JP2018113272A - レーザ維持プラズマ光源におけるvuvフィルタリングを提供するためのプラズマセル - Google Patents

レーザ維持プラズマ光源におけるvuvフィルタリングを提供するためのプラズマセル Download PDF

Info

Publication number
JP2018113272A
JP2018113272A JP2018084339A JP2018084339A JP2018113272A JP 2018113272 A JP2018113272 A JP 2018113272A JP 2018084339 A JP2018084339 A JP 2018084339A JP 2018084339 A JP2018084339 A JP 2018084339A JP 2018113272 A JP2018113272 A JP 2018113272A
Authority
JP
Japan
Prior art keywords
plasma
bulb
liquid
light
plasma cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018084339A
Other languages
English (en)
Other versions
JP6509404B2 (ja
Inventor
イリヤ ベゼル
Bezel Ilya
イリヤ ベゼル
アナトリー シュエメリニン
Anatoly Shchemelinin
アナトリー シュエメリニン
ユージーン シフリン
Eugene Shifrin
ユージーン シフリン
マシュー パンザー
Panzer Matthew
マシュー パンザー
マシュー ダースティン
Derstine Matthew
マシュー ダースティン
ジンチェン ワン
Jincheng Wang
ジンチェン ワン
アナント チンマルジー
Chimmalgi Anant
アナント チンマルジー
ラジーブ パティル
Patil Rajeev
ラジーブ パティル
ルドルフ ブランナー
Brunner Rudolf
ルドルフ ブランナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Tencor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLA Tencor Corp filed Critical KLA Tencor Corp
Publication of JP2018113272A publication Critical patent/JP2018113272A/ja
Application granted granted Critical
Publication of JP6509404B2 publication Critical patent/JP6509404B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/06Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/14Selection of substances for gas fillings; Specified operating pressure or temperature having one or more carbon compounds as the principal constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/34Double-wall vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/40Devices for influencing the colour or wavelength of the light by light filters; by coloured coatings in or on the envelope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Discharge Lamp (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Lasers (AREA)

Abstract

【課題】短波長の光の吸収によるプラズマバルブの急速な損傷、及びプラズマバルブの過熱によるバルブの破裂を抑制する。【解決手段】レーザ維持プラズマ光源に用いるのに適した紫外光フィルタリングのためのプラズマセルであって、プラズマを発生させるのに適したガスを収容するように構成され、且つプラズマバルブ内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つ前記プラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通すプラズマバルブ102と、プラズマバルブ102の内面上に配置され、プラズマによる発光の選択されたスペクトル領域を遮断するように構成されるフィルタ層104を備える。【選択図】図1

