board assembly |
TW106106456 | 2017-02-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018141228A true JP2018141228A (en) | 2018-09-13 |
JP6894811B2 JP6894811B2 (en) | 2021-06-30 |
Family
ID=62639727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017172762A Active JP6894811B2 (en) | 2017-02-24 | 2017-09-08 | Method for manufacturing electrolytic copper foil and circuit board parts having villous copper particles |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6894811B2 (en) |
CN (2) | CN108505081A (en) |
TW (1) | TWI619851B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109576718A (en) * | 2019-01-28 | 2019-04-05 | 江西省航宇新材料股份有限公司 | A kind of process of surface treatment of rolled copper foil |
JPWO2018181726A1 (en) * | 2017-03-30 | 2019-06-27 | 古河電気工業株式会社 | Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same |
JP2020045563A (en) * | 2018-09-17 | 2020-03-26 | 金居開發股▲分▼有限公司 | Microrough electrolytic copper foil and copper foil substrate |
JP2020050954A (en) * | 2018-09-26 | 2020-04-02 | 金居開發股▲分▼有限公司 | Fine roughened electrolytic copper foil and copper foil substrate |
CN111936670A (en) * | 2019-02-01 | 2020-11-13 | 长春石油化学股份有限公司 | Surface-treated copper foil and copper foil substrate |
CN112118672A (en) * | 2019-06-19 | 2020-12-22 | 金居开发股份有限公司 | Advanced reverse electrolytic copper foil with long island-shaped microstructure and copper foil substrate using same |
JP2021001398A (en) * | 2019-06-19 | 2021-01-07 | 金居開發股▲分▼有限公司 | Micro-roughened electrodeposited copper foil and copper-clad laminate |
JP2021008665A (en) * | 2019-06-19 | 2021-01-28 | 金居開發股▲分▼有限公司 | Advanced electrolytic copper foil and copper-clad laminate using the same |
JP2021021137A (en) * | 2019-06-19 | 2021-02-18 | 金居開發股▲分▼有限公司 | Advanced treated electrodeposited copper foil having long and island-shaped structures and copper clad laminate using the same |
WO2022176648A1 (en) * | 2021-02-19 | 2022-08-25 | 日本電解株式会社 | Surface-treated copper foil |
CN118158918A (en) * | 2024-03-04 | 2024-06-07 | 广州贵宇光电材料科技有限公司 | Insulated metal substrate and manufacturing method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111304700A (en) * | 2020-03-26 | 2020-06-19 | 深圳市惟华电子科技有限公司 | Preparation method of reverse copper foil |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202367A (en) * | 1993-12-28 | 1995-08-04 | Japan Energy Corp | Surface treatment method of copper foil for printed circuit |
JP2005248323A (en) * | 2004-02-06 | 2005-09-15 | Furukawa Circuit Foil Kk | Surface-treated copper foil |
JP2006278882A (en) * | 2005-03-30 | 2006-10-12 | Furukawa Circuit Foil Kk | Copper foil and copper foil for inner layer substrate |
WO2010110092A1 (en) * | 2009-03-27 | 2010-09-30 | 日鉱金属株式会社 | Copper foil for printed wiring board and method for producing same |
JP2012064769A (en) * | 2010-09-16 | 2012-03-29 | Hitachi Cable Ltd | Copper foil for printed circuit board |
WO2012043182A1 (en) * | 2010-09-27 | 2012-04-05 | Jx日鉱日石金属株式会社 | Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board |
JP2016141823A (en) * | 2015-01-30 | 2016-08-08 | 株式会社Shカッパープロダクツ | Surface-treated copper foil and laminate sheet |
JP2017036495A (en) * | 2015-08-06 | 2017-02-16 | Jx金属株式会社 | Copper foil with carrier, laminate, manufacturing method of printed wiring board, and manufacturing method of electronic device |
JP2017075406A (en) * | 2013-07-23 | 2017-04-20 | Jx金属株式会社 | Surface treated copper foil, copper foil with carrier, manufacturing method of substrate, manufacturing method of printed wiring board, manufacturing method of printed circuit sheet, manufacturing method of copper-clad laminate |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102595799B (en) * | 2011-12-30 | 2015-03-25 | 柏承科技(昆山)股份有限公司 | Manufacturing method of high-density interconnected printed circuit board |
CN102618902B (en) * | 2012-04-24 | 2015-04-01 | 山东金宝电子股份有限公司 | Surface treatment process of copper foil for flexible copper-clad plate |
CN103088379A (en) * | 2013-02-26 | 2013-05-08 | 灵宝华鑫铜箔有限责任公司 | Surface treatment technique in electrolytic copper foil production |
CN103469267B (en) * | 2013-08-07 | 2015-11-25 | 江西省江铜-耶兹铜箔有限公司 | A kind of processing method of surface-treated electro-deposited copper foil and the Copper Foil of process thereof |
JP2015134953A (en) * | 2014-01-17 | 2015-07-27 | Jx日鉱日石金属株式会社 | Surface-treated copper foil, copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board |
