JP2018116850A - Insulation wire and manufacturing method therefor - Google Patents

Insulation wire and manufacturing method therefor Download PDF

Info

Publication number
JP2018116850A
JP2018116850A JP2017007116A JP2017007116A JP2018116850A JP 2018116850 A JP2018116850 A JP 2018116850A JP 2017007116 A JP2017007116 A JP 2017007116A JP 2017007116 A JP2017007116 A JP 2017007116A JP 2018116850 A JP2018116850 A JP 2018116850A
Authority
JP
Japan
Prior art keywords
mol
insulated wire
polyimide
aromatic tetracarboxylic
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017007116A
Other languages
Japanese (ja)
Other versions
JP6964412B2 (en
Inventor
修平 前田
Shuhei Maeda
修平 前田
雅晃 山内
Masaaki Yamauchi
雅晃 山内
菅原 潤
Jun Sugawara
潤 菅原
田村 康
Yasushi Tamura
康 田村
雄貴 山本
Yuki Yamamoto
雄貴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2017007116A priority Critical patent/JP6964412B2/en
Publication of JP2018116850A publication Critical patent/JP2018116850A/en
Application granted granted Critical
Publication of JP6964412B2 publication Critical patent/JP6964412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an insulation wire excellent in appearance, flexure processability and moisture heat degradation resistance of an insulation layer.SOLUTION: An insulation wire has a conductor and one or a plurality of insulation layers laminated on an outer peripheral side of the conductor, in which at least one layer of the insulation layers mainly contains polyimide derived from a polyimide precursor, which is a reaction product of aromatic tetracarboxylic acid dianhydride and aromatic diamine, and having calorie of crystal melting peak measured under a temperature rise condition at 20°C/min. by a differential scanning calorimeter of 5 J/g or less, the aromatic tetracarboxylic acid dianhydride contains biphenyltetracarboxylic acid dianhydride, and content of the biphenyltetracarboxylic acid dianhydride is 25 mol% to 95 mol% based on 100 mol% of the aromatic tetracarboxylic acid dianhydride. The aromatic tetracarboxylic acid dianhydride may further contain pyromellitic acid dianhydride.SELECTED DRAWING: None

Description

本発明は、絶縁電線及びその製造方法に関する。   The present invention relates to an insulated wire and a method for manufacturing the same.

モータ等のコイルに用いられる絶縁電線において、導体を被覆する絶縁層には、優れた絶縁性、導体に対する密着性、耐熱性、機械的強度、外観性等が求められている。この絶縁層の形成に用いる合成樹脂としては、例えばポリイミド、ポリアミドイミド、ポリエステルイミド等が挙げられる。   In an insulated wire used for a coil of a motor or the like, an insulating layer covering a conductor is required to have excellent insulation, adhesion to the conductor, heat resistance, mechanical strength, appearance, and the like. Examples of the synthetic resin used for forming the insulating layer include polyimide, polyamideimide, and polyesterimide.

また、適用電圧が高い電気機器、例えば高電圧で使用されるモータ等では、電気機器を構成する絶縁電線に高電圧が印加され、その絶縁層表面で部分放電(コロナ放電)が発生しやすくなる。コロナ放電が発生すると、局部的な温度上昇やオゾン等の発生が引き起こされやすくなり、その結果、絶縁電線の絶縁層が劣化することで早期に絶縁破壊を起こし、電気機器の寿命が短くなる。高電圧が印加される絶縁電線には上記の理由によりコロナ放電開始電圧の向上が求められており、そのためには絶縁層の誘電率を低くすることが有効であることが知られている。   In addition, in an electric device having a high applied voltage, for example, a motor used at a high voltage, a high voltage is applied to an insulated wire constituting the electric device, and partial discharge (corona discharge) is likely to occur on the surface of the insulating layer. . When corona discharge occurs, local temperature rise and generation of ozone and the like are likely to be caused. As a result, the insulation layer of the insulated wire is deteriorated, thereby causing early dielectric breakdown and shortening the life of the electric device. Insulated wires to which a high voltage is applied are required to improve the corona discharge starting voltage for the above reasons, and for this purpose, it is known that reducing the dielectric constant of the insulating layer is effective.

さらに、絶縁電線は、湿熱環境下に晒される場合がある。このような環境下では、絶縁層を形成する合成樹脂が加水分解を生じてその分子量が著しく低下し、その結果、クラック等が生じて絶縁層としての機能が低下するおそれがある。そのため、絶縁電線の絶縁層には、上記湿熱環境下での機能低下を抑制する性能(耐湿熱劣化性)が要求される場合がある。   Furthermore, the insulated wire may be exposed to a humid heat environment. Under such an environment, the synthetic resin forming the insulating layer is hydrolyzed and its molecular weight is remarkably reduced. As a result, cracks or the like are generated, and the function as the insulating layer may be reduced. Therefore, the insulating layer of the insulated wire may be required to have a performance (moisture and heat resistance) that suppresses functional degradation in the wet heat environment.

さらに、絶縁電線をコイルとして使用する場合には、コイルの占積率を上げるために絶縁電線に曲げ加工を行う。具体的には、例えば絶縁電線を捲線してコイルを形成した後にコイルをスロット中に挿入したり、あらかじめ変形させた絶縁電線同士を溶接してコイルを形成したりする。このような用途で用いられる絶縁電線の絶縁層には、曲げ加工した際に電気特性低下の原因となる割れ、ピンホール、ボイド等が発生することを抑制する曲げ加工性が要求される。   Furthermore, when using an insulated wire as a coil, the insulated wire is bent to increase the space factor of the coil. Specifically, for example, after forming the coil by winding the insulated wire, the coil is inserted into the slot, or the insulated wire deformed in advance is welded to form the coil. The insulating layer of an insulated wire used in such applications is required to have bending workability that suppresses the occurrence of cracks, pinholes, voids, and the like that cause electrical characteristics to be lowered when bent.

ポリイミドは、絶縁電線の絶縁層に使用される合成樹脂の中では特に耐熱性に優れ、誘電率が低く、かつ機械的強度にも優れ、また一定の原料や製造条件を適用した場合には良好な外観性及び曲げ加工性を実現できるため、高電圧で使用される絶縁電線の絶縁層に用いられている。例えば特開2013−253124号公報には、芳香族ジアミンと芳香族テトラカルボン酸二無水物との反応産物であり、かつイミド化後のイミド基濃度が特定範囲であるポリイミド前駆体を含有する樹脂ワニスを用いて絶縁層を形成することで、耐熱性、耐クレージング性に優れ、コロナ放電し難い絶縁電線が得られると記載されている。   Polyimide is particularly excellent in heat resistance, low dielectric constant and mechanical strength among the synthetic resins used in the insulation layer of insulated wires, and good when certain raw materials and manufacturing conditions are applied. Therefore, it is used for an insulating layer of an insulated wire used at a high voltage. For example, JP2013-253124A discloses a resin containing a polyimide precursor which is a reaction product of an aromatic diamine and an aromatic tetracarboxylic dianhydride and has a specific range of imide groups after imidization. It is described that by forming an insulating layer using a varnish, an insulated wire that is excellent in heat resistance and crazing resistance and hardly corona discharge can be obtained.

特開2013−253124号公報JP 2013-253124 A

しかし、ポリイミドは、湿熱環境下に長時間曝された場合に加水分解を生じるおそれがある材料であるため、上記従来の絶縁電線の備える絶縁層は、耐湿熱劣化性について向上の余地がある。   However, since polyimide is a material that may be hydrolyzed when exposed to a humid heat environment for a long time, the insulating layer provided in the conventional insulated wire has room for improvement in resistance to heat and moisture degradation.

本発明は、上述のような事情に基づいてなされたものであり、絶縁層の外観性、曲げ加工性及び耐湿熱劣化性に優れる絶縁電線及びその製造方法を提供することを目的とする。   This invention is made | formed based on the above situations, and it aims at providing the insulated wire which is excellent in the external appearance property of an insulating layer, bending workability, and heat-and-moisture resistance, and its manufacturing method.

上記課題を解決するためになされた本発明の一態様に係る絶縁電線は、導体と、この導体の外周側に積層される1又は複数の絶縁層とを備える絶縁電線であって、上記絶縁層のうち少なくとも1層が、芳香族テトラカルボン酸二無水物及び芳香族ジアミンの反応生成物であるポリイミド前駆体に由来し、かつ示差走査熱量計で20℃/minの昇温条件において測定される結晶融解ピークの熱量が5J/g以下であるポリイミドを主成分とし、上記芳香族テトラカルボン酸二無水物がビフェニルテトラカルボン酸二無水物を含み、上記芳香族テトラカルボン酸二無水物100モル%に対するビフェニルテトラカルボン酸二無水物の含有量が25モル%以上95モル%以下である。   An insulated wire according to an aspect of the present invention made to solve the above problems is an insulated wire comprising a conductor and one or a plurality of insulating layers laminated on the outer peripheral side of the conductor, wherein the insulating layer At least one layer is derived from a polyimide precursor which is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine, and is measured with a differential scanning calorimeter at a temperature rising condition of 20 ° C./min. The main component is a polyimide having a crystal melting peak calorie of 5 J / g or less, and the aromatic tetracarboxylic dianhydride contains biphenyltetracarboxylic dianhydride, and the aromatic tetracarboxylic dianhydride is 100 mol%. The content of biphenyltetracarboxylic dianhydride is 25 mol% or more and 95 mol% or less.

上記課題を解決するためになされた本発明の別の態様に係る絶縁電線の製造方法は、導体と、この導体の外周側に積層される1又は複数の絶縁層とを備える絶縁電線の製造方法であって、上記導体の外周側に樹脂ワニスを塗工する塗工工程と、上記塗工された樹脂ワニスを加熱する加熱工程とを備え、上記樹脂ワニスが芳香族テトラカルボン酸二無水物及び芳香族ジアミンの反応生成物であるポリイミド前駆体を含有し、上記芳香族テトラカルボン酸二無水物がビフェニルテトラカルボン酸二無水物を含み、上記芳香族テトラカルボン酸二無水物100モル%に対するビフェニルテトラカルボン酸二無水物の含有量が25モル%以上95モル%以下であり、上記加熱工程で、上記ポリイミド前駆体から示差走査熱量計で20℃/minの昇温条件において測定される結晶融解ピークの熱量が5J/g以下であるポリイミドを形成する。   An insulated wire manufacturing method according to another aspect of the present invention, which has been made to solve the above problems, includes a conductor and one or a plurality of insulating layers laminated on the outer peripheral side of the conductor. A coating step of coating a resin varnish on the outer peripheral side of the conductor, and a heating step of heating the coated resin varnish, wherein the resin varnish is an aromatic tetracarboxylic dianhydride and Containing a polyimide precursor which is a reaction product of an aromatic diamine, wherein the aromatic tetracarboxylic dianhydride includes biphenyltetracarboxylic dianhydride, and biphenyl with respect to 100 mol% of the aromatic tetracarboxylic dianhydride. The tetracarboxylic dianhydride content is 25 mol% or more and 95 mol% or less, and the heating step is performed at a temperature increase of 20 ° C./min from the polyimide precursor by a differential scanning calorimeter. Heat of crystal melting peak measured in matter to form a polyimide or less 5 J / g.

