JP2018131344A - カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材 - Google Patents

カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材 Download PDF

Info

Publication number
JP2018131344A
JP2018131344A JP2017024236A JP2017024236A JP2018131344A JP 2018131344 A JP2018131344 A JP 2018131344A JP 2017024236 A JP2017024236 A JP 2017024236A JP 2017024236 A JP2017024236 A JP 2017024236A JP 2018131344 A JP2018131344 A JP 2018131344A
Authority
JP
Japan
Prior art keywords
sheet
carbon nanotube
array sheet
fixed
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017024236A
Other languages
English (en)
Other versions
JP6917725B2 (ja
Inventor
井上 鉄也
Tetsuya Inoue
鉄也 井上
拓行 円山
Hiroyuki Maruyama
拓行 円山
陽子 川上
Yoko Kawakami
陽子 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2017024236A priority Critical patent/JP6917725B2/ja
Publication of JP2018131344A publication Critical patent/JP2018131344A/ja
Application granted granted Critical
Publication of JP6917725B2 publication Critical patent/JP6917725B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】複数のカーボンナノチューブの配向の乱れを抑制できながら、カーボンナノチューブ複合材の生産効率の向上を図ることができるカーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材を提供すること。【解決手段】成長基板2上に垂直配向カーボンナノチューブ3を成長させた後、成長基板2から垂直配向カーボンナノチューブ3を剥離してカーボンナノチューブアレイシート4とし、次いで、カーボンナノチューブアレイシート4に超音波振動を加えて、カーボンナノチューブアレイシート4を固定シート5に埋め込む。【選択図】図3

