JP2018084523A - ガス濃度測定装置 - Google Patents

ガス濃度測定装置 Download PDF

Info

Publication number
JP2018084523A
JP2018084523A JP2016228552A JP2016228552A JP2018084523A JP 2018084523 A JP2018084523 A JP 2018084523A JP 2016228552 A JP2016228552 A JP 2016228552A JP 2016228552 A JP2016228552 A JP 2016228552A JP 2018084523 A JP2018084523 A JP 2018084523A
Authority
JP
Japan
Prior art keywords
light
measurement
gas concentration
mirror
concentration measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016228552A
Other languages
English (en)
Other versions
JP2018084523A5 (ja
Inventor
田中 豊彦
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2016228552A priority Critical patent/JP2018084523A/ja
Publication of JP2018084523A publication Critical patent/JP2018084523A/ja
Publication of JP2018084523A5 publication Critical patent/JP2018084523A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】シングルパス型よりも高い感度が得られ、マルチパス型に比べて安定した連続測定を行うことができるガス濃度測定装置を提供する。【解決手段】側面に測定対象ガスを導入するための開口33を有する筒状の挿入体20を備えた本体10と、挿入体20の端部20aと本体10の間を区画するように設けられた窓材32であって透光部322と端部20a側に設けられた反射部321とを有する窓材32と、測定光を透光部322を通過させて端部20aに照射させる光導入部11と、挿入体20の端部20aに設けられた凹面鏡31であって透光部322を通過した測定光を反射部321に向けて反射させ反射部321を反射した測定光を透光部322に向けて反射させる反射面を有する凹面鏡31と、透光部322を通過した測定光を検出する検出部12とを備えることを特徴とするガス濃度測定装置1。【選択図】図4