本発明の一態様に係る絶縁電線及びその製造方法は、絶縁層の外観性、曲げ加工性及び耐湿熱劣化性に優れる絶縁電線を提供できる。   The insulated wire and the method for manufacturing the insulated wire according to one embodiment of the present invention can provide an insulated wire that is excellent in appearance, bending workability, and wet heat resistance.

[本発明の実施形態の説明]
本発明の一態様に係る絶縁電線は、導体と、この導体の外周側に積層される1又は複数の絶縁層とを備える絶縁電線であって、上記絶縁層のうち少なくとも1層が、芳香族テトラカルボン酸二無水物及び芳香族ジアミンの反応生成物であるポリイミド前駆体に由来し、かつ示差走査熱量計で20℃/minの昇温条件において測定される結晶融解ピークの熱量が5J/g以下であるポリイミドを主成分とし、上記芳香族テトラカルボン酸二無水物がビフェニルテトラカルボン酸二無水物(BPDA)を含み、上記芳香族テトラカルボン酸二無水物100モル%に対するビフェニルテトラカルボン酸二無水物の含有量が25モル%以上95モル%以下である。
[Description of Embodiment of the Present Invention]
An insulated wire according to an aspect of the present invention is an insulated wire including a conductor and one or more insulating layers stacked on the outer peripheral side of the conductor, and at least one of the insulating layers is aromatic. The calorific value of the crystal melting peak derived from a polyimide precursor which is a reaction product of tetracarboxylic dianhydride and aromatic diamine and measured with a differential scanning calorimeter at 20 ° C./min is 5 J / g. The following polyimide is a main component, and the aromatic tetracarboxylic dianhydride includes biphenyltetracarboxylic dianhydride (BPDA), and biphenyltetracarboxylic dianhydride with respect to 100 mol% of the aromatic tetracarboxylic dianhydride. The anhydride content is 25 mol% or more and 95 mol% or less.

当該絶縁電線は、上記構成を有することにより、絶縁層の外観性、曲げ加工性及び耐湿熱劣化性に優れる。当該絶縁電線が上記構成を有することにより上記効果を奏する理由は定かではないが、例えば以下のように推察される。すなわち、当該絶縁電線の1又は複数の絶縁層のうち少なくとも1層は、原料として加水分解され難いBPDAを特定量用いたポリイミド前駆体に由来するポリイミドを主成分とする。このポリイミドは、BPDAに由来する加水分解され難い構造を特定量含むことで湿熱環境下でも加水分解され難いため、上記絶縁層の耐湿熱劣化性を向上すると考えられる。また、当該絶縁電線は、上記ポリイミドの結晶融解ピークの熱量を上記上限以下とすること、つまりポリイミドの結晶化を抑制することで、後述する理由により絶縁層の曲げ加工性及び外観性に優れる。ここで、上記ポリイミドの結晶融解ピークの熱量はポリイミドの構造と絶縁層の形成条件とによって決まるが、BPDAに由来する構造を過剰に含むポリイミドは、BPDAが有するビフェニル構造により分子同士のパッキングが促進されるため結晶化し易く、絶縁層の形成条件の制御だけで結晶融解ピークの熱量を上記上限以下とすることは困難である。そのため、当該絶縁電線は、上記ポリイミド前駆体の原料におけるBPDAの含有量を上記上限以下とすること、つまりポリイミドに含まれるBPDAに由来する構造を一定以下とすることで容易かつ確実に結晶融解ピークの熱量を上記上限以下とすることができる。   The said insulated wire is excellent in the external appearance property of an insulating layer, bending workability, and heat-and-moisture-proof deterioration property by having the said structure. The reason why the insulated wire has the above-described configuration provides the above-mentioned effect is not clear, but is presumed as follows, for example. That is, at least one of the one or more insulating layers of the insulated wire includes, as a main component, polyimide derived from a polyimide precursor using a specific amount of BPDA that is difficult to be hydrolyzed as a raw material. Since this polyimide contains a specific amount of a structure that is difficult to be hydrolyzed derived from BPDA, it is difficult to hydrolyze even in a moist heat environment. Therefore, it is considered that the heat resistance of the insulating layer is improved. Moreover, the said insulated wire is excellent in the bending workability and external appearance property of an insulating layer for the reason mentioned later by making the calorie | heat amount of the crystal melting peak of the said polyimide below the said upper limit, ie, suppressing the crystallization of a polyimide. Here, although the amount of heat at the crystal melting peak of the polyimide is determined by the structure of the polyimide and the formation conditions of the insulating layer, the polyimide containing an excessive structure derived from BPDA promotes packing between molecules due to the biphenyl structure of BPDA. Therefore, it is easy to crystallize, and it is difficult to make the heat quantity of the crystal melting peak below the upper limit only by controlling the formation conditions of the insulating layer. Therefore, the insulated wire easily and surely has a crystal melting peak by making the content of BPDA in the raw material of the polyimide precursor not more than the above upper limit, that is, making the structure derived from BPDA contained in the polyimide not more than a certain value. The amount of heat can be made below the above upper limit.

当該絶縁電線が上記結晶融解ピークの熱量を上記上限以下とすることで絶縁層の曲げ加工性及び外観性に優れる理由は以下の通りであると考えられる。すなわち、ポリイミドを主成分とする絶縁層を形成する方法としては、ポリイミド前駆体(ポリアミック酸)を含有する樹脂ワニスを導体の外周側に塗工する塗工工程と、得られた塗膜を加熱する加熱工程とを備える方法が一般的である。上記方法では、一回の塗工工程及び加熱工程では数μm程度の比較的薄い絶縁層しか形成できないため、通常塗工工程及び加熱工程を繰り返して所定の厚さ(数10μm程度)となるまで複数の絶縁層を順次積層する。この2回目以降の塗工工程の際、樹脂ワニスに含まれる溶剤が下地層(前回の塗工工程及び加熱工程で形成された絶縁層)に含まれるポリイミドを若干溶解する場合には、上記下地層と新たに積層する絶縁層とが馴染み易くなるため、各層間の密着力が向上すると考えられる。ここで、結晶化度が高いポリイミドは結晶部に溶剤が浸透し難いため耐溶剤性が過度に高くなる傾向にあると考えられる。   It is considered that the reason why the insulated wire is excellent in the bending workability and appearance of the insulating layer by setting the heat amount of the crystal melting peak to the upper limit or less is as follows. That is, as a method of forming an insulating layer containing polyimide as a main component, a coating step of coating a resin varnish containing a polyimide precursor (polyamic acid) on the outer peripheral side of a conductor, and heating the obtained coating film A heating method is generally provided. In the above method, only a relatively thin insulating layer of about several μm can be formed in a single coating step and heating step, so that the normal coating step and heating step are repeated until a predetermined thickness (about several tens of μm) is reached. A plurality of insulating layers are sequentially stacked. In the second and subsequent coating steps, when the solvent contained in the resin varnish slightly dissolves the polyimide contained in the base layer (insulating layer formed in the previous coating step and heating step), It is considered that the adhesion between each layer is improved because the base layer and the newly laminated insulating layer are easily adapted. Here, it is considered that the polyimide having a high degree of crystallinity tends to have excessively high solvent resistance because the solvent hardly penetrates into the crystal part.

当該絶縁電線は、上記ポリイミドの結晶融解ピークの熱量を上記上限以下とすることで、その耐溶剤性を適度に低減でき、その結果、上述のポリイミドの溶解に起因する絶縁層の各層間の密着力向上効果を発揮させることができる。これにより、当該絶縁電線は、曲げ加工等によって絶縁層に大きな変形を施した際に、絶縁層の各層間が剥離して絶縁性等が低下することを抑制できるため、絶縁層の曲げ加工性に優れると考えられる。また、結晶化度が高いポリイミドは、その結晶部及び非晶部の界面で生じる光の散乱によって白濁するおそれがある。当該絶縁電線は、上記ポリイミドの結晶融解ピークの熱量を上記上限以下とすることで、上記白濁を抑制でき、その結果、絶縁層の外観性に優れると考えられる。さらに、当該絶縁電線は、上記BPDAの含有量を上記下限以上とすることで、上記ポリイミドのイミド基濃度を適度に低減してその極性を抑えることで溶剤との馴染みを向上できる。これにより、当該絶縁電線は、上述のポリイミドの溶解に起因する絶縁層の各層間の密着力がより向上し、その結果、より優れた曲げ加工性を発揮することができる。ここで「主成分」とは、最も含有量の多い成分であり、例えば含有量が50質量%以上の成分を指す。   The insulated wire can moderately reduce its solvent resistance by setting the amount of heat of the crystal melting peak of the polyimide to the upper limit or less, and as a result, adhesion between the layers of the insulating layer due to dissolution of the polyimide described above. The power improvement effect can be demonstrated. As a result, when the insulated wire is subjected to a large deformation in the insulating layer by bending or the like, it can be suppressed that each layer of the insulating layer is peeled off and the insulating property is deteriorated. It is considered excellent. In addition, a polyimide having a high degree of crystallinity may become cloudy due to light scattering generated at the interface between the crystal part and the amorphous part. The said insulated wire can suppress the said cloudiness by making the calorie | heat amount of the crystal melting peak of the said polyimide below the said upper limit, As a result, it is thought that it is excellent in the external appearance of an insulating layer. Furthermore, the said insulated wire can improve familiarity with a solvent by moderately reducing the imide group density | concentration of the said polyimide, and suppressing the polarity by making content of the said BPDA more than the said minimum. Thereby, the said insulated wire can improve the adhesive force between each layer of the insulating layer resulting from melt | dissolution of the above-mentioned polyimide, As a result, can exhibit the more excellent bending workability. Here, the “main component” is a component having the largest content, for example, a component having a content of 50% by mass or more.

