JP2018081880A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2018081880A
JP2018081880A JP2016225203A JP2016225203A JP2018081880A JP 2018081880 A JP2018081880 A JP 2018081880A JP 2016225203 A JP2016225203 A JP 2016225203A JP 2016225203 A JP2016225203 A JP 2016225203A JP 2018081880 A JP2018081880 A JP 2018081880A
Authority
JP
Japan
Prior art keywords
flow path
fuel gas
anode
side separator
intermediate flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016225203A
Other languages
English (en)
Inventor
田中 秀明
Hideaki Tanaka
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016225203A priority Critical patent/JP2018081880A/ja
Publication of JP2018081880A publication Critical patent/JP2018081880A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】電解質膜の乾燥を抑制することができる燃料電池を提供する。【解決手段】膜電極接合体20と、膜電極接合体20を挟持するアノード側セパレータ18a及びカソード側セパレータ18cと、カソード側セパレータ18cの膜電極接合体側20とは反対側の面にて設けられ、冷却媒体が流通する冷却流路24と、アノード側セパレータ18aの膜電極接合体側20の面に、供給口35に接続され、アノード側セパレータ18aの一端に設けられる燃料ガス供給流路31と、排出口36に接続され、アノード側セパレータ18aの他端に設けられる燃料ガス排出流路32と、燃料ガス供給流路31から燃料ガス排出流路32にかけて並列に形成され、冷却流路24を流通する冷却媒体と同じ向きに燃料ガスが流通する複数の燃料ガス中間流路33とを備え、燃料ガス中間流路33の下流側に閉塞部34が形成されている単セル100。【選択図】図1

