WO2016121817A1 - Polyimide precursor composition, and process for producing insulating coating layer using same - Google Patents

Polyimide precursor composition, and process for producing insulating coating layer using same Download PDF

Info

Publication number
WO2016121817A1
WO2016121817A1 PCT/JP2016/052344 JP2016052344W WO2016121817A1 WO 2016121817 A1 WO2016121817 A1 WO 2016121817A1 JP 2016052344 W JP2016052344 W JP 2016052344W WO 2016121817 A1 WO2016121817 A1 WO 2016121817A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
precursor composition
polyamic acid
coating layer
polyimide precursor
Prior art date
Application number
PCT/JP2016/052344
Other languages
French (fr)
Japanese (ja)
Inventor
武史 寺田
剛成 中山
圭吾 長尾
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2016572103A priority Critical patent/JP6760083B2/en
Publication of WO2016121817A1 publication Critical patent/WO2016121817A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to a polyimide precursor composition capable of efficiently producing a polyimide insulating coating layer having excellent heat resistance, and a method for producing an insulating coating layer using the same.
  • Polyimide resin is known as a resin excellent in heat resistance and is widely used in various fields. For example, in addition to high heat resistance, it has a low dielectric constant and excellent mechanical properties, so it is used as an insulating layer for electric wires with high required properties.
  • Patent Document 1 discloses an insulating layer characterized in that an insulating layer obtained by imidizing polyamic acid obtained by reaction of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether is provided on a core wire. A covered electric wire is described, and it is described that this polyimide insulating covered electric wire has excellent resistance to thermal deterioration.
  • the polyimide may become crystalline depending on the combination of the tetracarboxylic acid component and the diamine component, and as a result, the conditions for imidizing the polyamic acid that is the polyimide precursor may be limited.
  • the conditions for imidizing the polyamic acid that is the polyimide precursor may be limited.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the tetracarboxylic acid component, a crystalline polyimide resin can be easily obtained, and depending on imidization conditions, particularly rapid If imidization is attempted by a short heat treatment by increasing the temperature, partial crystallization is likely to occur.
  • productivity is increased by increasing the temperature rise rate. In some cases, it could not be increased.
  • Patent Document 2 describes a method that can form a polyimide insulating coating layer without causing crystallization even if the step is performed. Specifically, it is a method for producing a polyimide insulating coating layer including a step of applying and baking a polyimide precursor composition to a substrate, wherein the polyimide precursor composition is 3,3 ′, 4 as a tetracarboxylic acid component.
  • the present invention relates to a polyamic acid which is a combination of a tetracarboxylic acid component and a diamine component, which easily gives crystalline polyimide, and in particular, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component. It is an object of the present invention to provide a method for forming a polyimide insulating coating layer without imperfection even if rapid temperature rise is performed in a method for producing a polyimide insulating coating layer by imidizing polyamic acid using a polyamic acid. To do.
  • the present invention provides a polyimide precursor composition (polyamic acid composition) capable of forming a polyimide resin insulation coating layer having excellent heat resistance and mechanical properties in a short time without causing crystallization.
  • Another object of the present invention is to provide an industrially advantageous method for producing an insulating coating layer using the same.
  • a polyimide precursor composition comprising a polyamic acid, a solvent, and a phosphorus compound,
  • the polyamic acid contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, and their total content is
  • a polyamic acid obtained from a tetracarboxylic acid component of 50 to 100 mol% and a diamine component containing 50 to 100 mol% of 4,4′-diaminodiphenyl ether;
  • the phosphorus compound is at least one selected from the group consisting of a phosphate ester and a phosphorus compound represented by the following general formula (1),
  • the polyamic acid is capable of producing a polyimide film having a water vapor transmission coefficient larger than 1.0 g ⁇ mm / (m 2 ⁇ 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500
  • R 1 is an alkylene group having 1 to 6 carbon atoms, and R 2 is a phenyl group or a cyclohexyl group.
  • a method for producing a polyimide insulating coating layer comprising a step of applying and baking a polyimide precursor composition on a substrate,
  • the polyimide precursor composition includes a polyamic acid, a solvent, and a phosphorus compound
  • the polyamic acid contained in the polyimide precursor composition includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride.
  • the phosphorus compound is at least one selected from the group consisting of a phosphate ester and a phosphorus compound represented by the following general formula (1),
  • the polyamic acid can produce a polyimide film having a water vapor transmission coefficient larger than 1.0 g ⁇ mm / (m 2 ⁇ 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C.
  • the time for heating the polyimide precursor composition is 10 to 180 seconds,
  • the average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more,
  • a polyimide insulation coating layer, a polyimide layer, a polyimide coating, and a polyimide film refer to what consists mainly of a polyimide, and the thing containing phosphorus etc. is also contained.
  • a polyimide precursor composition capable of forming a polyimide resin insulating coating layer having excellent heat resistance and mechanical properties in a short time without causing crystallization.
  • an insulating coating layer of a polyimide resin having excellent heat resistance and mechanical properties can be formed in a short time without causing crystallization.
  • the polyimide precursor composition of the present invention it is possible to form a highly reliable insulating coating layer that is particularly suppressed in thermal decomposition at high temperatures and excellent in adhesive strength with a substrate. .
  • the polyimide precursor composition of the present invention and the method for producing an insulating coating layer of the present invention using the polyimide precursor composition can be suitably applied particularly to the production of insulated wires, have excellent heat resistance, and have defects in the insulating coating layer. This makes it possible to efficiently manufacture a highly reliable insulated wire that does not have any.
  • the polyimide precursor composition of the present invention is characterized by using a specific polyamic acid that gives a polyimide film having a specific water vapor transmission coefficient, and further adding a specific phosphorus compound.
  • the polyamic acid used in the present invention contains a tetracarboxylic acid component (the tetracarboxylic acid component includes a tetracarboxylic dianhydride) and a diamine component in a solvent, for example, water or an organic solvent, or water. It can be obtained by reacting in a mixed solvent of organic solvents.
  • This polyamic acid is obtained from a tetracarboxylic acid component containing 50 to 100 mol% of biphenyltetracarboxylic dianhydride and a diamine component containing 50 to 100 mol% of 4,4′-diaminodiphenyl ether.
  • Biphenyltetracarboxylic dianhydride is a generic term including a plurality of isomers, and includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic Acid dianhydrides and 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydrides are included therein.
  • the polyamic acid is heated at a maximum heating temperature of 300 to 500 ° C., and in particular, the temperature is raised from room temperature (25 ° C.) to 400 ° C. over 30 minutes.
  • a polyimide film having a water vapor transmission coefficient larger than 1.0 g ⁇ mm / (m 2 ⁇ 24 h) can be produced.
  • the tetracarboxylic acid component used in the present invention includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride,
  • the total content of is preferably 50 to 100 mol%.
  • 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in an amount of 50 mol% or more.
  • biphenyltetracarboxylic acid other than 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is used as the tetracarboxylic acid component.
  • 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, which is an acid dianhydride may be used within a range of 50 mol% or less, or a tetracarboxylic acid other than biphenyltetracarboxylic dianhydride You may use a component (tetracarboxylic dianhydride) in 50 mol% or less.
  • the tetracarboxylic dianhydride that can be used in combination with biphenyltetracarboxylic dianhydride in the present invention is not particularly limited, but aromatic tetracarboxylic dianhydrides and alicyclic rings are obtained from the properties of the resulting polyimide.
  • the formula tetracarboxylic dianhydride is preferred.
  • pyromellitic dianhydride 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, oxydiphthalic dianhydride, diphenyl sulfone tetracarboxylic dianhydride, p-terphenyl tetracarboxylic dianhydride
  • Anhydrous, m-terphenyltetracarboxylic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, etc. are preferred Can be mentioned.
  • tetracarboxylic acid component other than biphenyltetracarboxylic dianhydride it is particularly preferable to use 4,4′-oxydiphthalic dianhydride or pyromellitic dianhydride because of the characteristics of the resulting polyimide.
  • the tetracarboxylic dianhydride described above need not be one kind, and may be a mixture of plural kinds.
  • the diamine component used in the present invention contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether, and other diamines can be used in the range of 50 mol% or less.
  • Other diamines include, but are not limited to, 4,4′-diaminodiphenylmethane, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 1,3-bis (4-aminophenoxy) Benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, m-xylylenediamine, p-xylylenediamine, 2,2-bis Aromatics such as [4- (4-aminophenoxy) phenyl] propane, 4,4′-methylenebis (2,6-xylidine), ⁇ , ⁇ ′-bis (4-aminophenyl) -1
  • the polyamic acid used in the present invention is heated at a maximum heating temperature of 300 to 500 ° C., and in particular, the temperature is raised from room temperature (25 ° C.) to 400 ° C. over 30 minutes. It is necessary to be able to produce a polyimide film having a water vapor transmission coefficient larger than 1.0 g ⁇ mm / (m 2 ⁇ 24 h) by heat treatment for 10 minutes. In particular, it is preferable that a polyimide film having a water vapor transmission coefficient larger than 1.2 g ⁇ mm / (m 2 ⁇ 24 h) can be produced. If the water vapor transmission coefficient of the resulting polyimide film is smaller than this, partial crystallization will occur when imidization is performed by a short heat treatment with rapid temperature rise in the production of the polyimide insulation coating layer. easy.
  • the polyamic acid used in the polyimide precursor composition of the present invention provides a polyimide resin that is easily permeable to gas, the solvent is likely to evaporate, and the problem of crystallization under conditions where the rate of temperature increase is high is less likely to occur.
  • Examples of the polyamic acid having a water vapor transmission coefficient larger than 1.0 g ⁇ mm / (m 2 ⁇ 24 h) of the polyimide film obtained by heat treatment under a condition where the maximum heating temperature is 300 to 500 ° C. include, for example, 3, A tetracarboxylic acid component composed of 3 ', 4,4'-biphenyltetracarboxylic dianhydride and 2,3,3', 4'-biphenyltetracarboxylic dianhydride, and 4,4'-diaminodiphenyl ether A polyamic acid composed of a diamine component is preferred.
  • the content of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the tetracarboxylic acid component is 95 to 50 mol%, and 2,3,3 ′, 4′-biphenyltetracarboxylic acid. More preferably, the dianhydride content is 5 to 50 mol%.
  • the polyamic acid used in the present invention reacts with an approximately equimolar amount of tetracarboxylic dianhydride and diamine in a solvent at a relatively low temperature of 100 ° C. or lower, preferably 80 ° C. or lower in order to suppress the imidization reaction. By making it, it can be obtained as a polyamic acid solution.
  • the reaction temperature is usually 25 ° C. to 100 ° C., preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C.
  • the reaction time is about 0.1 to 24 hours, preferably About 2 to 12 hours.
  • the reaction can be carried out in an air atmosphere, but is usually suitably carried out in an inert gas, preferably a nitrogen gas atmosphere.
  • the approximately equimolar tetracarboxylic dianhydride and diamine are specifically about 0.90 to 1.10, preferably 0.95 to about their molar ratio [tetracarboxylic dianhydride / diamine]. It is about 1.05.
  • the solvent used in the present invention may be any solvent as long as it can polymerize polyamic acid, and may be an aqueous solvent or an organic solvent.
  • the solvent may be a mixture of two or more, and a mixed solvent of two or more organic solvents or a mixed solvent of water and one or more organic solvents can also be suitably used.
  • the organic solvent that can be used in the present invention is not particularly limited.
  • the solvent used for this reaction can be a solvent contained in the polyimide precursor composition of the present invention.
  • the polyamic acid used in the present invention is not limited, but preferably has a logarithmic viscosity of 0.2 or more measured at a temperature of 30 ° C. and a concentration of 0.5 g / 100 mL.
  • a logarithmic viscosity is lower than the above range, it may be difficult to obtain a polyimide having high characteristics because the molecular weight of the polyamic acid is low.
  • the polyimide precursor composition used in the present invention is not limited in the solid content concentration due to the polyamic acid, but is preferably 5% by mass to 50% by mass, more preferably based on the total amount of the polyamic acid and the solvent. It is suitable to be 5% by mass to 45% by mass, more preferably 10% by mass to 45% by mass, and still more preferably more than 15% by mass to 40% by mass.
  • the solid content concentration is lower than 5% by mass, handling during use may be deteriorated, and when it is higher than 45% by mass, the fluidity of the solution may be lost.
  • the solution viscosity at 30 ° C. of the polyimide precursor composition used in the present invention is not limited, but is preferably 1000 Pa ⁇ sec or less, more preferably 0.5 to 500 Pa ⁇ sec, still more preferably 1 to 300 Pa ⁇ sec, Particularly preferably, the pressure is 2 to 200 Pa ⁇ sec.
  • the polyimide precursor composition of the present invention contains a phosphorus compound in addition to a polyamic acid and a solvent. Addition of the phosphorus compound suppresses thermal decomposition of the formed polyimide insulating coating layer at a high temperature, and also improves the adhesive strength with the substrate.
  • the phosphorus compound used in the present invention is preferably selected from the group consisting of a phosphate ester and a phosphorus compound represented by the following chemical formula (1).
  • R 1 is an alkylene group having 1 to 6 carbon atoms
  • R 2 is a phenyl group or a cyclohexyl group.
  • R 1 in the chemical formula (1) is preferably an alkylene group having 1 to 4 carbon atoms.
  • phosphorus compounds represented by the chemical formula (1) bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, Examples include 1,4-bis (diphenylphosphino) butane and 1,4-bis (dicyclohexylphosphino) butane.
  • the phosphoric acid ester is derived from phosphoric acid and alcohol, and the structure is not particularly limited.
  • the phosphate ester used in the present invention may be any of monoester, diester and triester, but is preferably derived from an aliphatic or aromatic alcohol having 1 to 18 carbon atoms. Monoesters and diesters may form salts with amines and the like.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and phosphate ester compounds represented by the following chemical formula (2) and salts thereof.
  • Examples of the compound that forms a salt with the phosphate ester compound represented by the following chemical formula (2) include an amine represented by the following chemical formula (3).
  • R 3 is a hydrogen atom, an alkyl group having 6 to 18 carbon atoms or a polyoxyethylene group, and R 4 is an alkyl group having 6 to 18 carbon atoms or a polyoxyethylene group.
  • R 5 , R 6 and R 7 are a hydrogen atom, a hydroxyethyl group or an alkyl group having 1 to 4 carbon atoms.
  • phosphate ester compound represented by following Chemical formula (4) can also be mentioned as phosphate ester used by this invention.
  • R 8 is a C 3-12 organic group having a reactive functional group.
  • R 8 in the chemical formula (4) is a reactive functional group, specifically, an organic group having 3 to 12 carbon atoms having a carbon-carbon unsaturated bond, and R 8 includes acryloyl group, methacryloyl group, acryloyloxy, and the like. Examples thereof include an ethyl group and a methacryloyloxyethyl group.
  • phosphate ester compound represented by the chemical formula (4) examples include 2- (methacryloyloxy) ethyl phosphate and bis (2- (methacryloyloxy) ethyl phosphate).
  • these phosphorus compounds may be used alone or in combination of two or more. Further, other phosphorus compounds may be used in combination.
  • the addition amount of the phosphorus compound in the polyimide precursor composition is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass with respect to the mass of the polyamic acid.
  • concentration of the phosphorus compound in the polyimide precursor composition is too small, it becomes difficult to sufficiently obtain the effect of suppressing thermal decomposition in a temperature range of 400 ° C. or higher.
  • concentration of the phosphorus compound is too high, a large amount of phosphorus remains in the resulting polyimide insulation coating layer, which may cause volatile components (outgas), which is not preferable.
  • the phosphorus compound may be added before or after the polyamic acid is prepared. That is, after the tetracarboxylic acid component and the diamine component are reacted in a solvent to obtain a polyamic acid solution, a phosphorus compound is added thereto to obtain the polyimide precursor composition of the present invention containing the phosphorus compound. Can do. Also, the polyimide precursor of the present invention containing a phosphorus compound can be obtained by adding a tetracarboxylic acid component, a diamine component, and a phosphorus compound to a solvent and reacting the tetracarboxylic acid component and the diamine component in the solvent in the presence of the phosphorus compound. A body composition can be obtained.
  • the polyimide precursor composition is converted into polyimide by removing the solvent by heat treatment and imidizing (dehydrating ring closure).
  • a polyimide insulating coating layer is obtained. Therefore, it is possible to employ a process of raising the temperature in a short time and baking at a high temperature.
  • the time for heating the polyimide precursor composition is 10 to 180 seconds, and the average temperature increase rate from 100 ° C. to 280 ° C. In this process, the temperature is raised under the condition of 5 ° C./s or more, and the maximum heating temperature is 300 to 500 ° C.
  • a polyimide insulating coating layer is formed by applying a polyimide precursor composition containing a polyamic acid, a solvent and a phosphorus compound as described above to a substrate by a known method and heating (baking).
  • the time for heating the polyimide precursor composition (when heated in a heating furnace, the time in the heating furnace) is 10 to 180 seconds, and the average temperature increase rate from 100 ° C. to 280 ° C. is 5
  • the maximum heating temperature can be 300 to 500 ° C.
  • the upper limit of the average rate of temperature increase from 100 ° C. to 280 ° C. is not particularly limited, but for example, 50 ° C./s or less is preferable.
  • the average rate of temperature increase from 100 ° C. to 300 ° C. may be 5 ° C./s or more (ie, from 100 ° C. to 300 ° C. within 40 seconds).
  • the average rate of temperature increase up to 500 ° C. may be 5 ° C./s or more.
  • the average rate of temperature increase up to 100 ° C. is not particularly limited, but may be 5 ° C./s or more.
  • the temperature is increased from room temperature to the maximum heating temperature.
  • the temperature may be raised at a constant rate of temperature rise, the rate of temperature rise may be changed during the heat treatment, and the temperature may be raised stepwise.
  • the heat treatment for imidization can be performed, for example, in an air atmosphere or an inert gas atmosphere.
  • polyimide insulating coating layer can also be formed by heat-treating the polyimide precursor composition of the present invention under conditions other than those described above.
  • a base material is not specifically limited, According to a use, it selects suitably.
  • the thickness of the polyimide insulating coating layer to be formed is not particularly limited, and is appropriately selected according to the application.
  • the polyimide insulating coating layer obtained by the present invention is an insulating member (coating layer) having high voltage resistance, heat resistance, and moist heat resistance. Therefore, it can be particularly suitably used in the fields of electric / electronic parts, the automobile field, the aerospace field, etc., and can also be used in the fields of coils for HV car motors and micro motors.
  • Solid content concentration [% by mass] (w 2 / w 1 ) ⁇ 100 ⁇ Solution viscosity (rotational viscosity)> It measured at 30 degreeC using the Tokimec E-type viscosity meter.
  • s-BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • a-BPDA 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride
  • ODA 4,4′-diamino Diphenyl ether
  • NMP N-methyl-2-pyrrolidone
  • DPPE 1,2-bis (diphenylphosphino) ethane
  • TEP triethyl phosphate
  • Example 1 To a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas introduction / discharge tube, 300 g of NMP was added as a solvent, 60.08 g (0.3 mol) of ODA was added thereto, and the mixture was stirred at 50 ° C. for 1 hour, Dissolved. To this solution were added 70.61 g (0.24 mol) of s-BPDA, 17.65 g (0.06 mol) of a-BPDA, and 1.62 g (0.09 mol) of water, and the mixture was stirred at 50 ° C. for 3 hours.
  • a polyimide precursor composition having a partial concentration of 30.6% by mass and a solution viscosity of 7.0 Pa ⁇ s was obtained.
  • 3.37 g of DPPE 0.75% by mass with respect to the composition and 2.27% by mass with respect to the mass of polyamic acid
  • a phosphorus compound was added as a phosphorus compound to obtain a polyimide precursor composition.
  • This polyimide precursor composition was applied onto a polyimide film having a thickness of 50 ⁇ m, placed on a SUS plate heated to 350 ° C., and held for 1 minute to form an insulating coating layer (polyimide coating).
  • the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s).
  • Table 1 shows the evaluation results of state observation of the obtained insulating coating layer.
  • this polyimide precursor composition was applied on a glass plate as a substrate, heated from room temperature to 400 ° C. over 30 minutes, and heat-treated at 400 ° C. for 10 minutes to obtain a polyimide film having a thickness of 25 ⁇ m. It was.
  • the obtained polyimide coating (polyimide film) was peeled from the substrate, and the water vapor transmission coefficient and the weight change during heating at 490 ° C. were measured. The evaluation results are shown in Table 1.
  • this polyimide precursor composition was applied on a smooth surface of a copper foil having a thickness of 18 ⁇ m (manufactured by Mitsui Kinzoku Mining Co., Ltd., 3EC-VLP) so that the thickness of the resulting polyimide layer was 25 ⁇ m.
  • the temperature was raised to 30 ° C. over 30 minutes, and heat treatment was performed at 400 ° C. for 10 minutes to obtain a laminate.
  • the adhesive strength between a polyimide layer and copper foil was measured. The evaluation results are shown in Table 1.
  • Example 2 A polyimide precursor composition was prepared in the same manner as in Example 1 except that 6.74 g of DPPE (1.5% by mass with respect to the composition and 4.54% by mass with respect to the mass of polyamic acid) was used as the phosphorus compound. Then, the insulation coating layer on the polyimide film, the polyimide film, and the laminate composed of the polyimide layer and the copper foil were manufactured, and the state observation and the measurement / evaluation of the characteristics were performed. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
  • Example 3 3.37 g of JPA-514 (mixture of 2- (methacryloyloxy) ethyl phosphate and bis (2- (methacryloyloxy) ethyl phosphate)) manufactured by Johoku Chemical Co., Ltd. as a phosphorus compound (0.75 to the composition)
  • the polyimide precursor composition was prepared in the same manner as in Example 1 except that 2 mass% and 2.27 mass% based on the mass of the polyamic acid were used, and the production of an insulating coating layer on the polyimide film, the polyimide film And a laminate composed of a polyimide layer and a copper foil were prepared, and the state was observed and the characteristics were measured and evaluated.
  • the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
  • Example 4 A polyimide precursor in the same manner as in Example 1 except that 6.74 g of JPA-514 (1.5% by mass with respect to the composition and 4.54% by mass with respect to the mass of the polyamic acid) was used as the phosphorus compound.
  • the composition was prepared, and the insulation coating layer on the polyimide film, the polyimide film, and the laminate composed of the polyimide layer and the copper foil were manufactured, and the state observation and the measurement / evaluation of the properties were performed.
  • the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
  • Example 5 A polyimide precursor composition in the same manner as in Example 1 except that 3.37 g of TEP (0.75% by mass with respect to the composition and 2.27% by mass with respect to the mass of the polyamic acid) was used as the phosphorus compound. was prepared, and the insulation coating layer on the polyimide film was manufactured, the polyimide film was manufactured, and the laminate composed of the polyimide layer and the copper foil was manufactured, and the state was observed and the characteristics were measured and evaluated. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
  • Example 6 A polyimide precursor composition in the same manner as in Example 1 except that 6.74 g of TEP (1.5% by mass with respect to the composition and 4.54% by mass with respect to the mass of the polyamic acid) was used as the phosphorus compound. was prepared, and the insulation coating layer on the polyimide film was manufactured, the polyimide film was manufactured, and the laminate composed of the polyimide layer and the copper foil was manufactured, and the state was observed and the characteristics were measured and evaluated. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
  • Example 1 A polyimide precursor composition was prepared in the same manner as in Example 1 except that no phosphorus compound was added, and the production of an insulating coating layer on the polyimide film, the production of the polyimide film, and the laminate comprising the polyimide layer and the copper foil Manufacture was performed, state observation and measurement / evaluation of characteristics were performed. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.