「結晶融解ピークの熱量[J/g]」とは、以下の方法で算出した値である。まず、絶縁電線から採取した絶縁層を試料として昇温速度20℃/minでDSC測定(示差走査熱量測定)を行う。このDSC測定結果を基に、ポリイミドの結晶融解に伴う吸熱ピーク面積から結晶融解熱量[J/g]を求める。なお、結晶融解に伴う吸熱ピークが観察されなかった場合、その結晶融解熱量は0J/gとする。また、絶縁層がポリイミド以外の他の合成樹脂を含有する場合においても、上記吸熱ピークが検出される温度は合成樹脂種ごとに固有のものであるため、上述の方法により結晶融解ピークの熱量を測定できる。   “The amount of heat of crystal melting peak [J / g]” is a value calculated by the following method. First, DSC measurement (differential scanning calorimetry) is performed at a heating rate of 20 ° C./min using an insulating layer collected from an insulated wire as a sample. Based on the DSC measurement result, the amount of heat of crystal melting [J / g] is determined from the endothermic peak area accompanying the crystal melting of polyimide. In addition, when the endothermic peak accompanying crystal melting is not observed, the heat of crystal melting shall be 0 J / g. Even when the insulating layer contains a synthetic resin other than polyimide, the temperature at which the endothermic peak is detected is unique to each synthetic resin type, and therefore the amount of heat of the crystal melting peak is determined by the method described above. It can be measured.

上記芳香族テトラカルボン酸二無水物がピロメリット酸二無水物をさらに含むとよく、この場合、上記芳香族テトラカルボン酸二無水物100モル%に対するピロメリット酸二無水物の含有量としては、5モル%以上75モル%以下が好ましい。このように、上記芳香族テトラカルボン酸二無水物がピロメリット酸二無水物を特定量含むことで、ポリイミドに剛直な構造を導入できるため、絶縁層の耐熱性を向上できる。   The aromatic tetracarboxylic dianhydride preferably further contains pyromellitic dianhydride. In this case, the content of pyromellitic dianhydride with respect to 100 mol% of the aromatic tetracarboxylic dianhydride is as follows: 5 mol% or more and 75 mol% or less are preferable. Thus, since the aromatic tetracarboxylic dianhydride contains a specific amount of pyromellitic dianhydride, a rigid structure can be introduced into the polyimide, so that the heat resistance of the insulating layer can be improved.

上記芳香族ジアミンがジアミノジフェニルエーテルを含むとよい。このように、上記芳香族ジアミンがジアミノジフェニルエーテルを含むことで、絶縁層の靭性を向上できる。   The aromatic diamine may contain diaminodiphenyl ether. Thus, the toughness of an insulating layer can be improved because the aromatic diamine contains diaminodiphenyl ether.

本発明の別の態様に係る絶縁電線の製造方法は、導体と、この導体の外周側に積層される1又は複数の絶縁層とを備える絶縁電線の製造方法であって、上記導体の外周側に樹脂ワニスを塗工する塗工工程と、上記塗工された樹脂ワニスを加熱する加熱工程とを備え、上記樹脂ワニスが芳香族テトラカルボン酸二無水物及び芳香族ジアミンの反応生成物であるポリイミド前駆体を含有し、上記芳香族テトラカルボン酸二無水物がビフェニルテトラカルボン酸二無水物を含み、上記芳香族テトラカルボン酸二無水物100モル%に対するビフェニルテトラカルボン酸二無水物の含有量が25モル%以上95モル%以下であり、上記加熱工程で上記ポリイミド前駆体から示差走査熱量計で20℃/minの昇温条件において測定される結晶融解ピークの熱量が5J/g以下であるポリイミドを形成する。   The manufacturing method of the insulated wire which concerns on another aspect of this invention is a manufacturing method of the insulated wire provided with a conductor and the 1 or several insulating layer laminated | stacked on the outer peripheral side of this conductor, Comprising: The outer peripheral side of the said conductor A coating step of coating the resin varnish and a heating step of heating the coated resin varnish, wherein the resin varnish is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine. A polyimide precursor is contained, the aromatic tetracarboxylic dianhydride contains biphenyltetracarboxylic dianhydride, and the content of biphenyltetracarboxylic dianhydride with respect to 100 mol% of the aromatic tetracarboxylic dianhydride Is 25 mol% or more and 95 mol% or less, and the crystal melting peak measured at 20 ° C./min with a differential scanning calorimeter from the polyimide precursor in the heating step. Heat of forming a polyimide or less 5 J / g.

当該絶縁電線の製造方法は、上記塗工工程でBPDAを原料とするポリイミド前駆体を含有する樹脂ワニスを用いることで、形成される絶縁層の主成分であるポリイミドにBPDAに由来する加水分解性の低い構造を特定量導入でき、その結果、上記絶縁層の耐湿熱劣化性を向上できる。また、当該絶縁電線の製造方法は、上記加熱工程で上記ポリイミド前駆体のイミド化により上記結晶融解ピークの熱量が上記上限以下のポリイミドを形成することで、ポリイミドの結晶化度の高さに起因する白濁を抑制して絶縁層の外観性を向上できる。さらに、ポリイミドの耐溶剤性を適度に低下させることで絶縁層の層間密着力を向上し、その結果、絶縁層の曲げ加工性を向上できる。さらに、当該絶縁電線の製造方法は、上記ポリイミド前駆体の原料として用いるBPDAの含有量を上記上限以下とし、BPDAに由来する構造を上記ポリイミドに必要以上に導入しないことにより、上記ポリイミドの上記結晶融解ピークの熱量を容易かつ確実に上記上限以下とすることができる。   The method for producing the insulated wire uses a resin varnish containing a polyimide precursor made of BPDA as a raw material in the coating step, so that hydrolyzability derived from BPDA is used as the main component of the insulating layer to be formed. Can be introduced in a specific amount, and as a result, the wet heat resistance of the insulating layer can be improved. Moreover, the manufacturing method of the said insulated wire originates in the high crystallinity degree of a polyimide by forming the heat quantity of the said crystal melting peak below the said upper limit by the imidation of the said polyimide precursor at the said heating process. The appearance of the insulating layer can be improved by suppressing white turbidity. Furthermore, the interlayer adhesion of the insulating layer is improved by appropriately reducing the solvent resistance of polyimide, and as a result, the bending workability of the insulating layer can be improved. Furthermore, in the method for producing the insulated wire, the content of BPDA used as a raw material of the polyimide precursor is set to the upper limit or less, and the structure derived from BPDA is not introduced into the polyimide more than necessary, whereby the crystal of the polyimide is crystallized. The amount of heat at the melting peak can be easily and reliably made not more than the above upper limit.

[本発明の実施形態の詳細]
以下、本発明の一態様に係る絶縁電線及びその製造方法を説明する。
[Details of the embodiment of the present invention]
Hereinafter, an insulated wire and a manufacturing method thereof according to one embodiment of the present invention will be described.

<絶縁電線>
当該絶縁電線は、導体と、この導体の外周側に積層される1又は複数の絶縁層とを備える。当該絶縁電線は、絶縁層の外観性、曲げ加工性及び耐湿熱劣化性に優れる。
<Insulated wire>
The insulated wire includes a conductor and one or a plurality of insulating layers stacked on the outer peripheral side of the conductor. The said insulated wire is excellent in the external appearance property of an insulating layer, bending workability, and heat-and-moisture resistance.

[導体]
上記絶縁電線の導体の材質としては、導電率が高く、かつ機械的強度が大きい金属が好ましい。このような金属としては、例えば銅、銅合金、アルミニウム、ニッケル、銀、軟鉄、鋼、ステンレス鋼等が挙げられる。上記絶縁電線の導体は、これらの金属を線状に形成した材料や、このような線状の材料にさらに別の金属を被覆した多層構造のもの、例えばニッケル被覆銅線、銀被覆銅線、銅被覆アルミニウム線、銅被覆鋼線等を用いることができる。
[conductor]
As a material for the conductor of the insulated wire, a metal having high conductivity and high mechanical strength is preferable. Examples of such metals include copper, copper alloys, aluminum, nickel, silver, soft iron, steel, and stainless steel. The conductor of the insulated wire is a material in which these metals are formed in a linear shape, or a multilayer structure in which such a linear material is coated with another metal, such as a nickel-coated copper wire, a silver-coated copper wire, A copper covering aluminum wire, a copper covering steel wire, etc. can be used.

当該絶縁電線の導体の平均断面積の下限としては、0.01mmが好ましく、0.1mmがより好ましい。一方、上記導体の平均断面積の上限としては、10mmが好ましく、5mmがより好ましい。上記導体の平均断面積が上記下限より小さい場合、抵抗値が増大するおそれがある。逆に、上記導体の平均断面積が上記上限を超える場合、誘電率を十分に低下させるために絶縁層を厚く形成しなければならず、当該絶縁電線が不必要に大径化するおそれがある。 The lower limit of the average cross-sectional area of the conductor of the insulated wire, preferably 0.01 mm 2, 0.1 mm 2 is more preferable. In contrast, the upper limit of the average cross-sectional area of the conductor is preferably 10 mm 2, 5 mm 2 is more preferable. When the average cross-sectional area of the conductor is smaller than the lower limit, the resistance value may increase. Conversely, if the average cross-sectional area of the conductor exceeds the upper limit, the insulating layer must be formed thick in order to sufficiently reduce the dielectric constant, which may unnecessarily increase the diameter of the insulated wire. .

[絶縁層]
当該絶縁電線の1又は複数の絶縁層は、導体の外周側に積層される。上記絶縁電線が複数の絶縁層を備える場合、各絶縁層は上記導体の外周側に断面視で同心円状に順次積層される。この場合、各絶縁層の平均厚さとしては、例えば1μm以上5μm以下とすることができる。また、上記複数の絶縁層の平均合計厚さとしては、例えば10μm以上200μm以下とすることができる。さらに、複数の絶縁層の合計層数としては、例えば2層以上200層以下とすることができる。
[Insulation layer]
One or a plurality of insulating layers of the insulated wire are laminated on the outer peripheral side of the conductor. When the insulated wire includes a plurality of insulating layers, the insulating layers are sequentially stacked concentrically on the outer peripheral side of the conductor in a sectional view. In this case, the average thickness of each insulating layer can be, for example, 1 μm or more and 5 μm or less. The average total thickness of the plurality of insulating layers can be, for example, 10 μm or more and 200 μm or less. Furthermore, the total number of insulating layers can be, for example, 2 or more and 200 or less.