Description

本発明は、燃料電池に関する。
ガソリン自動車とは異なる新しい自動車として、燃料電池を搭載した燃料電池自動車(FCV : Fuel Cell Vehicle)が注目されている。FCVに搭載された燃料電池は、燃料の水素と、空気中の酸素とを化学反応させることにより発電してモータを駆動する。
燃料電池の冷却方式としては、冷却水を循環させる水冷式と、発電用に供給される空気を冷却に用いる空冷式(例えば特許文献1参照)とが知られている。空冷式の燃料電池には、冷却システムが水冷式の燃料電池より小規模になるというメリットがある。
特開2008−27748号公報
しかしながら、燃料電池は、出力を増加させると、燃料電池セル内の温度が上昇し、冷却媒体の流路に沿った温度勾配が顕著となる。
したがって、燃料電池セル内の電解質膜は、流路の上流側では十分に冷却されても、流路の下流側では冷却が不十分となる場合がある。このため、電解質膜は、局所的に温度が上昇し乾燥するので、プロトン伝導性を失い、燃料電池の発電性能が低下する場合がある。
そこで本発明は上記の課題に鑑みてなされたものであり、電解質膜の乾燥を抑制した燃料電池を提供することを目的とする。
本明細書に記載の燃料電池は、膜電極接合体と、前記膜電極接合体を挟持するアノード側セパレータ及びカソード側セパレータと、前記カソード側セパレータの前記膜電極接合体側の面に設けられ、酸化剤ガスが流通する酸化剤ガス流路と、前記カソード側セパレータの前記膜電極接合体側とは反対側の面に前記カソード側セパレータの一端から他端にかけて延在して設けられ、冷却媒体が流通する冷却流路と、前記アノード側セパレータの前記膜電極接合体側の面に、前記供給口に接続され、前記アノード側セパレータの一端に設けられる燃料ガス供給流路と、前記排出口に接続され、前記アノード側セパレータの他端に設けられる燃料ガス排出流路と、前記燃料ガス供給流路から前記燃料ガス排出流路にかけて並列に形成され、前記冷却流路を流通する冷却媒体と同じ向きに燃料ガスが流通する複数の燃料ガス中間流路と、を備え、前記燃料ガス中間流路の下流側に閉塞部が形成されていることを特徴とする。
本発明によれば、燃料ガス中間流路の下流側に閉塞部が形成されることで、アノード側セパレータに存在する水分を用いて、電解質膜を加湿することができる。
上記構成において、前記閉塞部は、前記燃料ガス中間流路の上流側よりも下流側に多く形成されている構成とすることができる。
上記構成において、前記閉塞部は、前記燃料ガス中間流路の下流側における、上流からの距離が異なる複数の位置に形成されている構成とすることができる。
上記構成において、前記供給口と、前記排出口とが、前記アノード側セパレータの前記燃料ガス中間流路の流路方向に交差する方向において対向する端部周縁にそれぞれ形成されており、前記供給口と前記排出口の中央の位置に形成される前記閉塞部の前記燃料ガス中間流路の流路方向の長さが、前記供給口および前記排出口の近接した位置に形成される前記閉塞部の前記燃料ガス中間流路の流路方向の長さと比較して、短い構成とすることができる。
上記構成において、前記供給口と、前記排出口とが、前記アノード側セパレータの前記燃料ガス中間流路の流路方向に交差する方向において同一の端部周縁にそれぞれ形成されており、前記供給口および前記排出口から離間した位置に形成される前記閉塞部の前記燃料ガス中間流路の流路方向の長さが、前記供給口および前記排出口の近接した位置に形成される前記閉塞部の前記燃料ガス中間流路の流路方向の長さと比較して、短い構成とすることができる。
上記構成において、前記冷却媒体は、酸化剤ガスとすることができる。
本発明によれば、電解質膜の乾燥を抑制することができる。
実施形態1に係る燃料電池を構成する単セルの分解斜視図である。 図1における単セルのX−X断面図である。 カソード流路に沿った位置に対する温度分布の変化を示す図である。 実施形態2に係る燃料電池を構成するアノード側セパレータの斜視図である。 実施形態3に係る燃料電池を構成するアノード側セパレータの斜視図である。 実施形態4に係る燃料電池を構成するアノード側セパレータの斜視図である。 実施形態5に係る燃料電池を構成するアノード側セパレータの斜視図である。
以下、図面を参照して、本発明の実施形態について説明する。
A.実施形態1
実施形態1に係る燃料電池は、反応ガスとして燃料ガス(例えば水素)と酸化剤ガス(例えば空気)との供給を受けて発電する固体高分子形燃料電池であり、多数の単セルを積層したスタック構造を有する。実施形態1の燃料電池は、例えば燃料電池自動車や電気自動車などに搭載される。図1は、実施形態1に係る燃料電池を構成する単セル100の分解斜視図である。
図1のように、実施形態1の燃料電池を構成する単セル100は、アノード側セパレータ18a、膜電極ガス拡散層接合体(MEGA:Membrane Electrode Gas diffusion layer Assembly)20、及びカソード側セパレータ18c、を備える。MEGA20は、例えば樹脂(エポキシ樹脂やフェノール樹脂など)からなる絶縁部材41の内側に配置されている。MEGA20及び絶縁部材41は、アノード側セパレータ18aとカソード側セパレータ18cとによって挟持されている。
MEGA20は、電解質膜12、アノード触媒層14a、カソード触媒層14c、アノードガス拡散層16a、及びカソードガス拡散層16cを備える。電解質膜12の一方の面にアノード触媒層14aが設けられ、他方の面にカソード触媒層14cが設けられている。これにより、膜電極接合体(MEA:Membrane Electrode Assembly)10が形成されている。電解質膜12は、スルホン酸基を有するフッ素系樹脂材料又は炭化水素系樹脂材料で形成された固体高分子膜であり、湿潤状態において良好なプロトン伝導性を有する。アノード触媒層14a及びカソード触媒層14cは、電気化学反応を進行する触媒(例えば白金や、白金−コバルト合金)を担持したカーボン粒子(例えばカーボンブラック)と、スルホン酸基を有する固体高分子であり、湿潤状態で良好なプロトン伝導性を有するアイオノマーと、を含む。