Description

本発明は、一般に、プラズマに基づく光源に関し、より具体的には、ガスバルブ内のレーザ維持プラズマによって放出されるUV光、特にVUV光をフィルタリングするのに適したガスバルブ構成に関する。
絶えず縮小していくデバイス特徴を有する集積回路の需要が増加し続けるのに伴い、これらの絶えず縮小していくデバイスの検査に用いられる改善された照射源に対する必要性が増大し続けている。1つのこうした照射源はレーザ維持プラズマ光源を含む。レーザ維持プラズマ(laser−sustained plasma:LSP)光源は、高出力広帯域光を生じることができる。レーザ維持光源は、アルゴン、キセノン、水銀などのガスを、光を放出することができるプラズマ状態に励起させるために、レーザ放射を或る体積のガス中に合焦することで動作する。この効果は、通常、プラズマの「ポンピング」と呼ばれる。プラズマを発生させるのに用いられるガスを収容するために、実装するプラズマセルは、ガス種並びに発生したプラズマを収容するように構成される「バルブ(bulb)」を必要とする。
典型的なレーザ維持プラズマ光源は、数キロワットのオーダーのビームパワーを有する赤外レーザポンプを用いて保持されてもよい。所与のレーザに基づく照射源からのレーザビームが、プラズマセルの中の低圧又は中圧の或る体積のガスの中に合焦される。プラズマによるレーザパワーの吸収が、プラズマ(例えば、12K〜14Kプラズマ)を発生させ、維持する。
米国特許出願公開第2011/0181191号 米国特許出願公開第2010/0264820号
レーザ維持光源の伝統的なプラズマバルブは、溶融石英ガラスから形成される。溶融石英ガラスは、およそ170nmよりも短波長の光を吸収する。これらの短波長の光の吸収は、プラズマバルブの急速な損傷を招いて、190〜260nmの範囲の光の透過を減少させる。短波長の光(例えば、真空UV光)の吸収はまた、プラズマバルブに負荷をかけ、これは過熱を招き、バルブを破裂させる恐れがあり、影響の及ぶ範囲の高出力レーザ維持プラズマ光源の使用を制限する。したがって、従来技術で識別される欠点を修正するプラズマセルを提供することが望ましいであろう。
レーザ維持プラズマ光源に用いるのに適した紫外光フィルタリングのためのプラズマセルが開示される。一態様では、プラズマセルは、プラズマを発生させるのに適したガスを収容するように構成され、且つプラズマバルブ内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つプラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通す、プラズマバルブと、プラズマバルブの内面上に配置され、プラズマによる発光の選択されたスペクトル領域を遮断するように構成された、フィルタ層と、を含んでもよいがこれに限定されない。
別の態様では、プラズマセルは、プラズマを発生させるのに適したガスを収容するように構成され、且つプラズマバルブ内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つプラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通す、プラズマバルブと、プラズマバルブの体積内に配置され、プラズマによる発光の選択されたスペクトル領域を遮断するように構成された、フィルタ組立体と、を含んでもよいがこれに限定されない。
別の態様では、プラズマセルは、プラズマを発生させるのに適したガスを収容するように構成され、且つプラズマバルブ内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つプラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通す、プラズマバルブと、プラズマバルブの第1の部分に配置される液体入口と、プラズマバルブの第1の部分とは反対側のプラズマバルブの第2の部分に配置される液体出口と、を含み、液体入口及び液体出口が、液体を液体入口から液体出口に流すように構成され、液体が、プラズマによる発光の選択されたスペクトル領域を遮断するように構成されてもよいがこれに限定されない。
別の態様では、プラズマセルは、プラズマバルブと、プラズマバルブ内に配置され、プラズマを発生させるのに適したガスを収容するように構成された、内側プラズマセルと、内側プラズマセルの外面とプラズマバルブの内面によって形成される気体フィルタキャビティと、を含み、プラズマバルブ及び内側プラズマセルが、内側プラズマセル内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つプラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通し、気体フィルタキャビティが、気体フィルタ材料を収容するように構成され、気体フィルタ材料が、プラズマによる発光の選択されたスペクトル領域の一部を吸収するように構成されてもよいがこれに限定されない。
別の態様では、プラズマセルは、プラズマを発生させるのに適したガスを収容するように構成され、且つプラズマバルブ内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つプラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通す、プラズマバルブと、プラズマバルブの内面上に配置されるフィルタ層、プラズマバルブの体積内に配置されるフィルタ組立体、プラズマバルブの体積内に形成される液体フィルタ、及びプラズマバルブの体積内に形成される気体フィルタのうちの少なくとも1つと、を含んでもよいがこれに限定されない。
上記の概要と以下の詳細な説明との両方は、単なる例示及び解説であって、特許請求される本発明を必ずしも制限するものではないことが理解される。本明細書に組み込まれ及びその一部をなす付属の図面は、本発明の実施形態を例証し、概要と共に本発明の原理を解説するのに役立つ。
添付の図面を参照することで、本開示の多数の利点が当業者により良く理解されるであろう。
本発明の一実施形態に係るフィルタコーティングを備えたプラズマバルブを有するプラズマセルを示す図である。 本発明の一実施形態に係るフィルタ組立体を備えたプラズマバルブを有するプラズマセルを示す図である。 本発明の一実施形態に係る液体フィルタの使用のために構成されたプラズマバルブを有するプラズマセルを示す図である。 本発明の一実施形態に係る内側プラズマセル及び気体フィルタキャビティを有するプラズマバルブを有するプラズマセルを示す図である。 本発明の一実施形態に係るフィルタコーティング、フィルタ組立体、及び内側プラズマキャビティを備えたプラズマバルブを有するプラズマセルを示す図である。
付属の図面に示される開示される主題への言及がここで詳細になされる。
図1〜図5を概して参照すると、レーザ維持プラズマ光源に用いるのに適した紫外光フィルタリングのためのプラズマセルが本発明に従って説明される。1つの態様では、本発明は、短波長放射がバルブの内面に当たらないようにするためにバルブ内の維持されるプラズマによって放出される短波長放射(例えば、VUV放射)をフィルタするように構成されたプラズマバルブを備えるプラズマセルに向けられる。別の態様では、本発明のプラズマバルブは、プラズマによって放出される収集可能な放射(例えば、広帯域放射)の選択された部分を透過させるように構成される。これに関して、本発明のプラズマセルのプラズマバルブは、プラズマセルの中のプラズマを維持するのに用いられるポンプレーザによって放出される放射を少なくとも部分的に通し、且つプラズマバルブ内のプラズマによって放出される収集可能な光の選択された部分を少なくとも部分的に通す。プラズマバルブの内面に当たる短波長放射(例えば、VUV放射)の量を制限することによって、本発明は、レーザ維持照射源のプラズマバルブのソラリゼーションによって生じる損傷の量を低減させることができる。特に、本発明は、所与のプラズマバルブ内のプラズマによって放出される紫外光(例えば、VUV光)によって引き起こされるプラズマバルブガラスの劣化を低減させる一助となることができる。プラズマバルブの劣化は、バルブの動作不良を招き、これは所与のレーザ維持光源のプラズマバルブの交換を必要とする。加えて、プラズマバルブの劣化は、バルブが冷えた後の又はバルブの作動中のプラズマバルブの破裂を引き起こすことがある。ガス種内のプラズマの発生は、一般に、参照によりそれらの全体が本明細書に組み込まれる2007年4月2日に出願された米国特許出願第11/695,348号、及び2006年3月31日に出願された米国特許出願第11/395,523号で説明される。