Description

本発明は、カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材に関する。
カーボンナノチューブは、優れた機械強度、熱伝導性および電気伝導性を有していることが知られており、カーボンナノチューブを各種産業製品に利用することが検討されている。しかし、カーボンナノチューブ単独では、要求される機械特性などを十分に確保できない場合がある。そこで、カーボンナノチューブに、必要な機械特性を付与すべく、他の材料を複合することが検討されている。
例えば、基板上の触媒粒子を核として成長させた複数のカーボンナノチューブが、エポキシ樹脂組成物層に転写される導電性材料の製造方法が提案されている(例えば、特許文献1参照)。
そのような導電性材料の製造方法では、まず、金属箔などの基材の表面にエポキシ樹脂組成物を塗工してエポキシ樹脂組成物層を形成した後、エポキシ樹脂組成物層を乾燥させる。次いで、シリコン基板上に成長させた複数のカーボンナノチューブを、エポキシ樹脂組成物層に押し付けて植え付ける。その後、複数のカーボンナノチューブをエポキシ樹脂組成物層に残して、シリコン基板を機械的に剥離する。そして、エポキシ樹脂組成物層を加熱により硬化させた後、金属箔などの基材をエポキシ樹脂硬化物層から機械的に剥離する。
国際公開第2007/116706号パンフレット
しかし、特許文献1に記載の導電性材料の製造方法では、複数のカーボンナノチューブをエポキシ樹脂組成物層に植え付けた後、エポキシ樹脂組成物層を加熱により硬化し、次いで、基材をエポキシ樹脂硬化物層から剥離する必要がある。そのため、複数のカーボンナノチューブをエポキシ樹脂硬化物層に固定するための工程が煩雑であり、導電性材料の生産効率の向上を図るには限度がある。
また、エポキシ樹脂組成物層を硬化させるときに、複数のカーボンナノチューブが部分的に密集するなどして、複数のカーボンナノチューブの配向が乱れる場合がある。
そこで、本発明の目的は、複数のカーボンナノチューブの配向の乱れを抑制できながら、カーボンナノチューブ複合材の生産効率の向上を図ることができるカーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材を提供することにある。
本発明[1]は、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートに超音波振動を加えて、前記カーボンナノチューブアレイシートを固定シートに埋め込む工程と、を含む、カーボンナノチューブ複合材の製造方法を含んでいる。
このような方法によれば、カーボンナノチューブアレイシートに超音波振動を加えることにより、カーボンナノチューブアレイシートにおける複数のカーボンナノチューブの配向の乱れを抑制できながら、カーボンナノチューブアレイシートを固定シートに埋め込むことができる。
そのため、簡易な方法でありながら、カーボンナノチューブアレイシートを固定シートに固定することができ、カーボンナノチューブアレイシートと固定シートとを効率よく複合化できる。その結果、カーボンナノチューブ複合材の生産効率の向上を図ることができる。
本発明[2]は、前記カーボンナノチューブアレイシートを前記固定シートに埋め込む工程において、前記カーボンナノチューブアレイシートを前記固定シートに貫通させる、上記[1]に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
このような方法によれば、カーボンナノチューブ複合材において、カーボンナノチューブアレイシートが固定シートに貫通するので、カーボンナノチューブアレイシートを固定シートに固定できるとともに、カーボンナノチューブ複合材の熱伝導性および電気伝導性の向上を図ることができる。
本発明[3]は、前記カーボンナノチューブアレイシートは、前記カーボンナノチューブアレイシートの厚み方向において、一端部と、前記一端部と反対側の他端部とを有し、前記カーボンナノチューブアレイシートを前記固定シートに埋め込む工程において、前記カーボンナノチューブアレイシートの前記一端部を前記固定シートの内部に埋め込み、前記カーボンナノチューブアレイシートの前記他端部を前記固定シートから露出させる、上記[1]に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
このような方法によれば、カーボンナノチューブアレイシートの一端部が固定シートに埋め込まれるとともに、カーボンナノチューブアレイシートの他端部が固定シートから露出するので、カーボンナノチューブアレイシートは固定シートを貫通していない。つまり、カーボンナノチューブアレイシートの一端部は固定シートから露出しておらず、カーボンナノチューブアレイシートの他端部は固定シートから露出している。
そのため、固定シートを高分子材料から形成すれば、固定シートから露出するカーボンナノチューブアレイシートの他端部により、熱伝導性および電気伝導性を確保できるとともに、カーボンナノチューブアレイシートの一端部を埋め込む固定シートにより、熱遮蔽性および電気絶縁性を確保することができる。
また、固定シートに添加材を含有してもよい。例えば、固定シートが、熱伝導性および電気絶縁性を有する添加材を含有することにより、固定シート内でカーボンナノチューブアレイシートと添加材とが接触することにより、カーボンナノチューブ複合材の電気絶縁性および熱伝導性の効率を向上させることができる。また、固定シートの表面からカーボンナノチューブアレイシートが露出され、固定シートの裏面から添加材が露出される構成であってもよい。この構成によれば、カーボンナノチューブアレイシートが固定シートを貫通しなくても、垂直方向の電気絶縁性および熱伝導性を確保することができる。
本発明[4]は、前記カーボンナノチューブアレイシートを前記固定シートに埋め込む工程の前において、前記カーボンナノチューブアレイシートを高密度化処理する工程をさらに含む、上記[1]〜[3]のいずれか一項に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
このような方法によれば、カーボンナノチューブアレイシートが固定シートに埋め込まれる前に高密度化される。そのため、カーボンナノチューブアレイシートの特性(例えば、熱伝導性や電気伝導性など)の向上を図ることができ、ひいては、カーボンナノチューブ複合材の性能の向上を図ることができる。
本発明[5]は、前記カーボンナノチューブアレイシートを前記固定シートに埋め込む工程の後において、前記固定シートを熱収縮させる工程をさらに含む、上記[1]〜[4]のいずれか一項に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
このような方法によれば、カーボンナノチューブアレイシートが埋め込まれた固定シートが熱収縮されるので、単位面積当たりのカーボンナノチューブの密度の向上を図ることができる。そのため、カーボンナノチューブ複合材の性能の向上を図ることができる。
本発明[6]は、前記固定シートが、基材に高分子材料から形成される高分子層を備える、上記[1]〜[5]のいずれか一項に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
このような方法によれば、固定シートが高分子層を備えるので、カーボンナノチューブアレイシートを固定シートに安定して埋め込むことができる。
本発明[7]は、前記カーボンナノチューブアレイシートが埋め込まれた前記固定シートを、加熱処理して、前記固定シートをグラファイト化する、上記[1]〜[6]のいずれか一項に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
このような方法によれば、カーボンナノチューブアレイシートが埋め込まれた固定シートを、加熱処理することにより、グラファイト化してグラファイトシートとすることができる。そのため、グラファイトシートの面方向(厚み方向と直交する方向)において、カーボンナノチューブ複合材の熱伝導性および電気伝導性の向上を図ることができる。
本発明[8]は、固定シートと、超音波振動により前記固定シートに埋め込まれるカーボンナノチューブアレイシートと、を備える、カーボンナノチューブ複合材を含んでいる。
このような構成によれば、カーボンナノチューブアレイシートが超音波振動により固定シートに埋め込まれているので、カーボンナノチューブアレイシートを固定シートに固定できながら、複数のカーボンナノチューブの配向の乱れを抑制できる。
本発明[9]は、カーボンナノチューブアレイシートが、固定シートの異方向の複数面に埋め込まれ、前記固定シートの内部において互いの前記カーボンナノチューブアレイシートの導電性が保たれている、異方性カーボンナノチューブ複合材を含んでいる。
このような構成によれば、カーボンナノチューブアレイシートが、固定シートの異方向の複数面に埋め込まれ、固定シートの内部において互いのカーボンナノチューブアレイシートの導電性が保たれているので、異方向に熱を伝えることができる。
本発明によれば、複数のカーボンナノチューブの配向の乱れを抑制できながら、カーボンナノチューブ複合材の生産効率の向上を図ることができるカーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材を提供することができる。
図1Aは、本発明のカーボンナノチューブ複合材の製造方法の第1実施形態に係る垂直配向カーボンナノチューブを成長させる工程を説明するための説明図であって、基板上に触媒層を形成する工程を示す。図1Bは、図1Aに続いて、基板を加熱して、触媒層を複数の粒状体に凝集させる工程を示す。図1Cは、図1Bに続いて、複数の粒状体に原料ガスを供給して、垂直配向カーボンナノチューブを成長させる工程を示す。 図2Aは、図1Cに示す成長基板から垂直配向カーボンナノチューブを剥離する工程を説明するための説明図であって、垂直配向カーボンナノチューブを成長基板から切断する工程を示す。図2Bは、図2Aに続いて、垂直配向カーボンナノチューブを成長基板から剥離して、カーボンナノチューブアレイシートとする工程を示す。図2Cは、図2Bに示すカーボンナノチューブアレイシートの斜視図である。 図3Aは、図2Cに示すカーボンナノチューブアレイシートを固定シートに埋め込む工程を説明するための説明図であって、カーボンナノチューブアレイシートが配置された固定シートを超音波振動装置にセットする工程を示す。図3Bは、図3Aに続いて、カーボンナノチューブアレイシートに超音波振動を加える工程を示す。図3Cは、図3Bに続いて、カーボンナノチューブアレイシートを固定シートの厚み方向に貫通させる工程を示す。 図4は、図3Cに示すカーボンナノチューブ複合材の斜視図である。 図5は、本発明の第2実施形態に係るカーボンナノチューブアレイシートが埋め込まれた固定シートを熱収縮する工程を説明するための説明図である。 図6Aは、本発明の第3施形態に係るカーボンナノチューブアレイシートが埋め込まれた高分子シートをグラファイト化する工程を説明するための説明図であって、高分子シートを予備加熱して炭素シートとする工程を示す。図6Bは、図6Aに続いて、炭素シートを加熱してグラファイトシートとする工程を示す。 図7は、本発明の第4施形態に係るカーボンナノチューブアレイシートに固定シートに埋め込む工程を説明するための説明図である。 図8は、本発明の第5施形態に係るカーボンナノチューブアレイシートに固定シートに埋め込む工程を説明するための説明図である。 図9は、本発明の異方性カーボンナノチューブアレイシートの斜視図である。 図10は、本発明の第6実施形態に係るカーボンナノチューブ複合材の側面図である。
