JP2018061027A - Method for manufacturing light-emitting device - Google Patents

Method for manufacturing light-emitting device Download PDF

Info

Publication number
JP2018061027A
JP2018061027A JP2017184703A JP2017184703A JP2018061027A JP 2018061027 A JP2018061027 A JP 2018061027A JP 2017184703 A JP2017184703 A JP 2017184703A JP 2017184703 A JP2017184703 A JP 2017184703A JP 2018061027 A JP2018061027 A JP 2018061027A
Authority
JP
Japan
Prior art keywords
light emitting
light
metal layer
emitting device
covering member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017184703A
Other languages
Japanese (ja)
Other versions
JP6504221B2 (en
Inventor
広樹 由宇
hiroki Yu
広樹 由宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to US15/717,242 priority Critical patent/US10043956B2/en
Publication of JP2018061027A publication Critical patent/JP2018061027A/en
Priority to US16/030,014 priority patent/US10270016B2/en
Priority to US16/353,785 priority patent/US10497843B2/en
Application granted granted Critical
Publication of JP6504221B2 publication Critical patent/JP6504221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a light-emitting device easy to mount.SOLUTION: A method for manufacturing a light-emitting device comprises the steps of: preparing an intermediate including a plurality of light-emitting elements separated from each other and each having a pair of electrodes on the side of one common face, and a covering member which covers side faces of the plurality of light-emitting elements so that the surface of each pair of electrodes is partially exposed, and which has concave portions between the light-emitting elements; forming a metal layer continuously covering the surface of each pair of electrodes of the plurality of light-emitting elements and the inner face of each concave portion of the covering member; and cutting the covering member and the metal layer at the inner face of the concave portion.SELECTED DRAWING: Figure 7B

Description

本開示は、発光装置の製造方法に関する。   The present disclosure relates to a method for manufacturing a light emitting device.

従来から、液晶テレビ用バックライトや照明器具などの光源として、発光素子を備える発光装置が広く用いられている。このような発光装置として、LED素子の電極がマザー基板に対する接続電極となる発光装置が提案されている(例えば、特許文献1)。   2. Description of the Related Art Conventionally, light emitting devices including light emitting elements have been widely used as light sources for liquid crystal television backlights and lighting fixtures. As such a light emitting device, a light emitting device in which an electrode of an LED element serves as a connection electrode for a mother substrate has been proposed (for example, Patent Document 1).

特開2012−227470号公報JP 2012-227470 A

しかし、このような発光装置では実装用電極が比較的小さいために、発光装置の実装が困難になるおそれがある。
そこで、本発明の実施形態は、実装が容易な発光装置を製造する方法を提供することを目的とする。
However, since the mounting electrode is relatively small in such a light emitting device, it may be difficult to mount the light emitting device.
Therefore, an embodiment of the present invention aims to provide a method of manufacturing a light emitting device that can be easily mounted.

本発明の実施形態に係る発光装置の製造方法は、同一面側に一対の電極を備え、それぞれ分離された複数の発光素子と、一対の電極の表面の一部が露出されるように複数の発光素子の側面を被覆し、複数の発光素子の間において凹部を有する被覆部材と、を備える中間体を準備する工程と、発光素子の一対の電極の表面と被覆部材の凹部の内面とを連続して覆う金属層を形成する工程と、凹部の内面において被覆部材と金属層を切断する工程と、を含む発光装置の製造方法である。   A method for manufacturing a light emitting device according to an embodiment of the present invention includes a pair of electrodes on the same surface side, a plurality of light emitting elements separated from each other, and a plurality of surfaces so that a part of the surface of the pair of electrodes is exposed. A step of preparing an intermediate body that includes a covering member that covers a side surface of the light emitting element and has a recess between the plurality of light emitting elements, and a surface of the pair of electrodes of the light emitting element and an inner surface of the recess of the covering member are continuously provided And forming a covering metal layer, and cutting the covering member and the metal layer on the inner surface of the recess.

本発明の実施形態に係る発光装置の製造方法によれば、実装が容易な発光装置を製造することができる。   According to the method for manufacturing a light emitting device according to the embodiment of the present invention, a light emitting device that can be easily mounted can be manufactured.

実施形態の発光装置の製造方法に係る、発光素子を支持体上に配置する工程を示す概略平面図である。It is a schematic plan view which shows the process of arrange | positioning the light emitting element on a support body based on the manufacturing method of the light-emitting device of embodiment. 図1AのX1−X1’線における概略断面図である。It is a schematic sectional drawing in the X1-X1 'line | wire of FIG. 1A. 実施形態の発光装置の製造方法に係る、被覆部材を形成する工程を示す概略平面図である。It is a schematic plan view which shows the process of forming the coating | coated member based on the manufacturing method of the light-emitting device of embodiment. 図2AのX2−X2’線における概略断面図である。It is a schematic sectional drawing in the X2-X2 'line | wire of FIG. 2A. 実施形態の発光装置の製造方法に係る、被覆部材から発光素子の電極を露出させる工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of exposing the electrode of a light emitting element from the coating | coated member based on the manufacturing method of the light-emitting device of embodiment. 実施形態の発光装置の製造方法に係る、被覆部材に凹部を形成する工程を示す概略平面図である。It is a schematic plan view which shows the process of forming a recessed part in the coating | coated member based on the manufacturing method of the light-emitting device of embodiment. 図4AのX4−X4’線における概略断面図である。It is a schematic sectional drawing in the X4-X4 'line | wire of FIG. 4A. 実施形態に係る発光装置の製造方法に係る、金属層を形成する工程を示す概略平面図である。It is a schematic plan view which shows the process of forming the metal layer based on the manufacturing method of the light-emitting device which concerns on embodiment. 図5AのX5−X5’線における概略断面図である。It is a schematic sectional drawing in the X5-X5 'line | wire of FIG. 5A. 実施形態に係る発光装置の製造方法に係る一対の電極の間の金属層を除去する工程を示す概略平面図である。It is a schematic plan view which shows the process of removing the metal layer between a pair of electrodes which concerns on the manufacturing method of the light-emitting device which concerns on embodiment. 図6AのX6−X6’線における概略断面図である。It is a schematic sectional drawing in the X6-X6 'line of FIG. 6A. 実施形態に係る発光装置の製造方法に係る、凹部の内面において金属層を切断する工程を示す概略平面図である。It is a schematic plan view which shows the process of cut | disconnecting a metal layer in the inner surface of a recessed part based on the manufacturing method of the light-emitting device which concerns on embodiment. 図7AのX7−X7’線における概略断面図である。It is a schematic sectional drawing in the X7-X7 'line | wire of FIG. 7A. 実施形態に係る発光装置単体の概略側面図である。It is a schematic side view of a single light emitting device according to an embodiment. 図8に示す発光装置を実装基板へ接合した例を示す概略断面図である。It is a schematic sectional drawing which shows the example which joined the light-emitting device shown in FIG. 8 to the mounting substrate. 実施形態の変形例に係る発光装置単体の概略側面図である。It is a schematic side view of the light-emitting device single-piece | unit which concerns on the modification of embodiment. 実施形態の変形例に係る発光装置の製造方法を示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method of the light-emitting device which concerns on the modification of embodiment.

以下、本発明の実施形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置及びその製造方法は、実施形態の技術的思想を具現化するためのものであって、以下に限定するものではない。特に、構成部品の寸法、材質、形状、その相対的配置等は、本発明の技術的範囲を限定するものではなく、単なる説明例であり、説明を明確にするために誇張していることがある。以下に記載される実施形態は、各構成等を適宜組み合わせて適用できる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the light emitting device and the manufacturing method thereof described below are for realizing the technical idea of the embodiment and are not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts do not limit the technical scope of the present invention, but are merely illustrative examples and may be exaggerated for clarity of explanation. is there. The embodiments described below can be applied by appropriately combining the components.

本実施形態の発光装置の製造方法は、同一面側に一対の電極を備え、それぞれ分離された複数の発光素子と、一対の電極の表面の一部が露出されるように複数の発光素子の側面を被覆し、複数の発光素子の間において凹部を有する被覆部材と、を備える中間体を準備する工程と、発光素子の一対の電極の表面と被覆部材の凹部の内面とを連続して覆う金属層を形成する工程と、凹部の内面において被覆部材と金属層を切断する工程と、を含む発光装置の製造方法である。
この製造方法は、例えば、下記のとおりである。
The method for manufacturing a light emitting device according to the present embodiment includes a pair of electrodes on the same surface, a plurality of separated light emitting elements, and a plurality of light emitting elements so that a part of the surface of the pair of electrodes is exposed. A step of preparing an intermediate body that includes a covering member that covers a side surface and has a recess between a plurality of light emitting elements, and continuously covers a surface of a pair of electrodes of the light emitting element and an inner surface of the recess of the covering member A method for manufacturing a light emitting device, comprising: a step of forming a metal layer; and a step of cutting the covering member and the metal layer on the inner surface of the recess.
This manufacturing method is as follows, for example.

1.中間体を準備する工程
まず、同一面側に一対の電極を備え、それぞれ分離された複数の発光素子と、一対の電極の表面の一部が露出されるように複数の発光素子の側面を被覆し、複数の発光素子の間において凹部を有する被覆部材と、を備える中間体を準備する工程を行う。
この工程は例えば下記の工程により行うことができる。
1. Step of preparing the intermediate body First, a pair of electrodes are provided on the same surface side, and a plurality of light emitting elements separated from each other and a side surface of the plurality of light emitting elements are covered so that a part of the surface of the pair of electrodes is exposed. And the process of preparing an intermediate body provided with the coating | coated member which has a recessed part between several light emitting elements is performed.
This step can be performed by, for example, the following steps.