図1は、本発明の一実施形態に係るフィルタ層104を備えたプラズマバルブ102を有するプラズマセル100を示す。一実施形態では、本発明のプラズマセル100は、選択された形状(例えば、円筒形、球など)を有し、且つレーザ光源(図示せず)からの光108の少なくとも一部を実質的に通す材料(例えば、ガラス)から形成される、プラズマバルブ102を含む。別の実施形態では、プラズマバルブ102は、バルブ102内の維持されるプラズマ106によって放出される収集可能な照射光(例えば、IR光、可視光、紫外光)の少なくとも一部を実質的に通す。例えば、バルブ102は、プラズマ106からの広帯域発光114の選択されたスペクトル領域を通してもよい。別の実施形態では、プラズマバルブ102の内面上にフィルタ層104が配置される。一実施形態では、フィルタ層104は、プラズマ106による発光の選択されたスペクトル領域を遮断するのに適している。例えば、フィルタ層104は、プラズマ106による発光の選択されたスペクトル領域110を実質的に吸収するのに適していてもよい。別の例として、フィルタ層104は、プラズマ106による発光の選択されたスペクトル領域112を実質的に反射させるのに適していてもよい。さらなる実施形態では、フィルタ層104は、限定はされないがおよそ200nmを下回る紫外などの短波長照射(例えば、VUV光)を吸収する又は反射させるのに適していてもよい。
別の実施形態では、フィルタ層104は、バルブの内面102上に堆積される材料を含んでもよいがこれに限定されない。これに関して、フィルタ層104は、プラズマバルブの内面102上に堆積されるコーティング材料を含んでもよい。例えば、フィルタ層104は、プラズマバルブの内面102上に堆積される酸化ハフニウムのコーティングを含んでもよいがこれに限定されない。酸化ハフニウムコーティングが220nm未満の波長の光を強く吸収することができ、酸化ハフニウムが本発明でのフィルタリング材料に特に有用なものとなることが本明細書で認識される。所望の波長範囲の光を吸収する又は反射させる能力を提供するあらゆるコーティング材料が本発明での実装に適する可能性があることが認識されるので、出願人は、本発明が酸化ハフニウムに限定されないことを特筆する。波長の関数としての酸化ハフニウムの透過特徴が、参照によりその全体が本明細書に組み込まれるE.E.Hoppe他、J.Appl.Phys.、101、123534(2007)によって詳細に説明される。フィルタ層での実装に適する付加的な材料は、酸化チタン、酸化ジルコニウムなどを含んでもよいがこれらに限定されない。
別の実施形態では、フィルタ層104は、第1の材料から形成された第1のコーティングと、第1のコーティングの表面上に配置される第2の材料から形成された第2のコーティング(図示せず)を含んでもよい。一実施形態では、第1のコーティングと第2のコーティングは同じ材料から形成されてもよい。別の実施形態では、第1のコーティングと第2のコーティングは異なる材料から形成されてもよい。
別の実施形態では、フィルタ層104は多層コーティングを含んでもよい。これに関して、多層コーティングは、異なる波長の光の選択的な反射又は吸収を提供するように構成されてもよい。
別の実施形態では、フィルタ層104は、バルブの内面102上に配置されるミクロ構造化された層を含んでもよいがこれに限定されない。例えば、フィルタ層104は、反射防止コーティングがもたらされるようにプラズマバルブ102のバルブ内壁をサブ波長ミクロ構造化することによって形成されてもよい。これに関して、反射防止コーティングは、特定の帯域幅の光(例えば、プラズマによって放出される収集可能な光)のために構成されてもよい。これに関して、反射性又は吸収性コーティングは、特定の帯域幅の光(例えば、プラズマによって放出される収集可能な光)のために構成されてもよい。別の例として、フィルタ層104は、特定のバンドの光(例えば、VUV)のための吸収性又は反射性コーティングがもたらされるようにプラズマバルブ102のバルブ内壁をサブ波長ミクロ構造化することによって形成されてもよい。
大きい粗度が達成されるようにプラズマバルブの内面102のコーティングをミクロ構造化することで、結果的に、ソラリゼーションによってバルブ壁が経験する応力を低下させることができることがさらに注目される。
別の実施形態では、フィルタ層104は、特定の波長域(例えば、UV光)を吸収するのに適するナノ結晶を含んでもよいがこれに限定されない。ナノ結晶は調整可能な吸収バンドを有することがあることが本明細書で注目される。これに関して、ナノ結晶の吸収バンドは、用いられるナノ結晶のサイズを変えることによって調整可能である。ナノ結晶は、頑健な吸収特性を有することがあることにさらに注目される。当該特定の波長域を吸収又は反射するように調整された選択された量の特定のナノ結晶を含むフィルタ層104を用いてプラズマによる発光の特定の波長域(例えば、UV又はVUV)がフィルタで除去されてもよいことが本明細書で認識される。このように、本発明での実装のための特定のナノ結晶の選択は、それによりナノ結晶のサイズ(例えば、平均サイズ(mean size、average size)、最小サイズ、最大サイズなど)が決定される、フィルタで除去されるべき関心ある特定の照射の波長域に依存することがある。
さらなる態様では、1つ以上のフィルタ層104がプラズマバルブ102への機械的保護を提供してもよい。これに関して、プラズマバルブの内面102上に堆積されるフィルタ層104は、プラズマバルブ102を補強するように作用してもよく、それにより、プラズマバルブ102の機械的破壊(例えば、バルブの破裂)の可能性を低下させるであろう。
別の実施形態では、フィルタ層104は、犠牲コーティングを含んでもよいがこれに限定されない。フィルタ層104は、プラズマによって放出される光から損傷を受け、徐々に分解し、はがれる、剥離する、又は粉々になることがあることが本明細書で注目される。このように、犠牲コーティングの劣化後であってもバルブ102の継続作動を可能にする犠牲コーティングが、本発明のフィルタ層104に実装されてもよい。
別の態様では、1つ以上のフィルタ層104は、プラズマバルブ102のバルブ壁を冷却するように構成されてもよい。これに関して、プラズマバルブの内面102上に堆積されるフィルタ層104は、熱管理サブシステム(図示せず)に熱的に結合されてもよい。熱管理サブシステムは、熱交換器及びヒートシンクを含んでもよいがこれらに限定されない。この意味では、フィルタ層104は、ヒートシンクとフィルタ層104を熱的に結合する熱交換器を介して、熱をバルブ壁からヒートシンクに伝達してもよい。
別の態様では、プラズマセル100のバルブ102は、レーザなどの関連するポンピング源からの照射及びプラズマ106からの収集可能な広帯域発光の1つ以上の選択された波長(又は波長範囲)を実質的に通す、ガラスなどの材料から形成されてもよい。ガラスバルブは種々のガラス材料から形成されてもよい。一実施形態では、ガラスバルブは溶融石英ガラスから形成されてもよい。さらなる実施形態では、ガラスバルブ102は、低OH含有溶融合成石英ガラス材料から形成されてもよい。他の実施形態では、ガラスバルブ102は、高OH含有溶融合成石英ガラス材料で形成されてもよい。例えば、ガラスバルブ102は、SUPRASIL 1、SUPRASIL 2、SUPRASIL 300、SUPRASIL 310、HERALUX PLUS、HERALUX−VUVなどを含んでもよいがこれらに限定されない。本発明のガラスバルブでの実装に適する種々のガラスは、参照によりその全体が本明細書に組み込まれるA.Schreiber他、Radiation Resistance of Quartz Glass for VUV Discharge Lamps、J.Phys.D:Appl.Phys.、38(2005)、pp.3242〜3250で詳細に論じられる。