本発明のカーボンナノチューブ複合材の製造方法は、カーボンナノチューブアレイシートに超音波振動を加えて、カーボンナノチューブアレイシートを固定シートに埋め込むものである。
(第1実施形態)
図1〜図4を参照して、本発明の第1実施形態について説明する。本発明の第1実施形態は、カーボンナノチューブ複合材1(以下、CNT複合材1とする。図4参照)の製造方法であって、成長基板2上に垂直配向カーボンナノチューブ3(Vertically Aligned carbon nanotubes;以下、VACNTs3とする。)を成長させる工程と、成長基板2からVACNTs3を剥離し、カーボンナノチューブアレイシート4(以下、CNTアレイシート4とする。)とする工程と、CNTアレイシート4に超音波振動を加えて、CNTアレイシート4を固定シート5に埋め込む工程とを含んでいる。
(1−1)成長基板2上にVACNTs3を成長させる工程
図1A〜図1Cに示すように、第1実施形態では、まず、成長基板2上にVACNTs3を成長させる。
詳しくは、図1Aに示すように、成長基板2を準備する。成長基板2は、特に限定されず、例えば、化学気相成長法(CVD法)に用いられる公知の基板が挙げられ、市販品を用いることができる。成長基板2としては、例えば、シリコン基板や、二酸化ケイ素膜6が積層されるステンレス基板7などが挙げられ、好ましくは、二酸化ケイ素膜6が積層されるステンレス基板7が挙げられる。なお、図1A〜図2Cでは、成長基板2が、二酸化ケイ素膜6が積層されるステンレス基板7である場合を示す。
次いで、図1Aに示すように、二酸化ケイ素膜6(成長基板2)上に触媒層8を形成する。二酸化ケイ素膜6上に触媒層8を形成するには、金属触媒を、公知の成膜方法により、二酸化ケイ素膜6上に成膜する。
金属触媒としては、例えば、鉄、コバルト、ニッケルなどが挙げられ、好ましくは、鉄が挙げられる。金属触媒は、単独使用または2種類以上併用することができる。成膜方法としては、例えば、真空蒸着およびスパッタリングが挙げられ、好ましくは、真空蒸着が挙げられる。
次いで、図1Bに示すように、触媒層8が配置される成長基板2を、例えば、700℃以上900℃以下に加熱する。これにより、触媒層8が、凝集して、複数の粒状体8Aとなる。
次いで、図1Cに示すように、成長基板2に、例えば、1分以上30分以下、原料ガスを供給する。
原料ガスは、炭素数1〜4の炭化水素ガス(低級炭化水素ガス)を含んでいる。炭素数1〜4の炭化水素ガスとしては、例えば、メタンガス、エタンガス、プロパンガス、ブタンガス、エチレンガス、アセチレンガスなどが挙げられ、好ましくは、アセチレンガスが挙げられる。原料ガスは、必要により、水素ガスや、不活性ガス(例えば、ヘリウム、アルゴンなど)、水蒸気などを含むこともできる。
これによって、複数の粒状体8Aのそれぞれを起点として、複数のカーボンナノチューブ9が成長する。図1Cでは、便宜上、1つの粒状体8Aから、1つのカーボンナノチューブ9が成長するように記載されているが、これに限定されず、1つの粒状体8Aから、複数のカーボンナノチューブ9が成長してもよい。なお、以下において、カーボンナノチューブ9をCNT9とする。
CNT9は、単層カーボンナノチューブおよび多層カーボンナノチューブのいずれであってもよく、好ましくは、多層カーボンナノチューブである。複数のCNT9は、単層カーボンナノチューブおよび多層カーボンナノチューブのいずれか1種のみを含んでいてもよく、単層カーボンナノチューブおよび多層カーボンナノチューブの両方を含んでいてもよい。
CNT9の平均外径は、例えば、1nm以上であることが好ましく、5nm以上であることがより好ましく、例えば、100nm以下であることが好ましく、50nm以下であることがより好ましい。CNT9の平均長さ(平均軸線方向寸法)は、例えば、1μm以上であることが好ましく、100μm以上であることがより好ましく、例えば、1000μm以下であることが好ましく、500μm以下であることがより好ましい。なお、CNT9の層数、平均外径および平均長さは、例えば、ラマン分光分析や、電子顕微鏡観察などの公知の方法により測定される。
複数のCNT9は、成長基板2上において、互いに略平行となるように、成長基板2の厚み方向に延びており、成長基板2に対して直交するように配向(垂直に配向)されている。以上によって、成長基板2上に、複数のCNT9からなるVACNTs3が成長する。
また、VACNTs3において、複数のCNT9は成長基板2の面方向に互いに密集している(図2C参照)。VACNTs3における複数のCNT9の本数密度は、単位面積当たり、例えば、10本/cm以上であることが好ましく、1010本/cm以上であることがより好ましい。なお、複数のCNT9の本数密度は、例えば、単位面積当たり質量(目付量:単位 mg/cm)と、カーボンナノチューブの長さ(SEM(日本電子社製)または非接触膜厚計(キーエンス社製)により測定)とから算出される。
(1−2)成長基板2からVACNTs3を剥離する工程
次いで、図2A〜図2Cに示すように、成長基板2からVACNTs3を剥離して、CNTアレイシート4とする。
詳しくは、図2Aおよび図2Bに示すように、切断刃10(例えば、カッター刃、剃刀など)を成長基板2の上面に沿ってスライド移動させて、複数のCNT9の基端部(成長基板2側端部)を一括して切断する。これによって、VACNTs3が成長基板2から分離される。
次いで、分離されたVACNTs3を成長基板2から引き上げる。以上によって、VACNTs3が、成長基板2から剥離されて、カーボンナノチューブアレイシート(以下、CNTアレイシート4)とされる。
図2Cに示すように、CNTアレイシート4は、成長基板2から剥離されており、複数のCNT9からシート形状に形成される。詳しくは、CNTアレイシート4において、複数のCNT9は、CNTアレイシート4の厚み方向に配向されており、面方向(縦方向および横方向)に互いに連続してシート形状となるように配列されている。
これによって、CNTアレイシート4は、成長基板2から剥離された状態で、複数のCNT9が面方向に互いに接触するように形状を保持している。また、CNTアレイシート4は、可撓性を有している。なお、複数のCNT9のうち、互いに隣接するCNT9間には、ファンデルワールス力が作用している。
CNTアレイシート4における複数のCNT9の本数密度の範囲は、上記のVACNTs3における複数のCNT9の本数密度の範囲と同一程度である。
CNTアレイシート4のG/D比は、例えば、1以上10以下であることが好ましい。G/D比とは、カーボンナノチューブのラマンスペクトルにおいて、1350cm−1付近に観測されるDバンドと呼ばれるピークのスペクトル強度に対する、1590cm−1付近に観測されるGバンドと呼ばれるピークのスペクトル強度の比である。なお、Dバンドのスペクトルは、カーボンナノチューブの欠陥に由来し、Gバンドのスペクトルは、炭素の六員環の面内振動に由来する。
CNTアレイシート4は、そのままCNT複合材1に利用できるが、種々の特性(例えば、熱伝導率や電気伝導性など)を向上させる観点から好ましくは、高密度化処理される。つまり、第1実施形態は、CNTアレイシート4を固定シート5に埋め込む工程の前において、CNTアレイシート4を高密度化処理する工程を含む。
高密度化処理としては、例えば、CNTアレイシート4を加熱処理する方法、CNTアレイシート4に揮発性の液体(例えば、水、有機溶媒など)を供給して気化させる方法、CNTアレイシート4を機械的に圧縮する方法などが挙げられる。
高密度化処理は、少なくとも1回実施され、複数回繰り返すこともできる。同一の高密度化処理を複数回繰り返してもよく、複数種類の高密度化処理を組み合わせて実施してもよい。
高密度化処理のなかでは、好ましくは、CNTアレイシート4を加熱処理する方法が挙げられる。具体的には、CNTアレイシート4を、不活性ガス雰囲気において下記条件で加熱する。
不活性ガスとしては、例えば、窒素、アルゴンなどが挙げられ、好ましくは、アルゴンが挙げられる。
高密度化のための加熱温度は、例えば、2600℃以上であることが好ましく、2700℃以上であることがより好ましく、2800℃以上であることがとりわけ好ましい。加熱温度が上記下限以上であれば、CNTアレイシート4において複数のCNT9を十分に密集させることができる。また、加熱温度としては、複数のCNT9の昇華温度未満であればよく、3000℃以下であることが好ましい。加熱温度が上記上限以下であれば、複数のCNT9が昇華することを抑制できる。
高密度化のための加熱時間は、例えば、10分以上であることが好ましく、1時間以上であることがより好ましく、例えば、5時間以下であることが好ましく、3時間以下であることがより好ましい。
また、CNTアレイシート4は、好ましくは、無負荷の状態(CNTアレイシート4に荷重がかけられていない状態、つまり、大気圧下)で加熱処理される。
以上によって、CNTアレイシート4が、高密度化のために加熱処理される。CNTアレイシート4が加熱処理されると、CNTアレイシート4において、CNT9を構成するグラフェンの結晶性が向上し、複数のCNT9の配向性(直線性)が向上する。すると、CNTアレイシート4において、互いに隣接するCNT9は、それらの間に作用するファンデルワールス力などにより、配向性(直線性)を維持したまま、束状となるように密集する。
これによって、CNTアレイシート4の全体が均一に密集され、CNTアレイシート4が高密度化する。その後、CNTアレイシート4を必要により冷却(例えば、自然冷却)する。
加熱処理後のCNTアレイシート4の厚みは、複数のCNT9が配向性(直線性)を維持したまま密集するため、加熱処理前のCNTアレイシート4の厚み(CNT9の配向方向長さ)と略同じである。