MEA10の両側にアノードガス拡散層16a及びカソードガス拡散層16cが配置されている。アノードガス拡散層16a及びカソードガス拡散層16cは、ガス透過性及び電子伝導性を有する部材によって形成されており、例えばカーボンクロスやカーボンペーパなどの多孔質カーボン製部材によって形成されている。なお、MEA10とアノードガス拡散層16aとの間及びMEA10とカソードガス拡散層16cとの間に、MEA10内に含まれる水分量の調整を目的とした撥水層を備えていてもよい。撥水層は、アノードガス拡散層16a及びカソードガス拡散層16cと同じく、ガス透過性及び電子伝導性を有する部材によって形成され、例えばカーボンクロスやカーボンペーパなどの多孔質カーボン製部材によって形成される。ただし、撥水層は、アノードガス拡散層16a及びカソードガス拡散層16cと比べて、多孔質カーボン製部材の細孔が小さい。
カソード側セパレータ18cは、ガス遮断性及び電子伝導性を有する部材によって形成されている。例えば、カソード側セパレータ18cは、プレス成型による曲げ加工によって凹凸形状が形成されたステンレス鋼などの金属板からなる。カソード側セパレータ18cには、厚み方向の凹凸形状によって、それぞれ空気が流れる酸化剤ガス流路22と冷却媒体が流れる冷却流路24とが形成されている。酸化剤ガス流路22は、カソード側セパレータ18cのMEGA20側の面に設けられている。冷却流路24は、カソード側セパレータ18cのMEGA20とは反対側の面に設けられている。酸化剤ガス流路22には、MEGA20に供給される空気が空気供給口から空気排出口に向かって流れる。冷却流路24には、単セル100を冷却する冷却媒体が冷却媒体供給口から冷却媒体排出口に向かって流れる。なお、酸化剤ガス流路22を流れる空気によっても単セル100は冷却される。
酸化剤ガス流路22と冷却流路24とは、カソード側セパレータ18cの一端から他端にかけて直線状に延在し、且つ、交互に並んで設けられている。酸化剤ガス流路22は、空気供給口から空気排出口にかけてほぼ一定の深さDを有する。言い換えると、冷却流路24は、冷却媒体供給口から冷却媒体排出口にかけてほぼ一定の深さDを有する。また、酸化剤ガス流路22のピッチ間隔W1(中心間の距離)は、空気供給口から空気排出口にかけてほぼ一定である。冷却流路24のピッチ間隔W2(中心間の距離)も、冷却媒体供給口から冷却媒体排出口にかけてほぼ一定である。
アノード側セパレータ18aは、ガス遮断性及び電子伝導性を有する部材によって形成され、例えばカーボンを圧縮してガス不透過とした緻密性カーボンなどのカーボン部材やステンレス鋼などの金属部材によって形成されている。アノード側セパレータ18aには供給口35、排出口36が設けられ、絶縁部材41には孔s1、s2が設けられ、カソード側セパレータ18cの両側に設けられた絶縁部材42には孔c1、c2が設けられている。供給口35、および、孔s1、c1は連通し、水素を供給する供給マニホールドを画定する。排出口36、および、孔s2、c2は連通し、水素を排出する排出マニホールドを画定する。
アノード側セパレータ18aのMEGA20側の面には、供給口35に接続され、アノード側セパレータ18aの一端に設けられた燃料ガス供給流路31と、排出口36に接続され、アノード側セパレータ18aの他端に設けられた燃料ガス排出流路32とが形成されている。さらに、燃料ガス供給流路31から燃料ガス排出流路32に向かい、並列に形成された複数の燃料ガス中間流路33が設けられている。燃料ガス供給流路31、燃料ガス排出流路32、燃料ガス中間流路33の形状は、例えば、凹形状等の溝によって形成される。なお、図1では、燃料ガス供給流路31、燃料ガス排出流路32、燃料ガス中間流路33は、それぞれ1本の線で描かれている。
燃料ガス中間流路33は、下流側に閉塞部34が形成されている第1燃料ガス中間流路33pを有する。さらに、燃料ガス中間流路33は、上流側に閉塞部34が形成されている第2燃料ガス中間流路33qを有していてもよい。ここで、上流側とは、燃料ガス中間流路33の流路方向における中央の位置から上流の領域を示し、下流側とは、燃料ガス中間流路33の流路方向における中央の位置から下流の領域を示している。
燃料ガス中間流路33に供給される水素は、閉塞部34において、周辺の他の燃料ガス中間流路33や燃料ガス排出流路32に直接移動することができない。その結果、燃料ガス中間流路33に供給された水素は、隣接するアノードガス拡散層16aを経由して、周辺に存在する燃料ガス中間流路33または燃料ガス排出流路32へと供給される。同時に、燃料ガス中間流路33に存在する水分がアノードガス拡散層16aに供給される。
図2は、図1の単セル100のX−X断面図である。図2のように、第1燃料ガス中間流路33pを流通する水素および水分は、隣接するアノードガス拡散層16aを経由して周辺に存在する第2燃料ガス中間流路33qに供給される。特に液水で存在する水分の大部分は、燃料ガス中間流路33内を下流側に移動した後、閉塞部34周辺においてアノードガス拡散層16aに供給される。
上述したように、供給口35からMEGA20に供給される水素は、燃料ガス供給流路31、燃料ガス中間流路33、アノードガス拡散層16a、燃料ガス排出流路32を経由して排出口36に排出される。また、燃料ガス中間流路33を流通する水素は、冷却流路24を流通する冷却媒体と同じ向きに流通する。
図3には、カソード側セパレータ18cにおける酸化剤ガス流路22および冷却流路24に沿った位置Lに対する温度分布の変化が示されている。冷却流路24を流れる冷却媒体は、MEA10から熱を奪うため、冷却流路24の入口から出口に向かうほど温度が上昇する。このため、MEA10も、冷却流路24の上流側の領域では温度が低いが、冷却流路24の下流側の領域では温度が高くなる。結果として、温度が高い下流側の電解質膜12では乾燥しやすい。
一般的に、MEGA20内部では、発電に伴い、水蒸気や液水等の水分が生成され、生成された水分はカソード側セパレータ18cを流れる空気によって運ばれて排出される。MEGA20内部のカソード側で生成された水分の一部は、アノード側セパレータ18aに透過する。透過した水分は、アノード側セパレータ18aに供給される水素によって、アノード側セパレータ18aの上流側から下流側へ運ばれる。燃料ガス中間流路33に閉塞部34がない場合は、カソード側セパレータ18cと同様に、アノード側セパレータ18aを流れる水素によって運ばれて排出される。 燃料ガス中間流路33に閉塞部34が形成されることで、閉塞部34において水分が滞留する。滞留している水分は、燃料ガス中間流路33を流れる水素によって、アノードガス拡散層16aに供給されることによって電解質膜12を加湿することができる。特に、閉塞部34が燃料ガス中間流路33の下流側に形成されている場合は、乾燥が生じやすい下流側の電解質膜12を加湿することができる。 上述したように、燃料ガス中間流路33に閉塞部34が形成されることで、MEGA20内部で生成された水分を用いて加湿し、電解質膜12の乾燥を抑制することができる。