別の態様では、プラズマセル100のバルブ102は、当該技術分野では公知の任意の形状を有してもよい。例えば、バルブ102は、以下の形状、すなわち、円筒形、球形、長球面形、楕円形、又は心臓形のうちの1つを有してもよいがこれらに限定されない。
本発明の再充填可能なプラズマセル100は、種々のガス環境においてプラズマを維持するのに用いられてもよいことが本明細書で考慮される。一実施形態では、プラズマセルのガスは、不活性ガス(例えば、希ガス又は非希ガス)又は非不活性ガス(例えば、水銀)を含んでもよい。例えば、本発明の或る体積のガスがアルゴンを含んでもよいことが本明細書で予想される。例えば、ガスは、5atmを超える圧力に保たれる実質的に純アルゴンガスを含んでもよい。別の場合には、ガスは、5atmを超える圧力に保たれる実質的に純クリプトンガスを含んでもよい。一般的な意味で、ガラスバルブ102は、レーザ維持プラズマ光源に用いるのに適した当該技術分野では公知の任意のガスが充填されてもよい。加えて、充填ガスは、2つ以上のガスの混合物を含んでもよい。ガスバルブ102に充填するのに用いられるガスは、Ar、Kr、N、Br、I、HO、O、H、CH、NO、NO、CHOH、COH、CO、1つ以上のハロゲン化金属、Ne/Xe、AR/Xe、又はKr/Xe、Ar/Kr/Xe混合物、ArHg、KrHg、及びXeHgなどを含んでもよいがこれらに限定されない。一般的な意味で、本発明は、任意の光ポンププラズマ発生システムにまで及ぶように解釈されるべきであり、さらに、プラズマセル内のプラズマを維持するのに適するあらゆるタイプのガスにまで及ぶように解釈されるべきである。
本発明の別の態様では、プラズマセル100のプラズマ106をポンピングするのに用いられる照射源は、1つ以上のレーザを含んでもよい。一般的な意味で、照射源は、当該技術分野では公知のあらゆるレーザシステムを含んでもよい。例えば、照射源は、電磁スペクトルの可視部分又は紫外部分の放射を放出することができる当該技術分野では公知のあらゆるレーザシステムを含んでもよい。一実施形態では、照射源は、持続波(continuous wave:CW)レーザ放射を放出するように構成されるレーザシステムを含んでもよい。例えば、或る体積のガスがアルゴンである又はアルゴンを含む設定では、照射源は、1069nmの放射を放出するように構成されるCWレーザ(例えば、ファイバレーザ又はディスクYbレーザ)を含んでもよい。この波長は、アルゴンの1068nm吸収線に当てはまり、したがって、ガスをポンピングするのに特に有用であることに注目される。CWレーザの上記の説明は限定するものではなく、当該技術分野では公知のあらゆるCWレーザが本発明との関連で実装されてもよいことが本明細書で注目される。
別の実施形態では、照射源は、1つ以上のダイオードレーザを含んでもよい。例えば、照射源はプラズマセルのガス種の任意の1つ以上の吸収線に対応する波長の放射を放出する1つ以上のダイオードレーザを含んでもよい。一般的な意味で、照射源のダイオードレーザは、ダイオードレーザの波長が当該技術分野では公知の任意のプラズマの任意の吸収線(例えば、イオン遷移線)又はプラズマ生成ガスの吸収線(例えば、高励起中性遷移線)に調整されるように実装に関して選択されてもよい。したがって、所与のダイオードレーザ(又はダイオードレーザの組)の選択は、本発明のプラズマセルに用いられるガスの種類に依存するであろう。
1つの別の実施形態では、照射源は、1つ以上の周波数変換されるレーザシステムを含んでもよい。例えば、照射源は、Nd:YAG又はNd:YLFレーザを含んでもよい。別の実施形態では、照射源は広帯域レーザを含んでもよい。別の実施形態では、照射源は、変調されたレーザ放射又はパルスレーザ放射を放出するように構成されるレーザシステムを含んでもよい。
本発明の別の態様では、照射源は、2つ以上の光源を含んでもよい。一実施形態では、照射源は、2つ以上のレーザを含んでもよい。例えば、照射源(又は複数の照射源)は、複数のダイオードレーザを含んでもよい。別の例として、照射源は、複数のCWレーザを含んでもよい。さらなる実施形態では、2つ以上のレーザのそれぞれは、プラズマセル内のガス又はプラズマの異なる吸収線に調整されたレーザ放射を放出してもよい。
図2は、本発明の代替的な実施形態に係るプラズマバルブ102の体積内に配置されるフィルタ組立体202を備えたプラズマバルブ102を有するプラズマセル200を示す。図1に関して既に本明細書で説明した、充填するガスの種類、ガラスバルブの材料、バルブの形状、及びレーザポンピング源は、他に記載のない限り本開示のプラズマセル200にまで及ぶように解釈されるべきであることが本明細書で注目される。
本発明の実施形態では、本明細書で前述したようなフィルタリング(すなわち、反射又は吸収)は、フィルタ組立体202を介して達成されることが本明細書でさらに注目される。これに関して、フィルタ組立体202は、プラズマ106による発光の選択されたスペクトル領域を遮断するのに適している。例えば、フィルタ組立体202は、プラズマ106による発光の選択されたスペクトル領域110を実質的に吸収するのに適していてもよい。別の例として、フィルタ組立体202は、プラズマ106による発光の選択されたスペクトル領域112を実質的に反射させるのに適していてもよい。さらなる実施形態では、フィルタ組立体202は、限定はされないがおよそ200nmを下回る紫外などの短波長照射(例えば、VUV光)を吸収する又は反射させるのに適していてもよい。
別の実施形態では、フィルタ組立体202は、プラズマバルブの内面に機械的に結合される。フィルタ組立体202は、当該技術分野では公知の任意の様態でプラズマバルブの内面102に機械的に結合されてもよいことが本明細書で注目される。
一態様では、フィルタ組立体は第1の材料から形成され、一方、プラズマバルブは第2の材料から形成される。一実施形態では、フィルタ組立体202は、バルブ102とは異なるタイプのガラス材料で作製される。フィルタ組立体202のガラスの異なる吸収特性が、バルブ102のガラスの保護を可能にし得ることが本明細書で認識される。
1つの別の実施形態では、フィルタ組立体202は、バルブ102のガラスと同じタイプのガラスで作製される。1つの別の実施形態では、フィルタ組立体202のガラス材料は、バルブ102のガラス材料と同じ温度に保たれる。フィルタ組立体202による放射の吸収は、バルブガラス102を放射への露出(例えば、VUV光への露出)から保護するように作用することが本明細書で認識される。この設定では、フィルタ組立体202によって引き起こされるソラリゼーション損傷はバルブ102の構造的一体性を損なわせない。フィルタ組立体202がクラックを生じる場合であっても、バルブ102の動作不良(例えば、バルブ内の高い圧力に起因するバルブの破裂)は起こらない。
別の実施形態では、バルブ102のガラスは、フィルタ組立体202のガラスとは異なる温度に保持される。例えば、フィルタ組立体202のガラスは、バルブ102のガラスの温度よりも高い温度に保持されてもよい。ガラスの吸収特性は温度の関数として大きく変化することがあるので、フィルタ組立体202の吸収特性は、バルブガラス102を放射(例えば、VUV光)から保護するように構成されてもよいことが本明細書で認識される。さらなる実施形態では、フィルタ組立体202によって引き起こされるソラリゼーション損傷は、フィルタ組立体202の高い温度によってアニールされることがある。例えば、フィルタ202は、フィルタ組立体202のガラスが軟化し迅速にアニールするおよそ1200℃の温度に保持されてもよい。フィルタ組立体202はバルブ102の構造的荷重を支えないので、フィルタ組立体202のガラスの軟化はバルブ102の構造的一体性を損なわせないことが本明細書でさらに注目される。対照的に、バルブ102が、バルブ102のガラスの軟化を招く高い温度に保たれる設定では、バルブ内の高いガス圧がバルブ102の破裂を招くことがある。
別の実施形態では、フィルタ組立体202は、コーティング材料を組立体(例えば、ガラス組立体)上に堆積させることによって形成されてもよく、組立体は、プラズマバルブ102の体積内に設置される。組立体202に用いられるコーティング材料は、フィルタ層104に関して本明細書で前述したコーティング材料(例えば、酸化ハフニウムなど)のうちの1つ以上からなってもよいことが本明細書で認識される。