加熱処理後のCNTアレイシート4の体積は、加熱処理前のCNTアレイシート4の体積に対して、例えば、10%以上であることが好ましく、30%以上であることがより好ましく、例えば、70%以下であることが好ましく、50%以下であることがより好ましい。また、加熱処理後のCNTアレイシート4のG/D比は、例えば、10を超過することが好ましく、例えば、20以下であることがより好ましい。
(1−3)CNTアレイシート4を固定シート5に埋め込む工程
次いで、図3A〜図3Cに示すように、CNTアレイシート4に超音波振動を加えて、CNTアレイシート4を固定シート5に埋め込む。
CNTアレイシート4を固定シート5に埋め込むには、図3Aに示すように、固定シート5を準備する。固定シート5は、CNTアレイシート4を固定するためのシートである。第1実施形態では、固定シート5は、平板形状を有し、具体的には、所定の厚みを有し、厚み方向と直交する面方向(縦方向および横方向)に延び、平坦な表面5Aおよび平坦な裏面5Bを有している。
固定シート5の厚みは、特に制限されず、例えば、10μm以上50μm以下であることが好ましい。固定シート5の厚みは、CNTアレイシート4の厚みを100%としたときに、例えば、10%以上50%以下であることが好ましい。
固定シート5の材料は、固定シート5がCNTアレイシート4の少なくとも一部を埋め込み、固定することができれば特に制限されず、CNT複合材1の用途に応じて適宜選択される。固定シート5の材料としては、例えば、高分子材料などが挙げられる。第1実施形態では、固定シート5は、高分子材料から形成される高分子層からなる。
高分子材料としては、例えば、プラスチック(硬質樹脂)、ゴム、熱可塑性エラストマーなどが挙げられる。高分子材料は、単独使用または2種類以上併用することができる。
プラスチックとしては、例えば、熱硬化性プラスチック、熱可塑性プラスチック、紫外線硬化性プラスチック、多液硬化性プラスチック(二液硬化型など)などが挙げられる。プラスチックは、単独使用または2種類以上併用することができる。プラスチックのなかでは、好ましくは、熱硬化性プラスチックおよび熱可塑性プラスチックが挙げられる。
熱硬化性プラスチックは、例えば、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリベンゾイミダゾール樹脂、ポリベンゾオキサゾール樹脂などが挙げられる。熱硬化性プラスチックは、単独使用または2種類以上併用することができる。熱硬化性プラスチックのなかでは、好ましくは、ポリイミド樹脂が挙げられる。
熱可塑性プラスチックとしては、例えば、ポリエステル(例えば、ポリエチレンテレフタレートなど)、ポリオレフィン(例えば、ポリエチレン、ポリプロピレンなど)、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリウレタン、芳香族ポリエーテルケトン(例えば、ポリエーテルエーテルケトンなど)、ポリオキサジアゾール、フッ素系ポリマー(例えば、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、ポリフッ化ビニル、ポリフッ化ビニリデンなど)などが挙げられる。
熱可塑性プラスチックは、単独使用または2種類以上併用することができる。熱可塑性プラスチックのなかでは、好ましくは、フッ素系ポリマーが挙げられ、より好ましくは、PFAが挙げられる。
ゴムは、熱硬化性の軟質樹脂であって、例えば、天然ゴム、シリコーンゴム、ウレタンゴム、アクリルゴム、ブチルゴム、フッ素系ゴムなどが挙げられる。ゴムは、単独使用または2種類以上併用することができる。
熱可塑性エラストマーは、熱可塑性の軟質樹脂であって、例えば、オレフィン系エラストマー、スチレン系エラストマー、塩化ビニル系エラストマーなどが挙げられる。熱可塑性エラストマーは、単独使用または2種類以上併用することができる。
なお、固定シート5は、必要に応じて、公知の添加材を適宜の割合で含有することができる。添加材としては、例えば、金属粒子、炭素材料、セラミックス粒子などが挙げられる。金属粒子としては、例えば、銅粒子、チタン粒子、アルミニウム粒子などが挙げられる。炭素材料としては、例えば、カーボンナノチューブ、グラファイト、フラーレンなどが挙げられる。セラミックス粒子としては、例えば、無機酸化物(例えば、シリカ、アルミナ、酸化チタン、酸化亜鉛、酸化マグネシウムなど)のセラミックス粒子、無機窒化物(例えば、窒化アルミニウム、窒化ホウ素、窒化ケイ素など)のセラミックス粒子、無機炭化物(例えば、炭化ケイ素、炭化チタン、炭化タングステンなど)のセラミックス粒子などが挙げられる。このような添加材は、単独使用または2種類以上併用することができる。
固定シート5が上記した添加材を含有すると、固定シート5の面方向における熱伝導性の向上を図ることができる。
次いで、図3Aおよび図3Bに示すように、固定シート5を超音波振動装置12にセットする。
超音波振動装置12は、アンビル13と、複数のスペーサ14と、複数の押え冶具15と、ホーン16と、超音波振動子(図示せず)とを備える。
図3Bに示すように、アンビル13は、固定シート5を受ける台座である。アンビル13は、平坦な上面13Aを有する。上面13Aは、水平方向に沿って延びている。
複数のスペーサ14は、アンビル13の上面13Aと固定シート5との間にスペースを形成するための部材である。複数のスペーサ14の個数は、2以上であれば特に制限されないが、第1実施形態では2つである。2つのスペーサ14は、アンビル13の上面13Aにおいて水平方向に互いに間隔を空けて位置する。
複数の押え冶具15は、複数のスペーサ14との間に固定シート5を挟み込んで、固定シート5を固定するための部材である。複数の押え冶具15の個数は、複数のスペーサ14の個数と同じである。
ホーン16は、CNTアレイシート4を固定シート5に向かって押圧可能、かつ、水平方向に振動可能に構成される。ホーン16は、アンビル13の上面13Aに対して上側に間隔を空けて位置する。
ホーン16は、接触部16Aと、軸部16Bとを一体に備える。接触部16Aは、CNTアレイシート4と接触する部分である。接触部16Aは、水平方向に延びる平板形状を有する。
軸部16Bは、接触部16Aを支持する部分である。軸部16Bは、鉛直方向に延びる円柱形状を有する。軸部16Bの下端部は、接触部16Aの上面における中央部分に固定されている。なお、軸部16Bの上端部は、加圧シリンダなどの加圧装置(図示せず)に接続される。また、軸部16Bは、超音波振動子(図示せず)からの超音波振動が伝達可能に構成される。
超音波振動子(図示せず)は、例えば、圧電素子であって、電気が供給され、その電圧が制御されることによって伸縮する。これにより、超音波振動子(図示せず)は、超音波振動を出力する。
そして、固定シート5を超音波振動装置12にセットするには、固定シート5を2つのスペーサ14上に配置する。次いで、押え冶具15を、スペーサ14との間に固定シート5を挟み込むように配置する。これにより、固定シート5が超音波振動装置12に固定される。
このとき、固定シート5は、水平方向に沿うように配置されており、アンビル13の上面13Aに対して上側に間隔を空けて配置される。固定シート5とアンビル13との間の間隔は、後述するCNT9の第2突出部分9D(図3C参照)の長さよりも大きい。
次いで、CNTアレイシート4を、ホーン16の下側かつ水平方向において2つの押え冶具15の間に位置するように、固定シート5上に配置する。
次いで、超音波振動装置12により、CNTアレイシート4に超音波振動を加える。
詳しくは、図3Bに示すように、ホーン16を下降させて、CNTアレイシート4をホーン16と固定シート5との間に挟み込む。これによって、CNTアレイシート4の複数のCNT9は、ホーン16と接触するとともに、固定シート5と接触する。
そして、ホーン16を加圧装置(図示せず)により下側に向かって押圧するとともに、ホーン16に超音波振動子(図示せず)から超音波振動を入力する。
すると、ホーン16は、CNTアレイシート4を固定シート5に向かって押圧するとともに、水平方向において直線的に往復移動(振動)する。つまり、ホーン16の移動方向(振動方向)は、固定シート5の面方向(厚み方向と直交する方向)に沿っている。
このとき、超音波振動装置12からの超音波振動が、CNTアレイシート4の複数のCNT9に伝達される。
CNTアレイシート4に対する圧力は、例えば、1kPa以上10MPa以下であることが好ましい。
ホーン16の最大振幅Lは、例えば、1μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることがとりわけ好ましく、例えば、100μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることがとりわけ好ましい。
超音波振動装置12の発振周波数は、例えば、1kHz以上であることが好ましく、10kHz以上であることがより好ましく、20kHz以上であることがとりわけ好ましく、例えば、50kHz以下であることが好ましく、30kHz以下であることがより好ましく、25kHz以下であることがとりわけ好ましい。
超音波振動装置12の発振時間は、例えば、1秒間以上1分間以下であることが好ましい。
また、複数のCNT9に超音波振動が加えられるときの固定シート5の温度は、固定シート5のガラス転移温度以下であればよい。例えば、10℃以上であることが好ましく、20℃以上であることがより好ましく、50℃以上であることがとりわけ好ましい。固定シート5のガラス転移温度を超過すれば、固定シート5の形状を保持できないためである。
これによって、固定シート5と接触するCNT9の先端部が、超音波振動により振動して徐々に固定シート5に埋め込まれる。換言すると、超音波振動からCNT9の先端部に伝達された振動エネルギーによって、固定シート5と接触するCNT9の先端部の境界面で摩擦熱が発生し、固定シート5の溶融温度まで瞬時に上昇し、CNTアレイシート4の少なくとも一部が固定シート5に溶着(固定化)される。つまり、CNTアレイシート4が固定シート5に埋め込まれて固定される。
以上によって、図3Cおよび図4に示すように、CNTアレイシート4と固定シート5とが複合化されて、CNT複合材1が製造される。CNT複合材1は、固定シート5と、超音波振動により固定シート5に埋め込まれるCNTアレイシート4とを備えている。