この複数の絶縁層のうち少なくとも1層は、芳香族テトラカルボン酸二無水物及び芳香族ジアミンの反応生成物であるポリイミド前駆体(ポリアミック酸)に由来し、かつ上記結晶融解ピークの熱量が5J/g以下であるポリイミドを主成分とする。   At least one of the plurality of insulating layers is derived from a polyimide precursor (polyamic acid) which is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine, and the calorific value of the crystal melting peak is 5 J. The main component is polyimide which is not more than / g.

上記ポリイミドの上記結晶融解ピークの熱量の上限としては、3J/gが好ましい。上記ポリイミドの結晶融解ピークの熱量が上記上限を超える場合、当該絶縁電線の絶縁層の外観性及び曲げ加工性が低下するおそれがある。上記ポリイミドの結晶融解ピークの熱量は、0J/gが最も好ましい。   The upper limit of the calorific value of the crystal melting peak of the polyimide is preferably 3 J / g. When the heat amount of the crystal melting peak of the polyimide exceeds the upper limit, the appearance and bending workability of the insulating layer of the insulated wire may be deteriorated. The amount of heat at the crystal melting peak of the polyimide is most preferably 0 J / g.

(ポリイミド前駆体)
上記ポリイミドの原料となるポリイミド前駆体は、イミド化によりポリイミドを形成する重合体であり、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの重合によって得られる反応生成物である。つまり、上記ポリイミド前駆体は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを原料とする。
(Polyimide precursor)
The polyimide precursor used as the raw material of the polyimide is a polymer that forms a polyimide by imidization, and is a reaction product obtained by polymerization of an aromatic tetracarboxylic dianhydride and an aromatic diamine. That is, the polyimide precursor is made from aromatic tetracarboxylic dianhydride and aromatic diamine as raw materials.

上記ポリイミド前駆体の重量平均分子量の下限としては、10,000が好ましく、15,000がより好ましい。一方、上記重量平均分子量の上限としては、180,000が好ましく、130,000がより好ましい。上記ポリイミド前駆体の重量平均分子量を上記下限以上とすることで、伸長性に優れ、かつ加水分解を生じても一定の分子量を維持し易いポリイミドを形成でき、その結果、上記絶縁層の可撓性及び耐湿熱劣化性をより向上できると考えられる。また、上記ポリイミド前駆体の重量平均分子量を上記上限以下とすることで、当該絶縁電線の製造に用いる樹脂ワニスの極端な粘度増大を抑制して塗布性を向上できる。また、上記樹脂ワニスにおいて、優れた塗布性を維持しつつポリイミド前駆体の濃度を向上し易くなる。ここで「重量平均分子量」とは、JIS−K7252−1:2008「プラスチック−サイズ排除クロマトグラフィーによる高分子の平均分子量及び分子量分布の求め方−第1部:通則」に準拠して、ゲル浸透クロマトグラフィー(GPC)を用いて測定される値を指す。   The lower limit of the weight average molecular weight of the polyimide precursor is preferably 10,000, and more preferably 15,000. On the other hand, the upper limit of the weight average molecular weight is preferably 180,000, and more preferably 130,000. By setting the weight average molecular weight of the polyimide precursor to the above lower limit or more, it is possible to form a polyimide that has excellent extensibility and can easily maintain a constant molecular weight even if hydrolysis occurs. It is considered that the heat resistance and wet heat resistance can be further improved. Moreover, the extreme viscosity increase of the resin varnish used for manufacture of the said insulated wire can be suppressed, and applicability | paintability can be improved by making the weight average molecular weight of the said polyimide precursor below the said upper limit. Moreover, in the said resin varnish, it becomes easy to improve the density | concentration of a polyimide precursor, maintaining the outstanding applicability | paintability. Here, “weight average molecular weight” refers to gel permeation in accordance with JIS-K7252-1: 2008 “Plastics—How to determine the average molecular weight and molecular weight distribution of polymers by size exclusion chromatography—Part 1: General rules”. Refers to a value measured using chromatography (GPC).

上記ポリイミド前駆体の原料として用いる芳香族テトラカルボン酸二無水物と芳香族ジアミンとのモル比(芳香族テトラカルボン酸二無水物/芳香族ジアミン)としては、ポリイミド前駆体の合成容易性の観点から、例えば95/105以上105/95以下とすることができる。   As the molar ratio of aromatic tetracarboxylic dianhydride and aromatic diamine used as the raw material of the polyimide precursor (aromatic tetracarboxylic dianhydride / aromatic diamine), from the viewpoint of easy synthesis of the polyimide precursor For example, it can be set to 95/105 or more and 105/95 or less.

(芳香族テトラカルボン酸二無水物)
上記ポリイミド前駆体の原料として用いる芳香族テトラカルボン酸二無水物は、BPDAを含む。BPDAとしては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(3,3’,4,4’−BDPA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(2,3,3’,4’−BDPA)、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物(2,2’,3,3’−BDPA)等が挙げられ、これらの中で、3,3’,4,4’−BDPAが好ましい。
(Aromatic tetracarboxylic dianhydride)
The aromatic tetracarboxylic dianhydride used as a raw material for the polyimide precursor contains BPDA. Examples of BPDA include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (3,3 ′, 4,4′-BDPA), 2,3,3 ′, 4′-biphenyltetracarboxylic acid Anhydrides (2,3,3 ′, 4′-BDPA), 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydrides (2,2 ′, 3,3′-BDPA) and the like Of these, 3,3 ′, 4,4′-BDPA is preferred.

上記芳香族テトラカルボン酸二無水物100モル%に対するBPDAの含有量の下限としては、25モル%であり、35モル%が好ましく、55モル%がより好ましい。一方、上記BPDAの含有量の上限としては、95モル%であり、92モル%が好ましい。上記BPDAの含有量を上記範囲とすることで、絶縁層の主成分であるポリイミドにBPDAに由来する構造を適度に導入することができ、その結果、外観性、曲げ加工性及び耐湿熱劣化性をバランスよく向上できる。   The lower limit of the BPDA content relative to 100 mol% of the aromatic tetracarboxylic dianhydride is 25 mol%, preferably 35 mol%, and more preferably 55 mol%. On the other hand, the upper limit of the BPDA content is 95 mol%, preferably 92 mol%. By setting the content of the BPDA within the above range, a structure derived from BPDA can be appropriately introduced into the polyimide that is the main component of the insulating layer, and as a result, appearance, bending workability, and resistance to moist heat degradation. Can be improved in a well-balanced manner.

上記ポリイミド前駆体の原料として用いる芳香族テトラカルボン酸二無水物のうち、BPDA以外の芳香族テトラカルボン酸二無水物としては、例えばピロメリット酸二無水物(PMDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、4,4’−オキシジフタル酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物等が挙げられる。上記その他の芳香族テトラカルボン酸二無水物は、単独で用いても2種以上を併用してもよい。   Of the aromatic tetracarboxylic dianhydrides used as raw materials for the polyimide precursor, examples of aromatic tetracarboxylic dianhydrides other than BPDA include pyromellitic dianhydride (PMDA), 3, 3 ′, 4 , 4′-benzophenone tetracarboxylic dianhydride (BTDA), 4,4′-oxydiphthalic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 2,2-bis ( 3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphene) ) Methane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 1,2,5,6-naphthalene tetracarboxylic acid Anhydrides, 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like can be mentioned. The other aromatic tetracarboxylic dianhydrides may be used alone or in combination of two or more.

上記ポリイミド前駆体の原料として用いる芳香族テトラカルボン酸二無水物は、PMDA、BTDA又はこれらの組み合わせをさらに含むことが好ましい。特に、ポリイミド前駆体の原料として剛直な構造を有するPMDAを用いることで、イミド化後のポリイミドに剛直な構造を導入できるため、絶縁層の耐熱性を向上できる。   The aromatic tetracarboxylic dianhydride used as a raw material for the polyimide precursor preferably further includes PMDA, BTDA, or a combination thereof. In particular, by using PMDA having a rigid structure as a raw material for the polyimide precursor, a rigid structure can be introduced into the polyimide after imidization, so that the heat resistance of the insulating layer can be improved.

上記ポリイミド前駆体の原料として用いる芳香族テトラカルボン酸二無水物100モル%に対するPMDAの含有量の下限としては、5モル%が好ましく、8モル%がより好ましい。一方、上記PMDAの含有量の上限としては、75モル%が好ましく、65モル%がより好ましく、45モル%がさらに好ましく、20モル%が特に好ましい。上記PMDAの含有量が上記下限より小さい場合、絶縁層の耐熱性が不十分となるおそれがある。逆に、上記PMDAの含有量が上記上限を超える場合、絶縁層の主成分であるポリイミドにBPDAに由来する構造を十分に導入することができず、その結果、上記絶縁層の耐湿熱劣化性が低下するおそれがある。   As a minimum of content of PMDA with respect to 100 mol% of aromatic tetracarboxylic dianhydrides used as a raw material of the above-mentioned polyimide precursor, 5 mol% is preferred and 8 mol% is more preferred. On the other hand, the upper limit of the PMDA content is preferably 75 mol%, more preferably 65 mol%, still more preferably 45 mol%, and particularly preferably 20 mol%. When the content of PMDA is smaller than the lower limit, the heat resistance of the insulating layer may be insufficient. On the other hand, when the content of the PMDA exceeds the upper limit, a structure derived from BPDA cannot be sufficiently introduced into the polyimide which is the main component of the insulating layer, and as a result, the heat and heat resistance of the insulating layer is deteriorated. May decrease.

上記ポリイミド前駆体の原料として用いる芳香族テトラカルボン酸二無水物100モル%に対するBTDAの含有量としては、特に限定されないが、例えば5モル%以上20モル%以下とすることができる。   Although content of BTDA with respect to 100 mol% of aromatic tetracarboxylic dianhydride used as a raw material of the said polyimide precursor is not specifically limited, For example, it can be 5 mol% or more and 20 mol% or less.