1−1.発光素子の支持体上への配置
図1A及び図1Bに示されるように、主発光面Qと、主発光面Qと反対側の面である電極形成面に一対の電極2a、2bを有する複数の発光素子2を、電極2a、2bを上向きにして隣接するように支持体1上に配置する。
発光素子2は、少なくとも発光層を含む半導体層を含み、主発光面Qと、主発光面Qと反対側の面である電極形成面に正負一対の電極2a、2bを有する。このように、ウエハ状態から個々に分離した発光素子2を用いる、例えば特性の選別を行った後に、所望の特性を有するものだけを発光装置の製造に用いることで、歩留まりよく発光装置を形成することができる。
1-1. Arrangement of Light-Emitting Element on Support As shown in FIGS. 1A and 1B, a plurality of light-emitting elements having a pair of electrodes 2a and 2b on a main light-emitting surface Q and an electrode formation surface opposite to the main light-emitting surface Q. The light-emitting element 2 is arranged on the support 1 so that the electrodes 2a and 2b face up and are adjacent to each other.
The light emitting element 2 includes a semiconductor layer including at least a light emitting layer, and has a main light emitting surface Q and a pair of positive and negative electrodes 2a and 2b on an electrode forming surface which is a surface opposite to the main light emitting surface Q. In this way, by using the light emitting elements 2 individually separated from the wafer state, for example, after selecting the characteristics, only those having the desired characteristics are used for manufacturing the light emitting apparatus, thereby forming the light emitting apparatus with high yield. be able to.

発光素子2の平面形状は、円形、楕円形、三角形、四角形及び六角形等の多角形等のいずれであってもよい。また、発光素子2の大きさ及び厚みは、適宜選択することができる。この実施形態では、例えば、平面形状が矩形の発光素子2を用いることができる。   The planar shape of the light emitting element 2 may be any of a circular shape, an elliptical shape, a triangular shape, a polygonal shape such as a quadrangular shape and a hexagonal shape. Further, the size and thickness of the light emitting element 2 can be appropriately selected. In this embodiment, for example, the light emitting element 2 having a rectangular planar shape can be used.

発光素子2を配置する支持体1を準備する。支持体1は、後述する金属層及び被覆部材を切断する前に除去してもよいし、金属層及び被覆部材とともに切断することで、発光装置の一部として用いてもよい。   A support 1 on which the light emitting element 2 is arranged is prepared. The support 1 may be removed before cutting a metal layer and a covering member, which will be described later, or may be used as a part of a light emitting device by cutting together with the metal layer and the covering member.

この実施形態では、このような発光素子2の電極2a、2bが上向きに、つまり、主発光面Qが支持体1と接し、発光素子2の電極2a、2bの上面が支持体1と反対側に配置されるように、複数の発光素子2を隣接させて支持体1上に配置する。これにより、後の工程において電極上に金属層を形成しやすく、さらに、主発光面Qを露出させるように被覆部材を形成しやすい。   In this embodiment, the electrodes 2 a and 2 b of such a light emitting element 2 face upward, that is, the main light emitting surface Q is in contact with the support 1, and the upper surfaces of the electrodes 2 a and 2 b of the light emitting element 2 are opposite to the support 1. The plurality of light emitting elements 2 are arranged on the support 1 so as to be adjacent to each other. Thereby, it is easy to form a metal layer on the electrode in a later step, and it is easy to form a covering member so as to expose the main light emitting surface Q.

さらに、複数の発光素子2は、それぞれの発光素子2の異極どうしが隣接するように配置することが好ましい。具体的には、図1Aに示されるように、一方の発光素子2の正電極2aと他方の発光素子21の負電極2bとが隣接し、且つ、一方の発光素子2の負電極2bと他方の発光素子2の正電極2aとが隣接するように、複数の発光素子2を配置することが好ましい。   Furthermore, it is preferable that the plurality of light emitting elements 2 be arranged so that the different polarities of the respective light emitting elements 2 are adjacent to each other. Specifically, as shown in FIG. 1A, the positive electrode 2a of one light emitting element 2 and the negative electrode 2b of the other light emitting element 21 are adjacent to each other, and the negative electrode 2b of one light emitting element 2 and the other It is preferable to arrange a plurality of light emitting elements 2 so that the positive electrodes 2a of the light emitting elements 2 are adjacent to each other.

複数の発光素子2の配置間隔は、任意に設定することができる。この間隔は、後述する被覆部材3及び凹部3aの厚みに影響を与える。よって、所望の被覆部材3の厚みとできるように、間隔の広狭を調整することが好ましい。例えば、発光素子2の配置精度、後の個片化工程における切断位置精度、被覆部材3の構成、凹部3aの形状にもよるが、0.1μm〜300μm程度の間隔を空けて配置することができる。これにより、後の工程において金属層4を形成しやすく、且つ、主発光面Q以外から漏れる光を十分に遮光可能な被覆部材3を形成することができる。さらに、製造される発光装置の数を増加させることができ、効率よく発光装置を製造することができる。   The arrangement interval of the plurality of light emitting elements 2 can be arbitrarily set. This interval affects the thickness of the covering member 3 and the recess 3a described later. Therefore, it is preferable to adjust the width of the gap so that the desired thickness of the covering member 3 can be obtained. For example, although it depends on the arrangement accuracy of the light emitting element 2, the cutting position accuracy in the subsequent singulation process, the configuration of the covering member 3, and the shape of the recess 3a, the light emitting element 2 may be arranged with an interval of about 0.1 μm to 300 μm. it can. Thereby, it is possible to form the covering member 3 that can easily form the metal layer 4 in a later step and can sufficiently block light leaking from other than the main light emitting surface Q. Furthermore, the number of manufactured light emitting devices can be increased, and the light emitting devices can be manufactured efficiently.

支持体1上に発光素子2を配置する際、例えば、予め支持体1及び発光素子2に接着剤を配置する、または、接着膜を有する支持体1を用い該接着剤により発光素子2を支持体1上に固定することができる。接着剤としては、樹脂等の当該分野で公知のものを用いることができ、特に、支持体1を発光装置10の一部として用いる場合は、透光性を有する樹脂を用いることが好ましい。なお、粘着性を有する支持体1を用いる場合は、支持体1の粘着性によって、発光素子2を支持体1上に固定してもよい。これにより、少ない工程数で効率よく発光素子2を配置することができる。支持体1は、樹脂に接着剤が配置されたフィルム、セラミック等の平板を用いることができる。   When the light emitting element 2 is arranged on the support 1, for example, an adhesive is previously arranged on the support 1 and the light emitting element 2, or the light emitting element 2 is supported by the adhesive using the support 1 having an adhesive film. It can be fixed on the body 1. As the adhesive, those known in the art such as a resin can be used. In particular, when the support 1 is used as a part of the light-emitting device 10, it is preferable to use a resin having translucency. In addition, when using the support body 1 which has adhesiveness, you may fix the light emitting element 2 on the support body 1 with the adhesiveness of the support body 1. FIG. Thereby, the light emitting element 2 can be efficiently arranged with a small number of steps. As the support 1, a flat plate such as a film or ceramic in which an adhesive is disposed on a resin can be used.

1−2.被覆部材3の形成
次に、一対の電極2a、2bの上面が露出されるように複数の発光素子2の側面を被覆し、複数の発光素子2の間において凹部3aを有する被覆部材3を形成する。
1-2. Formation of Covering Member 3 Next, the side surfaces of the plurality of light emitting elements 2 are covered so that the upper surfaces of the pair of electrodes 2a and 2b are exposed, and the covering member 3 having the recesses 3a between the plurality of light emitting elements 2 is formed. To do.

1−2−1.被覆部材3の成形
この実施形態では、次に、少なくとも複数の発光素子2の側面を被覆する被覆部材3を形成する。具体的には、支持体1上に配置された複数の発光素子2の支持体1と対向している部分以外の面を連続して被覆する被覆部材3を支持体1上に成形する。これにより、発光素子2を保護する被覆部材3を容易に形成することができ、さらに、被覆部材3が光反射性または遮光性である場合には主発光面Q以外からの光漏れを防止することができる。
1-2-1. Molding of Cover Member 3 In this embodiment, next, the cover member 3 that covers at least the side surfaces of the plurality of light emitting elements 2 is formed. Specifically, a covering member 3 that continuously covers a surface other than a portion facing the support 1 of the plurality of light emitting elements 2 arranged on the support 1 is formed on the support 1. Thereby, the covering member 3 for protecting the light emitting element 2 can be easily formed, and further, when the covering member 3 is light reflective or light blocking, light leakage from other than the main light emitting surface Q is prevented. be able to.

ここで、図4A及び4Bに示すように、被覆部材3の上面から電極2a、2bが露出するように被覆部材3を形成する。被覆部材3は、はじめから電極2a、2bが露出される形状で形成されてもよく、一方、例えば、図2A及び図2Bに示すように、被覆部材3を電極2a、2bの上面まで被覆する高さで形成しておき、図3に示すように、切削や研磨等によって被覆部材3の上部の除去部3Sを除去することで、電極2a、2bを露出させることができる。または、被覆部材3及び電極2a、2bの上部を除去することで、電極2a、2bを露出させてもよい。電極2a、2bの露出工程の詳細については後述する。   Here, as shown in FIGS. 4A and 4B, the covering member 3 is formed so that the electrodes 2 a and 2 b are exposed from the upper surface of the covering member 3. The covering member 3 may be formed in such a shape that the electrodes 2a and 2b are exposed from the beginning. On the other hand, as shown in FIGS. 2A and 2B, for example, the covering member 3 is covered up to the upper surfaces of the electrodes 2a and 2b. As shown in FIG. 3, the electrodes 2a and 2b can be exposed by removing the removal portion 3S on the top of the covering member 3 by cutting or polishing as shown in FIG. Alternatively, the electrodes 2a and 2b may be exposed by removing the upper portion of the covering member 3 and the electrodes 2a and 2b. Details of the exposure process of the electrodes 2a and 2b will be described later.