別の実施形態では、フィルタ組立体202は、サファイア以外で形成されてもよい。サファイアがVUVバンドにおける照射を吸収するのに一般に適していることを当業者は認識するであろう。さらなる実施形態では、フィルタ組立体202はサファイアの薄い巻かれたシートからなってもよい。例えば、サファイアのシートは、概して円筒形の形状に巻かれ、プラズマバルブ102の体積内に配置されてもよい。例えば、サファイアシートは、およそ5〜20mmの厚さを有してもよい。
別の実施形態では、フィルタ組立体202は、ミクロ構造化されたフィルタ組立体を含んでもよい。これに関して、フィルタ組立体202の表面は、バルブ102表面のミクロ構造化された表面に関して本明細書で前述したのと類似した方法でミクロ構造化されてもよい。
別の実施形態では、フィルタ組立体202は、犠牲フィルタ組立体を含んでもよい。これに関して、フィルタ組立体202は劣化又は故障することがあるが、プラズマバルブ102の一体性は保持される。
図3は、本発明の代替的な実施形態に係るプラズマセル100のプラズマバルブの内面102に沿って液体を流すように構成される液体入口301及び液体出口304を備えたプラズマバルブ102を有するプラズマセル300を示す。図1に関して既に本明細書で説明した、充填するガスの種類、ガラスバルブの材料、及びレーザポンピング源は、他に記載のない限り本開示のプラズマセル300にまで及ぶように解釈されるべきであることが本明細書で注目される。
一態様では、プラズマセル300は、プラズマバルブの第1の部分102に配置される液体入口301を含む。別の態様では、プラズマセル300は、プラズマバルブ102の第1の部分とは反対側のプラズマバルブ102の第2の部分に配置される液体出口304を含む。さらなる態様では、液体入口及び液体出口は、プラズマバルブの内面102の少なくとも一部を液体302で覆うために液体302を液体入口301から液体出口304に流すように構成される。さらなる実施形態では、液体入口301は、バルブの内面102付近に液体302を分布させるのに適した1つ以上の(例えば、1、2、3、4など)ジェットを含んでもよい。付加的な態様では、液体は、プラズマ106による発光の選択されたスペクトル領域を遮断する(例えば、吸収する)ように構成される。
代替的実施形態では、液体入口301及び液体出口304は、プラズマバルブ102の体積内に液体302の独立したシース又はカーテンを形成するために液体を液体入口から液体出口に流すように構成される。これに関して、液体のシースはプラズマバルブの内面102と接触している必要はない。さらなる実施形態では、液体のシースは、液体入口301における1つ以上の(例えば、1、2、3、4など)ジェットを用いてプラズマバルブ102の体積内に形成されてもよい。
別の実施形態では、プラズマセル300は、プラズマバルブ102の内面の少なくとも一部の付近に液体302を分布させるためにプラズマバルブ102を少なくとも部分的に回転させるように構成される作動組立体をさらに含んでもよい。
一実施形態では、液体302は、1つ以上の放射吸収剤を含んでもよい。これに関して、液体302は、選択された吸収剤を液体入口から液体出口に運んでもよい。別の実施形態では、吸収剤は、1つ以上の染料を含んでもよい。さらなる実施形態では、液体302中に存在する染料は、選択された波長域(例えば、UV光又はVUV光)を吸収するように構成される。プラズマセル300に用いられる特定の染料は、プラズマセル300に要求される特定の放射吸収特性に基づいて選択されてもよいことが本明細書で認識される。
別の実施形態では、吸収剤は、1つ以上のナノ結晶材料(例えば、二酸化チタン)を含んでもよい。さらなる実施形態では、液体302中に存在するナノ結晶材料は、選択された波長域(例えば、UV光又はVUV光)を吸収するように構成される。プラズマセル300に用いられる特定のナノ結晶材料は、プラズマセル300に要求される特定の放射吸収特性に基づいて選択されてもよいことが本明細書で認識される。本明細書で既に述べたように、ナノ結晶は、ナノ結晶のサイズを変えることによって調整可能な吸収バンドを有し、且つ非常に頑健な吸収特性を有する。これに関して、プラズマセル300に用いられるナノ結晶の特定のタイプ及びサイズは、プラズマセル300に要求される特定の放射吸収特性に基づいて選択されてもよい。
さらなる態様では、液体302によって運ばれる材料(例えば、染料、ナノ結晶材料など)は、プラズマセル300の必要性に基づいて変更されてもよいことが認識される。例えば、第1の時間期間にわたって、液体302は液体302中に溶解又は懸濁した第1の材料を運んでもよく、一方、第2の時間期間にわたって、液体302は液体302中に溶解又は懸濁した第2の材料を運んでもよい。
別の実施形態では、プラズマセル300の液体302は、当該技術分野では公知のあらゆる液体を含んでもよい。例えば、液体302は、水、メタノール、エタノールなどを含んでもよいがこれらに限定されない。水の光吸収特徴は、参照によりその全体が本明細書に組み込まれる、W.H.Parkinson及びK.Yoshino、Chemical Physics、294(2003)、pp.31〜35で、W.H.Parkinson他によって詳細に論じられている。水は、190nmを下回るVUV波長に関する強い吸収断面積を呈することが本明細書で注目される。関心ある選択されたバンドを「遮断」するのに必要な吸収特徴を有する任意の液体が本発明での実装に適する可能性があることが本明細書で認識される。
図4は、プラズマバルブ102内に配置される内側プラズマセル406及び内側セル406の外面とプラズマバルブ102のバルブ壁の内面によって形成される気体フィルタキャビティ402を備えたプラズマバルブ102を有するプラズマセル400を示す。図1に関して既に本明細書で説明した、充填するガスの種類、ガラスバルブの材料、及びレーザポンピング源は、他に記載のない限り本開示のプラズマセル400にまで及ぶように解釈されるべきであることが本明細書で注目される。
プラズマバルブ102及び内側プラズマセル406は、内側プラズマセル406の体積404内のプラズマ106を維持するように構成されたポンプレーザから生じる光を実質的に通すことが本明細書で認識される。さらなる態様では、プラズマバルブ102及び内側プラズマセル406は、プラズマ106による発光の収集可能なスペクトル領域の少なくとも一部114を実質的に通す。さらなる態様では、気体フィルタキャビティは、気体フィルタ材料402を収容するように構成される。さらなる実施形態では、気体フィルタ材料402は、プラズマ106による発光の選択されたスペクトル領域の一部110を吸収するように構成される。気体フィルタ材料402は、選択されたバンドの光(例えば、UV又はVUV光)を吸収するのに適した当該技術分野では公知の任意のガスを含んでもよいことが本明細書で注目される。
図5は、本明細書で前述した種々の特徴のうちの2つ以上の組み合わせを実装するプラズマセル500を示す。図1に関して既に本明細書で説明した、充填するガスの種類、ガラスバルブの材料、及びレーザポンピング源は、他に記載のない限り本開示のプラズマセル500にまで及ぶように解釈されるべきであることが本明細書で注目される。これに関して、プラズマセル500は、以下の特徴、すなわち、フィルタ層104、フィルタ組立体202、液体フィルタ302、及び気体フィルタ402のうちの2つ以上を実装してもよい。前述の種々の特徴のそれぞれは、プラズマ106によって放出される放射の異なるスペクトル領域をフィルタで除去するのに用いられてもよいことが本明細書で認識される。前述の種々の特徴は異なる作動体制(例えば、温度、圧力など)で作動するように構成されてもよいことが本明細書でさらに認識される。
本明細書で説明される本発明の主題の特定の態様が示され説明されているが、本明細書の教示に基づいて、本明細書で説明される主題及びそのより広い態様から逸脱することなく変化及び修正が加えられてもよく、したがって、付属の請求項は、本明細書で説明される主題の真の精神及び範囲内にあるものとしてすべてのこうした変化及び修正をそれらの範囲内に包含するものであることが当業者には明らかであろう。