また、第1実施形態では、CNTアレイシート4を固定シート5に埋め込む工程においてCNTアレイシート4が、固定シート5の厚み方向に固定シート5を貫通する。換言すると、超音波振動からCNT9の先端部に伝達された振動エネルギーによって、固定シート5と接触するCNT9の先端部の境界面で摩擦熱が発生し、固定シート5の溶融温度まで瞬時に上昇し、CNTアレイシート4の先端または末端が固定シート5から露出して(CNTアレイシート4の先端または末端が固定シート5と同一面を含む)、CNTアレイシート4の先端から末端にかけての少なくとも一部が固定シート5に溶着(固定化)される。なお、CNTアレイシート4が固定シート5を貫通するとは、CNTアレイシート4の両端部が固定シート5から突出する態様と、CNTアレイシート4の両端部が固定シート5と面一となり、固定シート5から露出される態様と、CNTアレイシート4の両端部のいずれか一方が固定シート5から突出し、他方が固定シート5と面一となり、固定シート5から露出される態様とを含む。
CNTアレイシート4における複数のCNT9は、互いに略平行となるように配向されている。CNT9は、固定シート5を厚み方向に貫通している。第1実施形態では、CNT9は、固定シート5に埋設される埋設部分9Bと、固定シート5の表面5Aから突出する第1突出部分9Cと、固定シート5の裏面5Bから突出する第2突出部分9Dとを一体に有する。つまり、CNT9は、埋設部分9Bと、第1突出部分9Cと、第2突出部分9Dとのみからなる。このような場合において、CNT9の長さは、固定シート5の厚みよりも長いことが好ましい。
第1突出部分9Cおよび第2突出部分9Dのそれぞれの長さは、固定シート5の表面粗さ(Rmax)と、接触対象物(例えば、電子部品やヒートシンクなど)の表面粗さ(Rmax)との総和よりも大きいことが好ましい。
CNT複合材1の熱伝導率は、厚み方向において、例えば、5W/(m・K)以上であることが好ましく、20W/(m・K)以上であることがより好ましく、例えば、100W/(m・K)以下であることが好ましく、50W/(m・K)以下であることがより好ましい。なお、熱伝導率は、公知の熱伝導率測定装置により測定される。
CNT複合材1は、例えば、異方熱伝導性シート、異方電気伝導性シート、集積回路などの電気特性を検査するためのプローバーなどとして好適に利用でき、より好ましくは、異方熱伝導性シート、とりわけ好ましくは、電子部品とヒートシンクとの間に配置される熱伝導性材料などの放熱シートとして利用できる。
(1−4)作用効果
図3A〜図3Cに示すように、第1実施形態では、CNTアレイシート4に超音波振動を加えることにより、CNTアレイシート4を固定シート5に埋め込むことができる。
そのため、簡易な方法でありながら、CNTアレイシート4における複数のCNT9の配向の乱れを抑制でき、固定シート5に含浸するCNTアレイシート4の含有率を高め、かつ、CNTアレイシート4と固定シート5とを効率よく複合化することができる。その結果、CNT複合材1の生産効率の向上を図ることができる。
図3Cに示すように、CNT複合材1において、CNTアレイシート4が固定シート5の厚み方向に貫通する。そのため、CNTアレイシート4を固定シート5に固定できるとともに、厚み方向におけるCNT複合材1の熱伝導性の向上を図ることができる。そのため、CNT複合材1を、好ましくは、異方熱伝導性シート、より好ましくは、放熱シートとして利用することができる。
第1実施形態では、CNTアレイシート4が固定シート5に埋め込まれる前に高密度化される。そのため、CNTアレイシート4の特性(例えば、熱伝導性や電気伝導性など)の向上を図ることができ、ひいては、CNT複合材1の性能の向上を図ることができる。
第1実施形態では、固定シート5が高分子シートである。そのため、CNTアレイシート4を固定シート5に安定して埋め込むことができる。
また、CNT複合材1は、固定シート5と、超音波振動により固定シート5に埋め込まれるCNTアレイシート4とを備えている。そのため、CNTアレイシート4を固定シート5に固定できながら、複数のCNT9の配向の乱れを抑制できる。
(第2実施形態)
次に、図5を参照して、本発明の第2実施形態について説明する。なお、第2実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
第2実施形態では、図5に示すように、CNTアレイシート4を固定シート5に埋め込む工程の後において、固定シート5を熱収縮させる工程をさらに含む。
第2実施形態では、固定シート5の材料として、熱収縮可能な熱収縮材料が選択される。
熱収縮材料としては、上記した固定シート5の材料のうち、例えば、ポリオレフィン系、ポリ塩化ビニル系、フッ素系、ポリエステル系、ポリスチレン系、ポリプロピレン系、ポリ乳酸系、ポリエーテルエーテルケトン(PEEK)、エラストマーなどが挙げられ、好ましくは、ポリオレフィン系が挙げられる。熱収縮材料は、単独使用または2種類以上併用することができる。
そして、固定シート5を熱収縮させるには、図4に示すCNT複合材1を加熱処理する。熱収縮のための加熱温度は、例えば、固定シート5が熱収縮する温度以上であればよく、80℃以上であることが好ましく、120℃以上であることがより好ましく、例えば、400℃以下であることが好ましく、350℃以下であることがより好ましい。熱収縮のための加熱時間は、例えば、固定シート5が熱収縮する時間以上であればよく、5分間以上であることが好ましく、10分間以上であることがより好ましく、例えば、30分間以下であることが好ましい。
以上によって、CNTアレイシート4が埋め込まれた固定シート5が熱収縮する。熱収縮後の固定シート5の体積は、熱収縮前の固定シート5の体積に対して、例えば、20%以上であることが好ましく、50%以上であることがより好ましい。
第2実施形態によれば、CNTアレイシート4が埋め込まれた固定シート5が熱収縮する。そのため、単位面積当たりの複数のCNT9の密度の向上を図ることができる。その結果、CNT複合材1の性能の向上を図ることができる。また、第2実施形態によっても、第1実施形態と同様の作用効果を奏することができる。
(第3実施形態)
次に、図6Aおよび図6Bを参照して、本発明の第3実施形態について説明する。なお、第3実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
第3実施形態では、図6Aおよび図6Bに示すように、CNTアレイシート4が埋め込まれた固定シート5を加熱処理して、固定シート5をグラファイト化する工程をさらに含む。
第3実施形態では、固定シート5の材料として、グラファイト化が可能な高分子材料が選択される。そのような高分子材料としては、上記した固定シート5の材料のうち、例えば、ポリオキサジアゾール、ポリアミド、ポリイミド樹脂(例えば、芳香族ポリイミド樹脂など)、ポリベンゾイミダゾール樹脂、ポリベンゾオキサゾール樹脂などが挙げられ、好ましくは、ポリイミド樹脂、より好ましくは、芳香族ポリイミド樹脂が挙げられる。
そして、図6Aに示すように、固定シート5をグラファイト化するには、まず、図4に示すCNT複合材1を、上記の不活性ガス雰囲気において予備加熱する。これにより、固定シート5の高分子材料(高分子層)が炭素化して、固定シート5が炭素シート20となる。
予備加熱の温度は、例えば、1000℃以上であることが好ましく、1500℃以上であることがより好ましく、例えば、2000℃以下であることが好ましい。予備加熱の時間は、例えば、10分間以上であることが好ましい。
次いで、図6Bに示すように、炭素シート20を備えるCNT複合材1を、上記の不活性ガス雰囲気において加熱する。これにより、炭素シート20の炭素がグラファイト化して、炭素シート20がグラファイトシート21となる。
グラファイト化の加熱温度は、例えば、2000℃以上であることが好ましく、2500℃以上であることがより好ましい。グラファイト化の加熱時間は、例えば、5分間以上であることが好ましく、10分間以上であることがより好ましい。
グラファイトシート21は、複数の炭素原子が六角網目状に結合したグラフェンシートが厚み方向に複数積層されて形成されている。なお、グラファイトシート21は、固定シートの一例である。
第3実施形態では、CNTアレイシート4が埋め込まれた固定シート5(高分子層)を、必要により予備加熱後、加熱処理してグラファイト化する。これにより、固定シート5がグラファイトシート21とする。そのため、面方向におけるCNT複合材1の熱伝導性および電気伝導性の向上を図ることができる。
また、炭素シート21のグラファイト化とともに、CNTアレイシート4のCNT9を構成するグラフェンの結晶性が向上する。そのため、厚み方向におけるCNT複合材1の熱伝導性および電気伝導性のさらなる向上を図ることができる。
さらに、CNTアレイシート4のCNT9と、グラファイトシート21のグラフェンシートとが結合する場合がある。これにより、CNTアレイシート4をグラファイトシート21により強固に固定することができる。また、第3実施形態によっても、第1実施形態と同様の作用効果を奏することができる。
なお、上記の第3実施形態では、固定シート5を予備加熱して炭素シート20とした後、炭素シート20を加熱処理してグラファイトシート21とするがこれに限定されない。固定シート5(高分子層)がグラファイト化するように、固定シート5を予備加熱することなく、一気に加熱処理してもよい。
(第4実施形態)
次に、図7を参照して、本発明の第4実施形態について説明する。なお、第4実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
図3Cに示すように、第1実施形態では、CNTアレイシート4を固定シート5に埋め込む工程において、CNTアレイシート4が固定シート5を貫通するが、これに限定されない。
図7に示すように、第4実施形態では、CNTアレイシート4を固定シート5に埋め込む工程において、CNTアレイシート4が固定シート5を貫通しない。すなわち、CNTアレイシート4を固定シート5に埋め込む工程において、CNTアレイシート4の一端部を固定シート5の内部(表面および裏面の間)に埋め込み、CNTアレイシート4の他端部を固定シート5から露出させる。
詳しくは、CNTアレイシート4は、厚み方向において、固定シート5側の一端部4Aと、一端部4Aと反対側の他端部4Bとを有する。
そして、第1実施形態と同様の方法によって、CNTアレイシート4の一端部4Aを固定シート5の内部(表面5Aおよび裏面5Bの間)に埋め込み、CNTアレイシート4の他端部4Bを固定シート5の表面5Aから露出させる。
つまり、CNTアレイシート4の一端部4Aは、固定シート5から露出しておらず、CNTアレイシート4の他端部4Bは、固定シート5から露出している。
この場合、CNTアレイシート4におけるCNT9は、固定シート5に埋設される埋設部分9Bと、固定シート5の表面5Aから突出する突出部分9Cとを一体に有する。つまり、CNT9は、埋設部分9Bと、突出部分9Cとのみからなる。