(芳香族ジアミン)
上記ポリイミド前駆体の原料として用いる芳香族ジアミンとしては、例えば4,4’−ジアミノジフェニルエーテル(4,4’−ODA)、3,4’−ジアミノジフェニルエーテル(3,4’−ODA)、3,3’−ジアミノジフェニルエーテル(3,3’−ODA)、2,4’−ジアミノジフェニルエーテル(2,4’−ODA)、2,2’−ジアミノジフェニルエーテル(2,2’−ODA)等のジアミノジフェニルエーテル(ODA)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、4,4’−ビス(4−アミノフェノキシ)ビフェニル(BAPB)、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、2,4’−ジアミノジフェニルメタン、2,2’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、2,4’−ジアミノジフェニルスルホン、2,2’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフィド、2,4’−ジアミノジフェニルスルフィド、2,2’−ジアミノジフェニルスルフィド、パラフェニレンジアミン(PPD)、メタフェニレンジアミン、p−キシリレンジアミン、m−キシリレンジアミン、2,2’−ジメチル−4,4’−ジアミノビフェニル、1,5−ジアミノナフタレン、4,4’−ベンゾフェノンジアミン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタンなどが挙げられる。これらの芳香族ジアミンは、単独で用いても2種以上を併用してもよい。
(Aromatic diamine)
Examples of the aromatic diamine used as a raw material for the polyimide precursor include 4,4'-diaminodiphenyl ether (4,4'-ODA), 3,4'-diaminodiphenyl ether (3,4'-ODA), and 3,3. Diaminodiphenyl ether (ODA) such as' -diaminodiphenyl ether (3,3'-ODA), 2,4'-diaminodiphenyl ether (2,4'-ODA), 2,2'-diaminodiphenyl ether (2,2'-ODA) ), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 4,4′-bis (4-aminophenoxy) biphenyl (BAPB), 4,4′-diaminodiphenylmethane, 3, 4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 2,4'-diaminodiphenylmethane, 2,2'- Diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 2,4′-diaminodiphenylsulfone, 2,2′-diaminodiphenylsulfone, 4, 4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 2,4'-diaminodiphenyl sulfide, 2,2'-diaminodiphenyl sulfide, paraphenylenediamine (PPD), Metaphenylenediamine, p-xylylenediamine, m-xylylenediamine, 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,5-diaminonaphthalene, 4,4′-benzophenonediamine, 3,3 ′ -Dimethyl-4,4'-diaminodiphenylmeta , 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane and the like. These aromatic diamines may be used alone or in combination of two or more.

上記ポリイミド前駆体の原料として用いる芳香族ジアミンは、ODA、BAPP又はこれらの組み合わせを含むことが好ましい。特に、上記ポリイミド前駆体の原料としてODAを用いることで、絶縁層の靭性を向上できる。上記ODAとしては、4,4’−ODAが好ましい。   The aromatic diamine used as the raw material for the polyimide precursor preferably contains ODA, BAPP, or a combination thereof. In particular, the toughness of the insulating layer can be improved by using ODA as a raw material for the polyimide precursor. As the ODA, 4,4′-ODA is preferable.

上記芳香族ジアミン100モル%に対するODAの含有量の下限としては、50モル%が好ましく、90モル%がより好ましく、99モル%がさらに好ましい。このように、上記ODAの含有量を上記下限以上とすることで、絶縁層の靭性をより向上できる。また、上記ODAの含有量としては、100モル%が特に好ましい。また、上記芳香族ジアミン100モル%に対するBAPPの含有量としては、例えば0モル%以上50モル%以下とすることができる。   As a minimum of content of ODA with respect to 100 mol% of said aromatic diamine, 50 mol% is preferable, 90 mol% is more preferable, 99 mol% is further more preferable. Thus, the toughness of an insulating layer can be improved more by making content of the said ODA more than the said minimum. Moreover, as content of the said ODA, 100 mol% is especially preferable. Moreover, as content of BAPP with respect to 100 mol% of said aromatic diamine, it can be 0 mol% or more and 50 mol% or less, for example.

なお、上記ポリイミド前駆体は、芳香族テトラカルボン酸二無水物及び芳香族ジアミンと、その他の原料との重合によって得られる反応生成物であってもよい。上記その他の原料としては、例えば1,2,4,5−シクロヘキサンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物、ヘキサメチレンジアミン等の脂肪族ジアミンなどが挙げられる。   The polyimide precursor may be a reaction product obtained by polymerization of aromatic tetracarboxylic dianhydride and aromatic diamine and other raw materials. Examples of the other raw materials include aliphatic tetracarboxylic dianhydrides such as 1,2,4,5-cyclohexanetetracarboxylic dianhydride, and aliphatic diamines such as hexamethylenediamine.

上記ポリイミド前駆体は、実質的にBPDA、PMDA及びODAのみを原料として得られる反応生成物であることが好ましい。つまり、当該絶縁電線の絶縁層の主成分であるポリイミドは、実質的にBPDA、PMDA及びODAに由来する構造のみにより形成されることが好ましい。具体的には、上記ポリイミド前駆体の全原料におけるBPDA、PMDA及びODAの合計割合の下限としては、95モル%が好ましく、99モル%がより好ましい。また、上記合計割合は、100モル%が最も好ましい。   The polyimide precursor is preferably a reaction product obtained using substantially only BPDA, PMDA and ODA as raw materials. That is, it is preferable that the polyimide which is the main component of the insulating layer of the insulated wire is formed only by a structure substantially derived from BPDA, PMDA, and ODA. Specifically, the lower limit of the total ratio of BPDA, PMDA and ODA in all raw materials of the polyimide precursor is preferably 95 mol%, more preferably 99 mol%. The total ratio is most preferably 100 mol%.

なお、上記複数の絶縁層は、全ての絶縁層が上述のポリイミドを主成分とすることが好ましいが、一部の絶縁層の主成分は上述したポリイミド以外のポリイミドや他の合成樹脂であってもよい。上記他の合成樹脂としては、例えばポリアミドイミド、ポリエステルイミド、ポリウレタン、ポリエーテルイミド等が使用できる。   In addition, although it is preferable that all the insulating layers have the above-mentioned polyimide as a main component in the plurality of insulating layers, the main component of some of the insulating layers is a polyimide other than the above-described polyimide or other synthetic resin. Also good. As said other synthetic resin, a polyamideimide, a polyesterimide, a polyurethane, a polyetherimide etc. can be used, for example.

(ポリイミド前駆体の合成方法)
上記ポリイミド前駆体は、上述した芳香族テトラカルボン酸二無水物と芳香族ジアミンとの重合反応により得ることができる。上記重合反応の方法としては、従来のポリイミド前駆体の合成と同様とすることができる。上記重合反応の具体的な方法としては、例えば芳香族テトラカルボン酸二無水物と芳香族ジアミンとを有機溶剤中で混合し、この混合液を加熱する方法等が挙げられる。この方法により、芳香族テトラカルボン酸二無水物と芳香族ジアミンとが重合し、ポリイミド前駆体が有機溶剤に溶解した溶液を得ることができる。
(Method for synthesizing polyimide precursor)
The polyimide precursor can be obtained by the polymerization reaction of the aromatic tetracarboxylic dianhydride and the aromatic diamine. The method for the polymerization reaction can be the same as the synthesis of a conventional polyimide precursor. Specific examples of the polymerization reaction include a method in which an aromatic tetracarboxylic dianhydride and an aromatic diamine are mixed in an organic solvent and the mixture is heated. By this method, an aromatic tetracarboxylic dianhydride and an aromatic diamine are polymerized, and a solution in which a polyimide precursor is dissolved in an organic solvent can be obtained.

上記重合の際の反応条件としては、使用する原料等により適宜設定すればよいが、例えば反応温度を10℃以上100℃以下、反応時間を0.5時間以上24時間以下とすることができる。   The reaction conditions for the above polymerization may be appropriately set depending on the raw materials used. For example, the reaction temperature may be 10 ° C. or more and 100 ° C. or less, and the reaction time may be 0.5 hours or more and 24 hours or less.

上記重合に用いる芳香族テトラカルボン酸二無水物と芳香族ジアミンとのモル比(芳香族テトラカルボン酸二無水物/芳香族ジアミン)は、重合反応を効率的に進行させる観点から、100/100に近いほど好ましい。上記モル比としては、例えば95/105以上105/95以下とすることができる。   The molar ratio (aromatic tetracarboxylic dianhydride / aromatic diamine) between the aromatic tetracarboxylic dianhydride and the aromatic diamine used for the polymerization is 100/100 from the viewpoint of allowing the polymerization reaction to proceed efficiently. The closer it is to the better. The molar ratio can be, for example, 95/105 or more and 105/95 or less.

上記重合に用いる有機溶剤としては、例えばN−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトン等の非プロトン性極性有機溶剤を使用できる。これらの有機溶剤は単独で用いても2種以上を併用しても良い。ここで「非プロトン性極性有機溶剤」とは、プロトンを放出する基を持たない極性有機溶剤をいう。   Examples of the organic solvent used for the polymerization include aprotic polar organic solvents such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and γ-butyrolactone. Can be used. These organic solvents may be used alone or in combination of two or more. Here, the “aprotic polar organic solvent” refers to a polar organic solvent having no proton releasing group.

上記有機溶剤の使用量は、芳香族テトラカルボン酸二無水物及び芳香族ジアミンを均一に分散させることができる使用量であれば特に制限されない。上記有機溶剤の使用量としては、例えば芳香族テトラカルボン酸二無水物及び芳香族ジアミンの合計100質量部に対し、100質量部以上1,000質量部以下とすることができる。   The usage-amount of the said organic solvent will not be restrict | limited especially if aromatic tetracarboxylic dianhydride and aromatic diamine can be uniformly disperse | distributed. As the usage-amount of the said organic solvent, it can be 100 mass parts or more and 1,000 mass parts or less with respect to a total of 100 mass parts of aromatic tetracarboxylic dianhydride and aromatic diamine, for example.

[他の層]
上記絶縁電線は、1又は複数の絶縁層の外周側にさらに他の層が積層されていてもよい。上記他の層としては、例えば表面潤滑層等が挙げられる。
[Other layers]
In the insulated wire, another layer may be further laminated on the outer peripheral side of one or a plurality of insulating layers. As said other layer, a surface lubrication layer etc. are mentioned, for example.