Abstract

The present invention relates to a polyimide precursor composition for forming insulating polyimide coating layers, characterized by comprising a specific polyamic acid and a specific phosphorus compound. The composition is further characterized in that the polyamic acid is one which, when heated under such conditions that the maximum heating temperature is 300-500ºC, can produce a polyimide film having a coefficient of water vapor permeability higher than 1.0 g·mm/(m2·24h).

Description

ポリイミド前駆体組成物およびそれを用いた絶縁被覆層の製造方法Polyimide precursor composition and method for producing insulating coating layer using the same
 本発明は、優れた耐熱性を有するポリイミド絶縁被覆層を効率よく製造することができるポリイミド前駆体組成物、およびそれを用いた絶縁被覆層の製造方法に関する。 The present invention relates to a polyimide precursor composition capable of efficiently producing a polyimide insulating coating layer having excellent heat resistance, and a method for producing an insulating coating layer using the same.
 ポリイミド樹脂は、非常に耐熱性に優れた樹脂として知られており、様々な分野で広く利用されている。例えば、高い耐熱性に加えて、低誘電率で機械特性にも優れるため、要求特性の高い電線の絶縁層として用いられている。特許文献1には、芯線上に、ビフェニルテトラカルボン酸二無水物と4、4’-ジアミノジフェニルエーテルとの反応により得られるポリアミック酸をイミド化した絶縁層が設けられていることを特徴とする絶縁被覆電線が記載されており、このポリイミド絶縁被覆電線は、熱劣化に対する優れた抵抗性を有していることが記載されている。 Polyimide resin is known as a resin excellent in heat resistance and is widely used in various fields. For example, in addition to high heat resistance, it has a low dielectric constant and excellent mechanical properties, so it is used as an insulating layer for electric wires with high required properties. Patent Document 1 discloses an insulating layer characterized in that an insulating layer obtained by imidizing polyamic acid obtained by reaction of biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether is provided on a core wire. A covered electric wire is described, and it is described that this polyimide insulating covered electric wire has excellent resistance to thermal deterioration.
 ポリイミドは、テトラカルボン酸成分とジアミン成分の組み合わせによって結晶性となることがあり、その結果、ポリイミド前駆体であるポリアミック酸をイミド化する際の条件に制限が生じることがある。例えば、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いると、結晶性のポリイミド樹脂が得られ易く、イミド化の条件によっては、特に、急速な昇温による短時間の熱処理によりイミド化を行おうとすると、部分的な結晶化を起こし易い。そのため、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いたポリアミック酸をイミド化してポリイミド層を形成する場合、昇温速度を上げて生産性を高めることができない場合があった。 The polyimide may become crystalline depending on the combination of the tetracarboxylic acid component and the diamine component, and as a result, the conditions for imidizing the polyamic acid that is the polyimide precursor may be limited. For example, when 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the tetracarboxylic acid component, a crystalline polyimide resin can be easily obtained, and depending on imidization conditions, particularly rapid If imidization is attempted by a short heat treatment by increasing the temperature, partial crystallization is likely to occur. Therefore, when a polyimide layer is formed by imidizing polyamic acid using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component, productivity is increased by increasing the temperature rise rate. In some cases, it could not be increased.
 このようなテトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いたポリアミック酸をイミド化してポリイミド絶縁被覆層を形成する方法であって、急速な昇温を行っても、結晶化を起こすことなく、ポリイミド絶縁被覆層を形成できる方法が特許文献2に記載されている。具体的には、基材にポリイミド前駆体組成物を塗布、焼付けする工程を有するポリイミド絶縁被覆層の製造方法であって、ポリイミド前駆体組成物が、テトラカルボン酸成分として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いたポリアミック酸と、イミダゾール類及びアミン化合物からなる群より選択される塩基性化合物とを含み、かつ、焼付け工程において、ポリイミド前駆体組成物を加熱する時間が10~180秒間であり、100℃から280℃までの平均昇温速度が5℃/s以上であり、最高加熱温度が300~500℃であることを特徴とする絶縁被覆層の製造方法が特許文献2に記載されている。 A method of forming a polyimide insulating coating layer by imidizing polyamic acid using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component, Patent Document 2 describes a method that can form a polyimide insulating coating layer without causing crystallization even if the step is performed. Specifically, it is a method for producing a polyimide insulating coating layer including a step of applying and baking a polyimide precursor composition to a substrate, wherein the polyimide precursor composition is 3,3 ′, 4 as a tetracarboxylic acid component. , 4'-biphenyltetracarboxylic dianhydride and a basic compound selected from the group consisting of imidazoles and amine compounds, and heating the polyimide precursor composition in the baking step For 10 to 180 seconds, an average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more, and a maximum heating temperature is 300 to 500 ° C. A method is described in Patent Document 2.
特開昭61-273806号公報JP-A-61-273806 国際公開第2014/142173号パンフレットInternational Publication No. 2014/142173 Pamphlet
 本発明は、結晶性のポリイミドを与えやすいテトラカルボン酸成分とジアミン成分の組み合わせであるポリアミック酸、特に、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いたポリアミック酸をイミド化してポリイミド絶縁被覆層を形成するポリイミド絶縁被覆層の製造方法において、急速な昇温を行っても欠陥なくポリイミド絶縁被覆層を形成できる方法を提供することを目的とする。すなわち、本発明は、耐熱性、機械的特性に優れたポリイミド樹脂の絶縁被覆層を、結晶化を起こすことなく、短時間で形成できるポリイミド前駆体組成物(ポリアミック酸組成物)を提供すること、また、それを用いた工業的に有利な絶縁被覆層の製造方法を提供することを目的とする。 The present invention relates to a polyamic acid which is a combination of a tetracarboxylic acid component and a diamine component, which easily gives crystalline polyimide, and in particular, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as a tetracarboxylic acid component. It is an object of the present invention to provide a method for forming a polyimide insulating coating layer without imperfection even if rapid temperature rise is performed in a method for producing a polyimide insulating coating layer by imidizing polyamic acid using a polyamic acid. To do. That is, the present invention provides a polyimide precursor composition (polyamic acid composition) capable of forming a polyimide resin insulation coating layer having excellent heat resistance and mechanical properties in a short time without causing crystallization. Another object of the present invention is to provide an industrially advantageous method for producing an insulating coating layer using the same.
 本発明は以下の項に関する。
1. ポリアミック酸と溶媒とリン化合物とを含むポリイミド前駆体組成物であって、
 前記ポリアミック酸が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物とを含み、それらの合計含有量が50~100モル%であるテトラカルボン酸成分と、4,4’-ジアミノジフェニルエーテルを50~100モル%含むジアミン成分とから得られるポリアミック酸であり、
 前記リン化合物が、リン酸エステルおよび下記一般式(1)で表されるリン化合物からなる群から選ばれる少なくとも1種類であり、
 前記ポリアミック酸が、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.0g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものであることを特徴とする、ポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
The present invention relates to the following items.
1. A polyimide precursor composition comprising a polyamic acid, a solvent, and a phosphorus compound,
The polyamic acid contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, and their total content is A polyamic acid obtained from a tetracarboxylic acid component of 50 to 100 mol% and a diamine component containing 50 to 100 mol% of 4,4′-diaminodiphenyl ether;
The phosphorus compound is at least one selected from the group consisting of a phosphate ester and a phosphorus compound represented by the following general formula (1),
The polyamic acid is capable of producing a polyimide film having a water vapor transmission coefficient larger than 1.0 g · mm / (m 2 · 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. A polyimide precursor composition for forming a polyimide insulating coating layer.
Figure JPOXMLDOC01-appb-C000003
(式中、R1は、炭素数が1~6のアルキレン基であり、R2はフェニル基又はシクロヘキシル基である。)
2. テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~95モル%含む、前記項1に記載のポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 is an alkylene group having 1 to 6 carbon atoms, and R 2 is a phenyl group or a cyclohexyl group.)
2. 2. The polyimide precursor composition for forming a polyimide insulating coating layer according to item 1, wherein the tetracarboxylic acid component contains 50 to 95 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
3. 基材にポリイミド前駆体組成物を塗布、焼付けする工程を有するポリイミド絶縁被覆層の製造方法であって、
 ポリイミド前駆体組成物が、ポリアミック酸と溶媒とリン化合物とを含み、
ポリイミド前駆体組成物に含まれるポリアミック酸が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物とを含み、それらの合計含有量が50~100モル%であるテトラカルボン酸成分と、4,4’-ジアミノジフェニルエーテルを50~100モル%含むジアミン成分とから得られるポリアミック酸であり、
リン化合物が、リン酸エステルおよび下記一般式(1)で表されるリン化合物からなる群から選ばれる少なくとも1種類であり、
かつ、前記ポリアミック酸が、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.0g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものであり、
 焼付け工程において、
ポリイミド前駆体組成物を加熱する時間が10~180秒間であり、
100℃から280℃までの平均昇温速度が5℃/s以上であり、
最高加熱温度が300~500℃であることを特徴とする絶縁被覆層の製造方法。
3. A method for producing a polyimide insulating coating layer comprising a step of applying and baking a polyimide precursor composition on a substrate,
The polyimide precursor composition includes a polyamic acid, a solvent, and a phosphorus compound,
The polyamic acid contained in the polyimide precursor composition includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. A polyamic acid obtained from a tetracarboxylic acid component having a total content of 50 to 100 mol% and a diamine component containing 50 to 100 mol% of 4,4′-diaminodiphenyl ether,
The phosphorus compound is at least one selected from the group consisting of a phosphate ester and a phosphorus compound represented by the following general formula (1),
In addition, the polyamic acid can produce a polyimide film having a water vapor transmission coefficient larger than 1.0 g · mm / (m 2 · 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. And
In the baking process,
The time for heating the polyimide precursor composition is 10 to 180 seconds,
The average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more,
A method for producing an insulating coating layer, wherein the maximum heating temperature is 300 to 500 ° C.
Figure JPOXMLDOC01-appb-C000004
(式中、R1は、炭素数が1~6のアルキレン基であり、R2はフェニル基又はシクロヘキシル基である。)
4. テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~95モル%含む、前記項3に記載の絶縁被覆層の製造方法。
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 is an alkylene group having 1 to 6 carbon atoms, and R 2 is a phenyl group or a cyclohexyl group.)
4). 4. The method for producing an insulating coating layer according to item 3, wherein the tetracarboxylic acid component contains 50 to 95 mol% of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
 なお、本明細書において、ポリイミド絶縁被覆層、ポリイミド層、ポリイミド被膜、ポリイミドフィルムは、ポリイミドから主としてなるものを指し、リン等を含有するものも含まれる。 In addition, in this specification, a polyimide insulation coating layer, a polyimide layer, a polyimide coating, and a polyimide film refer to what consists mainly of a polyimide, and the thing containing phosphorus etc. is also contained.