第4実施形態では、例えば、固定シート5の材料として、電気絶縁性を有する絶縁材料が選択される場合、固定シート5から露出するCNTアレイシート4の他端部4Bにより、電気伝導性を確保できるとともに、CNTアレイシート4の一端部4Aを埋め込む固定シート5により、電気絶縁性を確保することができる。
絶縁材料の体積抵抗率は、例えば、1012Ω・cm以上1016Ω・cm以下である。なお、体積抵抗率は、体積抵抗率計を用いた四端子法、二端子法により測定することができる。
このような絶縁材料としては、上記した固定シート5の材料のうち、プラスチック、ゴムが挙げられ、好ましくは、エポキシ樹脂、ウレタンゴム、フッ素系ゴムが挙げられる。
また、第4実施形態において、固定シート5は、必要に応じて、上記した添加材を適宜の割合で含有することができる。第4実施形態において選択される添加材は、好ましくは、電気絶縁性および熱伝導性を有する添加材が挙げられる。そのような添加材として、好ましくは、セラミックス粒子が挙げられ、より好ましくは、無機酸化物のセラミックス粒子、無機窒化物のセラミックス粒子が挙げられる。
固定シート5が、絶縁材料から形成されるとともに、セラミックス粒子を含有する場合、CNTアレイシート4の一端部4Aが固定シート5から露出しておらず、かつ、固定シート5がセラミックス粒子を含有するので、厚み方向におけるCNT複合材1の電気絶縁性を確保できながら、厚み方向におけるCNT複合材1の熱伝導性を確保することができる。
また、第4実施形態によっても、第1実施形態と同様の作用効果を奏することができる。
(第5実施形態)
次に、図8および図9を参照して、本発明の第5実施形態について説明する。なお、第5実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
第5実施形態では、図8および図9に示すように、CNTアレイシート4を固定シート5に埋め込む工程において、複数(2以上)のCNTアレイシート4が、固定シート5にパターンを形成するように、複数埋め込まれる。
例えば、図8では、複数(2以上)のCNTアレイシート4が、固定シート5の同一面に埋め込まれているCNT複合材である。
また、図9では、例えば、CNTアレイシート4が、固定シート5の異方向の複数面に埋め込まれている異方性CNT複合材である。そして、固定シート5の内部において互いにCNTアレイシート4が接触していることにより、異方向に熱を伝える異方性CNT複合材を容易に製造することが可能になる。
詳しくは、第1実施形態と同様の方法によって、複数のCNTアレイシート4を準備する。その後、第1実施形態と同様の方法によって、複数のCNTアレイシート4を、所定のパターンを形成するように、固定シート5に埋め込む。
第5実施形態では、CNT複合材1において、CNTアレイシート4の特性(例えば、熱伝導性や電気伝導性など)が要求される部分にのみ、CNTアレイシート4を埋め込むことができる。そのため、CNT複合材1を種々の製品に応じて設計することができる。また、第5実施形態によっても、第1実施形態と同様の作用効果を奏することができる。
(第6実施形態)
次に、図10を参照して、本発明の第6実施形態について説明する。なお、第6実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
図3Cに示すように、第1実施形態では、固定シート5が、高分子層からなる高分子シートであるが、これに限定されない。
図10に示すように、第6実施形態では、固定シート5が、基材25と、高分子層26とを備えている。
基材25としては、例えば、金属箔(例えば、銅箔、アルミニウム箔など)、グラファイトシート、セラミックスシート(例えば、上記した無機酸化物のセラミックスシート、上記した無機窒化物のセラミックスシート、上記した無機炭化物のセラミックスシートなど)などが挙げられる。
高分子層26は、基材25上に配置されている。高分子層26の材料としては、例えば、上記した高分子材料などが挙げられる。高分子層26を基材25上に配置する方法としては、上記した高分子材料を基材25上に塗布する方法や、上記した高分子材料から形成される高分子シートを基材25に貼り付ける方法などが挙げられる。
そして、第1実施形態と同様の方法によって、CNTアレイシート4に超音波振動を加えて、CNTアレイシート4の一端部4Aを高分子層26に埋め込む。これにより、CNTアレイシート4の一端部4Aが、高分子層26に埋め込まれて、基材25に接触する。また、CNTアレイシート4の他端部4Bは、高分子層26から露出することが好ましい。
このような第6実施形態によっても、第1実施形態と同様の作用効果を奏することができる。
(変形例)
第1実施形態では、ホーン16の振動方向は、固定シート5の面方向であるが、これに限定されない。ホーン16の振動方向は、特に制限されず、固定シート5の厚み方向であってもよい。
第1実施形態は、CNTアレイシート4を固定シート5に埋め込む工程の前において、CNTアレイシート4を高密度化処理する工程を含むが、これに限定されない。CNT複合材1の製造方法は、CNTアレイシート4を高密度化処理する工程を含まなくてもよい。
第1実施形態では、CNTアレイシート4を固定シート5に埋め込む工程において、1つのCNTアレイシート4を1つの固定シート5に埋め込むが、これに限定されない。複数のCNTアレイシート4を、固定シート5に順次埋め込むこともできる。同一箇所に再びCNTアレイシート4を、固定シート5に埋め込むこともできる。
この場合、固定シート5は、長尺状に形成される。そして、長尺状の固定シート5上に、複数のCNTアレイシート4を固定シート5の長尺方向に並ぶように配置する。
そして、第1実施形態と同様に、固定シート5を超音波振動装置12に固定(セット)した後、複数のCNTアレイシート4のうち、1つのCNTアレイシート4を固定シート5に埋め込む。
次いで、固定シート5の超音波振動装置12に対する固定を解除し、固定シート5を長尺方向に搬送する。そして、次のCNTアレイシート4がホーン16の下側に到達したときに、再度、固定シート5を超音波振動装置12に固定する。その後、CNTアレイシート4を固定シート5に埋め込む。
上記を繰り返すことによって、複数のCNTアレイシート4を、1つの固定シート5に間欠的に埋め込むことができる。
第1実施形態では、CNT複合材1におけるCNTアレイシート4は、固定シート5を貫通して、固定シート5の厚み方向両側から突出するが、これに限定されない。CNTアレイシート4の一端部4Aは、固定シート5の裏面5Bと略面一であり、CNTアレイシート4の他端部4Bは、固定シート5の表面5Aと略面一であってもよい。
固定シート5の表面からCNTアレイシート4が露出され、固定シート5の裏面から添加材が露出される構成であってもよい。この構成によれば、CNTアレイシート4が固定シート5を貫通しなくても、垂直方向(厚み方向)の電気絶縁性および熱伝導性を確保することができる。
上記の第1実施形態〜第6実施形態および変形例は、適宜組み合わせることができる。例えば、第2実施形態のCNT複合材1(図5参照)を第3実施形態と同様に加熱処理して、熱収縮した固定シート5をグラファイト化することができる。
以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
(実施例1)
ステンレス製の成長基板(ステンレス基板)の表面に二酸化ケイ素膜を積層した後、二酸化ケイ素膜上に、触媒層として鉄を蒸着した。
次いで、成長基板を600℃に加熱して、触媒層に原料ガス(アセチレンガス)を、10分間供給した。これにより、成長基板上において、平面視略矩形形状のVACNTsを形成した。
VACNTsにおいて、複数のCNTは、互いに略平行となるように延び、成長基板に対して直交するように配向(垂直配向)されていた。CNTは、多層カーボンナノチューブであり、CNTの平均外径は、約12nm、CNTの平均長さは、約100μmであった。VACNTsにおける単位体積当たりの本数密度は、1010本/cmであった。
次いで、カッター刃(切断刃)を成長基板に沿って移動させて、VACNTsを成長基板から切り離して、CNTアレイシートを準備した。CNTアレイシートの厚みは、CNTの平均長さと同じであり、約100μmであった。
次いで、CNTアレイシートを、耐熱容器である炭素容器(内寸高さ1mm)に収容して、その炭素容器を抵抗加熱炉内に配置した。
次いで、抵抗加熱炉内を、アルゴン雰囲気に置換した後、10℃/分で2800℃まで昇温し、2800℃で2時間保持した。これにより、CNTアレイシートが高密度化され、その後、自然冷却(−100℃/分程度)により、室温(25℃)まで冷却した。
高密度化されたCNTアレイシートにおける単位体積当たりの本数密度は、約5×1010本/cmであった。
次いで、PFAから形成される固定シート(高分子シート、厚み;30μm)を準備した。そして、CNTアレイシートを固定シート上に配置した。
次いで、CNTアレイシートが配置された固定シートを図3A〜図3Cに示す超音波振動装置に固定した後、CNTアレイシートを高分子シートに向かって押圧するとともに、CNTアレイシートに超音波振動を加えた。超音波振動の条件を下記に示す。
温度;100℃、
ホーンの振動方向;固定シートの面方向、
CNTアレイシートに対する圧力;1MPa、
ホーンの最大振幅;15μm、
周波数;20kHz、
発振時間;0.5分間
これによって、CNTアレイシートが高分子シートに徐々に埋め込まれ、CNTアレイシートが高分子シートを貫通した。
以上によって、高分子シートとCNTアレイシートとが複合化されたCNT複合材料を得た。CNT複合材料の厚みは、CNTアレイシートの厚みと同じであり、約100μmであった。また、CNTにおける埋設部分の長さは、約30μmであった。
(実施例2)
PFAから形成される固定シートを、芳香族ポリイミド樹脂から形成される固定シートに変更したこと以外は、実施例1と同様にしてCNT複合材料を得た。
その後、CNT複合材料を加熱炉内に配置した。次いで、加熱炉内をアルゴン雰囲気に置換した後、20℃/分で1800℃〜2000℃の温度範囲まで昇温し、1時間保持した。これにより、固定シートが、炭素化して炭素シートとなった。
次いで、加熱炉内を、10℃/分で2800℃まで昇温し、1時間保持した。これにより、炭素シートが、グラファイト化してグラファイトシートとなった。
以上により、グラファイトシートとCNTアレイシートとが複合化されたCNT複合材料を得た。
1 CNT複合材
2 成長基板
3 垂直配向カーボンナノチューブ
4 カーボンナノチューブアレイシート
5 固定シート