CN105142352A (en) * | 2015-09-24 | 2015-12-09 | 深圳市顺劲辉电子科技有限公司 | Making method of circuit board |
CN106011965B (en) * | 2016-06-13 | 2018-08-14 | 山东金宝电子股份有限公司 | A kind of fine roughening treatment technique of electrolytic copper foil surface |
-
2017
- 2017-02-24 TW TW106106456A patent/TWI619851B/en active
- 2017-03-17 CN CN201710160563.0A patent/CN108505081A/en active Pending
- 2017-03-17 CN CN202311672738.8A patent/CN117641764A/en active Pending
- 2017-09-08 JP JP2017172762A patent/JP6894811B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202367A (en) * | 1993-12-28 | 1995-08-04 | Japan Energy Corp | Surface treatment method of copper foil for printed circuit |
JP2005248323A (en) * | 2004-02-06 | 2005-09-15 | Furukawa Circuit Foil Kk | Surface-treated copper foil |
JP2006278882A (en) * | 2005-03-30 | 2006-10-12 | Furukawa Circuit Foil Kk | Copper foil and copper foil for inner layer substrate |
WO2010110092A1 (en) * | 2009-03-27 | 2010-09-30 | 日鉱金属株式会社 | Copper foil for printed wiring board and method for producing same |
JP2012064769A (en) * | 2010-09-16 | 2012-03-29 | Hitachi Cable Ltd | Copper foil for printed circuit board |
WO2012043182A1 (en) * | 2010-09-27 | 2012-04-05 | Jx日鉱日石金属株式会社 | Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board, and printed wiring board |
JP2017075406A (en) * | 2013-07-23 | 2017-04-20 | Jx金属株式会社 | Surface treated copper foil, copper foil with carrier, manufacturing method of substrate, manufacturing method of printed wiring board, manufacturing method of printed circuit sheet, manufacturing method of copper-clad laminate |
JP2016141823A (en) * | 2015-01-30 | 2016-08-08 | 株式会社Shカッパープロダクツ | Surface-treated copper foil and laminate sheet |
JP2017036495A (en) * | 2015-08-06 | 2017-02-16 | Jx金属株式会社 | Copper foil with carrier, laminate, manufacturing method of printed wiring board, and manufacturing method of electronic device |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018181726A1 (en) * | 2017-03-30 | 2019-06-27 | 古河電気工業株式会社 | Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same |
US11053602B2 (en) | 2018-09-17 | 2021-07-06 | Co-Tech Development Corp. | Micro-roughened electrodeposited copper foil and copper foil substrate |
JP2020045563A (en) * | 2018-09-17 | 2020-03-26 | 金居開發股▲分▼有限公司 | Microrough electrolytic copper foil and copper foil substrate |
JP7142925B2 (en) | 2018-09-17 | 2022-09-28 | 金居開發股▲分▼有限公司 | Micro rough electrolytic copper foil and copper foil substrate |
JP7146274B2 (en) | 2018-09-26 | 2022-10-04 | 金居開發股▲分▼有限公司 | Micro-roughened electrolytic copper foil and copper foil substrate |
JP2020050954A (en) * | 2018-09-26 | 2020-04-02 | 金居開發股▲分▼有限公司 | Fine roughened electrolytic copper foil and copper foil substrate |
US11047061B2 (en) | 2018-09-26 | 2021-06-29 | Co-Tech Development Corp. | Micro-roughened electrodeposited copper foil and copper foil substrate |
CN109576718A (en) * | 2019-01-28 | 2019-04-05 | 江西省航宇新材料股份有限公司 | A kind of process of surface treatment of rolled copper foil |
CN111936670A (en) * | 2019-02-01 | 2020-11-13 | 长春石油化学股份有限公司 | Surface-treated copper foil and copper foil substrate |
CN111936670B (en) * | 2019-02-01 | 2023-07-14 | 长春石油化学股份有限公司 | Surface-treated copper foil and copper foil substrate |
JP2021021137A (en) * | 2019-06-19 | 2021-02-18 | 金居開發股▲分▼有限公司 | Advanced treated electrodeposited copper foil having long and island-shaped structures and copper clad laminate using the same |
US11332839B2 (en) | 2019-06-19 | 2022-05-17 | Co-Tech Development Corp. | Advanced electrodeposited copper foil and copper clad laminate using the same |
US11408087B2 (en) | 2019-06-19 | 2022-08-09 | Co-Tech Development Corp. | Advanced electrodeposited copper foil having island-shaped microstructures and copper clad laminate using the same |
CN112118672A (en) * | 2019-06-19 | 2020-12-22 | 金居开发股份有限公司 | Advanced reverse electrolytic copper foil with long island-shaped microstructure and copper foil substrate using same |
JP2021008665A (en) * | 2019-06-19 | 2021-01-28 | 金居開發股▲分▼有限公司 | Advanced electrolytic copper foil and copper-clad laminate using the same |
JP2021001398A (en) * | 2019-06-19 | 2021-01-07 | 金居開發股▲分▼有限公司 | Micro-roughened electrodeposited copper foil and copper-clad laminate |