 本発明により、耐熱性、機械的特性に優れたポリイミド樹脂の絶縁被覆層を、結晶化を起こすことなく、短時間で形成できるポリイミド前駆体組成物を提供することができる。本発明のポリイミド前駆体組成物を用いることにより、耐熱性、機械的特性に優れたポリイミド樹脂の絶縁被覆層を、結晶化を起こすことなく、短時間で形成することができる。また、本発明のポリイミド前駆体組成物を用いることにより、特に、高温における熱分解が抑制され、また、基材との接着強度に優れた、信頼性の高い絶縁被覆層を形成することができる。本発明のポリイミド前駆体組成物、およびそれを用いた本発明の絶縁被覆層の製造方法は、特に、絶縁電線の製造に好適に適用でき、優れた耐熱性を有するとともに、絶縁被覆層に欠陥がない、信頼性の高い絶縁電線を効率よく製造することができる。 According to the present invention, it is possible to provide a polyimide precursor composition capable of forming a polyimide resin insulating coating layer having excellent heat resistance and mechanical properties in a short time without causing crystallization. By using the polyimide precursor composition of the present invention, an insulating coating layer of a polyimide resin having excellent heat resistance and mechanical properties can be formed in a short time without causing crystallization. In addition, by using the polyimide precursor composition of the present invention, it is possible to form a highly reliable insulating coating layer that is particularly suppressed in thermal decomposition at high temperatures and excellent in adhesive strength with a substrate. . The polyimide precursor composition of the present invention and the method for producing an insulating coating layer of the present invention using the polyimide precursor composition can be suitably applied particularly to the production of insulated wires, have excellent heat resistance, and have defects in the insulating coating layer. This makes it possible to efficiently manufacture a highly reliable insulated wire that does not have any.
 本発明のポリイミド前駆体組成物は、特定の水蒸気透過係数を有するポリイミドフィルムを与える特定のポリアミック酸を用いること、さらに、特定のリン化合物を添加することを特徴とする。 The polyimide precursor composition of the present invention is characterized by using a specific polyamic acid that gives a polyimide film having a specific water vapor transmission coefficient, and further adding a specific phosphorus compound.
 本発明で用いるポリアミック酸は、テトラカルボン酸成分(テトラカルボン酸成分にはテトラカルボン酸二無水物も含まれる)とジアミン成分とを溶媒中で、例えば、水又は有機溶媒中で、又は水と有機溶媒の混合溶媒中で反応させることにより得られる。このポリアミック酸は、ビフェニルテトラカルボン酸二無水物を50~100モル%含むテトラカルボン酸成分と、4,4’-ジアミノジフェニルエーテルを50~100モル%含むジアミン成分とから得られるものである。ビフェニルテトラカルボン酸二無水物とは複数の異性体を含む総称であり、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、および2,2’,3,3’-ビフェニルテトラカルボン酸二無水物がこの中に含まれる。 The polyamic acid used in the present invention contains a tetracarboxylic acid component (the tetracarboxylic acid component includes a tetracarboxylic dianhydride) and a diamine component in a solvent, for example, water or an organic solvent, or water. It can be obtained by reacting in a mixed solvent of organic solvents. This polyamic acid is obtained from a tetracarboxylic acid component containing 50 to 100 mol% of biphenyltetracarboxylic dianhydride and a diamine component containing 50 to 100 mol% of 4,4′-diaminodiphenyl ether. Biphenyltetracarboxylic dianhydride is a generic term including a plurality of isomers, and includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic Acid dianhydrides and 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydrides are included therein.
 また、このポリアミック酸は、最高加熱温度を300~500℃とする条件下で加熱処理することにより、特には、室温(25℃)から400℃まで30分間かけて昇温し、400℃にて10分間加熱処理することにより、水蒸気透過係数が1.0g・mm/(m2・24h)より大きいポリイミドフィルムを製造することができるものである。 The polyamic acid is heated at a maximum heating temperature of 300 to 500 ° C., and in particular, the temperature is raised from room temperature (25 ° C.) to 400 ° C. over 30 minutes. By performing the heat treatment for 10 minutes, a polyimide film having a water vapor transmission coefficient larger than 1.0 g · mm / (m 2 · 24 h) can be produced.
 本発明で用いるテトラカルボン酸成分は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物とを含み、それらの合計含有量が50~100モル%であることが好ましい。特に、耐熱性や機械的特性の観点から、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50モル%以上用いるのが好ましい。前述のとおり、通常、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いる場合、急速な昇温による短時間の熱処理によりイミド化を行おうとすると、部分的な結晶化を起こし易いが、本発明によれば、急速な昇温を行っても、結晶化を起こすことなく、ポリイミド層を形成できる。テトラカルボン酸成分中の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の含有量は、より好ましくは50~95モル%である。 The tetracarboxylic acid component used in the present invention includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, The total content of is preferably 50 to 100 mol%. In particular, from the viewpoint of heat resistance and mechanical properties, it is preferable to use 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in an amount of 50 mol% or more. As described above, when 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is usually used as the tetracarboxylic acid component, imidization is attempted by a short heat treatment by rapid temperature increase. Although partial crystallization is likely to occur, according to the present invention, a polyimide layer can be formed without causing crystallization even when rapid temperature rise is performed. The content of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride in the tetracarboxylic acid component is more preferably 50 to 95 mol%.
 本発明では、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物および2,3,3’,4’-ビフェニルテトラカルボン酸二無水物以外のビフェニルテトラカルボン酸二無水物である、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物を50モル%以下の範囲で用いてもよいし、ビフェニルテトラカルボン酸二無水物以外のテトラカルボン酸成分(テトラカルボン酸二無水物)を50モル%以下の範囲で用いてもよい。本発明でビフェニルテトラカルボン酸二無水物と組み合わせて用いることができるテトラカルボン酸二無水物は、特に限定するものではないが、得られるポリイミドの特性から芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物が好ましい。例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、p-ターフェニルテトラカルボン酸二無水物、m-ターフェニルテトラカルボン酸二無水物、シクロブタン-1,2,3,4-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物などを好適に挙げることができる。ビフェニルテトラカルボン酸二無水物以外のテトラカルボン酸成分を用いる場合、なかでも、得られるポリイミドの特性から、4,4’-オキシジフタル酸二無水物またはピロメリット酸二無水物を用いることが特に好ましい。前述のテトラカルボン酸二無水物は一種である必要はなく、複数種の混合物であっても構わない。 In the present invention, as the tetracarboxylic acid component, biphenyltetracarboxylic acid other than 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride is used. 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, which is an acid dianhydride, may be used within a range of 50 mol% or less, or a tetracarboxylic acid other than biphenyltetracarboxylic dianhydride You may use a component (tetracarboxylic dianhydride) in 50 mol% or less. The tetracarboxylic dianhydride that can be used in combination with biphenyltetracarboxylic dianhydride in the present invention is not particularly limited, but aromatic tetracarboxylic dianhydrides and alicyclic rings are obtained from the properties of the resulting polyimide. The formula tetracarboxylic dianhydride is preferred. For example, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, oxydiphthalic dianhydride, diphenyl sulfone tetracarboxylic dianhydride, p-terphenyl tetracarboxylic dianhydride Anhydrous, m-terphenyltetracarboxylic dianhydride, cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, etc. are preferred Can be mentioned. When a tetracarboxylic acid component other than biphenyltetracarboxylic dianhydride is used, it is particularly preferable to use 4,4′-oxydiphthalic dianhydride or pyromellitic dianhydride because of the characteristics of the resulting polyimide. . The tetracarboxylic dianhydride described above need not be one kind, and may be a mixture of plural kinds.
 本発明で用いるジアミン成分は、前述のとおり、4,4’-ジアミノジフェニルエーテルを50~100モル%含み、さらに、その他のジアミンを50モル%以下の範囲で用いることもできる。その他のジアミンとしては、特に限定するものではないが、4,4’-ジアミノジフェニルメタン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、m-キシリレンジアミン、p-キシリレンジアミン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4’-メチレンビス(2,6-キシリジン)、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼンなどの芳香族ジアミン、へキサメチレンジアミン、へプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ジアミノプロピルテトラメチレン、3-メチルヘプタメチレンジアミン、2,11-ジアミノドデカン、1,12-ジアミノオクタデカンなどの脂肪族ジアミンを挙げることができる。前述のジアミンは一種である必要はなく、複数種の混合物であっても構わない。 As described above, the diamine component used in the present invention contains 50 to 100 mol% of 4,4′-diaminodiphenyl ether, and other diamines can be used in the range of 50 mol% or less. Other diamines include, but are not limited to, 4,4′-diaminodiphenylmethane, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 1,3-bis (4-aminophenoxy) Benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, m-xylylenediamine, p-xylylenediamine, 2,2-bis Aromatics such as [4- (4-aminophenoxy) phenyl] propane, 4,4′-methylenebis (2,6-xylidine), α, α′-bis (4-aminophenyl) -1,4-diisopropylbenzene Diamine, Hexamethylenediamine, Heptamethylenediamine, Octamethylenediamine, Nonamethylenediamine, Decamethyle And aliphatic diamines such as diamine, diaminopropyltetramethylene, 3-methylheptamethylenediamine, 2,11-diaminododecane, and 1,12-diaminooctadecane. The aforementioned diamine need not be a single type, and may be a mixture of a plurality of types.
 本発明で用いるポリアミック酸は、最高加熱温度を300~500℃とする条件下で加熱処理することにより、特には、室温(25℃)から400℃まで30分間かけて昇温し、400℃にて10分間加熱処理することにより、水蒸気透過係数が1.0g・mm/(m2・24h)より大きいポリイミドフィルムを製造できることが必要である。特に水蒸気透過係数が1.2g・mm/(m2・24h)より大きいポリイミドフィルムを製造できることが好ましい。得られるポリイミドフィルムの水蒸気透過係数がこれより小さい値であると、ポリイミド絶縁被覆層の製造において、急速な昇温による短時間の熱処理によりイミド化を行おうとする際に部分的な結晶化を起こし易い。 The polyamic acid used in the present invention is heated at a maximum heating temperature of 300 to 500 ° C., and in particular, the temperature is raised from room temperature (25 ° C.) to 400 ° C. over 30 minutes. It is necessary to be able to produce a polyimide film having a water vapor transmission coefficient larger than 1.0 g · mm / (m 2 · 24 h) by heat treatment for 10 minutes. In particular, it is preferable that a polyimide film having a water vapor transmission coefficient larger than 1.2 g · mm / (m 2 · 24 h) can be produced. If the water vapor transmission coefficient of the resulting polyimide film is smaller than this, partial crystallization will occur when imidization is performed by a short heat treatment with rapid temperature rise in the production of the polyimide insulation coating layer. easy.