Claims (9)

  1. 成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
    前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
    前記カーボンナノチューブアレイシートに超音波振動を加えて、前記カーボンナノチューブアレイシートを固定シートに埋め込む工程と、を含むことを特徴とする、カーボンナノチューブ複合材の製造方法。
  2. 前記カーボンナノチューブアレイシートを前記固定シートに埋め込む工程において、
    前記カーボンナノチューブアレイシートを前記固定シートに貫通させることを特徴とする、請求項1に記載のカーボンナノチューブ複合材の製造方法。
  3. 前記カーボンナノチューブアレイシートは、前記カーボンナノチューブアレイシートの厚み方向において、一端部と、前記一端部と反対側の他端部とを有し、
    前記カーボンナノチューブアレイシートを前記固定シートに埋め込む工程において、
    前記カーボンナノチューブアレイシートの前記一端部を前記固定シートの内部に埋め込み、前記カーボンナノチューブアレイシートの前記他端部を前記固定シートから露出させることを特徴とする、請求項1に記載のカーボンナノチューブ複合材の製造方法。
  4. 前記カーボンナノチューブアレイシートを前記固定シートに埋め込む工程の前において、
    前記カーボンナノチューブアレイシートを高密度化処理する工程をさらに含むことを特徴とする、請求項1〜3のいずれか一項に記載のカーボンナノチューブ複合材の製造方法。
  5. 前記カーボンナノチューブアレイシートを前記固定シートに埋め込む工程の後において、
    前記固定シートを熱収縮させる工程をさらに含むことを特徴とする、請求項1〜4のいずれか一項に記載のカーボンナノチューブ複合材の製造方法。
  6. 前記固定シートが、基材に高分子材料から形成される高分子層を備えることを特徴とする、請求項1〜5のいずれか一項に記載のカーボンナノチューブ複合材の製造方法。
  7. 前記カーボンナノチューブアレイシートが埋め込まれた前記固定シートを、加熱処理して、前記固定シートをグラファイト化する工程をさらに含むことを特徴とする、請求項1〜6のいずれか一項に記載のカーボンナノチューブ複合材の製造方法。
  8. 固定シートと、
    超音波振動により前記固定シートに埋め込まれるカーボンナノチューブアレイシートと、を備えることを特徴とする、カーボンナノチューブ複合材。
  9. カーボンナノチューブアレイシートが、固定シートの異方向の複数面に埋め込まれ、
    前記固定シートの内部において互いの前記カーボンナノチューブアレイシートの導電性が保たれていること
    を特徴とする、異方性カーボンナノチューブ複合材。
JP2017024236A 2017-02-13 2017-02-13 カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材 Active JP6917725B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024236A JP6917725B2 (ja) 2017-02-13 2017-02-13 カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024236A JP6917725B2 (ja) 2017-02-13 2017-02-13 カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材