<絶縁電線の製造方法>
次に、当該絶縁電線の製造方法について説明する。当該絶縁電線の製造方法は、導体の外周側に樹脂ワニスを塗工する塗工工程と、上記塗工された樹脂ワニスを加熱する加熱工程とを備える。上記樹脂ワニスは、芳香族テトラカルボン酸二無水物及び芳香族ジアミンの反応生成物であるポリイミド前駆体を含有する。また、上記加熱工程で、上記ポリイミド前駆体から示差走査熱量計で20℃/minの昇温条件において測定される結晶融解ピークの熱量が5J/g以下のポリイミドを形成する。当該絶縁電線の製造方法は、上記塗工工程及び加熱工程を繰り返すことが好ましい。当該絶縁電線の製造方法によれば、当該絶縁電線を容易かつ確実に製造できる。以下、上記塗工工程で用いる樹脂ワニスについて説明した後、各工程を説明する。
<Insulated wire manufacturing method>
Next, a method for manufacturing the insulated wire will be described. The method for manufacturing an insulated wire includes a coating process for coating a resin varnish on the outer peripheral side of a conductor, and a heating process for heating the coated resin varnish. The resin varnish contains a polyimide precursor that is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine. Moreover, the said heating process forms the polyimide whose calorie | heat amount of the crystal melting peak measured on the temperature rising condition of 20 degrees C / min with a differential scanning calorimeter from the said polyimide precursor is 5 J / g or less. It is preferable that the manufacturing method of the said insulated wire repeats the said coating process and a heating process. According to the method for manufacturing an insulated wire, the insulated wire can be easily and reliably manufactured. Hereinafter, after describing the resin varnish used in the coating step, each step will be described.

[樹脂ワニス]
上記樹脂ワニスはポリイミド前駆体を含有する。また、上記樹脂ワニスは通常有機溶剤をさらに含有する。上記樹脂ワニスが含有するポリイミド前駆体としては、当該絶縁電線で説明したポリイミド前駆体を用いることができるため、説明を省略する。
[Resin varnish]
The resin varnish contains a polyimide precursor. The resin varnish usually further contains an organic solvent. As the polyimide precursor contained in the resin varnish, since the polyimide precursor described in the insulated wire can be used, description thereof is omitted.

(有機溶剤)
上記樹脂ワニスに用いる有機溶剤は、上記樹脂ワニスの塗布性を向上する。また、上記有機溶剤を含有する上記樹脂ワニスは、導体の周面側への塗工工程及び加熱工程を繰り返して複数の絶縁層を形成する際、2回目以降の塗工工程において上記樹脂ワニス中の有機溶剤が下地層(前回の塗工工程及び加熱工程で形成された絶縁層)のポリイミドを若干溶解するため、形成される複数の絶縁層の各層間の密着力を向上させることができる。
(Organic solvent)
The organic solvent used for the resin varnish improves the applicability of the resin varnish. Moreover, when the resin varnish containing the organic solvent forms a plurality of insulating layers by repeating the coating process and the heating process on the peripheral surface side of the conductor, the resin varnish is used in the second and subsequent coating processes. Since the organic solvent slightly dissolves the polyimide of the base layer (insulating layer formed in the previous coating step and heating step), the adhesion between the layers of the plurality of insulating layers to be formed can be improved.

上記有機溶剤としては、非プロトン性極性有機溶剤が好ましい。ポリイミド前駆体は非プロトン性極性有機溶剤に対する溶解性が高いため、上記有機溶剤として非プロトン性極性有機溶剤を用いることにより、上記ポリイミド前駆体の上記樹脂ワニス中の濃度を高める場合においても上記ポリイミド前駆体を確実に溶解させることができる。また、上記有機溶剤として非プロトン性極性有機溶剤を用いることにより、上述の2回目以降の塗工工程において上記樹脂ワニス中の有機溶剤がした下地層のポリイミドを溶解し易くなるため、形成される複数の絶縁層の各層間の密着力をより向上させることができる。   As the organic solvent, an aprotic polar organic solvent is preferable. Since the polyimide precursor is highly soluble in an aprotic polar organic solvent, the polyimide precursor is used even when the concentration of the polyimide precursor in the resin varnish is increased by using an aprotic polar organic solvent as the organic solvent. The precursor can be surely dissolved. In addition, by using an aprotic polar organic solvent as the organic solvent, it becomes easier to dissolve the polyimide of the base layer formed by the organic solvent in the resin varnish in the second and subsequent coating steps. The adhesion between each of the plurality of insulating layers can be further improved.

上記非プロトン性極性有機溶剤としては、ポリイミド前駆体の溶解性向上及び絶縁層間の密着力向上の観点から、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、γ−ブチロラクトン及びこれらの組み合わせが好ましく、NMPがより好ましい。   Examples of the aprotic polar organic solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, N, N-, from the viewpoint of improving solubility of the polyimide precursor and improving adhesion between insulating layers. Dimethylacetamide, dimethylsulfoxide, γ-butyrolactone and combinations thereof are preferred, and NMP is more preferred.

有機溶剤は、上述したポリイミド前駆体の重合反応に使用した有機溶剤をそのまま使用してもよく、ポリイミド前駆体を得た後、別途添加してもよいが、作業性の観点から、ポリイミド前駆体の重合反応に使用した有機溶剤をそのまま使用することが好ましい。上記樹脂ワニスにおける有機溶剤の含有量としては、例えばポリイミド前駆体100質量部に対して100質量部以上1,000質量部以下の範囲とすることができる。   As the organic solvent, the organic solvent used for the polymerization reaction of the polyimide precursor described above may be used as it is, and after obtaining the polyimide precursor, it may be added separately. From the viewpoint of workability, the polyimide precursor The organic solvent used in the polymerization reaction is preferably used as it is. As content of the organic solvent in the said resin varnish, it can be set as the range of 100 mass parts or more and 1,000 mass parts or less with respect to 100 mass parts of polyimide precursors, for example.

(他の成分)
上記樹脂ワニスは、上述した成分以外に顔料、染料、無機又は有機のフィラー、潤滑剤、密着向上剤等の各種添加剤や反応性低分子などを含有しても良い。この中で、密着向上剤としてメラミン化合物を含有することで、形成される絶縁層と導体との密着力を向上できる。さらに、上記樹脂ワニスは、本発明の趣旨を損ねない範囲で他の樹脂を含有してもよい。上記樹脂ワニスに上述の成分を含有させる場合、上記樹脂ワニスにおける上述の成分の含有量としては、ポリイミド前駆体100質量部に対し、例えば0.5質量部以上30質量部以下とすることができる。
(Other ingredients)
In addition to the components described above, the resin varnish may contain various additives such as pigments, dyes, inorganic or organic fillers, lubricants, adhesion improvers, reactive low molecules, and the like. Among these, by containing a melamine compound as an adhesion improver, the adhesion between the formed insulating layer and the conductor can be improved. Furthermore, the said resin varnish may contain other resin in the range which does not impair the meaning of this invention. When the above-mentioned component is contained in the resin varnish, the content of the above-described component in the resin varnish can be, for example, 0.5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyimide precursor. .

(樹脂ワニスの製造方法)
上記樹脂ワニスの製造方法としては、例えばポリイミド前駆体の合成方法で説明したポリイミド前駆体が有機溶剤に溶解した溶液をそのまま上記樹脂ワニスとする方法が挙げられる。また、上記樹脂ワニスの製造方法としては、例えば上記ポリイミド前駆体が有機溶剤に溶解した溶液からポリイミド前駆体を精製した後に、得られた精製ポリイミド前駆体と有機溶剤等の他の成分とを混合する方法も挙げられる。
(Production method of resin varnish)
Examples of the method for producing the resin varnish include a method in which a solution in which the polyimide precursor described in the method for synthesizing a polyimide precursor is dissolved in an organic solvent is used as it is as the resin varnish. Moreover, as a manufacturing method of the said resin varnish, after refine | purifying a polyimide precursor from the solution which the said polyimide precursor melt | dissolved in the organic solvent, for example, the obtained purified polyimide precursor and other components, such as an organic solvent, are mixed. The method of doing is also mentioned.

[塗工工程]
本工程では、導体の外周側に後述する樹脂ワニスを塗工する。塗工方法としては、特に限定されないが、例えば上記樹脂ワニスを貯留した樹脂ワニス槽と塗工ダイスとを備える塗工装置を用いた方法等が挙げられる。この塗工装置によれば、導体が樹脂ワニス槽内を挿通することで上記樹脂ワニスが導体外周面に付着した後、塗工ダイスを通過することで上記樹脂ワニスが導体外周面に均一な厚さで塗工される。なお、本工程では、導体の外周面に上記樹脂ワニスを直接塗工してもよく、導体の外周面に予め密着改良層等の中間層を設けておき、その中間層の外周側に上記樹脂ワニスを塗工してもよい。
[Coating process]
In this step, a resin varnish described later is applied to the outer peripheral side of the conductor. Although it does not specifically limit as a coating method, For example, the method using the coating apparatus provided with the resin varnish tank which stored the said resin varnish, and the coating die is mentioned. According to this coating apparatus, after the conductor passes through the resin varnish tank, the resin varnish adheres to the outer peripheral surface of the conductor, and then passes through the coating die so that the resin varnish has a uniform thickness on the outer peripheral surface of the conductor. Now it is coated. In this step, the resin varnish may be applied directly to the outer peripheral surface of the conductor, and an intermediate layer such as an adhesion improving layer is provided in advance on the outer peripheral surface of the conductor, and the resin is applied to the outer peripheral side of the intermediate layer. Varnish may be applied.

なお、当該絶縁電線の製造方法で上記塗工工程及び加熱工程を繰り返す場合、複数の塗工工程のうち一部の塗工工程では、上記樹脂ワニス以外の樹脂ワニスを用いてもよい。   In addition, when repeating the said coating process and a heating process with the manufacturing method of the said insulated wire, you may use resin varnishes other than the said resin varnish in some coating processes among several coating processes.