 ここで、イミド化過程における結晶化について説明する。イミド化過程においては、溶媒の蒸発とイミド化反応が平行して起こる。昇温速度が大きいと、イミド化反応の進行に対して溶媒の蒸発量が少なくなり、残存溶媒量が比較的多くなる。ポリアミック酸のイミド化が進行してイミド結合が生成すると、分子鎖の溶媒に対する溶解性が小さくなる。そのため、残存溶媒量が比較的多い状態では、分子鎖が結晶化して析出しやすくなる。一方、昇温速度が小さい場合、イミド化反応の進行に対して溶媒の蒸発量が多くなり、残存溶媒が少ないため、結晶化が起こりにくい。本発明のポリイミド前駆体組成物に用いるポリアミック酸からは気体を透過しやすいポリイミド樹脂が得られるため、溶媒が蒸発し易く、昇温速度が大きい条件における結晶化の問題が起こりにくくなる。 Here, crystallization in the imidization process will be described. In the imidization process, solvent evaporation and imidization reaction occur in parallel. When the rate of temperature increase is large, the amount of solvent evaporation decreases with the progress of the imidization reaction, and the amount of residual solvent increases relatively. As the imidization of the polyamic acid proceeds and an imide bond is generated, the solubility of the molecular chain in the solvent decreases. Therefore, in a state where the amount of residual solvent is relatively large, the molecular chain is easily crystallized and precipitated. On the other hand, when the rate of temperature rise is low, the amount of solvent evaporation increases with the progress of the imidization reaction, and the residual solvent is small, so that crystallization hardly occurs. Since the polyamic acid used in the polyimide precursor composition of the present invention provides a polyimide resin that is easily permeable to gas, the solvent is likely to evaporate, and the problem of crystallization under conditions where the rate of temperature increase is high is less likely to occur.
 最高加熱温度を300~500℃とする条件下で加熱処理することにより得られるポリイミドフィルムの水蒸気透過係数が1.0g・mm/(m2・24h)より大きいポリアミック酸としては、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物からなるテトラカルボン酸成分と、4,4’-ジアミノジフェニルエーテルからなるジアミン成分で構成されるポリアミック酸が好ましい。この場合、テトラカルボン酸成分中の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の含有量が95~50モル%、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物の含有量が5~50モル%であることがさらに好ましい。 Examples of the polyamic acid having a water vapor transmission coefficient larger than 1.0 g · mm / (m 2 · 24 h) of the polyimide film obtained by heat treatment under a condition where the maximum heating temperature is 300 to 500 ° C. include, for example, 3, A tetracarboxylic acid component composed of 3 ', 4,4'-biphenyltetracarboxylic dianhydride and 2,3,3', 4'-biphenyltetracarboxylic dianhydride, and 4,4'-diaminodiphenyl ether A polyamic acid composed of a diamine component is preferred. In this case, the content of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in the tetracarboxylic acid component is 95 to 50 mol%, and 2,3,3 ′, 4′-biphenyltetracarboxylic acid. More preferably, the dianhydride content is 5 to 50 mol%.
 本発明で用いるポリアミック酸は、略等モルのテトラカルボン酸二無水物とジアミンとを、溶媒中で、イミド化反応を抑制するために100℃以下、好ましくは80℃以下の比較的低温で反応させることにより、ポリアミック酸溶液として得ることができる。 The polyamic acid used in the present invention reacts with an approximately equimolar amount of tetracarboxylic dianhydride and diamine in a solvent at a relatively low temperature of 100 ° C. or lower, preferably 80 ° C. or lower in order to suppress the imidization reaction. By making it, it can be obtained as a polyamic acid solution.
 限定するものではないが、通常、反応温度は25℃~100℃、好ましくは40℃~80℃、より好ましくは50℃~80℃であり、反応時間は0.1~24時間程度、好ましくは2~12時間程度である。反応温度及び反応時間を前記範囲内とすることによって、生産効率よく高分子量のポリアミック酸溶液を容易に得ることができる。 Although not limited, the reaction temperature is usually 25 ° C. to 100 ° C., preferably 40 ° C. to 80 ° C., more preferably 50 ° C. to 80 ° C., and the reaction time is about 0.1 to 24 hours, preferably About 2 to 12 hours. By setting the reaction temperature and the reaction time within the above ranges, a high molecular weight polyamic acid solution can be easily obtained with high production efficiency.
 なお、反応は、空気雰囲気下でも行うことができるが、通常は不活性ガス、好ましくは窒素ガス雰囲気下で好適に行われる。 The reaction can be carried out in an air atmosphere, but is usually suitably carried out in an inert gas, preferably a nitrogen gas atmosphere.
 略等モルのテトラカルボン酸二無水物とジアミンとは、具体的には、これらのモル比[テトラカルボン酸二無水物/ジアミン]で0.90~1.10程度、好ましくは0.95~1.05程度である。 The approximately equimolar tetracarboxylic dianhydride and diamine are specifically about 0.90 to 1.10, preferably 0.95 to about their molar ratio [tetracarboxylic dianhydride / diamine]. It is about 1.05.
 本発明で用いる溶媒としては、ポリアミック酸を重合可能であればいずれの溶媒でもよく、水溶媒であっても、有機溶媒であってもよい。溶媒は2種以上の混合物であってもよく、2種以上の有機溶媒の混合溶媒、又は水と1種以上の有機溶媒の混合溶媒も好適に用いることができる。 The solvent used in the present invention may be any solvent as long as it can polymerize polyamic acid, and may be an aqueous solvent or an organic solvent. The solvent may be a mixture of two or more, and a mixed solvent of two or more organic solvents or a mixed solvent of water and one or more organic solvents can also be suitably used.
 本発明で用いることができる有機溶媒としては、特に限定されないが、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、ヘキサメチルホスホロトリアミド、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、テトラヒドロフラン、ビス[2-(2-メトキシエトキシ)エチル]エーテル、1,4-ジオキサン、ジメチルスルホキシド、ジメチルスルホン、ジフェニルエーテル、スルホラン、ジフェニルスルホン、テトラメチル尿素、アニソール、m-クレゾール、フェノール、γ-ブチロラクトンなどが挙げられる。 The organic solvent that can be used in the present invention is not particularly limited. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N— Ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam, hexamethylphosphorotriamide, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, tetrahydrofuran, bis [2- (2-methoxyethoxy) ethyl] ether, 1,4-dioxane, dimethyl sulfoxide, dimethyl sulfone, diphenyl ether, sulfolane, diphenyl sulfone, tetramethylurea, anisole, m -Cresol, phenol, - butyrolactone, and the like.
 なお、この反応に用いた溶媒が、本発明のポリイミド前駆体組成物に含まれる溶媒であることができる。 In addition, the solvent used for this reaction can be a solvent contained in the polyimide precursor composition of the present invention.
 本発明で用いるポリアミック酸は、限定されないが、温度30℃、濃度0.5g/100mLで測定した対数粘度が0.2以上であることが好適である。対数粘度が前記範囲よりも低い場合には、ポリアミック酸の分子量が低いことから、高い特性のポリイミドを得ることが難しくなることがある。 The polyamic acid used in the present invention is not limited, but preferably has a logarithmic viscosity of 0.2 or more measured at a temperature of 30 ° C. and a concentration of 0.5 g / 100 mL. When the logarithmic viscosity is lower than the above range, it may be difficult to obtain a polyimide having high characteristics because the molecular weight of the polyamic acid is low.
 本発明で用いるポリイミド前駆体組成物は、ポリアミック酸に起因する固形分濃度が、限定されないが、ポリアミック酸と溶媒との合計量に対して、好ましくは5質量%~50質量%、より好ましくは5質量%~45質量%、より好ましくは10質量%~45質量%、さらに好ましくは15質量%超~40質量%であることが好適である。固形分濃度が5質量%より低いと使用時の取り扱いが悪くなることがあり、45質量%より高いと溶液の流動性がなくなることがある。 The polyimide precursor composition used in the present invention is not limited in the solid content concentration due to the polyamic acid, but is preferably 5% by mass to 50% by mass, more preferably based on the total amount of the polyamic acid and the solvent. It is suitable to be 5% by mass to 45% by mass, more preferably 10% by mass to 45% by mass, and still more preferably more than 15% by mass to 40% by mass. When the solid content concentration is lower than 5% by mass, handling during use may be deteriorated, and when it is higher than 45% by mass, the fluidity of the solution may be lost.
 また、本発明で用いるポリイミド前駆体組成物の30℃における溶液粘度は、限定されないが、好ましくは1000Pa・sec以下、より好ましくは0.5~500Pa・sec、さらに好ましくは1~300Pa・sec、特に好ましくは2~200Pa・secであることが取り扱い上好適である。 The solution viscosity at 30 ° C. of the polyimide precursor composition used in the present invention is not limited, but is preferably 1000 Pa · sec or less, more preferably 0.5 to 500 Pa · sec, still more preferably 1 to 300 Pa · sec, Particularly preferably, the pressure is 2 to 200 Pa · sec.
 本発明のポリイミド前駆体組成物は、ポリアミック酸と溶媒に加え、リン化合物を含有する。リン化合物の添加により、形成されるポリイミド絶縁被覆層の高温における熱分解が抑制され、また、基材との接着強度も向上する。 The polyimide precursor composition of the present invention contains a phosphorus compound in addition to a polyamic acid and a solvent. Addition of the phosphorus compound suppresses thermal decomposition of the formed polyimide insulating coating layer at a high temperature, and also improves the adhesive strength with the substrate.
 本発明で用いるリン化合物は、リン酸エステルおよび下記化学式(1)で表されるリン化合物からなる群から選ばれるものであることが好ましい。 The phosphorus compound used in the present invention is preferably selected from the group consisting of a phosphate ester and a phosphorus compound represented by the following chemical formula (1).
Figure JPOXMLDOC01-appb-C000005
(式中、R1は、炭素数が1~6のアルキレン基であり、R2はフェニル基又はシクロヘキシル基である。)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 1 is an alkylene group having 1 to 6 carbon atoms, and R 2 is a phenyl group or a cyclohexyl group.)
 化学式(1)のR1としては、炭素数が1~4のアルキレン基が好ましい。 R 1 in the chemical formula (1) is preferably an alkylene group having 1 to 4 carbon atoms.
 前記化学式(1)で表されるリン化合物のうち特に好ましいものとして、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,4-ビス(ジシクロへキシルホスフィノ)ブタンが挙げられる。 Among the phosphorus compounds represented by the chemical formula (1), bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, Examples include 1,4-bis (diphenylphosphino) butane and 1,4-bis (dicyclohexylphosphino) butane.
 リン酸エステルは、リン酸とアルコールから誘導されたものであり、構造に特に制限はない。本発明で用いるリン酸エステルは、モノエステル、ジエステル、トリエステルのいずれでも構わないが、炭素数1~18の脂肪族または芳香族アルコールから誘導されたものが好ましい。また、モノエステルおよびジエステルはアミン等と塩を形成していてもよい。 The phosphoric acid ester is derived from phosphoric acid and alcohol, and the structure is not particularly limited. The phosphate ester used in the present invention may be any of monoester, diester and triester, but is preferably derived from an aliphatic or aromatic alcohol having 1 to 18 carbon atoms. Monoesters and diesters may form salts with amines and the like.
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル、および下記化学式(2)で表されるリン酸エステル化合物およびその塩が挙げられる。下記化学式(2)で表されるリン酸エステル化合物と塩を形成する化合物として、下記化学式(3)で表されるアミンが挙げられる。 Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and phosphate ester compounds represented by the following chemical formula (2) and salts thereof. Examples of the compound that forms a salt with the phosphate ester compound represented by the following chemical formula (2) include an amine represented by the following chemical formula (3).
Figure JPOXMLDOC01-appb-C000006
(式中、R3は水素原子または炭素数6~18のアルキル基またはポリオキシエチレン基であり、R4は炭素数6~18のアルキル基またはポリオキシエチレン基である。)
Figure JPOXMLDOC01-appb-C000006
(Wherein R 3 is a hydrogen atom, an alkyl group having 6 to 18 carbon atoms or a polyoxyethylene group, and R 4 is an alkyl group having 6 to 18 carbon atoms or a polyoxyethylene group.)
Figure JPOXMLDOC01-appb-C000007
(式中、R5、R6、R7は水素原子、ヒドロキシエチル基または炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000007
(Wherein R 5 , R 6 and R 7 are a hydrogen atom, a hydroxyethyl group or an alkyl group having 1 to 4 carbon atoms.)
 また、本発明で用いるリン酸エステルとして下記化学式(4)で表されるリン酸エステル化合物を挙げることもできる。 Moreover, the phosphate ester compound represented by following Chemical formula (4) can also be mentioned as phosphate ester used by this invention.
Figure JPOXMLDOC01-appb-C000008
(式中、R8は、反応性官能基を有する炭素数3~12の有機基である。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 8 is a C 3-12 organic group having a reactive functional group.)