また、冷却流路24を流れる冷却媒体は、例えば、水やエチレングリコールなどの冷却水、空気などの酸化剤ガス等があげられ、酸化剤ガスであってもよい。空気の熱伝導率は水の熱伝導率の約25分の1であるため、空気を用いる空冷式の燃料電池には、水冷式より冷却効率が低いという問題があり、より電解質膜12の乾燥が生じやすいためである。
B.実施形態2
図4は、実施形態2に係る燃料電池を構成する単セルのアノード側セパレータ18aの斜視図である。図4のように、実施形態2の単セルのアノード側セパレータ18aでは、燃料ガス中間流路33に形成される閉塞部34が燃料ガス中間流路33の上流側よりも下流側に多く形成されている。その他の構成は、実施形態1と同じであるため説明を省略する。
実施形態2によれば、閉塞部34が燃料ガス中間流路33の上流側よりも下流側に多く形成されることで、乾燥がより発生しやすい下流側の電解質膜12を集中的に加湿することができる。結果として、温度が高くなりやすい下流側の電解質膜12の乾燥をより抑制することができる。
C.実施形態3
図5は、実施形態3に係る燃料電池を構成する単セルのアノード側セパレータ18aの斜視図である。図5のように、実施形態3の単セルのアノード側セパレータ18aでは、燃料ガス中間流路33に形成される閉塞部34が燃料ガス中間流路33の下流側であって燃料ガス中間流路33の上流からの距離が異なる複数の位置に形成されている。その他の構成は、実施形態1と同じであるため説明を省略する。
実施形態3によれば、閉塞部34が、燃料ガス中間流路33の下流側における、上流からの距離が異なる複数の位置に形成されることで、水分がアノードガス拡散層16aに供給される領域が増加し、電解質膜12を加湿する領域を増加させることができる。結果として、電解質膜12の乾燥を、より広い範囲に対して、抑制することができる。
D.実施形態4
図6は、実施形態4に係る燃料電池を構成する単セルのアノード側セパレータ18aの斜視図である。図6のように、供給口35と排出口36がアノード側セパレータ18aの燃料ガス中間流路33の流路方向に交差する方向において対向する端部周縁の位置に形成される場合、実施形態4の単セルのアノード側セパレータ18aでは、供給口35と排出口36の中央の位置に形成される閉塞部34の燃料ガス中間流路33の流路方向の長さが、供給口35および排出口36の近接した位置に形成される閉塞部34の燃料ガス中間流路33の流路方向の長さと比較して、短く形成されている。その他の構成は、実施形態1と同じであるため説明を省略する。ここで、「閉塞部34の燃料ガス中間流路33の流路方向の長さ」とは、閉塞部34が形成されている燃料ガス中間流路33の端部から、燃料ガス中間流路33の延長方向に存在する燃料ガス排出流路32までの距離のことを言う。
閉塞部34の燃料ガス中間流路33の流路方向の長さが同一に形成される場合、アノード側セパレータ18aに供給される水素は、供給口35および排出口36の近接した位置に形成される燃料ガス中間流路33ほど流れやすく、供給口35と排出口36の中央の位置に形成される燃料ガス中間流路33ほど流れにくくなり、各燃料ガス中間流路33の流路方向に交差する方向において、流通する水素の流れにバラツキが生じる。結果として、閉塞部34による加湿の効果にもバラツキが生じる。
実施形態4によれば、供給口35と排出口36の中央の位置に形成される閉塞部34の燃料ガス中間流路33の流路方向の長さを、供給口35および排出口36の近接した位置に形成される閉塞部34の燃料ガス中間流路33の流路方向の長さと比較して、短くすることで、閉塞部34での圧損を小さくし、供給口35と排出口36の中央の位置に形成される燃料ガス中間流路33を流れやすくすることができる。結果として、各燃料ガス中間流路33の流路方向に交差する方向における流通する水素の流れのバラツキおよび加湿の効果のバラツキを抑制し、電解質膜12を均一に加湿することができる。
E.実施形態5
図7は、実施形態5に係る燃料電池を構成する単セルのアノード側セパレータ18aの斜視図である。図7のように、供給口35と排出口36がアノード側セパレータ18aの燃料ガス中間流路33の流路方向に交差する方向において同一の端部周縁の位置に形成される場合、実施形態5の単セルのアノード側セパレータ18aでは、供給口35と排出口36から離間した位置に形成される閉塞部34の燃料ガス中間流路33の流路方向の長さが、供給口35と排出口36の近接した位置に形成される閉塞部34の燃料ガス中間流路33の流路方向の長さと比較して、短く形成されている。その他の構成は、実施形態1と同じであるため説明を省略する。
閉塞部34の燃料ガス中間流路33の流路方向の長さが同一に形成される場合、アノード側セパレータ18aに供給される水素は、供給口35および排出口36の近接した位置に形成される燃料ガス中間流路33ほど流れやすく、供給口35および排出口36から離間した位置に形成される燃料ガス中間流路33ほど流れにくくなり、各燃料ガス中間流路33の流路方向に交差する方向において、流通する水素の流れにバラツキが生じる。結果として、各燃料ガス中間流路の流れにバラツキが生じる。結果として、閉塞部34による加湿の効果にもバラツキが生じる。
実施形態5によれば、供給口35および排出口36から離間した位置に形成される閉塞部34の燃料ガス中間流路33の流路方向の長さを、供給口35および排出口36の近接した位置に形成される閉塞部34の燃料ガス中間流路33の流路方向の長さと比較して、短くすることで、閉塞部34での圧損を小さくし、供給口35および排出口36から離間した位置に形成される燃料ガス中間流路33を流れやすくすることができる。結果として、各燃料ガス中間流路33の流路方向に交差する方向における流通する水素の流れのバラツキおよび加湿の効果のバラツキを抑制し、電解質膜12を均一に加湿することができる。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 膜電極接合体
12 電解質膜
14a アノード触媒層
14c カソード触媒層
16a アノードガス拡散層
16c カソードガス拡散層
18a アノード側セパレータ
18c カソード側セパレータ
20 膜電極ガス拡散層接合体
22 酸化剤ガス流路
24 冷却流路
31 燃料ガス供給流路
32 燃料ガス排出流路
33 燃料ガス中間流路
33p 第1燃料ガス中間流路
33q 第2燃料ガス中間流路
34 閉塞部
35 供給口
36 排出口
41、42 絶縁部材
100 単セル