[加熱工程]
本工程では、例えば上記樹脂ワニスを塗工した導体を加熱炉内で走行させる方法等により、導体に塗工された上記樹脂ワニスを加熱する。この加熱工程によって、上記樹脂ワニスが含有するポリイミド前駆体がイミド化されると共に有機溶剤等の揮発成分が除去され、導体の外周側に焼付層である絶縁層が積層される。加熱方法としては、特に限定されず、例えば熱風加熱、赤外線加熱、高周波加熱等の従来公知の方法により行うことができる。加熱温度としては、例えば350℃以上500℃以下とすることができる。加熱時間としては、例えば5秒以上100秒以下とすることができる。なお、上記樹脂ワニスを塗工した導体を加熱炉内で走行させることで加熱する場合、加熱炉内の設定温度を上記加熱温度と見なし、加熱炉の入口から出口までの距離を導体の線速で除した値を上記加熱時間と見なすものとする。
[Heating process]
In this step, the resin varnish coated on the conductor is heated by, for example, a method of running the conductor coated with the resin varnish in a heating furnace. By this heating step, the polyimide precursor contained in the resin varnish is imidized and volatile components such as an organic solvent are removed, and an insulating layer as a baking layer is laminated on the outer peripheral side of the conductor. It does not specifically limit as a heating method, For example, it can carry out by conventionally well-known methods, such as hot air heating, infrared heating, high frequency heating. As heating temperature, it can be 350 degreeC or more and 500 degrees C or less, for example. The heating time can be, for example, 5 seconds or more and 100 seconds or less. When the conductor coated with the resin varnish is heated by running in a heating furnace, the set temperature in the heating furnace is regarded as the heating temperature, and the distance from the inlet to the outlet of the heating furnace is defined as the conductor linear velocity. The value divided by is regarded as the heating time.

本工程で加熱を行うことにより、上記ポリイミド前駆体から示差走査熱量計で20℃/minの昇温条件において測定される結晶融解ピークの熱量が5J/g以下のポリイミドを形成する。ここで、ポリイミドの結晶構造は、ポリイミド前駆体のイミド化によりポリイミドが形成された段階で既に一定割合含まれている場合があり、また上記形成された高温のポリイミドが冷却される際に形成される場合もある。そのため、本工程では、上記結晶融解ピークの熱量を確実に5J/g以下とするため、以下の方法(A)〜方法(C)等を採用するとよい。すなわち、本工程では、上述のポリイミドが形成された段階で既に一定割合含まれている結晶構造を融解するため、加熱温度を400℃以上500℃以下と比較的高くする方法(A)、加熱時間を30秒以上100秒以下と比較的長くする方法(B)等を採用するとよい。また、本工程では、上述の高温のポリイミドが冷却される際に結晶構造が形成されることを抑制するため、加熱直後に絶縁層及び導体を急冷する方法(C)等を採用するとよい。上記急冷の方法としては、例えば上記絶縁層及び導体に送風する方法や、上記絶縁層及び導体を低温下(例えば0℃以上15℃以下)に曝露する方法等が挙げられる。但し、ポリイミドの結晶化のし易さは、ポリイミド前駆体の構造にも左右されるため、上述の方法(A)〜方法(C)等は必ずしも必要ではない。   By heating in this step, a polyimide having a crystal melting peak calorific value of 5 J / g or less is measured from the above polyimide precursor with a differential scanning calorimeter at a temperature rising condition of 20 ° C./min. Here, the crystal structure of the polyimide may already be included in a certain proportion when the polyimide is formed by imidation of the polyimide precursor, and is formed when the formed high temperature polyimide is cooled. There is also a case. Therefore, in this step, the following method (A) to method (C) may be employed in order to ensure that the heat amount of the crystal melting peak is 5 J / g or less. That is, in this step, a method (A) in which the heating temperature is relatively high at 400 ° C. or more and 500 ° C. or less in order to melt the crystal structure already contained in a certain proportion at the stage where the polyimide is formed, and the heating time It is preferable to adopt a method (B) or the like in which the time is relatively long as 30 seconds or more and 100 seconds or less. In this step, in order to suppress the formation of a crystal structure when the above-described high-temperature polyimide is cooled, a method (C) for rapidly cooling the insulating layer and the conductor immediately after heating may be employed. Examples of the rapid cooling method include a method of blowing air to the insulating layer and the conductor, and a method of exposing the insulating layer and the conductor to a low temperature (for example, 0 ° C. or more and 15 ° C. or less). However, since the ease of crystallization of polyimide depends on the structure of the polyimide precursor, the above-described method (A) to method (C) are not necessarily required.

当該絶縁電線の製造方法で上記塗工工程及び加熱工程を繰り返す場合、上記塗工工程及び加熱工程を繰り返す回数としては、例えば2回以上200回以下とすることができる。   When repeating the said coating process and a heating process with the manufacturing method of the said insulated wire, as a frequency | count of repeating the said coating process and a heating process, it can be 2 times or more and 200 times or less, for example.

[その他の実施形態]
上記開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The

以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

なお、本実施例において、ポリイミドの結晶融解ピークの熱量の測定は、示差走査熱量計(セイコーインスツル社の「DSC7020」)を用いて行った。   In this example, the calorific value of the crystal melting peak of polyimide was measured using a differential scanning calorimeter (“DSC7020” manufactured by Seiko Instruments Inc.).

<樹脂ワニスの調製>
[樹脂ワニスV1の調製]
4,4’−ODA100モル%をN−メチル−2−ピロリドンに溶解させた後、得られた溶液にPMDA10モル%及び3,3’,4,4’−BPDA90モル%を加え、窒素雰囲気下で撹拌した。その後、撹拌しながら80℃で3時間反応させた後、室温に冷却することにより、有機溶剤としてのN−メチル−2−ピロリドンにポリイミド前駆体が溶解している樹脂ワニスV1を調製した。この樹脂ワニスV1中のポリイミド前駆体濃度は30質量%とした。
<Preparation of resin varnish>
[Preparation of resin varnish V1]
After 100 mol% of 4,4′-ODA was dissolved in N-methyl-2-pyrrolidone, 10 mol% of PMDA and 90 mol% of 3,3 ′, 4,4′-BPDA were added to the resulting solution, and a nitrogen atmosphere was added. Stir with. Then, after making it react at 80 degreeC for 3 hours, stirring, the resin varnish V1 in which the polyimide precursor was melt | dissolving in N-methyl-2-pyrrolidone as an organic solvent was prepared. The polyimide precursor concentration in the resin varnish V1 was 30% by mass.

[樹脂ワニスV2〜V8の調製]
原料の種類及び使用量を表1に示す通りとした以外は、樹脂ワニスV1の調製と同様に操作し、樹脂ワニスV2〜V5及びV8を調製した。また、原料の種類及び使用量を表1に示す通りとし、かつPMDAの使用量増加によるゲル化の抑制のために反応温度を50℃で4時間とした以外は、樹脂ワニスV1の調製と同様に操作し、樹脂ワニスV6及びV7を調製した。
[Preparation of resin varnishes V2 to V8]
Resin varnishes V2 to V5 and V8 were prepared in the same manner as in the preparation of the resin varnish V1, except that the types and amounts used of the raw materials were as shown in Table 1. Moreover, it was the same as that of preparation of resin varnish V1 except having made the kind and usage-amount of a raw material as shown in Table 1, and having made reaction temperature into 50 degreeC for 4 hours in order to suppress the gelation by the usage-amount increase of PMDA. Resin varnishes V6 and V7 were prepared.

<絶縁電線の製造>
[絶縁電線No.1の製造]
銅を主成分とする平均径1mmの丸線を導体として用意した。樹脂ワニスV1を上記導体の外周面に塗工する工程と、上記樹脂ワニスを塗工した導体を加熱温度400℃、加熱時間30秒の条件で加熱炉により加熱する工程とを10回ずつ繰り返し行うことで、上記導体と、この導体の外周面に積層される平均厚さ35μmの絶縁層とを備える絶縁電線No.1を得た。絶縁電線No.1から絶縁層を採取してDSC測定を行ったところ、主成分であるポリイミドの結晶融解熱量は0.0J/gであった。
<Manufacture of insulated wires>
[Insulated wire No. Production of 1]
A round wire having an average diameter of 1 mm mainly composed of copper was prepared as a conductor. The step of coating the resin varnish V1 on the outer peripheral surface of the conductor and the step of heating the conductor coated with the resin varnish in a heating furnace at a heating temperature of 400 ° C. for a heating time of 30 seconds are repeated 10 times. Thus, an insulated wire No. provided with the conductor and an insulating layer having an average thickness of 35 μm laminated on the outer peripheral surface of the conductor. 1 was obtained. Insulated wire No. When the insulating layer was sampled from 1 and subjected to DSC measurement, the heat of crystal fusion of the main component polyimide was 0.0 J / g.

[絶縁電線No.2〜9の製造]
使用した樹脂ワニスと加熱工程での加熱炉の設定温度とを表1に示す通りとした以外は絶縁電線No.1の製造と同様に操作し、絶縁電線No.2〜9を製造した。表1には、DSCによって測定した絶縁電線No.2〜9の絶縁層の主成分であるポリイミドの結晶融解熱量をあわせて示す。
[Insulated wire No. Production of 2-9]
Insulated wire No. 1 was used except that the resin varnish used and the set temperature of the heating furnace in the heating step were as shown in Table 1. 1 and the insulated wire No. 2-9 were produced. Table 1 shows the insulated wire No. measured by DSC. The crystal melting heat amount of polyimide which is the main component of 2 to 9 insulating layers is also shown.

<評価>
絶縁電線No.1〜9を用いて絶縁層の耐湿熱劣化性、曲げ加工性及び外観性を評価した。評価結果を表1に示す。
<Evaluation>
Insulated wire No. 1-9 were used to evaluate the heat and humidity resistance, bending workability and appearance of the insulating layer. The evaluation results are shown in Table 1.

[耐湿熱劣化性]
絶縁層の耐湿熱劣化性は、絶縁電線を長手方向に10%伸長しつつ、温度85℃、相対95%、750時間の条件で湿熱処理を行い、処理後の絶縁電線を目視で観察して表面に亀裂が観察されなかった場合を「A(良好)」、表面に亀裂が観察された場合を「B(良好でない)」とした。
[Heat and heat resistance]
The wet heat resistance of the insulating layer is determined by performing wet heat treatment under the conditions of a temperature of 85 ° C., a relative of 95% and 750 hours while the insulated wire is stretched 10% in the longitudinal direction, and visually observing the insulated wire after the treatment. The case where no crack was observed on the surface was “A (good)”, and the case where a crack was observed on the surface was “B (not good)”.