 化学式(4)のR8は反応性官能基、具体的には、炭素-炭素不飽和結合を有する炭素数3~12の有機基であり、R8としては、アクリロイル基、メタクリロイル基、アクリロイルオキシエチル基、メタクリロイルオキシエチル基などが挙げられる。 R 8 in the chemical formula (4) is a reactive functional group, specifically, an organic group having 3 to 12 carbon atoms having a carbon-carbon unsaturated bond, and R 8 includes acryloyl group, methacryloyl group, acryloyloxy, and the like. Examples thereof include an ethyl group and a methacryloyloxyethyl group.
 化学式(4)で表されるリン酸エステル化合物として、具体的には、リン酸2-(メタクリロイルオキシ)エチル、リン酸ビス(2-(メタクリロイルオキシ)エチル)が挙げられる。 Specific examples of the phosphate ester compound represented by the chemical formula (4) include 2- (methacryloyloxy) ethyl phosphate and bis (2- (methacryloyloxy) ethyl phosphate).
 なお、これらのリン化合物は、1種を用いても、2種以上を併用してもよい。また、その他のリン化合物を併用してもよい。 In addition, these phosphorus compounds may be used alone or in combination of two or more. Further, other phosphorus compounds may be used in combination.
 ポリイミド前駆体組成物中のリン化合物の添加量は、ポリアミック酸の質量に対して、0.1~10質量%、より好ましくは0.5~5質量%が好ましい。ポリイミド前駆体組成物中のリン化合物の濃度が少な過ぎると、400℃以上の温度領域において熱分解を抑制する効果を十分に得るのが難しくなる。一方、リン化合物の濃度が多過ぎると、得られるポリイミド絶縁被覆層にリンが多量に残存して、揮発成分(アウトガス)の原因になる場合があるので好ましくない。 The addition amount of the phosphorus compound in the polyimide precursor composition is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass with respect to the mass of the polyamic acid. When the concentration of the phosphorus compound in the polyimide precursor composition is too small, it becomes difficult to sufficiently obtain the effect of suppressing thermal decomposition in a temperature range of 400 ° C. or higher. On the other hand, if the concentration of the phosphorus compound is too high, a large amount of phosphorus remains in the resulting polyimide insulation coating layer, which may cause volatile components (outgas), which is not preferable.
 リン化合物の添加はポリアミック酸の調製前でも調製後でも構わない。すなわち、テトラカルボン酸成分とジアミン成分とを溶媒中で反応させてポリアミック酸溶液を得た後、これにリン化合物を添加することによって、リン化合物を含む本発明のポリイミド前駆体組成物を得ることができる。また、溶媒にテトラカルボン酸成分とジアミン成分とリン化合物を加え、テトラカルボン酸成分とジアミン成分とを溶媒中、リン化合物の存在下で反応させることによっても、リン化合物を含む本発明のポリイミド前駆体組成物を得ることができる。 The phosphorus compound may be added before or after the polyamic acid is prepared. That is, after the tetracarboxylic acid component and the diamine component are reacted in a solvent to obtain a polyamic acid solution, a phosphorus compound is added thereto to obtain the polyimide precursor composition of the present invention containing the phosphorus compound. Can do. Also, the polyimide precursor of the present invention containing a phosphorus compound can be obtained by adding a tetracarboxylic acid component, a diamine component, and a phosphorus compound to a solvent and reacting the tetracarboxylic acid component and the diamine component in the solvent in the presence of the phosphorus compound. A body composition can be obtained.
 ポリイミド前駆体組成物は、加熱処理によって溶媒を除去するとともにイミド化(脱水閉環)することによってポリイミドとなるが、上記のような本発明のポリイミド前駆体組成物を用いることにより、ポリイミド絶縁被覆層の形成のために、短時間で昇温し高温で焼付ける工程を採用することが可能となる。ここで、短時間で昇温して高温で焼付けをするとは、例えば、ポリイミド前駆体組成物を加熱する時間が10~180秒間であり、且つ、100℃から280℃までの平均昇温速度が5℃/s以上となる条件で昇温し、最高加熱温度が300~500℃である工程である。 The polyimide precursor composition is converted into polyimide by removing the solvent by heat treatment and imidizing (dehydrating ring closure). By using the polyimide precursor composition of the present invention as described above, a polyimide insulating coating layer is obtained. Therefore, it is possible to employ a process of raising the temperature in a short time and baking at a high temperature. Here, when the temperature is increased in a short time and baking is performed at a high temperature, for example, the time for heating the polyimide precursor composition is 10 to 180 seconds, and the average temperature increase rate from 100 ° C. to 280 ° C. In this process, the temperature is raised under the condition of 5 ° C./s or more, and the maximum heating temperature is 300 to 500 ° C.
 本発明では、公知の方法により上記のようなポリアミック酸と溶媒とリン化合物とを含むポリイミド前駆体組成物を基材に塗布し、加熱(焼付け)することによりポリイミド絶縁被覆層を形成する。この焼付け工程においては、ポリイミド前駆体組成物を加熱する時間(加熱炉で加熱する場合、加熱炉内にある時間)を10~180秒間とし、100℃から280℃までの平均昇温速度を5℃/s以上とし、最高加熱温度を300~500℃とすることができる。100℃から280℃までの平均昇温速度の上限は、特に限定されないが、例えば、50℃/s以下が好ましい。 In the present invention, a polyimide insulating coating layer is formed by applying a polyimide precursor composition containing a polyamic acid, a solvent and a phosphorus compound as described above to a substrate by a known method and heating (baking). In this baking step, the time for heating the polyimide precursor composition (when heated in a heating furnace, the time in the heating furnace) is 10 to 180 seconds, and the average temperature increase rate from 100 ° C. to 280 ° C. is 5 The maximum heating temperature can be 300 to 500 ° C. The upper limit of the average rate of temperature increase from 100 ° C. to 280 ° C. is not particularly limited, but for example, 50 ° C./s or less is preferable.
 本発明においては、さらに、100℃から300℃までの平均昇温速度を5℃/s以上(すなわち、100℃~300℃まで40秒以内)としてもよく、100℃から最高加熱温度(300~500℃)までの平均昇温速度を5℃/s以上としてもよい。100℃までの平均昇温速度も、特に限定されないが、5℃/s以上としてもよい。 In the present invention, the average rate of temperature increase from 100 ° C. to 300 ° C. may be 5 ° C./s or more (ie, from 100 ° C. to 300 ° C. within 40 seconds). The average rate of temperature increase up to 500 ° C. may be 5 ° C./s or more. The average rate of temperature increase up to 100 ° C. is not particularly limited, but may be 5 ° C./s or more.
 本発明においては、100℃から280℃までの平均昇温速度が5℃/s以上(すなわち、100℃~280℃まで36秒以内)であれば、室温から最高加熱温度までの昇温条件に制限はなく、一定の昇温速度で昇温してもよく、また加熱処理中に昇温速度を変更してもよく、段階的に昇温してもよい。 In the present invention, if the average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more (that is, within 36 seconds from 100 ° C. to 280 ° C.), the temperature is increased from room temperature to the maximum heating temperature. There is no limitation, the temperature may be raised at a constant rate of temperature rise, the rate of temperature rise may be changed during the heat treatment, and the temperature may be raised stepwise.
 このイミド化のための加熱処理は、例えば、空気雰囲気下、あるいは不活性ガス雰囲気下で行うことができる。 The heat treatment for imidization can be performed, for example, in an air atmosphere or an inert gas atmosphere.
 なお、上記以外の条件で、本発明のポリイミド前駆体組成物を加熱処理してポリイミド絶縁被覆層を形成することもできる。 It should be noted that the polyimide insulating coating layer can also be formed by heat-treating the polyimide precursor composition of the present invention under conditions other than those described above.
 なお、基材は、特に限定されず、用途に応じて適宜選択される。また、形成するポリイミド絶縁被覆層の厚みも、特に限定されず、用途に応じて適宜選択される。 In addition, a base material is not specifically limited, According to a use, it selects suitably. Further, the thickness of the polyimide insulating coating layer to be formed is not particularly limited, and is appropriately selected according to the application.
 本発明により得られるポリイミド絶縁被覆層は、高度の耐電圧性、耐熱性、及び耐湿熱性を有する絶縁部材(被覆層)である。したがって、電気・電子部品関連、自動車分野、航空宇宙分野等に特に好適に使用でき、HV車モーター用コイルや超小型モーターの分野にも使用可能である。 The polyimide insulating coating layer obtained by the present invention is an insulating member (coating layer) having high voltage resistance, heat resistance, and moist heat resistance. Therefore, it can be particularly suitably used in the fields of electric / electronic parts, the automobile field, the aerospace field, etc., and can also be used in the fields of coils for HV car motors and micro motors.
 以下、本発明を実施例により更に具体的に説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 以下の例で用いた特性の測定方法を以下に示す。
<固形分濃度>
 試料溶液(その質量をw1とする)を、熱風乾燥機中120℃で10分間、250℃で10分間、次いで350℃で30分間加熱処理して、加熱処理後の質量(その質量をw2とする)を測定する。固形分濃度[質量%]は、次式によって算出した。
A method for measuring the characteristics used in the following examples is shown below.
<Concentration of solid content>
The sample solution (whose mass is w 1 ) was heat-treated in a hot air dryer at 120 ° C. for 10 minutes, 250 ° C. for 10 minutes, and then 350 ° C. for 30 minutes. 2 ). Solid content concentration [mass%] was computed by the following formula.
    固形分濃度[質量%]=(w2/w1)×100
<溶液粘度(回転粘度)>
 トキメック社製E型粘度計を用いて30℃で測定した。
<絶縁被覆層の状態観察(被覆膜評価)>
 得られた被覆層について目視により状態観察を行った。濁りが全くないものを良好、濁りがある領域が10%を越えているものを濁りありとした。「濁りがある」ということは、ポリイミド樹脂が少なくとも一部結晶化していることを示している。
<昇温速度の測定>
 被覆層形成工程において、キーエンス株式会社製の計測ユニットNR-TH08と解析ソフトWAVE LOGGERを用いて、サンプル温度が100℃から280℃に変化するまでの所要時間を測定した。
<水蒸気透過係数>
 JIS K7129のB法に準拠して、40℃、相対湿度90%で測定を行った。
<490℃加熱時重量変化量(減少量)>
 25μm厚みのポリイミド被膜を10cm×10cm角に切り出し、重量を測定した。その後、空気雰囲気中490℃で30分間(0.5時間)熱処理をし、フィルムの重量減少量を測定した。同様に更に490℃で60分間(通算1.5時間)、更に490℃で60分間(通算2.5時間)熱処理した後のフィルムの重量減少量を測定した。なお、熱処理前のフィルムの重量は368mg/100cmであった。
<接着強度>
 ポリイミド層と銅箔からなる積層体を10mm幅に切り出し、剥離速度50mm/分の条件で90°剥離試験を行い、3サンプルの平均値を接着強度とした。
Solid content concentration [% by mass] = (w 2 / w 1 ) × 100
<Solution viscosity (rotational viscosity)>
It measured at 30 degreeC using the Tokimec E-type viscosity meter.
<Insulation coating state observation (coating film evaluation)>
The state of the obtained coating layer was visually observed. A sample having no turbidity was judged good and a turbid region exceeding 10% was designated as turbid. The phrase “has turbidity” indicates that the polyimide resin is at least partially crystallized.
<Measurement of heating rate>
In the coating layer forming step, the time required for the sample temperature to change from 100 ° C. to 280 ° C. was measured using a measurement unit NR-TH08 manufactured by Keyence Corporation and analysis software WAVE LOGGER.
<Water vapor transmission coefficient>
Based on JIS K7129 method B, the measurement was performed at 40 ° C. and relative humidity 90%.
<Weight change during heating at 490 ° C. (decrease)>
A polyimide film having a thickness of 25 μm was cut into a 10 cm × 10 cm square, and the weight was measured. Thereafter, heat treatment was performed in an air atmosphere at 490 ° C. for 30 minutes (0.5 hours), and the weight loss of the film was measured. Similarly, the weight loss of the film after heat treatment at 490 ° C. for 60 minutes (total 1.5 hours) and further at 490 ° C. for 60 minutes (total 2.5 hours) was measured. The weight of the film before the heat treatment was 368 mg / 100 cm 2 .
<Adhesive strength>
A laminate composed of a polyimide layer and a copper foil was cut into a width of 10 mm, and a 90 ° peel test was performed under the condition of a peel rate of 50 mm / min, and the average value of the three samples was defined as the adhesive strength.
 以下の例で使用した化合物の略号について説明する。