Claims (24)

  1. レーザ維持プラズマ光源に用いるのに適した紫外光フィルタリングのためのプラズマセルであって、
    プラズマを発生させるのに適したガスを収容するように構成され、且つプラズマバルブ内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つ前記プラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通す、プラズマバルブと、
    前記プラズマバルブの内面上に配置され、前記プラズマによる発光の選択されたスペクトル領域を遮断するように構成される、フィルタ層と、
    を備えるプラズマセル。
  2. 前記プラズマによる発光の収集可能なスペクトル領域が、赤外光、可視光、又は紫外光のうちの少なくとも1つを含む、請求項1に記載のプラズマセル。
  3. 前記フィルタ層が、前記プラズマによる発光の紫外スペクトル領域を遮断するように構成される、請求項1に記載のプラズマセル。
  4. 前記フィルタ層が、前記プラズマによる発光の真空紫外スペクトル領域を遮断するように構成される、請求項3に記載のプラズマセル。
  5. 前記プラズマによる発光の選択されたスペクトル領域を遮断するように構成された前記フィルタ層が、前記プラズマによる発光の選択されたスペクトル領域の少なくとも一部を吸収するように構成されたフィルタ層を備える、請求項1に記載のプラズマセル。
  6. 前記プラズマによる発光の選択されたスペクトル領域を遮断するように構成された前記フィルタ層が、前記プラズマによる発光の選択されたスペクトル領域の少なくとも一部を反射させるように構成されたフィルタ層を備える、請求項1に記載のプラズマセル。
  7. 前記フィルタ層が、酸化ハフニウムのコーティング、酸化チタンのコーティング、及び酸化ジルコニウムのうちの少なくとも1つ、のうちの少なくとも1つを含む、請求項1に記載のプラズマセル。
  8. 前記フィルタ層が、
    第1の材料から形成された第1のコーティングと、
    第2の材料から形成され、前記第1のコーティング上に配置される、少なくとも第2のコーティングと、
    を備える、請求項1に記載のプラズマセル。
  9. 前記フィルタ層が、前記プラズマバルブの内面のミクロ構造化された層を含む、請求項1に記載のプラズマセル。
  10. 前記フィルタ層が犠牲コーティングを含む、請求項1に記載のプラズマセル。
  11. 前記バルブが、実質的に円筒形の形状、実質的に球形の形状、実質的に偏長回転楕円形の形状、実質的に長円形の形状、及び実質的に心臓形の形状のうちの少なくとも1つを有する、請求項1に記載のプラズマセル。
  12. 前記ガスが、Ar、Kr、N、Br、I、HO、O、H、CH、NO、NO、CHOH、COH、CO、1つ以上のハロゲン化金属、Ne/Xe、AR/Xe、又はKr/Xe、Ar/Kr/Xe混合物、ArHg、KrHg、及びXeHgのうちの少なくとも1つを含む、請求項1に記載のプラズマセル。
  13. 前記プラズマバルブがガラス材料から形成される、請求項1に記載のプラズマセル。
  14. 前記プラズマバルブのガラス材料が溶融石英ガラスを含む、請求項13に記載のプラズマセル。
  15. レーザ維持プラズマ光源に用いるのに適した紫外光フィルタリングのためのプラズマセルであって、
    プラズマを発生させるのに適したガスを収容するように構成され、且つプラズマバルブ内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つ前記プラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通す、プラズマバルブと、
    前記プラズマバルブの第1の部分に配置される液体入口と、
    前記プラズマバルブの第1の部分とは反対側の前記プラズマバルブの第2の部分に配置される液体出口と、
    を備え、前記液体入口及び前記液体出口が液体を前記液体入口から前記液体出口に流すように構成され、前記液体が前記プラズマによる発光の選択されたスペクトル領域を遮断するように構成される、プラズマセル。
  16. 前記液体入口及び液体出口が、前記プラズマバルブの内面の少なくとも一部を液体で覆うために液体を前記液体入口から前記液体出口に流すように構成される、請求項15に記載のプラズマセル。
  17. 前記液体入口及び液体出口が、前記プラズマバルブの体積内の液体の独立したシースを形成するために液体を液体入口から液体出口に流すように構成される、請求項15に記載のプラズマセル。
  18. 前記液体が、水、メタノール、及びエタノールのうちの少なくとも1つを含む、請求項15に記載のプラズマセル。
  19. 前記液体が、ナノ結晶材料及び染料のうちの少なくとも1つを含む、請求項15に記載のプラズマセル。
  20. 前記プラズマバルブの内面の一部のうちの少なくとも1つの付近の1つ以上の経路に沿って前記液体を前記液体入口から前記液体出口に移動させるように構成された能動液体送達ジェットをさらに含む、請求項15に記載のプラズマセル。
  21. 前記プラズマバルブの体積内に独立したシースを形成するために前記液体を前記液体入口から前記液体出口に移動させるように構成された能動液体送達ジェットをさらに含む、請求項15に記載のプラズマセル。
  22. 前記プラズマバルブの内面の少なくとも一部の付近に前記液体を分布させるために前記プラズマバルブを少なくとも部分的に回転させるように構成された作動組立体をさらに備える、請求項15に記載のプラズマセル。
  23. レーザ維持プラズマ光源に用いるのに適した紫外光フィルタリングのためのプラズマセルであって、
    プラズマバルブと、
    前記プラズマバルブ内に配置され、プラズマを発生させるのに適したガスを収容するように構成される、内側プラズマセルと、
    前記内側プラズマセルの外面と前記プラズマバルブの内面によって形成される気体フィルタキャビティと、
    を備え、前記プラズマバルブ及び前記内側プラズマセルが、前記内側プラズマセル内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つ前記プラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通し、前記気体フィルタキャビティが、気体フィルタ材料を収容するように構成され、前記気体フィルタ材料が、前記プラズマによる発光の選択されたスペクトル領域の一部を吸収するように構成される、プラズマセル。
  24. レーザ維持プラズマ光源に用いるのに適した紫外光フィルタリングのためのプラズマセルであって、
    プラズマを発生させるのに適したガスを収容するように構成され、且つプラズマバルブ内のプラズマを維持するように構成されたポンプレーザから生じる光を実質的に通し、且つ前記プラズマによる発光の収集可能なスペクトル領域の少なくとも一部を実質的に通す、プラズマバルブと、
    前記プラズマバルブの内面上に配置されたフィルタ層、前記プラズマバルブの体積内に配置されたフィルタ組立体、前記ブラズマバルブの体積内に配置された液体フィルタ、前記プラズマバブルの体積内に配置された気体フィルタの少なくともいずれかと、
    を備えるプラズマセル。
JP2018084339A 2012-01-17 2018-04-25 レーザ維持プラズマ光源におけるvuvフィルタリングを提供するためのプラズマセル Active JP6509404B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261587380P 2012-01-17 2012-01-17
US61/587,380 2012-01-17
US13/741,566 US9927094B2 (en) 2012-01-17 2013-01-15 Plasma cell for providing VUV filtering in a laser-sustained plasma light source
US13/741,566 2013-01-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014553398A Division JP6333734B2 (ja) 2012-01-17 2013-01-17 レーザ維持プラズマ光源におけるvuvフィルタリングを提供するためのプラズマセル