Claims (6)

  1. 膜電極接合体と、
    前記膜電極接合体を挟持するアノード側セパレータ及びカソード側セパレータと、
    前記カソード側セパレータの前記膜電極接合体側の面に設けられ、酸化剤ガスが流通する酸化剤ガス流路と、
    前記カソード側セパレータの前記膜電極接合体側とは反対側の面に前記カソード側セパレータの一端から他端にかけて延在して設けられ、冷却媒体が流通する冷却流路と、
    前記アノード側セパレータに燃料ガスを供給する供給口と、前記アノード側セパレータから燃料ガスを排出する排出口と、
    前記アノード側セパレータの前記膜電極接合体側の面に、
    前記供給口に接続され、前記アノード側セパレータの一端に設けられる燃料ガス供給流路と、
    前記排出口に接続され、前記アノード側セパレータの他端に設けられる燃料ガス排出流路と、
    前記燃料ガス供給流路から前記燃料ガス排出流路にかけて並列に形成され、前記冷却流路を流通する冷却媒体と同じ向きに燃料ガスが流通する複数の燃料ガス中間流路と、
    を備え、
    前記燃料ガス中間流路の下流側に閉塞部が形成されていることを特徴とする燃料電池。
  2. 前記閉塞部は、前記燃料ガス中間流路の上流側よりも下流側に多く形成されていることを特徴とする請求項1に記載の燃料電池。
  3. 前記閉塞部は、前記燃料ガス中間流路の下流側における、上流からの距離が異なる複数の位置に形成されていることを特徴とする請求項1または請求項2に記載の燃料電池。
  4. 前記供給口と、前記排出口とが、前記アノード側セパレータの前記燃料ガス中間流路の流路方向に交差する方向において対向する端部周縁にそれぞれ形成されており、
    前記供給口と前記排出口の中央の位置に形成される前記閉塞部の前記燃料ガス中間流路の流路方向の長さが、前記供給口および前記排出口の近接した位置に形成される前記閉塞部の前記燃料ガス中間流路の流路方向の長さと比較して、短いことを特徴とする請求項1から請求項3までのいずれかの請求項に記載の燃料電池。
  5. 前記供給口と、前記排出口とが、前記アノード側セパレータの前記燃料ガス中間流路の流路方向に交差する方向において同一の端部周縁にそれぞれ形成されており、
    前記供給口および前記排出口から離間した位置に形成される前記閉塞部の前記燃料ガス中間流路の流路方向の長さが、前記供給口および前記排出口の近接した位置に形成される前記閉塞部の前記燃料ガス中間流路の流路方向の長さと比較して、短いことを特徴とする請求項1から請求項3までのいずれかの請求項に記載の燃料電池。
  6. 前記冷却媒体は、前記酸化剤ガスであることを特徴とする請求項1から請求項5までのいずれかの請求項に記載の燃料電池。