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
a-BPDA:2,3,3’,4’-ビフェニルテトラカルボン酸二無水物
ODA:4,4’-ジアミノジフェニルエーテル
NMP:N-メチル-2-ピロリドン
DPPE:1,2-ビス(ジフェニルホスフィノ)エタン
TEP:リン酸トリエチル
The abbreviations of the compounds used in the following examples are described.
s-BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride a-BPDA: 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride ODA: 4,4′-diamino Diphenyl ether NMP: N-methyl-2-pyrrolidone DPPE: 1,2-bis (diphenylphosphino) ethane TEP: triethyl phosphate
〔実施例1〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMP300gを加え、これにODA60.08g(0.3モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDA70.61g(0.24モル)、a-BPDA17.65g(0.06モル)、水1.62g(0.09モル)を加え、50℃で3時間撹拌して、固形分濃度30.6質量%、溶液粘度7.0Pa・sのポリイミド前駆体組成物を得た。このポリイミド前駆体組成物にリン化合物としてDPPE3.37g(組成物に対して0.75質量%、ポリアミック酸の質量に対して2.27質量%)を添加しポリイミド前駆体組成物を得た。
[Example 1]
To a glass reaction vessel having an internal volume of 500 mL equipped with a stirrer and a nitrogen gas introduction / discharge tube, 300 g of NMP was added as a solvent, 60.08 g (0.3 mol) of ODA was added thereto, and the mixture was stirred at 50 ° C. for 1 hour, Dissolved. To this solution were added 70.61 g (0.24 mol) of s-BPDA, 17.65 g (0.06 mol) of a-BPDA, and 1.62 g (0.09 mol) of water, and the mixture was stirred at 50 ° C. for 3 hours. A polyimide precursor composition having a partial concentration of 30.6% by mass and a solution viscosity of 7.0 Pa · s was obtained. To this polyimide precursor composition, 3.37 g of DPPE (0.75% by mass with respect to the composition and 2.27% by mass with respect to the mass of polyamic acid) was added as a phosphorus compound to obtain a polyimide precursor composition.
 このポリイミド前駆体組成物を、膜厚50μmのポリイミドフィルム上に塗工し、350℃に熱したSUS板の上に置いて1分間保持し、絶縁被覆層(ポリイミド被膜)を作成した。その際のサンプル温度が100℃から280℃へ昇温する時間は12秒であった(昇温速度15℃/s)。得られた絶縁被覆層について、状態観察の評価結果を表1に示した。 This polyimide precursor composition was applied onto a polyimide film having a thickness of 50 μm, placed on a SUS plate heated to 350 ° C., and held for 1 minute to form an insulating coating layer (polyimide coating). In this case, the sample temperature was raised from 100 ° C. to 280 ° C. for 12 seconds (heating rate 15 ° C./s). Table 1 shows the evaluation results of state observation of the obtained insulating coating layer.
 また、このポリイミド前駆体組成物を、基材のガラス板上に塗布し、室温から400℃まで30分間かけて昇温し、400℃にて10分間加熱処理し、厚み25μmのポリイミド被膜を得た。得られたポリイミド被膜(ポリイミドフィルム)を基材から剥離し、水蒸気透過係数と、490℃加熱時重量変化量を測定した。評価結果を表1に示した。 In addition, this polyimide precursor composition was applied on a glass plate as a substrate, heated from room temperature to 400 ° C. over 30 minutes, and heat-treated at 400 ° C. for 10 minutes to obtain a polyimide film having a thickness of 25 μm. It was. The obtained polyimide coating (polyimide film) was peeled from the substrate, and the water vapor transmission coefficient and the weight change during heating at 490 ° C. were measured. The evaluation results are shown in Table 1.
 また、このポリイミド前駆体組成物を、厚み18μmの銅箔(三井金属鉱業製、3EC-VLP)の平滑面上に、得られるポリイミド層の厚みが25μmになるように塗工し、室温から400℃まで30分間かけて昇温し、400℃にて10分間加熱処理し積層体を得た。得られた積層体について、ポリイミド層と銅箔の間の接着強度を測定した。評価結果を表1に示した。 Further, this polyimide precursor composition was applied on a smooth surface of a copper foil having a thickness of 18 μm (manufactured by Mitsui Kinzoku Mining Co., Ltd., 3EC-VLP) so that the thickness of the resulting polyimide layer was 25 μm. The temperature was raised to 30 ° C. over 30 minutes, and heat treatment was performed at 400 ° C. for 10 minutes to obtain a laminate. About the obtained laminated body, the adhesive strength between a polyimide layer and copper foil was measured. The evaluation results are shown in Table 1.
〔実施例2〕
 リン化合物としてDPPE6.74g(組成物に対して1.5質量%、ポリアミック酸の質量に対して4.54質量%)を用いた以外は実施例1と同様にしてポリイミド前駆体組成物を調製し、ポリイミドフィルム上への絶縁被覆層の製造、ポリイミドフィルムの製造、及びポリイミド層と銅箔からなる積層体の製造を行い、状態観察及び特性の測定・評価を行った。なお、ポリイミドフィルム上への絶縁被覆層の製造における100℃から280℃の昇温速度は15℃/sであった。結果を表1に示した。
[Example 2]
A polyimide precursor composition was prepared in the same manner as in Example 1 except that 6.74 g of DPPE (1.5% by mass with respect to the composition and 4.54% by mass with respect to the mass of polyamic acid) was used as the phosphorus compound. Then, the insulation coating layer on the polyimide film, the polyimide film, and the laminate composed of the polyimide layer and the copper foil were manufactured, and the state observation and the measurement / evaluation of the characteristics were performed. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
〔実施例3〕
 リン化合物としてJPA―514(城北化学工業製、リン酸2-(メタクリロイルオキシ)エチルとリン酸ビス(2-(メタクリロイルオキシ)エチル)の混合物)の3.37g(組成物に対して0.75質量%、ポリアミック酸の質量に対して2.27質量%)を用いた以外は実施例1と同様にしてポリイミド前駆体組成物を調製し、ポリイミドフィルム上への絶縁被覆層の製造、ポリイミドフィルムの製造、及びポリイミド層と銅箔からなる積層体の製造を行い、状態観察及び特性の測定・評価を行った。なお、ポリイミドフィルム上への絶縁被覆層の製造における100℃から280℃の昇温速度は15℃/sであった。結果を表1に示した。
Example 3
3.37 g of JPA-514 (mixture of 2- (methacryloyloxy) ethyl phosphate and bis (2- (methacryloyloxy) ethyl phosphate)) manufactured by Johoku Chemical Co., Ltd. as a phosphorus compound (0.75 to the composition) The polyimide precursor composition was prepared in the same manner as in Example 1 except that 2 mass% and 2.27 mass% based on the mass of the polyamic acid were used, and the production of an insulating coating layer on the polyimide film, the polyimide film And a laminate composed of a polyimide layer and a copper foil were prepared, and the state was observed and the characteristics were measured and evaluated. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
〔実施例4〕
 リン化合物としてJPA―514の6.74g(組成物に対して1.5質量%、ポリアミック酸の質量に対して4.54質量%)を用いた以外は実施例1と同様にしてポリイミド前駆体組成物を調製し、ポリイミドフィルム上への絶縁被覆層の製造、ポリイミドフィルムの製造、及びポリイミド層と銅箔からなる積層体の製造を行い、状態観察及び特性の測定・評価を行った。なお、ポリイミドフィルム上への絶縁被覆層の製造における100℃から280℃の昇温速度は15℃/sであった。結果を表1に示した。
Example 4
A polyimide precursor in the same manner as in Example 1 except that 6.74 g of JPA-514 (1.5% by mass with respect to the composition and 4.54% by mass with respect to the mass of the polyamic acid) was used as the phosphorus compound. The composition was prepared, and the insulation coating layer on the polyimide film, the polyimide film, and the laminate composed of the polyimide layer and the copper foil were manufactured, and the state observation and the measurement / evaluation of the properties were performed. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
〔実施例5〕
 リン化合物としてTEPの3.37g(組成物に対して0.75質量%、ポリアミック酸の質量に対して2.27質量%)を用いた以外は実施例1と同様にしてポリイミド前駆体組成物を調製し、ポリイミドフィルム上への絶縁被覆層の製造、ポリイミドフィルムの製造、及びポリイミド層と銅箔からなる積層体の製造を行い、状態観察及び特性の測定・評価を行った。なお、ポリイミドフィルム上への絶縁被覆層の製造における100℃から280℃の昇温速度は15℃/sであった。結果を表1に示した。
Example 5
A polyimide precursor composition in the same manner as in Example 1 except that 3.37 g of TEP (0.75% by mass with respect to the composition and 2.27% by mass with respect to the mass of the polyamic acid) was used as the phosphorus compound. Was prepared, and the insulation coating layer on the polyimide film was manufactured, the polyimide film was manufactured, and the laminate composed of the polyimide layer and the copper foil was manufactured, and the state was observed and the characteristics were measured and evaluated. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
〔実施例6〕
 リン化合物としてTEPの6.74g(組成物に対して1.5質量%、ポリアミック酸の質量に対して4.54質量%)を用いた以外は実施例1と同様にしてポリイミド前駆体組成物を調製し、ポリイミドフィルム上への絶縁被覆層の製造、ポリイミドフィルムの製造、及びポリイミド層と銅箔からなる積層体の製造を行い、状態観察及び特性の測定・評価を行った。なお、ポリイミドフィルム上への絶縁被覆層の製造における100℃から280℃の昇温速度は15℃/sであった。結果を表1に示した。
Example 6
A polyimide precursor composition in the same manner as in Example 1 except that 6.74 g of TEP (1.5% by mass with respect to the composition and 4.54% by mass with respect to the mass of the polyamic acid) was used as the phosphorus compound. Was prepared, and the insulation coating layer on the polyimide film was manufactured, the polyimide film was manufactured, and the laminate composed of the polyimide layer and the copper foil was manufactured, and the state was observed and the characteristics were measured and evaluated. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
〔比較例1〕
 リン化合物を添加しない以外は実施例1と同様にしてポリイミド前駆体組成物を調製し、ポリイミドフィルム上への絶縁被覆層の製造、ポリイミドフィルムの製造、及びポリイミド層と銅箔からなる積層体の製造を行い、状態観察及び特性の測定・評価を行った。なお、ポリイミドフィルム上への絶縁被覆層の製造における100℃から280℃の昇温速度は15℃/sであった。結果を表1に示した。
[Comparative Example 1]
A polyimide precursor composition was prepared in the same manner as in Example 1 except that no phosphorus compound was added, and the production of an insulating coating layer on the polyimide film, the production of the polyimide film, and the laminate comprising the polyimide layer and the copper foil Manufacture was performed, state observation and measurement / evaluation of characteristics were performed. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
〔比較例2〕
 攪拌機、窒素ガス導入・排出管を備えた内容積500mLのガラス製の反応容器に、溶媒としてNMPの396gを加え、これにODAの40.05g(0.2モル)を加え、50℃で1時間攪拌し、溶解させた。この溶液にs-BPDAの58.84g(0.2モル)を加え、50℃で3時間撹拌して、固形分濃度18.5質量%、溶液粘度5.0Pa・sのポリイミド前駆体組成物を得た。このポリイミド前駆体組成物にリン化合物としてTEPの4.50g(組成物に対して1.0質量%、ポリアミック酸の質量に対して4.55質量%)を添加しポリイミド前駆体組成物を得た。
[Comparative Example 2]
To a 500 mL glass reaction vessel equipped with a stirrer and a nitrogen gas inlet / outlet tube, 396 g of NMP was added as a solvent, and 40.05 g (0.2 mol) of ODA was added thereto. Stir for hours to dissolve. To this solution, 58.84 g (0.2 mol) of s-BPDA was added and stirred at 50 ° C. for 3 hours to obtain a polyimide precursor composition having a solid concentration of 18.5% by mass and a solution viscosity of 5.0 Pa · s. Got. To this polyimide precursor composition, 4.50 g of TEP (1.0% by mass with respect to the composition and 4.55% by mass with respect to the mass of the polyamic acid) as a phosphorus compound was added to obtain a polyimide precursor composition. It was.
 このポリイミド前駆体組成物を用いて、実施例1と同様にして、ポリイミドフィルム上への絶縁被覆層の製造、ポリイミドフィルムの製造、及びポリイミド層と銅箔からなる積層体の製造を行い、状態観察及び特性の測定・評価を行った。なお、ポリイミドフィルム上への絶縁被覆層の製造における100℃から280℃の昇温速度は15℃/sであった。結果を表1に示した。 Using this polyimide precursor composition, in the same manner as in Example 1, the production of an insulating coating layer on a polyimide film, the production of a polyimide film, and the production of a laminate composed of a polyimide layer and a copper foil were performed. Observation and measurement / evaluation of properties were performed. In addition, the temperature increase rate from 100 degreeC to 280 degreeC in manufacture of the insulating coating layer on a polyimide film was 15 degreeC / s. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Claims (4)