Publications (2)

Publication Number Publication Date
JP2018131344A true JP2018131344A (ja) 2018-08-23
JP6917725B2 JP6917725B2 (ja) 2021-08-11

Family

ID=63249522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024236A Active JP6917725B2 (ja) 2017-02-13 2017-02-13 カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材

Country Status (1)

Country Link
JP (1) JP6917725B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155988A (zh) * 2019-05-23 2019-08-23 上海长园电子材料有限公司 一种碳纳米管的活化方法及制备导电热缩管的方法
US20210339455A1 (en) * 2018-10-19 2021-11-04 Lintec Of America, Inc. Increasing transparency of nanofiber sheets
CN114477146A (zh) * 2022-03-14 2022-05-13 中国航空制造技术研究院 一种单位宽度内碳纳米管高密度取向方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116706A1 (ja) * 2006-03-27 2007-10-18 Hitachi Zosen Corporation カーボンナノチューブを用いた導電性材料、その製造方法、およびそれを利用した電気二重層キャパシタ
WO2009107229A1 (ja) * 2008-02-29 2009-09-03 富士通株式会社 シート状構造体、半導体装置及び炭素構造体の成長方法
JP2012076938A (ja) * 2010-09-30 2012-04-19 Nippon Valqua Ind Ltd 垂直配向カーボンナノチューブの成長密度制御方法
JP2014060252A (ja) * 2012-09-18 2014-04-03 Fujitsu Ltd 放熱材料の製造方法
JP2014234339A (ja) * 2013-06-05 2014-12-15 日立造船株式会社 カーボンナノチューブシートおよびカーボンナノチューブシートの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116706A1 (ja) * 2006-03-27 2007-10-18 Hitachi Zosen Corporation カーボンナノチューブを用いた導電性材料、その製造方法、およびそれを利用した電気二重層キャパシタ
WO2009107229A1 (ja) * 2008-02-29 2009-09-03 富士通株式会社 シート状構造体、半導体装置及び炭素構造体の成長方法
JP2012076938A (ja) * 2010-09-30 2012-04-19 Nippon Valqua Ind Ltd 垂直配向カーボンナノチューブの成長密度制御方法
JP2014060252A (ja) * 2012-09-18 2014-04-03 Fujitsu Ltd 放熱材料の製造方法
JP2014234339A (ja) * 2013-06-05 2014-12-15 日立造船株式会社 カーボンナノチューブシートおよびカーボンナノチューブシートの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210339455A1 (en) * 2018-10-19 2021-11-04 Lintec Of America, Inc. Increasing transparency of nanofiber sheets
CN110155988A (zh) * 2019-05-23 2019-08-23 上海长园电子材料有限公司 一种碳纳米管的活化方法及制备导电热缩管的方法
CN110155988B (zh) * 2019-05-23 2022-03-08 上海长园电子材料有限公司 一种碳纳米管的活化方法及制备导电热缩管的方法
CN114477146A (zh) * 2022-03-14 2022-05-13 中国航空制造技术研究院 一种单位宽度内碳纳米管高密度取向方法

Also Published As

Publication number Publication date
JP6917725B2 (ja) 2021-08-11

Similar Documents

Publication Publication Date Title
US11414321B2 (en) Carbon nanotube composite material and method for producing carbon nanotube composite material
Zhang et al. Carbon nanotube reinforced strong carbon matrix composites
CN108430919B (zh) 碳纳米管接合片以及碳纳米管接合片的制造方法
KR102089604B1 (ko) 복합 나노섬유 시트
JP6840725B2 (ja) カーボンナノチューブ構造体の起毛方法、カーボンナノチューブ構造体の製造方法およびカーボンナノチューブ構造体
JP5968621B2 (ja) ナノ構造体ベースの加熱装置およびその使用方法
US20090181239A1 (en) Carbon nanotube-based composite material and method for fabricating the same
WO2016136826A1 (ja) カーボンナノチューブ高密度集合体およびカーボンナノチューブ高密度集合体の製造方法
JP7410028B2 (ja) 3dグラフェン
JP2017517137A (ja) グラフェン系熱管理システム
JP6917725B2 (ja) カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材
JP2009051725A (ja) 高密度カーボンナノチューブアレイを含む熱伝導シート及びその製造方法
EP2739929A1 (en) Dynamic thermal interface material
JP2017517137A5 (ja)
US20190106613A1 (en) Polymer composites with highly tunable thermal and mechanical properties and methods of manufacture
Luo et al. A laser-fabricated nanometer-thick carbon film and its strain-engineering for achieving ultrahigh piezoresistive sensitivity
WO2018207795A1 (ja) カーボンナノチューブ複合体およびその製造方法
WO2021039383A1 (ja) カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法
JP2017071528A (ja) 層間熱接合材料およびパワー半導体用冷却システム
JP2023174241A (ja) 熱伝導部材
JP2018131343A (ja) カーボンナノチューブ高密度集合体の製造方法およびカーボンナノチューブ高密度集合体
JP2018024562A (ja) カーボンナノチューブ複合材の製造方法
Tong et al. Monolithic Carbonaceous Materials and Carbon Matrix Composites
TW200808647A (en) Carbon nanotube composition and method for making same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210720

R150 Certificate of patent or registration of utility model

Ref document number: 6917725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150