Publications (2)

Publication Number Publication Date
JP2018113272A true JP2018113272A (ja) 2018-07-19
JP6509404B2 JP6509404B2 (ja) 2019-05-08

Family

ID=48779500

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014553398A Active JP6333734B2 (ja) 2012-01-17 2013-01-17 レーザ維持プラズマ光源におけるvuvフィルタリングを提供するためのプラズマセル
JP2018084339A Active JP6509404B2 (ja) 2012-01-17 2018-04-25 レーザ維持プラズマ光源におけるvuvフィルタリングを提供するためのプラズマセル

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014553398A Active JP6333734B2 (ja) 2012-01-17 2013-01-17 レーザ維持プラズマ光源におけるvuvフィルタリングを提供するためのプラズマセル

Country Status (5)

Country Link
US (3) US9927094B2 (ja)
JP (2) JP6333734B2 (ja)
KR (2) KR102004520B1 (ja)
DE (2) DE112013007825B4 (ja)
WO (1) WO2013109701A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796652B2 (en) * 2012-08-08 2014-08-05 Kla-Tencor Corporation Laser sustained plasma bulb including water
US9232622B2 (en) * 2013-02-22 2016-01-05 Kla-Tencor Corporation Gas refraction compensation for laser-sustained plasma bulbs
US8853655B2 (en) * 2013-02-22 2014-10-07 Kla-Tencor Corporation Gas refraction compensation for laser-sustained plasma bulbs
US9709811B2 (en) 2013-08-14 2017-07-18 Kla-Tencor Corporation System and method for separation of pump light and collected light in a laser pumped light source
IL234728A0 (en) * 2013-09-20 2014-11-30 Asml Netherlands Bv A light source powered by a Yadel laser
US9814126B2 (en) * 2013-10-17 2017-11-07 Asml Netherlands B.V. Photon source, metrology apparatus, lithographic system and device manufacturing method
CN105814662B (zh) * 2013-12-13 2019-05-03 Asml荷兰有限公司 辐射源、量测设备、光刻系统和器件制造方法
KR101872752B1 (ko) * 2013-12-13 2018-06-29 에이에스엠엘 네델란즈 비.브이. 방사선 소스, 계측 장치, 리소그래피 시스템 및 디바이스 제조 방법
US9433070B2 (en) 2013-12-13 2016-08-30 Kla-Tencor Corporation Plasma cell with floating flange
US9530636B2 (en) 2014-03-20 2016-12-27 Kla-Tencor Corporation Light source with nanostructured antireflection layer
US9263238B2 (en) * 2014-03-27 2016-02-16 Kla-Tencor Corporation Open plasma lamp for forming a light-sustained plasma
US10032620B2 (en) 2014-04-30 2018-07-24 Kla-Tencor Corporation Broadband light source including transparent portion with high hydroxide content
US9615439B2 (en) 2015-01-09 2017-04-04 Kla-Tencor Corporation System and method for inhibiting radiative emission of a laser-sustained plasma source
US10217625B2 (en) * 2015-03-11 2019-02-26 Kla-Tencor Corporation Continuous-wave laser-sustained plasma illumination source
US9891175B2 (en) 2015-05-08 2018-02-13 Kla-Tencor Corporation System and method for oblique incidence scanning with 2D array of spots
US10008378B2 (en) * 2015-05-14 2018-06-26 Excelitas Technologies Corp. Laser driven sealed beam lamp with improved stability
US10283342B2 (en) * 2015-12-06 2019-05-07 Kla-Tencor Corporation Laser sustained plasma light source with graded absorption features
JP2018037276A (ja) * 2016-08-31 2018-03-08 ウシオ電機株式会社 レーザ駆動ランプ
US10495287B1 (en) 2017-01-03 2019-12-03 Kla-Tencor Corporation Nanocrystal-based light source for sample characterization
US10690589B2 (en) * 2017-07-28 2020-06-23 Kla-Tencor Corporation Laser sustained plasma light source with forced flow through natural convection
US10691024B2 (en) 2018-01-26 2020-06-23 Kla-Tencor Corporation High-power short-pass total internal reflection filter
US10714327B2 (en) 2018-03-19 2020-07-14 Kla-Tencor Corporation System and method for pumping laser sustained plasma and enhancing selected wavelengths of output illumination
US10568195B2 (en) 2018-05-30 2020-02-18 Kla-Tencor Corporation System and method for pumping laser sustained plasma with a frequency converted illumination source
US11262591B2 (en) 2018-11-09 2022-03-01 Kla Corporation System and method for pumping laser sustained plasma with an illumination source having modified pupil power distribution
US11121521B2 (en) 2019-02-25 2021-09-14 Kla Corporation System and method for pumping laser sustained plasma with interlaced pulsed illumination sources
US11972931B2 (en) * 2020-12-21 2024-04-30 Hamamatsu Photonics K.K. Light emitting sealed body, light emitting unit, and light source device
US11862922B2 (en) * 2020-12-21 2024-01-02 Energetiq Technology, Inc. Light emitting sealed body and light source device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111684A (ja) * 1974-06-13 1976-01-29 Canadian Patents Dev Kokodofukushaookonausochi
JP2004127710A (ja) * 2002-10-02 2004-04-22 Japan Storage Battery Co Ltd エキシマランプ及びこの放電用容器
JP2006099966A (ja) * 2004-09-28 2006-04-13 Hitachi Lighting Ltd Hidランプ
JP2009532829A (ja) * 2006-03-31 2009-09-10 エナジェティック・テクノロジー・インコーポレーテッド レーザ駆動の光源
JP2011119200A (ja) * 2009-04-15 2011-06-16 Ushio Inc レーザー駆動光源