  1.  ポリアミック酸と溶媒とリン化合物とを含むポリイミド前駆体組成物であって、
     前記ポリアミック酸が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物とを含み、それらの合計含有量が50~100モル%であるテトラカルボン酸成分と、4,4’-ジアミノジフェニルエーテルを50~100モル%含むジアミン成分とから得られるポリアミック酸であり、
     前記リン化合物が、リン酸エステルおよび下記一般式(1)で表されるリン化合物からなる群から選ばれる少なくとも1種類であり、
     前記ポリアミック酸が、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.0g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものであることを特徴とする、ポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、炭素数が1~6のアルキレン基であり、R2はフェニル基又はシクロヘキシル基である。)
    A polyimide precursor composition comprising a polyamic acid, a solvent, and a phosphorus compound,
    The polyamic acid contains 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, and their total content is A polyamic acid obtained from a tetracarboxylic acid component of 50 to 100 mol% and a diamine component containing 50 to 100 mol% of 4,4′-diaminodiphenyl ether;
    The phosphorus compound is at least one selected from the group consisting of a phosphate ester and a phosphorus compound represented by the following general formula (1),
    The polyamic acid is capable of producing a polyimide film having a water vapor transmission coefficient larger than 1.0 g · mm / (m 2 · 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. A polyimide precursor composition for forming a polyimide insulating coating layer.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 is an alkylene group having 1 to 6 carbon atoms, and R 2 is a phenyl group or a cyclohexyl group.)
  2.  テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~95モル%含む、請求項1に記載のポリイミド絶縁被覆層形成用のポリイミド前駆体組成物。 The polyimide precursor composition for forming a polyimide insulating coating layer according to claim 1, wherein the tetracarboxylic acid component contains 50 to 95 mol% of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride.
  3.  基材にポリイミド前駆体組成物を塗布、焼付けする工程を有するポリイミド絶縁被覆層の製造方法であって、
     ポリイミド前駆体組成物が、ポリアミック酸と溶媒とリン化合物とを含み、
    ポリイミド前駆体組成物に含まれるポリアミック酸が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と2,3,3’,4’-ビフェニルテトラカルボン酸二無水物とを含み、それらの合計含有量が50~100モル%であるテトラカルボン酸成分と、4,4’-ジアミノジフェニルエーテルを50~100モル%含むジアミン成分とから得られるポリアミック酸であり、
    リン化合物が、リン酸エステルおよび下記一般式(1)で表されるリン化合物からなる群から選ばれる少なくとも1種類であり、
    かつ、前記ポリアミック酸が、最高加熱温度を300~500℃とする条件下で加熱処理することにより、水蒸気透過係数が1.0g・mm/(m2・24h)より大きいポリイミドフィルムを製造できるものであり、
     焼付け工程において、
    ポリイミド前駆体組成物を加熱する時間が10~180秒間であり、
    100℃から280℃までの平均昇温速度が5℃/s以上であり、
    最高加熱温度が300~500℃であることを特徴とする絶縁被覆層の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は、炭素数が1~6のアルキレン基であり、R2はフェニル基又はシクロヘキシル基である。)
    A method for producing a polyimide insulating coating layer comprising a step of applying and baking a polyimide precursor composition on a substrate,
    The polyimide precursor composition includes a polyamic acid, a solvent, and a phosphorus compound,
    The polyamic acid contained in the polyimide precursor composition includes 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride. A polyamic acid obtained from a tetracarboxylic acid component having a total content of 50 to 100 mol% and a diamine component containing 50 to 100 mol% of 4,4′-diaminodiphenyl ether,
    The phosphorus compound is at least one selected from the group consisting of a phosphate ester and a phosphorus compound represented by the following general formula (1),
    In addition, the polyamic acid can produce a polyimide film having a water vapor transmission coefficient larger than 1.0 g · mm / (m 2 · 24 h) by heat treatment under conditions where the maximum heating temperature is 300 to 500 ° C. And
    In the baking process,
    The time for heating the polyimide precursor composition is 10 to 180 seconds,
    The average rate of temperature increase from 100 ° C. to 280 ° C. is 5 ° C./s or more,
    A method for producing an insulating coating layer, wherein the maximum heating temperature is 300 to 500 ° C.
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 is an alkylene group having 1 to 6 carbon atoms, and R 2 is a phenyl group or a cyclohexyl group.)
  4.  テトラカルボン酸成分が、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を50~95モル%含む、請求項3に記載の絶縁被覆層の製造方法。
     