[曲げ加工性]
絶縁層の曲げ加工性は、絶縁電線を90°に折り曲げてその状態で10秒間保持した後、折り曲げ箇所の絶縁層を目視で確認し、層間剥離が確認されなかった場合を「A(良好)」、層間剥離が確認された場合を「B(良好でない)」と判断した。
[Bending workability]
Bending workability of the insulating layer is determined by “A (good)” when the insulated wire is bent at 90 ° and held in that state for 10 seconds, and then the insulating layer at the bent portion is visually checked and no delamination is confirmed. The case where delamination was confirmed was judged as “B (not good)”.

[外観性]
絶縁層の外観性は、絶縁電線の絶縁層の外観を目視で観察し、白濁、色ムラ等が生じている場合を「B(良好でない)」、白濁、色ムラ等が生じていない場合を「A(良好)」と判断した。
[Appearance]
The appearance of the insulating layer is determined by visually observing the appearance of the insulating layer of the insulated wire, when white turbidity, color unevenness, etc. occurs, when it is “B (not good)”, when no white turbidity, color unevenness, etc. occurs. It was judged as “A (good)”.

Figure 2018116850
Figure 2018116850

表1から明らかなように、No1及びNo.3〜5の絶縁電線の絶縁層は、主成分であるポリイミドが特定量のBPDAを原料として用いたポリイミド前駆体に由来し、かつ結晶融解ピークの熱量が一定以下であるため、外観性、曲げ加工性及び耐湿熱劣化性が優れていた。一方、No.2及びNo.6〜9の絶縁電線の絶縁層は、上記BPDAの使用量が少なすぎるか、上記結晶融解ピークの熱量が高すぎるか、又はその両方により、形成される絶縁層の外観性、曲げ加工性及び耐湿熱劣化性のうちのいずれかが不十分であった。   As is apparent from Table 1, No1 and No.1. The insulation layer of the insulated wires of 3 to 5 is derived from a polyimide precursor in which the main component polyimide is a specific amount of BPDA as a raw material, and the heat amount of the crystal melting peak is below a certain level. Workability and wet heat resistance were excellent. On the other hand, no. 2 and no. The insulation layer of the insulated wires of 6 to 9 has the appearance of the insulation layer formed, the bending workability and the amount of heat of the BPDA is too small, the heat of the crystal melting peak is too high, or both. Any of the resistance to wet heat degradation was insufficient.

本発明の一態様に係る絶縁電線及びその製造方法は、絶縁層の外観性、曲げ加工性及び耐湿熱劣化性に優れる絶縁電線を提供できる。
The insulated wire and the method for manufacturing the insulated wire according to one embodiment of the present invention can provide an insulated wire that is excellent in appearance, bending workability, and wet heat resistance.

Claims (4)

導体と、
この導体の外周側に積層される1又は複数の絶縁層と
を備える絶縁電線であって、
上記絶縁層のうち少なくとも1層が、芳香族テトラカルボン酸二無水物及び芳香族ジアミンの反応生成物であるポリイミド前駆体に由来し、かつ示差走査熱量計で20℃/minの昇温条件において測定される結晶融解ピークの熱量が5J/g以下であるポリイミドを主成分とし、
上記芳香族テトラカルボン酸二無水物がビフェニルテトラカルボン酸二無水物を含み、
上記芳香族テトラカルボン酸二無水物100モル%に対するビフェニルテトラカルボン酸二無水物の含有量が25モル%以上95モル%以下である絶縁電線。
Conductors,
1 or a plurality of insulating layers laminated on the outer peripheral side of the conductor,
At least one of the insulating layers is derived from a polyimide precursor which is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine, and at a temperature rising condition of 20 ° C./min with a differential scanning calorimeter. The main component is a polyimide whose calorie of the measured crystal melting peak is 5 J / g or less,
The aromatic tetracarboxylic dianhydride includes biphenyltetracarboxylic dianhydride,
An insulated wire in which the content of biphenyltetracarboxylic dianhydride is 25 mol% or more and 95 mol% or less with respect to 100 mol% of the aromatic tetracarboxylic dianhydride.
上記芳香族テトラカルボン酸二無水物がピロメリット酸二無水物をさらに含み、
上記芳香族テトラカルボン酸二無水物100モル%に対するピロメリット酸二無水物の含有量が5モル%以上75モル%以下である請求項1に記載の絶縁電線。
The aromatic tetracarboxylic dianhydride further comprises pyromellitic dianhydride,
The insulated wire according to claim 1, wherein the content of pyromellitic dianhydride with respect to 100 mol% of the aromatic tetracarboxylic dianhydride is 5 mol% or more and 75 mol% or less.
上記芳香族ジアミンがジアミノジフェニルエーテルを含む請求項1又は請求項2に記載の絶縁電線。   The insulated wire according to claim 1 or 2, wherein the aromatic diamine contains diaminodiphenyl ether. 導体と、この導体の外周側に積層される1又は複数の絶縁層とを備える絶縁電線の製造方法であって、
上記導体の外周側に樹脂ワニスを塗工する塗工工程と、
上記塗工された樹脂ワニスを加熱する加熱工程と
を備え、
上記樹脂ワニスが芳香族テトラカルボン酸二無水物及び芳香族ジアミンの反応生成物であるポリイミド前駆体を含有し、
上記芳香族テトラカルボン酸二無水物がビフェニルテトラカルボン酸二無水物を含み、
上記芳香族テトラカルボン酸二無水物100モル%に対するビフェニルテトラカルボン酸二無水物の含有量が25モル%以上95モル%以下であり、
上記加熱工程で、上記ポリイミド前駆体から示差走査熱量計で20℃/minの昇温条件において測定される結晶融解ピークの熱量が5J/g以下であるポリイミドを形成する絶縁電線の製造方法。
A method for producing an insulated wire comprising a conductor and one or more insulating layers laminated on the outer peripheral side of the conductor,
A coating step of coating a resin varnish on the outer peripheral side of the conductor;
A heating step of heating the coated resin varnish,
The resin varnish contains a polyimide precursor that is a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine,
The aromatic tetracarboxylic dianhydride includes biphenyltetracarboxylic dianhydride,
The content of biphenyltetracarboxylic dianhydride with respect to 100 mol% of the aromatic tetracarboxylic dianhydride is 25 mol% or more and 95 mol% or less,
The manufacturing method of the insulated wire which forms the polyimide whose calorie | heat amount of the crystal melting peak measured on the temperature rising condition of 20 degree-C / min with the differential scanning calorimeter from the said polyimide precursor at the said heating process is 5 J / g or less.
JP2017007116A 2017-01-18 2017-01-18 Insulated wire and its manufacturing method Active JP6964412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017007116A JP6964412B2 (en) 2017-01-18 2017-01-18 Insulated wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017007116A JP6964412B2 (en) 2017-01-18 2017-01-18 Insulated wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018116850A true JP2018116850A (en) 2018-07-26
JP6964412B2 JP6964412B2 (en) 2021-11-10

Family

ID=62984276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017007116A Active JP6964412B2 (en) 2017-01-18 2017-01-18 Insulated wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6964412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021111448A (en) * 2020-01-06 2021-08-02 日立金属株式会社 Enamel wire and coating material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024884A (en) * 2006-07-25 2008-02-07 Toyobo Co Ltd Polyimide film
JP2014049377A (en) * 2012-09-03 2014-03-17 Hitachi Metals Ltd Insulated wire and coil using the same
JP2014082083A (en) * 2012-10-16 2014-05-08 Hitachi Metals Ltd Insulated wire and coil
WO2016121817A1 (en) * 2015-01-29 2016-08-04 宇部興産株式会社 Polyimide precursor composition, and process for producing insulating coating layer using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024884A (en) * 2006-07-25 2008-02-07 Toyobo Co Ltd Polyimide film
JP2014049377A (en) * 2012-09-03 2014-03-17 Hitachi Metals Ltd Insulated wire and coil using the same
JP2014082083A (en) * 2012-10-16 2014-05-08 Hitachi Metals Ltd Insulated wire and coil
WO2016121817A1 (en) * 2015-01-29 2016-08-04 宇部興産株式会社 Polyimide precursor composition, and process for producing insulating coating layer using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021111448A (en) * 2020-01-06 2021-08-02 日立金属株式会社 Enamel wire and coating material
JP7363488B2 (en) 2020-01-06 2023-10-18 株式会社プロテリアル Enameled wire and paint

Also Published As

Publication number Publication date
JP6964412B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
TWI736867B (en) Polyimide varnish and preparation method thereof, polyimide coating article and preparation method thereof, wire and eleectronic device
US11905431B2 (en) Polyimide varnish comprising aromatic carboxylic acid for conductor coating and manufacturing method therefor
TW202118816A (en) Polyimide film, method of producing the same, and multilayer film, flexible metal foil laminate and electronic component containing the same
JP2013049843A (en) Polyamide-imide resin insulating varnish and method of manufacturing the same, insulated wire, and coil
JP6394697B2 (en) Insulated wires and coils
KR101949316B1 (en) Polyamic Acid Composition with Improved Storage Stability, Method for Preparing Polyimide Film by Using the Same and Polyimide Film Prepared by the Same
JP2013253124A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JPWO2018230706A1 (en) Insulated wire
JP6865592B2 (en) Manufacturing method of resin varnish, insulated wire and insulated wire
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP7104162B2 (en) Polyamic acid composition for conductor coating
JP6964412B2 (en) Insulated wire and its manufacturing method
WO2020016954A1 (en) Resin varnish, insulated electric wire, and method for producing insulated electric wire
JP7179132B2 (en) insulated wire
JP6439062B2 (en) Insulated wire manufacturing method
KR102564595B1 (en) Polyamic Acid Composition and Polyimide Coating Material Comprising The Same
KR102564597B1 (en) Polyimide Coating Material
WO2023058288A1 (en) Resin composition and insulated wire
TWI810713B (en) Polyimide film, method of producing the same, multilayer film, flexible metal foil clad laminate and electronic component containing the same
JP7213805B2 (en) insulated wire
JP2017162769A (en) Insulation wire and manufacturing method therefor
TW202346423A (en) Polyimide film, method for producing the same, flexible metal foil clad laminate and electronic component comprising the same
TW202406989A (en) Polyimide film, manufacturing method of the same, flexible metal foil laminate and electronic components including the same
TW202315907A (en) Polyimide film, method for manufacturing the same, multilayer film and electronic component including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R150 Certificate of patent or registration of utility model

Ref document number: 6964412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150