被覆部材3の材料としては、樹脂等の母材に光反射性又は光吸収性物質を含有させたものを用いることができる。被覆部材は、トランスファーモールド、コンプレッションモールド、スクリーン印刷、ポッティング、スプレー等で成形することで形成できる。特に、複数の発光素子2の間の比較的狭い空間まで確実に被覆部材3を形成するために、圧縮成形、コンプレッションモールド、トランスファーモールド等の金型を用いた成形方法が好ましい。
なお、被覆部材3は、前述のように一度に形成(形成した被覆部材3の一部を除去する形態も一度に形成すると表す)してもよいし、複数回に分けて形成してもよい。
As the material of the covering member 3, a material such as a base material such as a resin containing a light reflective or light absorbing substance can be used. The covering member can be formed by molding by transfer molding, compression molding, screen printing, potting, spraying, or the like. In particular, in order to reliably form the covering member 3 in a relatively narrow space between the plurality of light emitting elements 2, a molding method using a mold such as compression molding, compression molding, or transfer molding is preferable.
The covering member 3 may be formed at a time as described above (a form in which a part of the formed covering member 3 is removed is also formed at a time) or may be formed in a plurality of times. .

1−2−2.電極の露出
実装形態1では、被覆部材3で電極2a、2bの上面まで被覆した後、次に図3に示されるように被覆部材3を除去し、被覆部材3により被覆された発光素子2の電極2a、2bの上面を被覆部材3の表面(上面)から露出させる。これにより、後の工程において形成される金属層4と電極2a、2bを接触させ発光素子2へ電気を供給する電極を形成することができる。
1-2-2. Electrode Exposure In the first embodiment, after covering the upper surfaces of the electrodes 2 a and 2 b with the covering member 3, the covering member 3 is then removed as shown in FIG. 3, and the light-emitting element 2 covered with the covering member 3 is removed. The upper surfaces of the electrodes 2 a and 2 b are exposed from the surface (upper surface) of the covering member 3. Thereby, the electrode which supplies the electricity to the light emitting element 2 can be formed by making the metal layer 4 and electrodes 2a, 2b formed in a later process contact.

電極2a、2bの露出は、研削、切断、エッチングなどの方法を用いることができる。後の工程において設けられる金属層4と被覆部材3間及び金属層4と電極2a、2b間の密着性の低下を低減するため、この工程においては被覆部材3と電極2a、2bとの上面が略同一平面となるように平坦とすることが好ましい。このような観点および量産性を向上させる観点から、研削が好ましい。
なお、この電極2a、2bの露出は、被覆部材3の成形と同時に行ってもよく、被覆部材3の成形の後に行われてもよい。
For the exposure of the electrodes 2a and 2b, methods such as grinding, cutting and etching can be used. In order to reduce a decrease in adhesion between the metal layer 4 and the covering member 3 and between the metal layer 4 and the electrodes 2a and 2b provided in a later step, in this step, the upper surfaces of the covering member 3 and the electrodes 2a and 2b are It is preferable to make it flat so that it may become substantially the same plane. From such a viewpoint and a viewpoint of improving mass productivity, grinding is preferable.
The electrodes 2a and 2b may be exposed at the same time as the covering member 3 is formed or after the covering member 3 is formed.

1−2−3.凹部の形成
次に、本実施形態では、被覆部材3の一部を除去することで、凹部3aを形成する。具体的には、図4A及び4Bに示すように、複数の発光素子2間の被覆部材3に、発光素子2の主発光面Qに対して略垂直に交差する方向に切断する。これにより、後の工程において形成される金属層4を発光装置10の側面まで形成することができる。
1-2-3. Next, in this embodiment, the recessed part 3a is formed by removing a part of the covering member 3. Specifically, as shown in FIGS. 4A and 4B, the covering member 3 between the light emitting elements 2 is cut in a direction substantially perpendicular to the main light emitting surface Q of the light emitting elements 2. Thereby, the metal layer 4 formed in a later step can be formed up to the side surface of the light emitting device 10.

凹部3aの形成のための被覆部材3の除去は、当該分野で公知の切断方法、例えば、ブレードを用いたブレードダイシングや、レーザダイシング、カッタースクライブ、ドリル、マスクを用いてのブラスト等を利用することができる。   The removal of the covering member 3 for forming the recess 3a uses a cutting method known in the art, for example, blade dicing using a blade, laser dicing, cutter scribe, drill, blast using a mask, or the like. be able to.

支持体1上に配置する複数の発光素子2の形状をそれぞれ同じとすると、被覆部材3の凹部3aを形成しやすくなる。さらに、本実施形態では、2つの矩形の発光素子2の側面が対向するように配置されているので、発光素子2の4辺に沿ってその近傍の被覆部材3を切断して凹部3aを形成しやすい。さらに後の工程において効率的に被覆部材3と金属層4の切断及び個々の発光装置の個片化を行うことができる。   If the plurality of light emitting elements 2 arranged on the support 1 have the same shape, the recesses 3a of the covering member 3 can be easily formed. Furthermore, in this embodiment, since the two rectangular light emitting elements 2 are arranged so that the side surfaces thereof face each other, the covering member 3 in the vicinity thereof is cut along the four sides of the light emitting elements 2 to form the recesses 3a. It's easy to do. Further, in the subsequent steps, the covering member 3 and the metal layer 4 can be efficiently cut and individual light emitting devices can be separated.

なお、凹部3aの形成は、本実施形態のように成形された被覆部材3の一部を除去することで設ける他、被覆部材3の成形の際に同時に行われてもよい。例えば、被覆部材3を成形する金型で、発光素子2を被覆するとともに凹部3aを有する形状に被覆部材3を形成してもよい。なお、凹部3aの形成は、上述の電極2a、2bの露出工程の前に行われてもよく、後で行われてもよい。発光素子2の電極2a、2bの露出工程の後で行う場合、発光素子2の電極2a、2bの位置をカメラで確認しながら凹部3aを形成することができるため、発光装置10の量産性や凹部3aの形成の精度を高めることができ好ましい。   In addition, formation of the recessed part 3a may be performed simultaneously with the shaping | molding of the coating | coated member 3, besides providing by removing a part of the coating | coated member 3 shape | molded like this embodiment. For example, the covering member 3 may be formed in a shape that covers the light emitting element 2 and has the concave portion 3 a with a mold for forming the covering member 3. In addition, formation of the recessed part 3a may be performed before the exposure process of the above-mentioned electrodes 2a and 2b, and may be performed after that. When the step is performed after the exposure process of the electrodes 2a and 2b of the light emitting element 2, the recess 3a can be formed while confirming the positions of the electrodes 2a and 2b of the light emitting element 2 with a camera. The accuracy of forming the recess 3a can be increased, which is preferable.

凹部は、複数の発光素子2の間であって、複数の発光素子の電極2a、2bと隣接した位置に設けることが好ましい。これにより、凹部3a内に設けられる金属層4と複数の発光素子2の電極2a、2bと接続しやすくできる。   The recess is preferably provided between the plurality of light emitting elements 2 and adjacent to the electrodes 2a and 2b of the plurality of light emitting elements. As a result, the metal layer 4 provided in the recess 3a and the electrodes 2a and 2b of the plurality of light emitting elements 2 can be easily connected.

凹部3aの内面の形状は、製造される発光装置10の側面の金属層4またはキャスタレーションの形を略決定する。そのため、大きさや、製造する発光装置10の特性に求められるものとすればよい。
例えば、凹部3aの深さ(図4Bにおける縦方向の幅)は、例えば、発光装置10の高さの1%〜99%程度とすることができる。この凹部3aの深さを深くすると、発光装置10の側面に設けられる金属層4の面積を増やすことができるため、発光装置10を実装基板に実装した際に実装強度を高めることができる。しかし、凹部3aの深さを深くしすぎると、金属層4の端部と発光装置10の発光面が近づくため、実装に用いられる半田等の接着部材が発光装置の発光に影響するおそれがある。そのため、例えば、凹部3aの深さは発光装置10の高さの20〜50%程度とすることが好ましい。
The shape of the inner surface of the recess 3a substantially determines the shape of the metal layer 4 or castellation on the side surface of the light emitting device 10 to be manufactured. Therefore, what is necessary is just to be calculated | required by the magnitude | size and the characteristic of the light-emitting device 10 to manufacture.
For example, the depth of the recess 3a (the vertical width in FIG. 4B) can be, for example, about 1% to 99% of the height of the light emitting device 10. When the depth of the concave portion 3a is increased, the area of the metal layer 4 provided on the side surface of the light emitting device 10 can be increased, so that the mounting strength can be increased when the light emitting device 10 is mounted on the mounting substrate. However, if the depth of the recess 3a is excessively increased, the end of the metal layer 4 and the light emitting surface of the light emitting device 10 are brought close to each other, so that an adhesive member such as solder used for mounting may affect the light emission of the light emitting device. . Therefore, for example, the depth of the recess 3 a is preferably about 20 to 50% of the height of the light emitting device 10.