     
    The method for producing an insulating coating layer according to claim 3, wherein the tetracarboxylic acid component contains 50 to 95 mol% of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride.

PCT/JP2016/052344 2015-01-29 2016-01-27 Polyimide precursor composition, and process for producing insulating coating layer using same WO2016121817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016572103A JP6760083B2 (en) 2015-01-29 2016-01-27 Polyimide precursor composition and method for producing an insulating coating layer using the polyimide precursor composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-015167 2015-01-29
JP2015015167 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121817A1 true WO2016121817A1 (en) 2016-08-04

Family

ID=56543427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052344 WO2016121817A1 (en) 2015-01-29 2016-01-27 Polyimide precursor composition, and process for producing insulating coating layer using same

Country Status (3)

Country Link
JP (1) JP6760083B2 (en)
TW (1) TWI699387B (en)
WO (1) WO2016121817A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116850A (en) * 2017-01-18 2018-07-26 住友電気工業株式会社 Insulation wire and manufacturing method therefor
KR20230066345A (en) 2020-09-10 2023-05-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polymer composition, varnish, and polyimide film
KR20230066346A (en) 2020-09-10 2023-05-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polymer composition, varnish, and polyimide film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230101A (en) * 1995-02-28 1996-09-10 Ube Ind Ltd Metal foil-laminated polyimide film
JPH08244168A (en) * 1995-03-09 1996-09-24 Ube Ind Ltd Manufacture of metal foil laminate polyimide film
JPH0940775A (en) * 1995-08-01 1997-02-10 Ube Ind Ltd Polyimide film
JP2000043211A (en) * 1998-07-31 2000-02-15 Ube Ind Ltd Polyimide film improved in adhesion, production thereof and laminate
JP2006321981A (en) * 2005-04-20 2006-11-30 Toyobo Co Ltd Adhesive sheet, metal laminate sheet and printed wiring board
JP2014142173A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP2014210894A (en) * 2013-04-22 2014-11-13 宇部興産株式会社 Polyamic acid solution composition and method for producing polyimide film using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230101A (en) * 1995-02-28 1996-09-10 Ube Ind Ltd Metal foil-laminated polyimide film
JPH08244168A (en) * 1995-03-09 1996-09-24 Ube Ind Ltd Manufacture of metal foil laminate polyimide film
JPH0940775A (en) * 1995-08-01 1997-02-10 Ube Ind Ltd Polyimide film
JP2000043211A (en) * 1998-07-31 2000-02-15 Ube Ind Ltd Polyimide film improved in adhesion, production thereof and laminate
JP2006321981A (en) * 2005-04-20 2006-11-30 Toyobo Co Ltd Adhesive sheet, metal laminate sheet and printed wiring board
JP2014142173A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP2014210894A (en) * 2013-04-22 2014-11-13 宇部興産株式会社 Polyamic acid solution composition and method for producing polyimide film using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116850A (en) * 2017-01-18 2018-07-26 住友電気工業株式会社 Insulation wire and manufacturing method therefor
KR20230066345A (en) 2020-09-10 2023-05-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polymer composition, varnish, and polyimide film
KR20230066346A (en) 2020-09-10 2023-05-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polymer composition, varnish, and polyimide film

Also Published As

Publication number Publication date
TWI699387B (en) 2020-07-21
TW201630980A (en) 2016-09-01
JPWO2016121817A1 (en) 2017-11-09
JP6760083B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP5845911B2 (en) Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition
JP6539965B2 (en) Method of manufacturing flexible device
JP2023033360A (en) Polyimide precursor composition and production method of insulation coating layer using the same
KR102117151B1 (en) Polyimide precursor solution and polyimide film prepared by using same
JPWO2012173204A1 (en) Method for producing polyimide laminate and polyimide laminate
JP2024040228A (en) Manufacturing method for metal clad laminates
JP2009221309A (en) Tetracarboxylic acid containing phosphorus-containing ester group or its dianhydride and phosphorus-containing polyester imide
JP6760083B2 (en) Polyimide precursor composition and method for producing an insulating coating layer using the polyimide precursor composition
JP6245252B2 (en) Insulating coating layer manufacturing method
KR20210057942A (en) High Elastic and High Heat Resistant Polyimide Film and Manufacturing Method Thereof
JP6314707B2 (en) Polyimide precursor composition and method for producing insulating coating layer using the same
CN112500569B (en) Polyimide precursor composition, polyimide film, laminated film, and display device
CN111417605A (en) Solution for coating glass substrate
JP6032202B2 (en) Method for producing polyimide laminate and polyimide laminate
JP7461622B2 (en) Polyimide Film
KR20160094551A (en) Polyamic acid composition and polyimide substrate
JP2020523427A (en) Highly transparent polyimide precursor resin composition having excellent optical characteristics and phase delay characteristics, a method for producing a polyimide resin film using the same, and a polyimide resin film produced thereby
KR101600140B1 (en) Polyimide precursor composition and substrate for display prepared by using same
JP6558067B2 (en) Polyimide laminate and method for producing the same
KR20230066345A (en) Polymer composition, varnish, and polyimide film
TW201629121A (en) Polymer, insulating film, and flexible copper clad laminate
JP6769102B2 (en) Manufacturing method of insulating coating layer
WO2022210321A1 (en) Poly(amic acid) composition, polyimide composition, adhesive, and layered product
JP6604003B2 (en) Polyimide precursor solution composition and method for producing polyimide film using the same
WO2023100951A1 (en) Polyimide film, high-frequency circuit substate, and flexible electronic device substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743420

Country of ref document: EP

Kind code of ref document: A1