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3054921A (en) * 1960-12-08 1962-09-18 Union Carbide Corp Electric lamp
US3682525A (en) * 1970-06-26 1972-08-08 Westinghouse Electric Corp Method of seasoning crystalline ceramic discharge lamps
US3748518A (en) * 1972-06-14 1973-07-24 Westinghouse Electric Corp Fluorescent lamp having titania-doped glass envelope with transparent buffer film of titania
SU470019A1 (ru) 1973-05-31 1975-05-05 Предприятие П/Я М-5907 Малогабаритна люминесцентна лампа
US4049987A (en) * 1976-06-04 1977-09-20 The Perkin-Elmer Corporation Ozone absorbance controller
JPS5699959A (en) * 1979-12-26 1981-08-11 Sylvania Electric Prod Fluorescent discharge lamp
JPS5821293A (ja) * 1981-07-29 1983-02-08 株式会社日立製作所 ガス放電発光装置およびその駆動方法
US4524299A (en) * 1982-04-08 1985-06-18 North American Philips Corporation Fluorescent sunlamp having controlled ultraviolet output
US4935668A (en) * 1988-02-18 1990-06-19 General Electric Company Metal halide lamp having vacuum shroud for improved performance
US4949005A (en) * 1988-11-14 1990-08-14 General Electric Company Tantala-silica interference filters and lamps using same
CA2017471C (en) * 1989-07-19 2000-10-24 Matthew Eric Krisl Optical interference coatings and lamps using same
RU1775751C (ru) 1991-02-19 1992-11-15 Саранское производственное объединение "Лисма" Газоразр дна лампа
DE4432315A1 (de) * 1994-09-12 1996-03-14 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Quecksilberdampf-Kurzbogenlampe
US5658612A (en) * 1995-09-29 1997-08-19 Osram Sylvania Inc. Method for making a tantala/silica interference filter on the surface of a tungsten-halogen incandescent lamp
US6052401A (en) * 1996-06-12 2000-04-18 Rutgers, The State University Electron beam irradiation of gases and light source using the same
JP2000285854A (ja) * 1999-03-30 2000-10-13 Toshiba Lighting & Technology Corp 2重管形放電ランプおよび照明装置
DE19933023A1 (de) * 1999-07-15 2001-01-18 Philips Corp Intellectual Pty Gasentladungslampe
US20020145875A1 (en) 2001-04-10 2002-10-10 Perkinelmer Optoelectronics N.C., Inc. Compact water-cooled multi-kilowatt lamp
KR100541380B1 (ko) * 2002-12-20 2006-01-11 주식회사 일진옵텍 자외선 및 적외선 차단용 코팅 박막
JP4177720B2 (ja) 2003-06-25 2008-11-05 ハリソン東芝ライティング株式会社 閃光放電ランプ、閃光放電ランプ点灯装置および光照射装置
US7772773B1 (en) * 2003-11-13 2010-08-10 Imaging Systems Technology Electrode configurations for plasma-dome PDP
US20050168148A1 (en) * 2004-01-30 2005-08-04 General Electric Company Optical control of light in ceramic arctubes
CN100529892C (zh) * 2005-04-23 2009-08-19 鸿富锦精密工业(深圳)有限公司 冷阴极灯管和使用该灯管的背光模组
US7336416B2 (en) * 2005-04-27 2008-02-26 Asml Netherlands B.V. Spectral purity filter for multi-layer mirror, lithographic apparatus including such multi-layer mirror, method for enlarging the ratio of desired radiation and undesired radiation, and device manufacturing method
KR20070012224A (ko) * 2005-07-22 2007-01-25 도시바 라이텍쿠 가부시키가이샤 자외선 차단 재료, 자외선 차단 가시 선택 투과 필터, 가시선택 투과 수지 재료, 광원 및 조명 장치
US20070099001A1 (en) * 2005-10-27 2007-05-03 Cymer, Inc. Blister resistant optical coatings
US7989786B2 (en) * 2006-03-31 2011-08-02 Energetiq Technology, Inc. Laser-driven light source
US8525138B2 (en) 2006-03-31 2013-09-03 Energetiq Technology, Inc. Laser-driven light source
EP2008296A2 (en) * 2006-04-11 2008-12-31 Luxim Corporation Methods and apparatus for thermal management and light recycling
US7705331B1 (en) 2006-06-29 2010-04-27 Kla-Tencor Technologies Corp. Methods and systems for providing illumination of a specimen for a process performed on the specimen
US7772749B2 (en) * 2007-05-01 2010-08-10 General Electric Company Wavelength filtering coating for high temperature lamps
JP5126965B2 (ja) * 2007-12-18 2013-01-23 株式会社東通研 水冷式紫外線照射装置
JP4998827B2 (ja) 2008-01-31 2012-08-15 ウシオ電機株式会社 エキシマランプ
WO2010024193A1 (ja) * 2008-08-25 2010-03-04 コニカミノルタホールディングス株式会社 耐候性物品、耐候性フィルム及び光学部材
JP2011175823A (ja) * 2010-02-24 2011-09-08 Ushio Inc 蛍光ランプ
US8643840B2 (en) * 2010-02-25 2014-02-04 Kla-Tencor Corporation Cell for light source
DE102010033446B4 (de) * 2010-08-04 2012-03-22 Heraeus Noblelight Gmbh Quecksilberdampflampe für eine homogene flächenhafte Bestrahlung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111684A (ja) * 1974-06-13 1976-01-29 Canadian Patents Dev Kokodofukushaookonausochi
JP2004127710A (ja) * 2002-10-02 2004-04-22 Japan Storage Battery Co Ltd エキシマランプ及びこの放電用容器
JP2006099966A (ja) * 2004-09-28 2006-04-13 Hitachi Lighting Ltd Hidランプ
JP2009532829A (ja) * 2006-03-31 2009-09-10 エナジェティック・テクノロジー・インコーポレーテッド レーザ駆動の光源
JP2011119200A (ja) * 2009-04-15 2011-06-16 Ushio Inc レーザー駆動光源

Also Published As

Publication number Publication date
WO2013109701A1 (en) 2013-07-25
US20130181595A1 (en) 2013-07-18
JP6333734B2 (ja) 2018-05-30
DE112013000595T5 (de) 2014-10-16
KR20140123072A (ko) 2014-10-21
US20180172240A1 (en) 2018-06-21
US10976025B2 (en) 2021-04-13
US9927094B2 (en) 2018-03-27
US20210231292A1 (en) 2021-07-29
KR102134110B1 (ko) 2020-07-14
DE112013007825B4 (de) 2023-11-02
KR102004520B1 (ko) 2019-07-26
JP6509404B2 (ja) 2019-05-08
JP2015505419A (ja) 2015-02-19
KR20190090058A (ko) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6509404B2 (ja) レーザ維持プラズマ光源におけるvuvフィルタリングを提供するためのプラズマセル
JP6490181B2 (ja) プラズマセル内の対流を制御するための方法及びシステム
JP6224599B2 (ja) レーザー維持プラズマ光源向けプラズマ・セル
US9775226B1 (en) Method and system for generating a light-sustained plasma in a flanged transmission element
JP6891261B2 (ja) ナノ構造の反射防止層を有する光源、装置、及び方法
EP3457429A1 (en) Laser driven sealed beam lamp with adjustable pressure
EP3466220B1 (en) System for inhibiting vuv radiative emission of a laser-sustained plasma source
JP6664402B2 (ja) レーザ維持プラズマ光源の放射性輻射を阻害するシステム及び方法
WO2010002766A2 (en) Laser-driven light source
JP7192056B2 (ja) 光学装置
US10008378B2 (en) Laser driven sealed beam lamp with improved stability
JP6202332B2 (ja) 紫外線ランプ
WO2018081220A1 (en) Apparatus and a method for operating a variable pressure sealed beam lamp
JP2017220439A (ja) レーザ駆動光源装置
WO2017212683A1 (ja) レーザ駆動光源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6509404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250