凹部3aの上面視における形状は、発光素子2の辺と沿った方向に長い矩形、円形等があげられる。凹部3aは、発光装置10の一側面の端部から端部まで金属層4が形成できるよう、延長して形成することは好ましい。このような金属層4を用いることで発光装置10の実装精度を高めることができる。
凹部3aは、複数の発光素子2と隣接して延長された一つの溝としてもよい。これにより、切削や金型による成形によって容易に凹部3aを設けることができる。一方、上面視において離間した凹部を複数設けてもよい。例えば、複数の発光素子2のそれぞれと隣接する分離した凹部3aとしてもよい。
凹部3aの幅(図4Bにおける横方向の長さ)は金属層4が製膜可能かつ切断が容易な程度で設けられることが好ましい。凹部3aの側面は、傾斜してもよいし垂直であってもよい。
なお、凹部3aは、発光装置10の側面となる部分に設けられていればよく、複数の発光素子2を有する発光装置10を製造する場合には、すべての複数の発光素子2の間に設けられていなくてもよい。
Examples of the shape of the recess 3 a in a top view include a rectangle and a circle that are long in the direction along the side of the light emitting element 2. The recess 3a is preferably formed so as to be extended so that the metal layer 4 can be formed from one end to the other end of one side of the light emitting device 10. By using such a metal layer 4, the mounting accuracy of the light emitting device 10 can be increased.
The recess 3 a may be a single groove extending adjacent to the plurality of light emitting elements 2. Thereby, the recessed part 3a can be easily provided by shaping | molding by cutting or a metal mold | die. On the other hand, a plurality of recessed portions that are spaced apart when viewed from above may be provided. For example, it is good also as the separate recessed part 3a adjacent to each of the some light emitting element 2. FIG.
The width of the recess 3a (the length in the horizontal direction in FIG. 4B) is preferably provided so that the metal layer 4 can be formed and can be easily cut. The side surface of the recess 3a may be inclined or vertical.
In addition, the recessed part 3a should just be provided in the part used as the side surface of the light-emitting device 10, and when manufacturing the light-emitting device 10 which has the some light emitting element 2, it is provided among all the some light emitting elements 2. FIG. It does not have to be done.

凹部は、図5Bに示すように、2つの発光素子2の間に2つ、もしくは2つ以上設けてもよい。
一方、図11に示すように、2つの発光素子2の間に1つのみ凹部3aを設けることができる。これにより、発光素子2の間隔を広くせずに凹部3aの幅を広げることができるため、後述する凹部3aの内面における切断を容易に行うことができる。また、凹部3a内に形成される比較的高価な金属層4の材料を有効に利用することができ、安価な発光装置を製造することができる。
As shown in FIG. 5B, two or more recesses may be provided between the two light emitting elements 2.
On the other hand, as shown in FIG. 11, only one recess 3 a can be provided between the two light emitting elements 2. Thereby, since the width | variety of the recessed part 3a can be expanded without making the space | interval of the light emitting element 2 wide, the cutting | disconnection in the inner surface of the recessed part 3a mentioned later can be performed easily. Moreover, the material of the relatively expensive metal layer 4 formed in the recess 3a can be used effectively, and an inexpensive light emitting device can be manufactured.

以上のようにして、中間体100を得る。   As described above, intermediate 100 is obtained.

次に、中間体100の、発光素子2の一対の電極2a、2bの表面と被覆部材3の凹部3aの内面とを連続して覆う金属層4を形成する。   Next, the metal layer 4 that continuously covers the surface of the pair of electrodes 2 a and 2 b of the light emitting element 2 and the inner surface of the recess 3 a of the covering member 3 of the intermediate body 100 is formed.

2.金属層の形成
図5A及び5Bに示すように、中間体100の発光素子の電極が露出された面(上面)及び凹部3aの内面にわたって金属層4を形成する。
金属層4は、発光装置10の実装用端子として用いられるため、その構成は発光装置10の実装性や密着性を考慮して設けられる。
金属層4の材料は、例として、金、銀、ニッケル、アルミニウム、ロジウム、銅、又はこれらの合金を単層または積層などを用いることができる。中間体100と接する層(金属層の第1層)としては、密着性を向上させるためにNiを用いることが好ましい。金属層4への実装用半田の拡散を防止するために、Ruの層を含むことが好ましい。また、最表面は耐食性等の高いAuを用いることが好ましい。つまり、中間体100に近い側からNi/Ru/Auの積層構造を用いることが好ましい。
金属層4の厚みは、薄いことが好ましく、適宜、発光装置10を実装基板に接合する際に接合強度が確保できる条件とすることができる。レーザアブレーションが選択的に起こる程度とすることができ、例えば1μm以下であることが好ましく、1000Å以下がより好ましい。また、電極の腐食を低減することができる厚み、例えば5nm以上であることが好ましい。ここで、金属層の厚みとは、金属層が複数の層が積層されて構成されている場合には、該複数の層の合計の厚みのことをいう。
金属層4が積層構造である場合には、積層構造のうちの1層の厚みは、例えば、10Å〜1000Åとすることができ、好ましくは、150Å〜1000Å程度である。
この金属層4の形成は、ALD、CVD、スパッタ、蒸着で行うことができる。中でもスパッタによれば容易に金属層4を形成することができる。
2. Formation of Metal Layer As shown in FIGS. 5A and 5B, the metal layer 4 is formed over the surface (upper surface) of the intermediate body 100 where the electrodes of the light emitting element are exposed and the inner surface of the recess 3a.
Since the metal layer 4 is used as a mounting terminal of the light emitting device 10, the configuration is provided in consideration of the mountability and adhesion of the light emitting device 10.
As a material of the metal layer 4, for example, gold, silver, nickel, aluminum, rhodium, copper, or an alloy thereof may be a single layer or a stacked layer. As the layer in contact with the intermediate body 100 (the first layer of the metal layer), it is preferable to use Ni in order to improve the adhesion. In order to prevent the mounting solder from diffusing into the metal layer 4, it is preferable to include a Ru layer. Moreover, it is preferable to use Au with high corrosion resistance etc. for the outermost surface. That is, it is preferable to use a Ni / Ru / Au stacked structure from the side close to the intermediate body 100.
The thickness of the metal layer 4 is preferably thin, and can be appropriately set as a condition that can secure the bonding strength when the light emitting device 10 is bonded to the mounting substrate. For example, the laser ablation may be selectively caused to occur, for example, 1 μm or less is preferable, and 1000 μm or less is more preferable. Moreover, it is preferable that it is thickness which can reduce the corrosion of an electrode, for example, 5 nm or more. Here, the thickness of the metal layer means the total thickness of the plurality of layers when the metal layer is formed by laminating a plurality of layers.
When the metal layer 4 has a laminated structure, the thickness of one layer of the laminated structure can be, for example, 10 mm to 1000 mm, and preferably about 150 mm to 1000 mm.
The metal layer 4 can be formed by ALD, CVD, sputtering, or vapor deposition. Among these, the metal layer 4 can be easily formed by sputtering.

この実施形態では、まず、一つの連続する金属層4を被覆部材3と複数の電極2a、2bの表面にわたって略全面に形成している。このため、図6A及び図6Bに示すように、一つの発光素子2の正負の電極2a、2bの間を接続するように存在している金属層4の一部を除去する。除去しなければ電極2a、2bが短絡した状態になり発光装置10への電気供給がなく、発光装置10が破壊されるためである。これは、例えば、レーザの照射またはエッチングまたはルータ加工によって電極2a、2b間の金属層4を電極2a、2bに平行な一軸方向に、金属層4を除去することができる。特に、レーザの照射によれば、アブレーションにより金属層の除去を容易に精度よく行うことができる。   In this embodiment, first, one continuous metal layer 4 is formed on substantially the entire surface over the surfaces of the covering member 3 and the plurality of electrodes 2a and 2b. For this reason, as shown in FIGS. 6A and 6B, a part of the metal layer 4 existing so as to connect between the positive and negative electrodes 2a, 2b of one light emitting element 2 is removed. If not removed, the electrodes 2a and 2b are short-circuited and there is no electrical supply to the light-emitting device 10, and the light-emitting device 10 is destroyed. For example, the metal layer 4 can be removed in a uniaxial direction parallel to the electrodes 2a and 2b by irradiating the laser, etching, or router processing. In particular, by laser irradiation, the metal layer can be easily and accurately removed by ablation.

このように、中間体100の一面の略全面に設けた金属層4の一部を除去して金属層4を形成することが、金属層4を、マスク等を用いてパターニングして形成するよりも、容易なため、量産性の観点から好ましい。   In this way, the metal layer 4 is formed by removing a part of the metal layer 4 provided on substantially the entire surface of the intermediate body 100 than by forming the metal layer 4 by patterning using a mask or the like. However, since it is easy, it is preferable from the viewpoint of mass productivity.

発光装置10における側面の金属層4の高さは、発光装置10の実装基板と面する面から発光装置10の高さの1%〜99%、好ましくは10〜75%程度、より好ましくは15〜50%程度に設けることができる。金属層4の高さは、中間体100の上面に非選択的に金属層4を形成する場合には、上述の凹部3aの深さによって制御することができる。   The height of the metal layer 4 on the side surface of the light emitting device 10 is 1% to 99%, preferably about 10 to 75%, more preferably 15% of the height of the light emitting device 10 from the surface facing the mounting substrate of the light emitting device 10. About 50% can be provided. When the metal layer 4 is non-selectively formed on the upper surface of the intermediate body 100, the height of the metal layer 4 can be controlled by the depth of the recess 3a.

この実施形態では、複数の発光素子2の電極2a、2bの間の領域が平面視において一つの帯状になるよう複数の発光素子2を配置しているため、発光素子2の正負の電極2a、2bの間の金属層4を容易に除去することができる。電極2a、2b間の金属層を一直線状に除去する為に、複数の発光素子2の支持体1への配置は、位置ずれが少ない状態で行うことが好ましい。発光素子2を精度よく配列しておけば、電極2a、2b間の金属層4を除去する際に発生する電極の形状のばらつきを少なくすることができ、発光装置の生産性や品質の安定性を向上させることができる。   In this embodiment, since the plurality of light emitting elements 2 are arranged so that the region between the electrodes 2a and 2b of the plurality of light emitting elements 2 is formed in one band shape in plan view, the positive and negative electrodes 2a of the light emitting element 2 The metal layer 4 between 2b can be easily removed. In order to remove the metal layer between the electrodes 2a and 2b in a straight line, it is preferable that the plurality of light emitting elements 2 be arranged on the support 1 in a state where there is little displacement. If the light emitting elements 2 are arranged with high accuracy, the variation in the shape of the electrode that occurs when the metal layer 4 between the electrodes 2a and 2b is removed can be reduced, and the productivity and quality stability of the light emitting device can be reduced. Can be improved.

なお、凹部3aの内面に設けられた金属層4と発光素子2の電極2a、2bが電気的に接続している限り、その他の中間体100に設けられている部分も除去してもよい。例えば、後述の被覆部材3と金属層4が切断される際または発光装置10として個片化される際に、切断される位置の中間体100の上面に設けられた金属層4を除去してもよい。これにより、切断の際に金属のバリやゴミが発生することを低減することができ、安定して発光装置10を製造することができる。
発光装置10として完成した後に、発光装置10の底面(中間体100の状態では上面と呼ばれていた面)の周縁部にあたる部分を除去してもよい。
金属層4は、発光素子2の一方の電極2aと接続される部分と他方の電極2bと接続された部分とが略同じ形状であってもよく、異なる形状であってもよい。例えば、これらの形状を互いに異ならせることで、発光装置10の極性を見分けるマークとして用いることができる。このような除去は、レーザの照射またはエッチングまたはルータ加工等で行うことができる。特にレーザの照射によれば、金属層4の除去を精度よく行うことができるため、比較的複雑な形状に容易に形成することができる。
金属層4は、凹部3aの内面の全てに設けられてもよく、部分的に設けられてもよい。
As long as the metal layer 4 provided on the inner surface of the recess 3a and the electrodes 2a and 2b of the light emitting element 2 are electrically connected, other portions provided in the intermediate body 100 may be removed. For example, when the covering member 3 and the metal layer 4 described later are cut or separated into individual light emitting devices 10, the metal layer 4 provided on the upper surface of the intermediate body 100 at the position to be cut is removed. Also good. Thereby, it is possible to reduce the occurrence of metal burrs and dust during cutting, and the light emitting device 10 can be manufactured stably.
After the light emitting device 10 is completed, a portion corresponding to the peripheral edge of the bottom surface of the light emitting device 10 (the surface called the upper surface in the state of the intermediate body 100) may be removed.
In the metal layer 4, the portion connected to one electrode 2 a of the light emitting element 2 and the portion connected to the other electrode 2 b may have substantially the same shape or different shapes. For example, by making these shapes different from each other, it can be used as a mark for distinguishing the polarity of the light emitting device 10. Such removal can be performed by laser irradiation, etching, router processing, or the like. In particular, by laser irradiation, the metal layer 4 can be removed with high accuracy, so that it can be easily formed into a relatively complicated shape.
The metal layer 4 may be provided on the entire inner surface of the recess 3a or may be provided partially.

3.被覆部材と金属層の切断
次に、図7A及び7Bに示すように、凹部3aの内面において被覆部材3と金属層4を切断する。
この時、凹部3aがない部分の被覆部材3と金属層4も切断することができる。
なお、すべての凹部3aにおいて切断が行われる必要はない。例えば、1つの発光装置が複数の発光素子2を備えるものを製造する場合、複数の発光素子2の間において配置された凹部3aを切断せず、複数の発光素子2の間の被覆部材3に凹部3a(及び金属層4)を備える発光装置としてもよい。
3. Next, as shown in FIGS. 7A and 7B, the covering member 3 and the metal layer 4 are cut on the inner surface of the recess 3a.
At this time, the covering member 3 and the metal layer 4 in a portion without the recess 3a can also be cut.
Note that it is not necessary to cut all the recesses 3a. For example, when manufacturing one light emitting device including a plurality of light emitting elements 2, the covering member 3 between the plurality of light emitting elements 2 is not cut without cutting the recesses 3 a arranged between the plurality of light emitting elements 2. It is good also as a light-emitting device provided with the recessed part 3a (and metal layer 4).

切断は、被覆部材3や金属層4を切断可能な方法で行われる。例えば、ブレードを用いたブレードダイシングや、レーザダイシング、カッタースクライブ等を利用することができる。   Cutting is performed by a method capable of cutting the covering member 3 and the metal layer 4. For example, blade dicing using a blade, laser dicing, cutter scribe, or the like can be used.

本実施形態においては、発光素子2と隣接して延長された一つの溝である複数の凹部3aの内面を、ダイサーを用いて切断しているため、容易に切断を行うことができる。   In the present embodiment, since the inner surfaces of the plurality of recesses 3a that are one groove extending adjacent to the light emitting element 2 are cut using a dicer, the cutting can be easily performed.

被覆部材と金属層の切断は、図7Bに示すように、1つの凹部3aの略中央で切断することで、凹部3aを2つに分割するように行ってもよい。また、凹部3aの内面の側面のうち、発光素子2から離れた側の側面を除去するように行ってもよい。また、図7Aにおける2つの凹部3aの間に配置された被覆部材を除去するように2つの凹部3aを一度に切断してもよい。これにより、切断の回数を減少させることができ、また切断と発光装置に利用されなかった被覆部材の除去を同時に行うことができるため、製造を容易に行うことができる。また、図11に示すような2つの発光素子2の間に1つのみ設けられた凹部3aを切断し、1つの凹部3aの2つの側面をそれぞれ2つの発光装置の側面として設けてもよい。これにより、切断の回数を減少させることができるため、製造を容易に行うことができる。   As shown in FIG. 7B, the covering member and the metal layer may be cut so as to divide the recess 3a into two parts by cutting at approximately the center of one recess 3a. Moreover, you may carry out so that the side surface of the side away from the light emitting element 2 may be removed among the side surfaces of the inner surface of the recessed part 3a. Moreover, you may cut | disconnect the two recessed parts 3a at once so that the coating | coated member arrange | positioned between the two recessed parts 3a in FIG. 7A may be removed. Thereby, since the frequency | count of cutting | disconnection can be reduced and the removal of the coating | coated member which was not utilized for the light-emitting device can be performed simultaneously, manufacture can be performed easily. Further, only one recess 3a provided between two light emitting elements 2 as shown in FIG. 11 may be cut, and two side surfaces of one recess 3a may be provided as side surfaces of two light emitting devices, respectively. Thereby, since the frequency | count of a cutting | disconnection can be reduced, manufacture can be performed easily.

本実施形態においては、凹部の内面において被覆部材3と金属層4の切断を行う際に同時に被覆部材3を完全に切断しているため、後述する発光装置の個片化も同時に行うことができ、量産性を高くすることができる。なお、被覆部材3と金属層4の切断の後に、さらに被覆部材3または金属層4を除去する、成形する等の工程を有してもよい。   In the present embodiment, since the covering member 3 is completely cut at the same time when the covering member 3 and the metal layer 4 are cut on the inner surface of the concave portion, the light emitting device described later can be separated at the same time. , Mass productivity can be increased. In addition, after cutting | disconnection of the covering member 3 and the metal layer 4, you may have processes, such as removing the shaping | molding member 3 or the metal layer 4, and shape | molding.

発光装置の個片化
本実施形態においては、図7A及び7Bに示すように、凹部3a以外の部分においても被覆部材3と金属層4を切断して分離溝5を形成し、発光装置10を個片化している。
前述のように、支持体1上に配置する発光素子2の形状として同じものを用いると、凹部3aの形成のほかにも、発光装置10の個片化も容易に行うことができる。この実施形態では、複数の矩形の発光素子2の側面が対向するように配置しているので、発光素子2の辺に沿って切断しやすく、効率的に個々の発光装置を個片化することができる。
In this embodiment, as shown in FIGS. 7A and 7B, the covering member 3 and the metal layer 4 are cut to form the separation groove 5 at portions other than the recesses 3a, and the light emitting device 10 is formed. It is singulated.
As described above, when the same shape is used for the light emitting element 2 arranged on the support 1, the light emitting device 10 can be easily separated into pieces in addition to the formation of the recess 3a. In this embodiment, since the side surfaces of the plurality of rectangular light emitting elements 2 are arranged to face each other, it is easy to cut along the sides of the light emitting elements 2 and the individual light emitting devices are efficiently separated into individual pieces. Can do.

前述のように、個片化することで、図8及び9に示すように、実装基板8に実装する場合に、主発光面Qに対して略垂直な面(側面)にわたって発光装置10の電極となる金属層4を形成することができる。また電極2a、2b面に実装基板8の電極と同様の形状で電極が形成されていない場合でも、発光装置10の側面に有する金属層4を利用して実装することで、発光装置10の発光面Qが実装基板8の実装面に対して垂直なサイドビュー型の発光装置10を製造することができる。
これにより、実装基板8との実装が容易な発光装置10を形成することができる。
As described above, as shown in FIGS. 8 and 9, the electrodes of the light emitting device 10 are formed over a surface (side surface) substantially perpendicular to the main light emitting surface Q when mounted on the mounting substrate 8 as shown in FIGS. A metal layer 4 can be formed. Even when the electrodes 2 a and 2 b are not formed with the same shape as the electrodes of the mounting substrate 8, the light emitting device 10 emits light by mounting using the metal layer 4 on the side surface of the light emitting device 10. The side view type light emitting device 10 in which the surface Q is perpendicular to the mounting surface of the mounting substrate 8 can be manufactured.
Thereby, the light emitting device 10 that can be easily mounted on the mounting substrate 8 can be formed.

このように、実装に用いられる金属層4を発光装置10の側面に沿って設けることで、発光装置の実装を容易に精度よく行うことができる。また、実装した際に発光装置10の側面の金属層4に半田フィレットが形成されるため、発光装置10の実装の確認を容易に行うことができるとともに、実装基板8と発光装置10とが実装された際の接着強度を高めることができる。これにより、実装が比較的困難な上、電極の面積を大きくすることが難しい、液晶ディスプレイのバックライトの光源等に用いられる小型の発光装置10に好ましく用いることができる。   Thus, by providing the metal layer 4 used for mounting along the side surface of the light emitting device 10, the light emitting device can be mounted easily and accurately. Moreover, since a solder fillet is formed on the metal layer 4 on the side surface of the light emitting device 10 when mounted, the mounting of the light emitting device 10 can be easily confirmed, and the mounting substrate 8 and the light emitting device 10 are mounted. It is possible to increase the adhesive strength when being applied. Thereby, it can be preferably used for a small light emitting device 10 used for a light source of a backlight of a liquid crystal display, which is relatively difficult to mount and difficult to increase the area of the electrode.

金属層4は、発光装置10の底面において、広い面積で設けられることが好ましい。例えば、発光装置10の底面の面積の20%〜90%、より好ましくは50%〜80%の面積で設けられることが好ましい。これにより、発光装置10の放熱性や実装強度を高めることができる。   The metal layer 4 is preferably provided in a wide area on the bottom surface of the light emitting device 10. For example, it is preferable that the light emitting device 10 is provided with an area of 20% to 90%, more preferably 50% to 80% of the area of the bottom surface. Thereby, the heat dissipation of the light-emitting device 10 and mounting strength can be improved.

金属層4の側面が発光装置10の側面と略同一面となるよう配置することで、複数の発光装置10を並べて実装する際に、上述のような効果を得ながら、発光装置10同士の間隔を狭めることができる。これにより、発光装置10を高い密度で実装することができる。   By arranging the side surfaces of the metal layer 4 so as to be substantially flush with the side surfaces of the light emitting device 10, when mounting the plurality of light emitting devices 10 side by side, the distance between the light emitting devices 10 is obtained while obtaining the above-described effects. Can be narrowed. Thereby, the light-emitting device 10 can be mounted with high density.

本実施形態においては、それぞれの発光素子2の両側に1つずつ溝の凹部3aが設けられているが、隣接する発光素子2の間に1つの凹部が設けられてもよい。このような1つの凹部の内面で切断することで、凹部に隣接する2つの発光装置それぞれの側面に金属層4を形成してもよい。これによれば、切断の回数を減らすことができ、製造の効率を高めることができる。   In the present embodiment, one groove recess 3 a is provided on each side of each light emitting element 2, but one recess may be provided between adjacent light emitting elements 2. The metal layer 4 may be formed on the side surfaces of each of the two light emitting devices adjacent to the recess by cutting at the inner surface of such one recess. According to this, the frequency | count of cutting can be reduced and the efficiency of manufacture can be improved.

この実施形態においては、図9に示すように、発光装置10の被覆部材3と金属層4の外側面が略同一平面となるよう設けられているが、図10に示すように、発光装置の被覆部材3が発光装置の側面に開口を有し、開口内に金属層4の一部が設けられることで、キャスタレーションを備えていてもよい。このような開口内に金属層4を設けることにより、金属層4の高さを高くすることなく、半田と金属層が接着する面積を増やすことができ、発光装置の実装信頼性を高めることができる。このような金属層4は、中間体を準備する際に凹部3aの幅を広く形成し、凹部3aの内面に金属層4を形成した後、凹部3aの底面3dの一部が発光装置に残るように切断することで、形成することができる。このような開口は、被覆部材3と金属層4の切断の際に、例えば、凹部3aの内面のうち側面だけでなく底面3dを発光装置に残すことで形成することができる。   In this embodiment, as shown in FIG. 9, the outer surface of the covering member 3 and the metal layer 4 of the light emitting device 10 is provided so as to be substantially flush with each other. However, as shown in FIG. The covering member 3 has an opening on the side surface of the light emitting device, and a castellation may be provided by providing a part of the metal layer 4 in the opening. By providing the metal layer 4 in such an opening, the area where the solder and the metal layer are bonded can be increased without increasing the height of the metal layer 4, and the mounting reliability of the light emitting device can be improved. it can. Such a metal layer 4 is formed so that the width of the recess 3a is wide when preparing the intermediate, and after forming the metal layer 4 on the inner surface of the recess 3a, a part of the bottom surface 3d of the recess 3a remains in the light emitting device. By cutting in this way, it can be formed. Such an opening can be formed, for example, by leaving not only the side surface but also the bottom surface 3d of the inner surface of the recess 3a when the covering member 3 and the metal layer 4 are cut.

4.その他の工程
以上の工程の他に、例えば、波長変換層を形成する工程、透光層を形成する工程等を適宜行ってもよい。
4). Other Steps In addition to the above steps, for example, a step of forming a wavelength conversion layer, a step of forming a translucent layer, and the like may be appropriately performed.

波長変換層を形成する工程では、主発光面Qから出射される光を所望の波長に変換する波長変換層を、主発光面Qを被覆するように形成することができる。波長変換層としては、例えば樹脂やガラス等の母材に蛍光体等の波長変換材料を含有したものを用いることができる。波長変換層は、スプレー、印刷、塗布、貼り付け等の所望の方法で形成することができる。被覆部材で波長変換層の側面も覆うことにより、発光部と非発光部のコントラストが高い、いわゆる見切り性の良い発光装置を形成することができる。波長変換層は、その構成に応じて、上述のどの工程の前後に行われてもよい。例えば、支持体1として波長変換材料を含有した透光性の樹脂等からなるシートを用い、この支持体1を波長変換層として用いてもよい。また、周縁を遮光性部材の枠で囲まれた波長変換層を予め形成しておき、被覆部材の形成前に主発光面に貼り付けることで、見切り性の良い発光装置を製造することができる。また、被覆部材の形成前に発光素子の主発光面に波長変換層を接着した後、被覆部材を形成してもよい。波長変換層の上に発光素子の主発光面を対向するように接着することで、容易に波長変換層と発光素子の位置決めを行うことができる。透光性接着剤の波長変換層と発光素子との接着には、シリコーン樹脂等の透光性接着剤を用いることができる。この透光性接着剤は発光素子の側面と被覆部材の間に設けられていてもよい。   In the step of forming the wavelength conversion layer, a wavelength conversion layer that converts light emitted from the main light emitting surface Q into a desired wavelength can be formed so as to cover the main light emitting surface Q. As the wavelength conversion layer, for example, a material containing a wavelength conversion material such as a phosphor in a base material such as resin or glass can be used. The wavelength conversion layer can be formed by a desired method such as spraying, printing, coating, or pasting. By covering the side surface of the wavelength conversion layer with the covering member, a light-emitting device having a high contrast between the light-emitting portion and the non-light-emitting portion, which is so-called good parting property, can be formed. The wavelength conversion layer may be performed before or after any of the above steps depending on the configuration. For example, a sheet made of a translucent resin containing a wavelength conversion material may be used as the support 1 and the support 1 may be used as a wavelength conversion layer. In addition, a wavelength conversion layer whose periphery is surrounded by a frame of a light-shielding member is formed in advance, and is attached to the main light-emitting surface before the covering member is formed, whereby a light-emitting device with good parting properties can be manufactured. . Alternatively, the covering member may be formed after the wavelength conversion layer is bonded to the main light emitting surface of the light emitting element before the covering member is formed. By adhering the main light emitting surface of the light emitting element on the wavelength conversion layer so as to face each other, the wavelength conversion layer and the light emitting element can be easily positioned. A light-transmitting adhesive such as a silicone resin can be used for bonding the wavelength conversion layer of the light-transmitting adhesive and the light emitting element. This translucent adhesive may be provided between the side surface of the light emitting element and the covering member.

透光層を形成する工程は、発光装置の発光面(具体的には、波長変換層や主発光面Q)上に、透光性を有する透光層を形成する工程である。透光層を形成することで、発光装置の発光面を保護することができる。透光層としては、例えば透光性を有する樹脂やガラス等を用いることができる。また、フィラー等を含有させることで、光の取り出し向上や、タック性を低減させることが可能である。透光層は、例えばスプレー、印刷、塗布、貼り付け等の所望の方法で形成することができる。上記の波長変換層を用いる場合、あらかじめ波長変換層と透光層を積層した状態に形成した後、発光素子に設けてもよい。   The step of forming the light transmitting layer is a step of forming a light transmitting layer having a light transmitting property on the light emitting surface (specifically, the wavelength conversion layer or the main light emitting surface Q) of the light emitting device. By forming the light transmitting layer, the light emitting surface of the light emitting device can be protected. As the light-transmitting layer, for example, a light-transmitting resin or glass can be used. Further, by including a filler or the like, it is possible to improve light extraction and reduce tackiness. The light-transmitting layer can be formed by a desired method such as spraying, printing, coating, or pasting. In the case of using the wavelength conversion layer, the wavelength conversion layer and the light-transmitting layer may be formed in advance and then provided in the light-emitting element.

以下、各構成部材について説明する。   Hereinafter, each component will be described.

発光素子2
発光素子2は、当該分野で一般的に用いられる発光ダイオード、レーザダイオード等を用いることができる。例えば、窒化物系半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)、GaP、GaAsなどのIII−V族化合物半導体、ZnSe、II−VI族化合物半導体等、種々の半導体を利用することができる。なお、発光素子2は、半導体層を成長させるための基板を有していてもよい。基板としては、サファイア等の絶縁性基板、SiC、ZnO、Si、GaAs、ダイヤモンド、窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジム等の酸化物からなる基板が挙げられる。なお、基板はレーザリフトオフ法等を利用して除去されていてもよい。
Light emitting element 2
As the light-emitting element 2, a light-emitting diode, a laser diode, or the like generally used in this field can be used. For example, the nitride semiconductor (In X Al Y Ga 1- X-Y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1), GaP, III-V group compound semiconductor such as GaAs, ZnSe, II-VI group Various semiconductors such as compound semiconductors can be used. The light emitting element 2 may have a substrate for growing a semiconductor layer. Examples of the substrate include an insulating substrate such as sapphire, and a substrate made of an oxide such as SiC, ZnO, Si, GaAs, diamond, and a nitride semiconductor such as lithium niobate and neodymium gallate. The substrate may be removed using a laser lift-off method or the like.

支持体1
支持体1は、前述のようにシート状の樹脂、セラミックス、ガラス等を用いることができる。特に、耐熱性の観点から、シート状のポリイミド樹脂を用いることが好ましい。
支持体1の平面形状、大きさ、厚み等は、配置する発光素子2の大きさや数によって適宜調整することができる。特に、均一な厚みを有し、その表面が平坦なシート状の支持体1であると、発光素子2を安定的に配置しやすく好ましい。
Support 1
As described above, the support 1 can be made of sheet-like resin, ceramics, glass, or the like. In particular, it is preferable to use a sheet-like polyimide resin from the viewpoint of heat resistance.
The planar shape, size, thickness and the like of the support 1 can be appropriately adjusted depending on the size and number of the light emitting elements 2 to be arranged. In particular, the sheet-like support 1 having a uniform thickness and a flat surface is preferable because the light-emitting element 2 is easily disposed stably.

支持体1を発光装置の一部として用いる場合は、透光性を有していると好ましく、発光素子2からの光の透過率が60%以上、70%以上、80%以上、90%以上であるものが好ましい。
特に、支持体1を発光装置の一部として用いる場合は、支持体1として樹脂を用いることが好ましく、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、エポキシ変性樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、TPX樹脂、ポリノルボルネン樹脂、又はこれらの樹脂を1種以上含むハイブリッド樹脂等の樹脂等によって形成されたものが挙げられる。なかでも、シリコーン樹脂又はエポキシ樹脂が好ましく、特に耐光性、耐熱性に優れるシリコーン樹脂が好ましい。
When the support 1 is used as a part of the light-emitting device, it is preferable that the support 1 has translucency, and the light transmittance from the light-emitting element 2 is 60% or more, 70% or more, 80% or more, 90% or more. Are preferred.
In particular, when the support 1 is used as a part of a light-emitting device, it is preferable to use a resin as the support 1, and a silicone resin, a silicone-modified resin, an epoxy resin, an epoxy-modified resin, a phenol resin, a polycarbonate resin, an acrylic resin, Examples thereof include those formed of a TPX resin, a polynorbornene resin, or a resin such as a hybrid resin including one or more of these resins. Among these, a silicone resin or an epoxy resin is preferable, and a silicone resin excellent in light resistance and heat resistance is particularly preferable.

さらに、支持体1を発光装置の一部として用いる場合、支持体1に発光素子からの光を波長変換する波長変換部材、例えば、蛍光体及び/又は発光物質を含有させると、発光装置の波長変換層として用いることができる。
蛍光体及び/又は発光物質としては、例えば、イットリウム・アルミニウム・ガーネット(YAG)系蛍光体などを用いることができる。
Further, when the support 1 is used as a part of the light emitting device, if the support 1 contains a wavelength conversion member that converts the wavelength of light from the light emitting element, for example, a phosphor and / or a light emitting substance, the wavelength of the light emitting device. It can be used as a conversion layer.
As the phosphor and / or the light emitting substance, for example, an yttrium aluminum garnet (YAG) phosphor or the like can be used.

支持体1は、フィラー(例えば、拡散剤、着色剤等)を含んでいてもよい。例えば、シリカ、酸化チタン、酸化ジルコニウム、酸化マグネシウム、ガラス、蛍光体の結晶又は焼結体、蛍光体と無機物の結合材との焼結体等が挙げられる。   The support 1 may contain a filler (for example, a diffusing agent, a colorant, etc.). Examples include silica, titanium oxide, zirconium oxide, magnesium oxide, glass, phosphor crystals or sintered bodies, and sintered bodies of phosphors and inorganic binders.

被覆部材3
被覆部材3は、例えば、母材である樹脂に光反射性又は光吸収性物質を含有させた材料により形成することができる。これにより、被覆部材3を所望の形状に成形しやすい。樹脂としては、例えば、シリコーン樹脂、変成シリコーン樹脂、エポキシ樹脂、変成エポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、変成ポリイミド樹脂、フェノール樹脂、ウレタン樹脂、アクリレート樹脂、ユリア樹脂、アクリル樹脂、ポリフタルアミド(PPA)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)等が挙げられる。これらは単独で又は2種以上の樹脂を組み合わせて用いてもよい。特に、耐熱性、耐候性の観点から、シリコーン系の樹脂を含むことが好ましい。
なお、被覆部材3の厚み(発光素子2の側面から発光装置100の側面までの距離、図10に示すD)は、例えば10μm〜100μmとすることで、主発光面Q以外からの発光素子の光を十分に遮光しつつ、小型の発光装置を形成することができる。
Covering member 3
The covering member 3 can be formed of, for example, a material in which a resin that is a base material contains a light-reflective or light-absorbing substance. Thereby, it is easy to shape the covering member 3 into a desired shape. Examples of the resin include silicone resin, modified silicone resin, epoxy resin, modified epoxy resin, unsaturated polyester resin, polyimide resin, modified polyimide resin, phenol resin, urethane resin, acrylate resin, urea resin, acrylic resin, polyphthalamide (PPA), polyphenylene sulfide (PPS), liquid crystal polymer (LCP) and the like. These may be used alone or in combination of two or more resins. In particular, from the viewpoint of heat resistance and weather resistance, it is preferable to include a silicone-based resin.
The thickness of the covering member 3 (distance from the side surface of the light emitting element 2 to the side surface of the light emitting device 100, D shown in FIG. 10) is, for example, 10 μm to 100 μm. A small light-emitting device can be formed while sufficiently blocking light.

光反射性又は光吸収性物質としては、例えば、セラミックス、二酸化チタン、二酸化ケイ素、二酸化ジルコニウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ケイ素、窒化ホウ素、ムライト、酸化ニオブ、酸化亜鉛、硫酸バリウム、各種希土類酸化物(例えば、酸化イットリウム、酸化ガドリニウム)等が挙げられる。光反射性又は光吸収性物質は、被覆部材の全重量において、約20重量%〜80重量%程度含有されていることが好ましく、約30重量%〜70重量%程度がより好ましい。これにより、被覆部材の遮光性及び強度を確保することができる。   Examples of the light reflecting or light absorbing material include ceramics, titanium dioxide, silicon dioxide, zirconium dioxide, potassium titanate, alumina, aluminum nitride, silicon nitride, boron nitride, mullite, niobium oxide, zinc oxide, barium sulfate, Examples include various rare earth oxides (for example, yttrium oxide, gadolinium oxide). The light-reflecting or light-absorbing substance is preferably contained in an amount of about 20% to 80% by weight, more preferably about 30% to 70% by weight, based on the total weight of the covering member. Thereby, the light-shielding property and intensity | strength of a coating | coated member are securable.

本発明の実施形態に係る発光装置は、照明用光源、各種インジケーター用光源、車載用光源、ディスプレイ用光源、液晶のバックライト用光源、センサー用光源、信号機等、種々の発光装置に使用することができる。   The light emitting device according to the embodiment of the present invention is used for various light emitting devices such as an illumination light source, various indicator light sources, an in-vehicle light source, a display light source, a liquid crystal backlight light source, a sensor light source, and a traffic light. Can do.

1 支持体
2 発光素子
2a、2b 発光素子の電極
3 被覆部材
3a 凹部
3d 底面
4 金属層
5 分離溝
8 実装基板
9 半田
10 発光装置
100 中間体
DESCRIPTION OF SYMBOLS 1 Support body 2 Light emitting element 2a, 2b Electrode of light emitting element 3 Cover member 3a Recessed part 3d Bottom face 4 Metal layer 5 Separation groove 8 Mounting substrate 9 Solder 10 Light emitting device 100 Intermediate body

Claims (7)

同一面側に一対の電極を備え、それぞれ分離された複数の発光素子と、前記一対の電極の表面の一部が露出されるように前記複数の発光素子の側面を被覆し、前記複数の発光素子の間において凹部を有する被覆部材と、を備える中間体を準備する工程と、
前記発光素子の前記一対の電極の表面と前記被覆部材の前記凹部の内面とを連続して覆う金属層を形成する工程と、
前記凹部の内面において前記被覆部材と前記金属層を切断する工程と、を含む発光装置の製造方法。
A plurality of light emitting elements each provided with a pair of electrodes on the same surface side and the side surfaces of the plurality of light emitting elements covered so that a part of the surface of the pair of electrodes is exposed, the plurality of light emitting elements A step of preparing an intermediate including a covering member having a recess between the elements;
Forming a metal layer that continuously covers the surface of the pair of electrodes of the light emitting element and the inner surface of the recess of the covering member;
And a step of cutting the covering member and the metal layer on the inner surface of the recess.
前記凹部は前記被覆部材の一部を除去することによって形成する、請求項1に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein the recess is formed by removing a part of the covering member. 前記金属層を形成する工程は、ALD、CVD、スパッタ、及び蒸着のいずれかの方法で形成する工程を含む請求項1または2のいずれか一項に記載の発光装置の製造方法。   3. The method of manufacturing a light emitting device according to claim 1, wherein the step of forming the metal layer includes a step of forming by any one of ALD, CVD, sputtering, and vapor deposition. 前記金属層を形成する工程の後に、前記金属層の一部を除去する工程をさらに含む、請求項1または2に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, further comprising a step of removing a part of the metal layer after the step of forming the metal layer. 前記除去する工程は、前記金属層にレーザを照射して行う、請求項3に記載の発光装置の製造方法。   The light emitting device manufacturing method according to claim 3, wherein the removing step is performed by irradiating the metal layer with a laser. 前記金属層は、Ruを含む請求項1から3のいずれか一項に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein the metal layer includes Ru. 前記金属層は、Ni/Ru/Auが積層された積層構造である請求項1から5のいずれか一項に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein the metal layer has a stacked structure in which Ni / Ru / Au is stacked.
JP2017184703A 2016-09-29 2017-09-26 Method of manufacturing light emitting device Active JP6504221B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/717,242 US10043956B2 (en) 2016-09-29 2017-09-27 Method for manufacturing light emitting device
US16/030,014 US10270016B2 (en) 2016-09-29 2018-07-09 Light emitting device
US16/353,785 US10497843B2 (en) 2016-09-29 2019-03-14 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191246 2016-09-29
JP2016191246 2016-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019058254A Division JP6773162B2 (en) 2016-09-29 2019-03-26 Light emitting device

Publications (2)

Publication Number Publication Date
JP2018061027A true JP2018061027A (en) 2018-04-12
JP6504221B2 JP6504221B2 (en) 2019-04-24

Family

ID=61910114

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017184703A Active JP6504221B2 (en) 2016-09-29 2017-09-26 Method of manufacturing light emitting device
JP2019058254A Active JP6773162B2 (en) 2016-09-29 2019-03-26 Light emitting device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019058254A Active JP6773162B2 (en) 2016-09-29 2019-03-26 Light emitting device

Country Status (1)

Country Link
JP (2) JP6504221B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004882A (en) * 2018-06-29 2020-01-09 日亜化学工業株式会社 Method of manufacturing light-emitting module
JP2020136279A (en) * 2019-02-12 2020-08-31 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP2021057465A (en) * 2019-09-30 2021-04-08 日亜化学工業株式会社 Manufacturing method of light-emitting device
JP2021150414A (en) * 2020-03-18 2021-09-27 日亜化学工業株式会社 Light-emitting device and manufacturing method of the same
US11201258B2 (en) 2018-11-15 2021-12-14 Nichia Corporation Method for manufacturing light emitting device
US11380817B2 (en) 2019-01-29 2022-07-05 Nichia Corporation Method for manufacturing light-emitting device
US11411133B2 (en) 2018-11-15 2022-08-09 Nichia Corporation Method of manufacturing light-emitting device, light-emitting device, and light source device
US11955583B2 (en) 2020-12-01 2024-04-09 Lumileds Llc Flip chip micro light emitting diodes
US12040423B2 (en) 2020-12-01 2024-07-16 Lumileds Llc Methods of making flip chip micro light emitting diodes

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163412A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led illuminator
JP2008518436A (en) * 2004-10-22 2008-05-29 ソウル オプト−デバイス カンパニー リミテッド GaN-based compound semiconductor light emitting device and manufacturing method thereof
JP2009533830A (en) * 2006-04-14 2009-09-17 アプライド マテリアルズ インコーポレイテッド Reliable fuel cell electrode design
JP2012124342A (en) * 2010-12-08 2012-06-28 Nichia Chem Ind Ltd Nitride-based semiconductor light-emitting element
US20130029439A1 (en) * 2011-07-28 2013-01-31 Samsung Electronics Co., Ltd. Method of manufacturing light emitting device
JP2013506305A (en) * 2009-09-30 2013-02-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング OPTOELECTRONIC SEMICONDUCTOR CHIP AND METHOD FOR MATCHING CONTACT PATTERN PART FOR CONDUCTING OPTICAL ELECTRONIC SEMICONDUCTOR CHIP
WO2014091914A1 (en) * 2012-12-10 2014-06-19 シチズンホールディングス株式会社 Led device and manufacturing method thereof
JP2014116439A (en) * 2012-12-10 2014-06-26 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2014199957A (en) * 2008-04-25 2014-10-23 三星電子株式会社Samsung Electronics Co.,Ltd. Light-emitting device
KR101504139B1 (en) * 2014-12-30 2015-03-19 주식회사 루멘스 Manufacturing method of light emitting device package
JP2015135904A (en) * 2014-01-17 2015-07-27 日亜化学工業株式会社 Light emitting device and light emitting device manufacturing method
JP2016115729A (en) * 2014-12-11 2016-06-23 日亜化学工業株式会社 Method of manufacturing light-emitting device
KR20160082953A (en) * 2016-06-28 2016-07-11 주식회사 세미콘라이트 Semiconductor light emitting device and method of manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4122739B2 (en) * 2001-07-26 2008-07-23 松下電工株式会社 Light emitting device and manufacturing method thereof
JP5693375B2 (en) * 2010-05-28 2015-04-01 シチズンホールディングス株式会社 Semiconductor light emitting device
JP5740981B2 (en) * 2011-01-05 2015-07-01 ソニー株式会社 LIGHT EMITTING DEVICE, LIGHTING DEVICE, AND DISPLAY DEVICE
US10388584B2 (en) * 2011-09-06 2019-08-20 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming Fo-WLCSP with recessed interconnect area in peripheral region of semiconductor die
JP2014175362A (en) * 2013-03-06 2014-09-22 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
DE102013110114A1 (en) * 2013-09-13 2015-04-02 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
JP2016015474A (en) * 2014-05-07 2016-01-28 新世紀光電股▲ふん▼有限公司Genesis Photonics Inc. Light emission device
US9373762B2 (en) * 2014-06-17 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Electronic part package
JP6384202B2 (en) * 2014-08-28 2018-09-05 日亜化学工業株式会社 Method for manufacturing light emitting device
CN105449080B (en) * 2015-12-31 2018-08-28 鸿利智汇集团股份有限公司 With the method and CSP LED of the method and molding flip-chip of positive cartridge chip molding CSP LED
US9837375B2 (en) * 2016-02-26 2017-12-05 Semtech Corporation Semiconductor device and method of forming insulating layers around semiconductor die

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163412A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led illuminator
JP2008518436A (en) * 2004-10-22 2008-05-29 ソウル オプト−デバイス カンパニー リミテッド GaN-based compound semiconductor light emitting device and manufacturing method thereof
JP2009533830A (en) * 2006-04-14 2009-09-17 アプライド マテリアルズ インコーポレイテッド Reliable fuel cell electrode design
JP2014199957A (en) * 2008-04-25 2014-10-23 三星電子株式会社Samsung Electronics Co.,Ltd. Light-emitting device
JP2013506305A (en) * 2009-09-30 2013-02-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング OPTOELECTRONIC SEMICONDUCTOR CHIP AND METHOD FOR MATCHING CONTACT PATTERN PART FOR CONDUCTING OPTICAL ELECTRONIC SEMICONDUCTOR CHIP
JP2012124342A (en) * 2010-12-08 2012-06-28 Nichia Chem Ind Ltd Nitride-based semiconductor light-emitting element
US20130029439A1 (en) * 2011-07-28 2013-01-31 Samsung Electronics Co., Ltd. Method of manufacturing light emitting device
WO2014091914A1 (en) * 2012-12-10 2014-06-19 シチズンホールディングス株式会社 Led device and manufacturing method thereof
JP2014116439A (en) * 2012-12-10 2014-06-26 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2015135904A (en) * 2014-01-17 2015-07-27 日亜化学工業株式会社 Light emitting device and light emitting device manufacturing method
JP2016115729A (en) * 2014-12-11 2016-06-23 日亜化学工業株式会社 Method of manufacturing light-emitting device
KR101504139B1 (en) * 2014-12-30 2015-03-19 주식회사 루멘스 Manufacturing method of light emitting device package
KR20160082953A (en) * 2016-06-28 2016-07-11 주식회사 세미콘라이트 Semiconductor light emitting device and method of manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004882A (en) * 2018-06-29 2020-01-09 日亜化学工業株式会社 Method of manufacturing light-emitting module
US11411133B2 (en) 2018-11-15 2022-08-09 Nichia Corporation Method of manufacturing light-emitting device, light-emitting device, and light source device
US11990560B2 (en) 2018-11-15 2024-05-21 Nichia Corporation Method of manufacturing light-emitting device, light-emitting device, and light source device
US11201258B2 (en) 2018-11-15 2021-12-14 Nichia Corporation Method for manufacturing light emitting device
US11888088B2 (en) 2019-01-29 2024-01-30 Nichia Corporation Method for manufacturing light-emitting device
US11380817B2 (en) 2019-01-29 2022-07-05 Nichia Corporation Method for manufacturing light-emitting device
JP2023033453A (en) * 2019-02-12 2023-03-10 日亜化学工業株式会社 light emitting device
JP7223938B2 (en) 2019-02-12 2023-02-17 日亜化学工業株式会社 Method for manufacturing light emitting device
JP7393719B2 (en) 2019-02-12 2023-12-07 日亜化学工業株式会社 light emitting device
JP2020136279A (en) * 2019-02-12 2020-08-31 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP2021057465A (en) * 2019-09-30 2021-04-08 日亜化学工業株式会社 Manufacturing method of light-emitting device
JP2021150414A (en) * 2020-03-18 2021-09-27 日亜化学工業株式会社 Light-emitting device and manufacturing method of the same
JP7386417B2 (en) 2020-03-18 2023-11-27 日亜化学工業株式会社 Light emitting device and its manufacturing method
US11955583B2 (en) 2020-12-01 2024-04-09 Lumileds Llc Flip chip micro light emitting diodes
US12040423B2 (en) 2020-12-01 2024-07-16 Lumileds Llc Methods of making flip chip micro light emitting diodes
JP7559243B2 (en) 2020-12-01 2024-10-01 ルミレッズ リミテッド ライアビリティ カンパニー Method for manufacturing flip chip micro light emitting diodes

Also Published As

Publication number Publication date
JP6773162B2 (en) 2020-10-21
JP6504221B2 (en) 2019-04-24
JP2019114811A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP6773162B2 (en) Light emitting device
USRE49047E1 (en) Light emitting device
EP2827388B1 (en) Light emitting device and method of manufacturing the same
JP6175952B2 (en) Light emitting device
KR102123039B1 (en) Light emitting device and method of manufacturing the same
US10707389B2 (en) Light emitting device
US10497843B2 (en) Light emitting device
JP6776764B2 (en) Manufacturing method of light emitting device
JP2017098509A (en) Substrate for placing element and light-emitting device
US9755105B2 (en) Method for producing light emitting device
JP6551245B2 (en) Method of manufacturing light emitting device
JP6349953B2 (en) Method for manufacturing light emitting device
JP6728998B2 (en) Light emitting device manufacturing method and light emitting device
JP6766900B2 (en) Light emitting device
JP7007561B2 (en) Light emitting device and its manufacturing method
JP6963177B2 (en) Manufacturing method of light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6504221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250