Description

本発明は、吸光分光法を用いて測定対象ガスに含まれる目的ガスの濃度を測定するガス濃度測定装置に関する。
測定対象ガスに含まれる目的ガスの濃度を測定する手法に吸光分光法がある。吸光分光法では、測定対象ガスに対して目的ガスの吸収波長帯域の測定光を照射し、その透過光の強度を測定する。そして、目的ガスによる光吸収量からランベルト・ベールの法則に基づき目的ガスの吸光度を求め、該吸光度から目的ガスの濃度を求める。
吸光分光法を用いたガス濃度測定装置は、例えば自動車のエンジンに供給される燃焼ガスに含まれる酸素や、エンジンからの排気ガスに含まれる二酸化炭素等の濃度を測定するために用いられる。こうした測定では、実際にエンジンを動作させた状態でガス濃度の変化をリアルタイムで測定するために、プローブ挿入型のガス濃度測定装置が用いられる。
図1に、従来用いられているプローブ挿入型のガス濃度測定装置100の一構成例を示す。このガス濃度測定装置100は、筒状の挿入体120を有する本体110を備えている。本体110には、半導体レーザ等の光源102から発せられた測定光を導く光ファイバ103の出口端を接続するファイバ接続部111と、検出器112と、測定光を該検出器112に導くための第1ミラー113が配置されている。
筒状の挿入体120の端部には、目的ガスを含む測定対象ガスが流れる測定対象空間に挿入される計測部130が設けられている。計測部130の側面には開口133が設けられており、該開口133を通じて測定対象ガスが計測部130内を流通する。また、計測部130の端部には第2ミラー131が配置され、該第2ミラー131と対向する位置に該計測部130を挿入体120の本体側の空間と区画する窓材132が取り付けられている。
このガス濃度測定装置100を用いた測定では、光源102から発せられた測定光を光ファイバ103によりファイバ接続部111に導き、該ファイバ接続部111から第2ミラー132の中央にレーザ光を照射する。このレーザ光は第2ミラー132及び第1ミラー113により順に反射され検出器112に入射する。検出器112では、計測部130内を流れる目的ガスによりその一部が吸収された測定光の強度を測定する。目的ガスの吸収波長を含む波長帯域で波長を変化させつつ測定を行うことにより吸収スペクトルを取得し、そのピーク強度から吸光度を計算し、さらに該吸光度から目的ガスの濃度を求める。図1のように、計測部130内で測定光を一往復させる構成のガス濃度測定装置100をシングルパス型のガス濃度測定装置と呼ぶ。
ガス濃度測定装置100では、計測部130内の光路長が長いほど目的ガスによる測定光の吸収量が多くなり、測定感度が上昇する。特許文献1には、図2に示すように計測部130a内に配置される第2ミラー131aを球面鏡とし、また、窓材に代えて、計測部130a側に反射面1321aを持ちその一部に透光部1322aが形成された球面鏡である第3ミラー132aを配置した構成のガス濃度測定装置100aが記載されている。このように球面鏡を対向配置した構成はヘリオットセルと呼ばれ、透光部1322aから入射した測定光を第2ミラー131aと第3ミラー132aの反射面1321aで繰り返し反射させた後、透光部1322aから出射させる。これにより、計測部130a内での光路長を長くして測定感度を高めることができる。図2のように、計測部130a内で測定光を多重反射させる構成のガス濃度測定装置100aをマルチパス型のガス濃度測定装置と呼ぶ。
特開2015−137910号公報
ヘリオットセルを備えたマルチパス型のガス濃度測定装置100aではミラーでの反射回数が多いために、測定開始後、時間経過に伴い第2ミラー131aあるいは第3ミラー132aの反射面に測定対象ガスの分子等が付着して汚れると大幅に感度が低下する。このため、安定した連続測定を行うことが難しいという問題があった。
本発明が解決しようとする課題は、シングルパス型のガス濃度測定装置よりも高い感度が得られ、マルチパス型のガス濃度測定装置に比べて安定した連続測定を行うことができるガス濃度測定装置を提供することである。
上記課題を解決するために成された本発明に係るガス濃度測定装置は、
a)側面に測定対象ガスを導入するための開口を有する筒状の挿入体を備えた本体と、
b) 前記挿入体の、前記端部と前記本体の間を区画するように設けられた窓材であって、測定光を通過させる透光部と、前記端部側に設けられた反射部とを有する窓材と、
c) 前記本体に設けられた、測定光を前記透光部を通過させて前記端部に照射させる光導入部と、
d) 前記挿入体の前記端部に設けられた凹面鏡であって、前記透光部を通過した測定光を前記反射部に向けて反射し、該反射部を反射した測定光を前記透光部に向けて反射する反射面を有する凹面鏡と、
e) 前記透光部を通過した測定光を検出する検出部と
を備えることを特徴とする。
前記光導入部は、例えば光源から発せられた光を輸送する光ファイバの出口端を接続するファイバ接続部とすることができる。
前記凹面鏡は、例えば、断面が放物線状や円弧状である反射面を有するもの、該断面がV字状である反射面を有するものとすることができる。凹面鏡を前者とした場合、該断面内で多少の測定光の光軸ずれが生じても測定光を窓材の反射部に反射することができロバスト性が向上する。
前記検出部は、典型的には本体内に設けられるが、本体外部に設けてもよい。また、検出部は透光部を通過した測定光を直接検出する検出器のみから構成してもよく、透光部を通過した光を1乃至複数回反射する反射部や、測定光を検出器の検出面に集光する集光部等の光学系と、該光学系を通過した測定光を検出する検出器から構成してもよい。
本発明者は、上記の課題を解決するために、まず、図3に示すように、1枚の平板ミラー231を先端側に配置し、表面の一部(典型的には中央)に反射部2321を形成した平板状の窓材232を対向配置することにより計測部230(前記凹面鏡と前記窓材の間の空間)で測定光を2往復させる構成(以下、これを「ダブルパス型」と呼ぶ。)のガス濃度測定装置200を検討した。しかし、一般に、計測部230を測定対象ガスが流通する領域に挿入して用いるガス濃度測定装置では、挿入体220の径が細く、また窓材232と平板ミラー231の離間距離に比べてファイバ接続部211から窓材232までの距離が長い。そのため、平板ミラー231に対して垂直に近い角度で測定光を入射し、窓材232の表面に形成する反射部2321のごく近傍で測定光を入出射させることになる。窓材232の表面に設けられる反射部2321は、多くの場合、蒸着により形成されるため、透光部2322と反射部2321の境界にこれらの中間的な特性を持つ領域が生じる。つまり、図3の構成では透光性が十分でない領域に測定光を入出射させることになり、その一部が失われて感度が低下してしまう。
本発明は、上記検討を経てなされたものであり、ダブルパス型の構成を採り、かつ窓材に入射する測定光及び窓材から出射する測定光の通過位置を反射部から遠ざける、という技術的思想に基づく。
本発明に係るガス濃度測定装置では、光導入部から導入された測定光が、窓材の透光部を通って挿入体の端部に設けられた凹面鏡に入射する。凹面鏡で反射された測定光は、続いて窓材の反射部で反射され、さらに凹面鏡で再反射され、窓部の透光部を通過して検出部で検出される。本発明に係るガス濃度測定装置では、挿入体の端部に凹面鏡を用いているため、窓材の反射部から遠い位置を通過して凹面鏡に入射した測定光を該反射部に反射することができ、また該反射部で反射された測定光を再反射し、該反射部から遠い位置から出射させることができる。従って、平面ミラーを用いる場合に生じる上述の問題が解消される。
また、本発明に係るガス濃度測定装置はダブルパス型であり、シングルパス型に比べて2倍の光路長を持つため、シングルパス型のガス濃度測定装置よりも高い感度が得られる。また、マルチパス型のガス濃度測定装置に比べて反射回数が少ないため、測定対象ガスによってミラーが多少汚れても測定感度が大きく変化することがなく、安定した連続測定を行うことができる。
本発明に係るガス濃度測定装置では、前記凹面鏡が、前記反射部を通る前記窓材の法線に関して回転対称な反射面を有することが好ましい。これにより、例えば装置の使用中に挿入体が該法線回りに回転ずれを生じた場合でも測定光を反射部に反射することができロバスト性が向上する。
本発明に係るガス濃度測定装置を用いることにより、シングルパス型のガス濃度測定装置よりも高い感度が得られ、マルチパス型のガス濃度測定装置に比べて安定した連続測定を行うことができる。
従来のガス濃度測定装置の要部構成図。 従来の別のガス濃度測定装置の要部構成図。 ダブルパス型のガス濃度測定装置の一構成例。 本発明に係るガス濃度測定装置の一実施例の要部構成図。 本実施例のガス濃度測定装置の計測部の構成図。 本発明に係るガス濃度測定装置の変形例の計測部の構成図。 本発明に係るガス濃度測定装置の別の変形例の計測部の構成図。 本発明に係るガス濃度測定装置のさらに別の変形例の計測部の構成図。
本発明に係るガス濃度測定装置の実施例について、以下、図面を参照して説明する。図1から図3を用いて説明した構成要素と共通する構成要素については下二桁が同じ符号を付している。
図4は、本実施例のガス濃度測定装置1の要部構成図である。本実施例のガス濃度測定装置1は、筒状の挿入体20を有する本体10を備えている。本体10には、波長可変の半導体レーザ光源である光源2から発せられた測定光を導く光ファイバ3の出口端を接続するファイバ接続部11と、検出器12と、測定光を該検出器12に導くための第1ミラー13が配置されている。挿入体20の、本体10とは反対側の端部20aは気密に閉鎖されている。
筒状の挿入体20の端部には、目的ガスを含む測定対象ガスが流れる配管40に挿入される計測部30が設けられている。計測部30の側面には開口33が設けられており、該開口33を通じて測定対象ガスが計測部30内を流通する。また、計測部30の端部には凹面鏡である第2ミラー31が配置されている。さらに、該第2ミラー31と対向する位置には、計測部30を挿入体20の本体側の空間と気密に区画する窓材32が取り付けられている。また、窓材32の第2ミラー31側の表面の中央には反射部321が形成されている。窓材32の表面のうち反射部321以外の領域は全て透光部322である。本実施例では、挿入体20の端部20aを気密に閉鎖し、また、窓材32によって計測部30を本体側の空間と気密に区画することにより、配管40から開口33を通じて計測部30に流入した測定対象ガスが、該計測部30から挿入体20の端部20a側や本体10側に漏出することを防止している。本実施例ではガス濃度測定装置1を挿入体20の端部20aが配管40から突出するように差し込んで用いるため、挿入体20の端部20aを気密に閉鎖しているが、例えば、挿入体20の端部20aを測定対象空間内に位置させて使用する場合、挿入体20の端部20aを気密に閉鎖する必要はない。
図5は計測部30の近傍の構成要素、特に第2ミラー31について説明する図である。図5(a)は測定光の光路を含む面の断面図、図5(b)は、これに垂直であり測定系の軸(反射部321を通る窓材32の法線)Cを含む面の断面図である。図5(a)及び(b)に示すように、第2ミラー31は、測定系の軸C周りに回転対称な反射面を有する放物面鏡であり、その焦点位置の近傍に窓材32の反射部321が配置されている。なお、図5以降の図面では、視認性を高めるために曲線部を実際の曲率よりも大きく図示している。また、第2ミラー31の形状を分かりやすくするために、これらの図面では第2ミラー31を一部、側面図のように図示している。本実施例では測定系の軸Cを挿入体20の中心軸と一致させることにより、挿入体20の内径を最小化し装置を小型化しているが、これは好ましい態様であり本発明に必須の要件ではない。
ここで、焦点位置の「近傍」と記載したのは以下の理由による。
放物面鏡は、放物線の軸に平行な光を1点(焦点)に集光する特性を有する。従って、本実施例においても、放物線の軸に平行な光を入射すると焦点に反射される。しかし、本実施例のガス濃度測定装置1において、ファイバ接続部11から導入した測定光を窓材32の表面に対して完全に垂直に照射した場合、窓材32で測定光の一部が反射されると測定光に干渉が生じ、測定の精度が低下する。また、計測部30から窓材32を通過する光についても同様に干渉が生じる。そのため、図4及び図5から明瞭に読み取ることは困難であるが、実際には放物線の軸からわずかに(数度程度)傾斜した方向に測定光を入射する。以下、これを「略垂直」な入射という。その結果、放物面鏡により反射された光は上記焦点から僅かにずれた位置に反射されることになるため、本実施例では第2ミラー31を焦点位置の近傍(つまり、実際に測定光が反射される位置)に配置している。
本実施例のガス濃度測定装置1では、光源2から発せられたレーザ光を光ファイバ3に導入し、その端部が接続されたファイバ接続部11から挿入体20の端部に設けられた第2ミラー31に測定光として照射する。このとき、窓材32の透光部322のうち反射部321から十分に遠い位置を通過させる。ここでいう十分に遠い位置とは、蒸着等により形成された反射部321の端部に生じる、透光性が十分でない領域よりも外側の位置であることをいう。第2ミラー31に入射した光は窓材32の反射部321に反射され、該反射部321で反射されたあと、第2ミラー31で再反射され窓材32の透光部322を通過する。本実施例では計測部30内の各構成要素が測定系の軸Cに対称であるため、窓材32を出射する測定光も反射部321から十分に遠い位置で透光部322を通過する。透光部322を通過した光は第1ミラー13で反射され検出器12で検出される。検出器12からの出力は図示しないデータ処理部に入力される。濃度を測定する目的ガスの吸収波長を含む波長帯域で測定光の波長を変化させつつ測定を行うことにより吸収スペクトルを取得し、そのピーク強度から吸光度を計算することにより、該吸光度から目的ガスの濃度を求める。
本実施例のガス濃度測定装置1は計測部30内で測定光を2往復させる構成(ダブルパス型)であり、計測部30内においてシングルパス型に比べて2倍の光路長を持つため、シングルパス型のガス濃度測定装置100よりも高い感度が得られる。また、マルチパス型のガス濃度測定装置100aに比べて反射回数が少ないため、測定対象ガスによって第2ミラー31の反射面が多少汚れても測定感度が大きく変化することがなく、安定した連続測定を行うことができる。
また、本実施例の濃度測定装置では、挿入体20の端部に配置する第2ミラー31として、測定光の光路を含む面の断面が放物線状である反射面を有する放物面鏡を用いているため、窓材32の透光部322のうち反射部321から遠い位置を通過して入射した測定光を該反射部321に反射することができ、また該反射部321で反射された測定光を、透光部322のうち反射部321から遠い位置から出射させることができる。さらに、第2ミラー31に入射する測定光の光軸が多少ずれても第2ミラー31で反射した光が反射部321に反射することができるため、光軸ずれを生じさせるような外乱(振動等)に対しても頑強な構成である。さらに、本実施例の第2ミラー31は、測定系の軸Cに回転対称な反射面を持つ放物面であるため、挿入体20の挿入時や測定中に該挿入体20が回転しても測定光の光路には影響がなく、この点でも頑強な構成である。
上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。
本発明に係るガス濃度測定装置は、計測部30内で測定光を2往復させるダブルパス型の構成を採り、かつ、窓材32の透光部322のうち反射部321から遠い位置で測定光を入出射させるという技術的思想に基づくものであり、様々な構成を採ることができる。
例えば、上記実施例の第2ミラー31に代えて、図6に示すように板状のミラーを2枚、測定光の光路を含む面の断面がV字状になるように組み合わせた凹面鏡からなる第2ミラー31aを用いることもできる。この場合には、第2ミラー31aからの反射光を反射部321に入射するため、測定時に該第2ミラー31aへの測定光の入射角を調整する必要はあるが、ミラーとしての構成は最も簡素である。また、図7に示すように、V字状の断面を有し、測定系の軸Cに関して回転対称な(即ち円錐状の)反射面を有する凹面鏡からなる第2ミラー31bを用いることもできる。この場合にも、図6同様、測定時に測定光の入射角を調整する必要はあるが、使用時や測定中に挿入体20が回転しても測定光の光路には影響がなく、第2ミラー31bに入射した測定光を反射部321に向けて反射することができるため、図6の構成よりもロバスト性が高くなる。
上記実施例の第2ミラー31に代えて、図8に示すように一方の断面のみが放物線状である反射面を有する第2ミラー31cを用いることもできる。この場合、当該断面を有する面内で第2ミラー31cに入射する測定光の光軸ずれが生じても、測定光を反射部321に反射することができるため、図6の構成よりもロバスト性が高くなる。また、放物線状でなく断面が部分円弧状や部分楕円弧状である反射面を有するものを用いることもできる。部分円弧や部分楕円弧は放物線に近い形状を有するため、この場合も図8の構成と同様の効果を得ることができる。さらに、部分円弧状や部分楕円弧状の断面を有し、測定光の軸Cについて回転対称な反射面を有する球面鏡を第2ミラー31として用いることもできる。この場合には、上記実施例(図4及び図5)と同様の効果が得られる。
第2ミラー31以外の構成要素についても適宜に変更することができる。上記実施例では光源として波長可変である半導体レーザを用いたが、光源として、白色光源と回折格子等の波長分散素子を組み合わせたものを用いてもよい。あるいは、白色光源からの光をそのまま測定光として使用し、窓材32を出射した光をは回折格子等の波長分散素子で波長分離して測定するようにしてもよい。また、上記実施例ではファイバ接続部11を光導入部として使用したが、測定光を所定の角度で第2ミラー31に照射することが可能なものであればよく、適宜の構成を採ることができる。さらに、本実施例では、第1ミラー13と検出器12を組み合わせて検出部を構成したが、窓材32から出射した測定光を直接検出する検出器12のみを用いてもよい。上記実施例では検出部を本体10の内部に配置したが、本体10の外部や挿入体20の内部に配置してもよい。
1…ガス濃度測定装置
2…光源
3…光ファイバ
11…ファイバ接続部
12…検出器
13…第1ミラー
20…挿入体
20a…挿入体の端部
30…計測部
31、31a、31b、31c…第2ミラー
32…窓材
321…反射部
322…透光部
33…開口
40…配管

Claims (3)

  1. a) 側面に測定対象ガスを導入するための開口を有する筒状の挿入体を備えた本体と、
    b) 前記挿入体の、前記端部と前記本体の間を区画するように設けられた窓材であって、測定光を通過させる透光部と、前記端部側に設けられた反射部とを有する窓材と、
    c) 前記本体に設けられた、測定光を前記透光部を通過させて前記端部に照射させる光導入部と、
    d) 前記挿入体の前記端部に設けられた凹面鏡であって、前記透光部を通過した測定光を前記反射部に向けて反射し、該反射部を反射した測定光を前記透光部に向けて反射する反射面を有する凹面鏡と、
    e) 前記透光部を通過した測定光を検出する検出部と
    を備えることを特徴とするガス濃度測定装置。
  2. 前記凹面鏡の反射面が放物線状又は円弧状の断面を有することを特徴とする請求項1に記載のガス濃度測定装置。
  3. 前記凹面鏡の反射面が、前記反射部を通る前記窓材の法線に関して回転対称であることを特徴とする請求項1又は2に記載のガス濃度測定装置。
JP2016228552A 2016-11-25 2016-11-25 ガス濃度測定装置 Pending JP2018084523A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016228552A JP2018084523A (ja) 2016-11-25 2016-11-25 ガス濃度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016228552A JP2018084523A (ja) 2016-11-25 2016-11-25 ガス濃度測定装置

Publications (2)

Publication Number Publication Date
JP2018084523A true JP2018084523A (ja) 2018-05-31
JP2018084523A5 JP2018084523A5 (ja) 2019-04-04

Family

ID=62236632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228552A Pending JP2018084523A (ja) 2016-11-25 2016-11-25 ガス濃度測定装置

Country Status (1)

Country Link
JP (1) JP2018084523A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112428A (ja) * 2019-01-11 2020-07-27 横河電機株式会社 ガス分析装置
WO2022024368A1 (ja) * 2020-07-31 2022-02-03 株式会社日立ハイテク キャピラリ電気泳動装置
WO2022190555A1 (ja) * 2021-03-12 2022-09-15 株式会社堀場エステック ガス分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949793A (ja) * 1995-08-07 1997-02-18 Fuji Electric Co Ltd 多重反射形試料セル
US5925881A (en) * 1997-04-24 1999-07-20 Dragerwerk Ag Infrared absorption measuring cell
JP2009085872A (ja) * 2007-10-02 2009-04-23 Nippon Telegr & Teleph Corp <Ntt> 光吸収分析装置
JP2015137910A (ja) * 2014-01-22 2015-07-30 株式会社島津製作所 挿入型ガス濃度測定装置
JP2015184211A (ja) * 2014-03-25 2015-10-22 大阪瓦斯株式会社 赤外線式ガスセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949793A (ja) * 1995-08-07 1997-02-18 Fuji Electric Co Ltd 多重反射形試料セル
US5925881A (en) * 1997-04-24 1999-07-20 Dragerwerk Ag Infrared absorption measuring cell
JP2009085872A (ja) * 2007-10-02 2009-04-23 Nippon Telegr & Teleph Corp <Ntt> 光吸収分析装置
JP2015137910A (ja) * 2014-01-22 2015-07-30 株式会社島津製作所 挿入型ガス濃度測定装置
JP2015184211A (ja) * 2014-03-25 2015-10-22 大阪瓦斯株式会社 赤外線式ガスセンサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112428A (ja) * 2019-01-11 2020-07-27 横河電機株式会社 ガス分析装置
WO2022024368A1 (ja) * 2020-07-31 2022-02-03 株式会社日立ハイテク キャピラリ電気泳動装置
WO2022190555A1 (ja) * 2021-03-12 2022-09-15 株式会社堀場エステック ガス分析装置

Similar Documents

Publication Publication Date Title
JP3990733B2 (ja) ガスセンサ
JP6657059B2 (ja) 多重反射型セル、分析装置、排ガス分析装置、及び、光の入射方法
JP7048647B2 (ja) センサ及び装置
JP2007256281A (ja) ガスセンサー
JP6183227B2 (ja) 挿入型ガス濃度測定装置
US9377411B2 (en) Transflexion probe and transflective sensor
JP2018084523A (ja) ガス濃度測定装置
JP5695301B2 (ja) マルチパスセルおよびガス測定器
TW201333447A (zh) 檢測器
US8933417B2 (en) Combined lens and reflector, and an optical apparatus using the same
CN110715909A (zh) 多通道多反射气体检测装置
KR100964529B1 (ko) 가스 셀
JP2018115994A (ja) ガス濃度測定装置
US20190317018A1 (en) Gas analyzer
US7477395B2 (en) Measuring device
JP2018084523A5 (ja)
JP4239955B2 (ja) マルチアングル測色計、照明装置及び受光装置
JP2007205920A (ja) 多重反射型セルおよび赤外線式ガス検知器
JP2010243172A (ja) 多層型マルチパスセルおよびガス測定器
JP6245366B2 (ja) ガス濃度測定装置
JP2006145374A (ja) 反射特性測定装置及びマルチアングル測色計
CN108885168B (zh) 一种检测系统及信号增强装置
KR102385688B1 (ko) 검출 정밀도가 향상된 멀티 가스 검출 장치
JP2013068461A (ja) 屈折率測定装置および糖分濃度測定装置並びにその方法
KR102265045B1 (ko) 광학식 가스센서

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707