JP2016225203A 2016-11-18 2016-11-18 燃料電池 Pending JP2018081880A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016225203A JP2018081880A (ja) 2016-11-18 2016-11-18 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016225203A JP2018081880A (ja) 2016-11-18 2016-11-18 燃料電池

Publications (1)

Publication Number Publication Date
JP2018081880A true JP2018081880A (ja) 2018-05-24

Family

ID=62198256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225203A Pending JP2018081880A (ja) 2016-11-18 2016-11-18 燃料電池

Country Status (1)

Country Link
JP (1) JP2018081880A (ja)

Similar Documents

Publication Publication Date Title
US9905880B2 (en) Fuel cell stack
US10847816B2 (en) Fuel cell
WO2006121157A1 (ja) 燃料電池
JP2012226914A (ja) 燃料電池
KR20060009406A (ko) 고분자 전해질형 연료전지
EP3644422A1 (en) Fuel cell separator including embossing structure for uniform distribution of gas and fuel cell stack including the same
JP2009059513A (ja) 燃料電池
JP2017199609A (ja) 燃料電池
JP2011096498A (ja) 燃料電池積層体
KR101534940B1 (ko) 연료전지용 분리판 및 이를 이용한 연료전지
JP2014086131A (ja) 燃料電池システム
JP2004158369A (ja) 燃料電池
JP2014175237A (ja) 燃料電池
JP7044564B2 (ja) 燃料電池スタック
JP7048254B2 (ja) 燃料電池
JP2013051060A (ja) 燃料電池
JP2018081880A (ja) 燃料電池
JP2013157315A (ja) 燃料電池
JP2013114899A (ja) 燃料電池用スタック
JP4824307B2 (ja) 燃料電池
JP2018116861A (ja) 燃料電池
JP6780612B2 (ja) 燃料電池用セパレータ
JP6900913B2 (ja) 燃料電池
JP2010153157A (ja) 燃料電池セパレータ
JP6951045B2 (ja) 燃料電池システム