JP7392996B2 (en) | 2019-06-19 | 2023-12-06 | 金居開發股▲分▼有限公司 | Advanced electrolytic copper foil and copper-clad laminates using it |
US12120816B2 (en) | 2019-06-19 | 2024-10-15 | Co-Tech Development Corp. | Micro-roughened electrodeposited copper foil and copper clad laminate |
WO2022176648A1 (en) * | 2021-02-19 | 2022-08-25 | 日本電解株式会社 | Surface-treated copper foil |
CN118158918A (en) * | 2024-03-04 | 2024-06-07 | 广州贵宇光电材料科技有限公司 | Insulated metal substrate and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI619851B (en) | 2018-04-01 |
JP6894811B2 (en) | 2021-06-30 |
CN108505081A (en) | 2018-09-07 |
CN117641764A (en) | 2024-03-01 |
TW201831733A (en) | 2018-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018141228A (en) | Electrolytic copper foil having villus-like copper particles and production method of circuit board component | |
JP6894325B2 (en) | Manufacturing method of electrolytic copper foil and circuit board parts having rugby ball-like copper particles | |
KR101853519B1 (en) | Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate | |
JP5129642B2 (en) | Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate | |
US8409726B2 (en) | Printed circuit board with multiple metallic layers and method of manufacturing the same | |
JP6722452B2 (en) | Surface-treated copper foil, copper-clad laminate obtained by using the surface-treated copper foil, and printed wiring board | |
JP7164366B2 (en) | Manufacturing method of copper foil applied to high frequency signal transmission and manufacturing method of circuit board assembly | |
KR102655111B1 (en) | Electrodeposited copper foil with its surfaceprepared, process for producing the same and usethereof | |
CN112004964B (en) | Surface-treated copper foil, copper-clad plate and printed circuit board | |
TWI585245B (en) | Method for producing single sided thin metal clad laminate | |
CN114603945B (en) | Metal foil, copper-clad laminate, wiring board, semiconductor, negative electrode material, and battery | |
TWI808701B (en) | Coarse treatment of copper foil, copper foil laminates and printed wiring boards | |
KR102495997B1 (en) | Surface-treated copper foil with low surface roughness and low flexural strain, copper foil laminate comprising the same, and printed wiring board comprising the same | |
JP2008308749A (en) | Copper plating method | |
TWM543248U (en) | Electrolysis copper foil with surface layer containing rugby-shape structure and circuit board component | |
TWM543249U (en) | Electrolysis copper foil with surface layer containing fur-shape structure and circuit board component | |
KR101224034B1 (en) | Copper foil for printed circuit and Fabrication method thereof | |
TWI647096B (en) | Surface-treated copper foil and method of manufacturing the same | |
KR100822092B1 (en) | Method and apparatus for manufacturing copper foil using super fine pitch printed circuit board, copper foil manufactured using the method | |
CN116288544A (en) | Ultra-low profile copper foil production method applied to high-frequency high-speed PCB | |
TW202244330A (en) | Roughened copper foil, copper-cladded laminate board, and printed wiring board | |
TWM560998U (en) | Copper foil and circuit board assembly for high frequency signal transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180828 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190802 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20190802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20190802 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190822 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20190827 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20191011 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20191023 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200609 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20201006 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20201215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210312 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20210406 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20210420 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20210525 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210525 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210604 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6894811 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |