JP2018056402A - 正極前駆体 - Google Patents
正極前駆体 Download PDFInfo
- Publication number
- JP2018056402A JP2018056402A JP2016192438A JP2016192438A JP2018056402A JP 2018056402 A JP2018056402 A JP 2018056402A JP 2016192438 A JP2016192438 A JP 2016192438A JP 2016192438 A JP2016192438 A JP 2016192438A JP 2018056402 A JP2018056402 A JP 2018056402A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- electrode precursor
- active material
- mass
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
その結果、正極活物質以外のアルカリ金属化合物を含む正極前駆体において、アルカリ金属化合物の重量比と正極前駆体表面の元素マッピングとを特定の状態に制御することで、正極前駆体を非水系ハイブリッドキャパシタ用に組み込んだときにアルカリ金属化合物の分解を促進することが可能になり、負極へのプレドープを短時間で行うことができ、高エネルギー密度かつ高入出力が得られることを見出した。
すなわち、本発明は、以下のとおりのものである。
〔1〕
正極活物質以外のアルカリ金属化合物と、正極集電体と、上記正極集電体の片面又は両面に正極活物質層とを有し、上記正極活物質層は、炭素材料を含む正極活物質を含有する、正極前駆体であって、
上記正極集電体を除く上記正極前駆体の質量を基準として、上記アルカリ金属化合物の重量比をX質量%とするとき、5≦X≦50であり、
上記正極前駆体表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対する炭素マッピングの面積重複率をA1%とするとき、30≦A1≦90である、正極前駆体。
〔2〕
上記正極前駆体表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率をA2%とするとき、1≦A2≦50である、項目1に記載の正極前駆体。
〔3〕
BIB加工した上記正極前駆体断面のSEM−EDXにより得られる酸素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングの面積をA3%とするとき、5≦A3≦60であり、かつ0.5≦A3/X≦2.0である、項目1又は2に記載の正極前駆体。
〔4〕
上記アルカリ金属化合物が、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムからなる群から選択される少なくとも1種である、項目1〜3のいずれか1項に記載の正極前駆体。
〔5〕
上記アルカリ金属化合物は、上記アルカリ金属化合物の総質量を基準として10質量%以上の炭酸リチウムを含む、項目1〜4のいずれか1項に記載の正極前駆体。
〔6〕
上記アルカリ金属化合物の平均粒子径が、0.1μm以上10μm以下である、項目1〜5のいずれか1項に記載の正極前駆体。
〔7〕
上記正極活物質は、上記炭素材料として活性炭を含有する、項目1〜6のいずれか1項に記載の正極前駆体。
〔8〕
上記活性炭は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつBET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す、項目7に記載の正極前駆体。
〔9〕
上記活性炭は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5を満たし、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.8<V2≦3.0を満たし、かつBET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す、項目7に記載の正極前駆体。
非水系ハイブリッドキャパシタは一般に、正極と、負極と、セパレータと、電解液とを主な構成要素として有する。電解液としては、アルカリ金属塩等の電解質を溶解させた有機溶媒(以下「非水系電解液」という。)を用いる。
本発明における正極前駆体は、正極活物質以外のアルカリ金属化合物と、正極集電体と、上記正極集電体の片面又は両面に正極活物質層とを有し、上記正極活物質層は、炭素材料を含む正極活物質を含有し、上記正極集電体を除く上記正極前駆体の質量を基準として、上記アルカリ金属化合物の重量比をX質量%とするとき、5≦X≦50であり、上記正極前駆体表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対する炭素マッピングの面積重複率をA1%とするとき、30≦A1≦90である。本実施形態に係る正極前駆体は、非水系ハイブリッドキャパシタの所望の構成に応じて、単に、プレドープ前の電極、プレドープ前の片側電極、ハーフセル、塗工電極、乾燥電極等と呼ばれることがある。
正極前駆体に含まれる正極活物質層は、炭素材料を含む正極活物質を含有する。正極活物質層は、正極活物質以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
上記正極活物質は炭素材料を含む。炭素材料としては、好ましくは活性炭、カーボンナノチューブ、導電性高分子、及び多孔性の炭素材料等が挙げられ、より好ましくは活性炭である。正極活物質としては、1種の炭素材料を単独で使用してもよく、2種類以上の炭素材料を混合して使用してもよく、炭素材料以外の材料(例えばアルカリ金属と遷移金属との複合酸化物等)を含んでもよい。
(1)高い入出力特性を得るためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下である活性炭(以下「活性炭1」ともいう。)が好ましく、また、
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下である活性炭(以下「活性炭2」ともいう。)が好ましい。
活性炭1のメソ孔量V1は、蓄電素子に組み込んだときの入出力特性を大きくする点で、0.3cc/gより大きい値であることが好ましい。一方で、正極の嵩密度の低下を抑える点から、0.8cc/g以下であることが好ましい。上記V1は、より好ましくは0.35cc/g以上0.7cc/g以下、更に好ましくは0.4cc/g以上0.6cc/g以下である。
活性炭2のメソ孔量V1は、蓄電素子に組み込んだときの入出力特性を大きくする観点から、0.8cc/gより大きい値であることが好ましい。V1は、蓄電素子の容量の低下を抑える観点から、2.5cc/g以下であることが好ましい。上記V1は、より好ましくは1.0cc/g以上2.0cc/g以下、さらに好ましくは、1.2cc/g以上1.8cc/g以下である。
正極活物質に活性炭を使用する場合、活性炭1及び2は、それぞれ、1種の活性炭であってもよいし、2種以上の活性炭の混合物であって上記した各々の特性値を混合物全体として示すものであってもよい。
本実施形態におけるアルカリ金属化合物としては、正極前駆体中で分解して、アルカリ金属イオンを放出することが可能である化合物を用いる。アルカリ金属イオンを陽イオンとする炭酸塩、酸化物、水酸化物、フッ化物、塩化物、シュウ化物、ヨウ化物、窒化物、硫化物、リン化物、硝酸化物、硫酸化物、リン酸化物、シュウ酸化物、ギ酸化物及び酢酸化物からなる群から選択される少なくとも1種が好適に用いられる。中でも、炭酸塩、酸化物、及び水酸化物がより好適であり、空気中での取り扱いが可能であり、吸湿性が低いという観点からアルカリ金属炭酸塩がさらに好適に用いられる。アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムからなる群から選択される少なくとも1種が好適に用いられ、中でも、単位重量当たりの容量が高いという観点から炭酸リチウムがさらに好適に用いられる。アルカリ金属化合物は、正極前駆体に含有されるアルカリ金属化合物の総質量を基準として、炭酸リチウムを10質量%以上含むことが好ましい。正極前駆体中に含まれるアルカリ金属化合物は1種でもよく、2種以上を含んでいてもよい。
正極前駆体に含まれるアルカリ金属化合物は、非水系ハイブリッドキャパシタを形成したときに高電圧を印加することで酸化分解してアルカリ金属イオンを放出し、負極で還元することでプレドープが進行する。そのため、酸化反応を促進させることでプレドープを短時間で行うことができる。酸化反応を促進させるためには、絶縁物であるアルカリ金属化合物を正極活物質及び/又は導電性フィラー等の導電部材と接触させて電子伝導性を確保することと、反応して放出される陽イオンを電解液中に拡散させることが重要である。
アルカリ金属化合物及びアルカリ土類金属化合物は粒子状であることが好ましい。正極前駆体に含有されるアルカリ金属化合物の平均粒子径は0.1μm以上10μm以下であることが好ましい。アルカリ金属化合物の平均粒子径の下限としては、0.3μm以上であることがより好ましく、0.5μm以上であることがさらに好ましい。
アルカリ金属化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極前駆体断面のSEM−EDX画像による酸素マッピングにより判別できる。上記SEM−EDXで得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をアルカリ金属化合物と判別できる。
アルカリ金属化合物の平均粒子径は、上記正極前駆体断面SEMと同視野にて測定した断面SEM−EDXから得られた画像を、画像解析することで求めることができる。上記正極前駆体断面のSEM画像にて判別されたアルカリ金属化合物の粒子全てについて、断面積Sを求め、下記式(1)にて算出される粒子径dを求める。(円周率をπとする。)
d=2×(S/π)1/2 式(1)
X0=Σ[4/3π×(d/2)]3×d]/Σ[4/3π×(d/2)]3] 式(2)
正極前駆体断面の視野を変えて5ヶ所以上測定し、それぞれのX0の平均値をもってアルカリ金属化合物の平均粒子径を算出することができる。
本実施形態における正極前駆体の正極活物質層は、必要に応じて、正極活物質及びアルカリ金属化合物の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こりにくい材料であれば特に制限されず、金属箔が好ましい。正極集電体としての金属箔は、アルミニウム箔が特に好ましい。
その中でも、正極集電体は貫通孔を持たない金属箔が好ましい。貫通孔を持たない方が、製造コストが安価であり、薄膜化が容易であるため高エネルギー密度化にも寄与でき、集電抵抗も低くできるため高入出力特性が得られる。
本実施形態において、非水系ハイブリッドキャパシタの正極となる正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びアルカリ金属化合物、並びに必要に応じて使用されるその他の任意成分を、水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることができる。得られた正極前駆体をプレスして、正極活物質層の厚み又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、正極活物質及びアルカリ金属化合物、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型して正極シートを作成した後、導電性接着剤(「導電性ペースト」ともいう)を用いて正極集電体に貼り付ける方法も可能である。
負極は、一般的に、負極集電体と、前記負極集電体の片面又は両面に存在する負極活物質層と、を有する。
負極活物質層は、アルカリ金属イオンを吸蔵及び放出できる負極活物質を含むことが好ましい。負極活物質層は、負極活物質以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
上記負極活物質は、アルカリ金属イオンを吸蔵及び放出することが可能な物質を用いることができる。負極活物質としては、具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫及び錫化合物等が例示される。負極活物質の総質量に対する炭素材料の含有率は、好ましくは50質量%以上、より好ましくは70質量%以上、又は100質量%であってもよい。他の材料の併用による効果を良好に得る観点から、炭素材料の含有率は、例えば、90質量%以下であることが好ましく、80質量%以下であってもよい。上記炭素材料の含有率の範囲の上限と下限は、任意に組み合わせることができる。
負極活物質層は、必要に応じて、負極活物質の他に、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
負極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化がおこりにくい金属箔であることが好ましい。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。非水系ハイブリッドキャパシタにおける負極集電体としては、銅箔が好ましい。
その中でも、負極集電体は貫通孔を持たない金属箔が好ましい。貫通孔を持たない方が、製造コストが安価であり、薄膜化が容易であるため高エネルギー密度化にも寄与でき、集電抵抗も低くできるため高入出力特性が得られる。
負極は、負極集電体の片面上又は両面上に負極活物質層を有して成る。典型的な態様において負極活物質層は負極集電体に固着している。
正極前駆体及び負極は、セパレータを介して積層され、又は積層及び捲回され、正極前駆体、セパレータ、及び負極を有する電極積層体又は電極捲回体を形成することができる。
外装体としては、金属缶、ラミネートフィルム等を使用できる。金属缶としては、アルミニウム製のものが好ましい。ラミネートフィルムとしては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内層樹脂フィルムから構成される3層構成のものが例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内層樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィン等が好適に使用できる。
非水系ハイブリッドキャパシタに用いる電解液は非水系電解液が好ましい。すなわち電解液は、非水溶媒を含む。上記非水系電解液は、上記非水系電解液の総量を基準として、0.5mol/L以上のアルカリ金属塩を含有する。すなわち、非水系電解液は、アルカリ金属塩を電解質として含む。非水系電解液に含まれる非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート等に代表される環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等に代表される鎖状カーボネートが挙げられる。
<組立>
典型的には、枚葉の形状にカットした正極前駆体及び負極を、セパレータを介して積層して電極積層体を得て、電極積層体に正極端子および負極端子を接続する。あるいは、正極前駆体及び負極を、セパレータを介して積層及び捲回して電極捲回体を得て、電極捲回体に正極端子及び負極端子を接続する。電極捲回体の形状は円筒型であっても、扁平型であってもよい。
組立の後に、外装体の中に収納された電極積層体または電極捲回体に、非水系電解液を注液する。注液した後に、正極前駆体、負極、及びセパレータを非水系電解液で十分に含浸することが望ましい。正極前駆体、負極、及びセパレータのうちの少なくとも一部に電解液が浸っていない状態では、後述するプレドープにおいて、ドープが不均一に進むため、得られる非水系ハイブリッドキャパシタの抵抗が上昇したり、耐久性が低下したりする。上記含浸の方法としては、特に制限されず、例えば、注液後の非水系ハイブリッドキャパシタを、外装体が開口した状態で、減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸後には、外装体が開口した状態の非水系ハイブリッドキャパシタを減圧しながら封止することで密閉する。
好ましいプレドープ方法としては、上記正極前駆体と負極との間に電圧を印加して、正極前駆体中のアルカリ金属化合物を分解してアルカリ金属イオンを放出し、負極でアルカリ金属イオンを還元することにより負極活物質層にアルカリ金属イオンをプレドープする方法が挙げられる。
プレドープの終了後に、非水系ハイブリッドキャパシタにエージングを行うことが好ましい。エージングにおいて電解液中の溶媒が負極で分解し、負極表面にアルカリ金蔵イオン透過性の固体高分子被膜が形成される。
エージングの終了後に、更にガス抜きを行い、電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系ハイブリッドキャパシタの抵抗が上昇してしまう。
(静電容量)
本明細書では、静電容量F(F)とは、以下の方法によって得られる値である。
先ず、非水系ハイブリッドキャパシタと対応するセルを25℃に設定した恒温槽内で、2Cの電流値で3.8Vに到達するまで定電流充電を行い、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分行う。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとする。ここで得られたQを用いて、F=Q/(3.8−2.2)により算出される値をいう。
本明細書では、内部抵抗Ra(Ω)とは、以下の方法によって得られる値である。
先ず、非水系ハイブリッドキャパシタを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行う。続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をVoとしたときに、降下電圧ΔV=3.8−Vo、及びRa=ΔV/(20Cの電流値)により算出される値である。
本明細書では、電力量E(Wh)とは、以下の方法によって得られる値である。
先に述べた方法で算出された静電容量F(F)を用いて、
F×(3.82−2.22)/2/3600により算出される値をいう。
蓄電素子の体積V(L)は、電極積層体又は電極捲回体のうち、正極活物質層および負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
<BET比表面積及びメソ孔量、マイクロ孔量、平均細孔径>
本実施形態におけるBET比表面積及びメソ孔量、マイクロ孔量、及び平均細孔径は、それぞれ以下の方法によって求められる値である。試料を200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。
本実施形態における活物質の平均粒子径は、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。この平均粒子径は市販のレーザー回折式粒度分布測定装置を用いて測定することができる。
本実施形態における分散度は、JIS K5600に規定された粒ゲージによる分散度評価試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み、溝から僅かに溢れさせる。スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するように置き、スクレーパーをゲージの表面になるように保持しながら、溝の長辺方向に対して直角に、ゲージの表面を均等な速度で、溝の深さ0まで1〜2秒間かけて引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
本実施形態における粘度(ηb)及びTI値は、それぞれ以下の方法により求められる値である。まず、E型粘度計を用いて温度25℃、ずり速度2s−1の条件で2分以上測定した後の安定した粘度(ηa)を取得する。ずり速度を20s−1に変更した他は上記と同様の条件で測定した粘度(ηb)を取得する。上記で得た粘度の値を用いて、TI値は、TI値=ηa/ηbの式により、算出される。ずり速度を2s−1から20s−1へ上昇させる際は、1段階で上昇させてもよいし、上記の範囲で多段的にずり速度を上昇させ、適宜そのずり速度における粘度を取得しながら上昇させてもよい。
正極前駆体中に含まれるアルカリ金属化合物の同定方法は特に限定されず、例えば下記のSEM−EDX、ラマン、及びX線光電子分光(XPS)により同定することができる。アルカリ金属化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
アルカリ金属化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極前駆体表面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定例として、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、真空蒸着やスパッタリング等の方法により金、白金、オスミウム等を表面処理することもできる。SEM−EDX画像の測定条件としては、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をアルカリ金属化合物とする。
炭酸イオンから構成されるアルカリ金属化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極前駆体表面の炭酸イオンのラマンイメージングにより判別できる。測定条件の例として、励起光を532nm、励起光強度を1%、対物レンズの長作動を50倍、回折格子を1800gr/mm、マッピング方式を点走査(スリット65mm、ビニング5pix)、1mmステップ、1点当たりの露光時間を3秒、積算回数を1回、ノイズフィルター有りの条件にて測定することができる。測定したラマンスペクトルについて、1071〜1104cm−1の範囲で直線のベースラインを設定し、ベースラインより正の値を炭酸イオンのピークとして面積を算出し、頻度を積算するが、この時にノイズ成分をガウス型関数で近似した炭酸イオンピーク面積に対する頻度を上記炭酸イオンの頻度分布から差し引く。
正極前駆体の電子状態をXPSにより解析することにより、正極前駆体中に含まれる化合物の結合状態を判別することができる。
Li1sの結合エネルギー50〜54eVのピークをLiO2またはLi−C結合、
55〜60eVのピークをLiF、Li2CO3、
LixPOyFz(式中、x、y、zは1〜6の整数である)、
C1sの結合エネルギー285eVのピークをC−C結合、
286eVのピークをC−O結合、
288eVのピークをCOO、
290〜292eVのピークをCO3 2−、C−F結合、
O1sの結合エネルギー527〜530eVのピークをO2−(Li2O)、
531〜532eVのピークをCO、CO3、OH、POx(式中、xは1〜4の整数である)、SiOx(式中、xは1〜4の整数である)、
533eVのピークをC−O、SiOx(式中、xは1〜4の整数である)、
F1sの結合エネルギー685eVのピークをLiF、
687eVのピークをC−F結合、LixPOyFz(式中、x、y、zは1〜6の整数である)、PF6 −、
さらにP2pの結合エネルギーについて、
133eVのピークをPOx(式中、xは1〜4の整数である)、
134〜136eVのピークをPFx(式中、xは1〜6の整数である)、
Si2pの結合エネルギー99eVのピークをSi、シリサイド、
101〜107eVのピークをSixOy(式中、x、yは任意の整数である)
として帰属することができる。
正極前駆体の蒸留水洗浄液をイオンクロマトグラフィーで解析することにより、水中に溶出したアニオン種を同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。質量分析計や荷電化粒子検出を検出器と組み合わせて測定することもできる。
正極前駆体中に含まれるアルカリ金属化合物の定量方法を以下に記載する。正極前駆体を蒸留水で洗浄し、蒸留水による洗浄前後の正極重量変化からアルカリ金属化合物を定量することができる。測定する正極前駆体の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm2以上200cm2以下であることが好ましく、更に好ましくは25cm2以上150cm2以下である。面積が5cm2以上あれば測定の再現性が確保される。面積が200cm2以下であればサンプルの取扱い性に優れる。測定する正極前駆体の面積範囲の上限と下限は、任意に組み合わせることができる。
X=100×(M0−M1)/(M0−M2) 式(3)
正極前駆体について、濃硝酸、濃塩酸、王水等の強酸を用いて酸分解し、得られた溶液を2%〜3%の酸濃度になるように純水で希釈する。酸分解については、適宜加熱、加圧し分解することもできる。得られた希釈液をICP−MSにより解析するがこの際に内部標準として既知量の元素を加えておくことが好ましい。測定対象のアルカリ金属元素が測定上限濃度以上になる場合には、上記希釈液を酸濃度を維持したまま更に希釈することが好ましい。得られた測定結果に対し、化学分析用の標準液を用いて予め作成した検量線を基に、各元素を定量することができる。
[活性炭1の調製]
破砕したヤシ殻炭化物を、小型炭化炉において窒素中、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で上記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
フェノール樹脂を、窒素雰囲気下、焼成炉中580℃において2時間炭化処理した後、ボールミルにて粉砕し、分級を行って平均粒子径6.8μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行い、賦活された活性炭を得た。得られた活性炭を、濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄した後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄し、乾燥を行うことにより、活性炭2を得た。
上記で得た活性炭1〜2のいずれか1つを正極活物質として用いて、下記方法で正極前駆体(組成a)を製造した。
活性炭1〜2のいずれか1つを64.4質量部、炭酸リチウムを21.1質量部、ケッチェンブラックを3.5質量部、PVPを1.7質量部、及びPVdFを9.3質量部とした以外は、正極前駆体(組成a)と同様の方法で、正極前駆体(組成b)を得た。
活性炭1〜2のいずれか1つを71.7質量部、炭酸リチウムを12.2質量部、ケッチェンブラックを3.9質量部、PVPを1.9質量部、及びPVdFを10.3質量部とした以外は、正極前駆体(組成a)と同様の方法で、正極前駆体(組成c)を得た。
活性炭1〜2のいずれか1つを74.4質量部、炭酸リチウムを8.9質量部、ケッチェンブラックを4.0質量部、PVPを2.0質量部、及びPVdFを10.7質量部とした以外は、正極前駆体(組成a)と同様の方法で、正極前駆体(組成d)を得た。
活性炭1〜2のいずれか1つを76.5質量部、炭酸リチウムを6.3質量部、ケッチェンブラックを4.1質量部、PVPを2.1質量部、及びPVdFを11.0質量部とした以外は、正極前駆体(組成a)と同様の方法で、正極前駆体(組成e)を得た。
活性炭1〜2のいずれか1つを43.1質量部、炭酸リチウムを47.2質量部、ケッチェンブラックを2.3質量部、PVPを1.2質量部、及びPVdFを6.2質量部とした以外は、正極前駆体(組成a)と同様の方法で、正極前駆体(組成f)を得た。
活性炭1〜2のいずれか1つを78.5質量部、炭酸リチウムを3.9質量部、ケッチェンブラックを4.2質量部、PVPを2.1質量部、及びPVdFを11.3質量部とした以外は、正極前駆体(組成a)と同様の方法で、正極前駆体(組成g)を得た。
活性炭1〜2のいずれか1つを30.8質量部、炭酸リチウムを62.3質量部、ケッチェンブラックを1.7質量部、PVPを0.8質量部、及びPVdFを4.4質量部とした以外は、正極前駆体(組成a)と同様の方法で、正極前駆体(組成h)を得た。
《実施例1》
<正極前駆体の製造>
活性炭2を用い、上記の組成aにて、両面正極前駆体1及び片面正極前駆体1を得た。得られた両面及び片面正極前駆体1の正極活物質層の厚みを小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、両面及び片面正極前駆体1の任意の10か所で測定した厚みの平均値から、アルミニウム箔の厚みを引いて求めた。その結果、両面及び片面正極前駆体1の正極活物質層の厚みは、片面あたり60μmであった。
上記両面正極前駆体1を10cm×5cmの大きさに切断して試料1とし、重量M0を測定した。試料1を31.0gの蒸留水に含浸させ、25℃環境下3日間経過するまで維持することで、試料1中の炭酸リチウムを蒸留水中に溶出させた。試料1を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。この時の重量M1を測定した。スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の重量M2を測定した。以上のM0、M1及びM2から上記式(3)に従いXを算出した。得られた結果を表1に示す。
[試料の調製]
両面正極前駆体1から1cm×1cmの小片を切り出し、10Paの真空中にてスパッタリングにより表面に金をコーティングした。
上記作製した試料について、大気暴露下で正極前駆体表面のSEM、及びEDXを測定した。測定条件を以下に記す。
(SEM−EDX測定条件)
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE−SEM S−4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C,O,F
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整した。
(SEM−EDXの解析)
上記測定した表面SEM及びEDXから得られた画像を、画像解析ソフト(ImageJ)を用いて上述した方法で画像解析することでA1及びA2を算出した。その結果を表1に示す。
両面正極前駆体1から1cm×1cmの小片を切り出し、日本電子製のSM−09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて両面正極前駆体1の面方向に垂直な断面を作製した。上述の方法により断面SEM及びEDXを測定した。
BET比表面積が3.1m2/g、平均粒子径が4.8μmの市販の人造黒鉛150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)15gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置した。窒素雰囲気下、1000℃まで8時間かけて昇温し、同温度で4時間保持することにより、両者を熱反応させ、複合炭素材料1を得た。続いて自然冷却により60℃まで冷却した後、複合炭素材料1を炉から取り出した。
複合炭素材料1を80質量部、アセチレンブラックを8質量部、及びPVdF(ポリフッ化ビニリデン)を12質量部、並びにNMP(N−メチルピロリドン)を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,798mPa・s、TI値は2.7であった。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚み10μmの電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極1を得た。得られた負極1を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極1の負極活物質層の厚みを小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極1の任意の10か所で測定した厚みの平均値から、銅箔の厚みを引いて求めた。その結果、負極1の負極活物質層の厚みは、片面あたり30μmであった。
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(EMC)=33:67(体積比)の混合溶媒を用い、得られる非水系電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるようにそれぞれの電解質塩を混合溶媒中に溶解して非水系電解液を得た。
[蓄電素子の組立、乾燥]
得られた両面正極前駆体1、両面負極1、及び片面正極前駆体1を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体1を用い、更に両面負極1を21枚と両面正極前駆体1を20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。負極と正極前駆体とに、それぞれ負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体を、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。乾燥した電極積層体を露点−45℃のドライ環境下にて、アルミラミネート包材から構成される外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入して、プレドープ処理前の非水系ハイブリッドキャパシタを形成した。続いて、減圧チャンバーの中に上記非水系ハイブリッドキャパシタを入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返したのち、蓄電素子を15分間静置した。常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した。(常圧から、それぞれ−95、−96、−97、−81、−97、−97、及び−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
得られた非水系ハイブリッドキャパシタに対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値0.5Aで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を2時間継続する手法により初期充電を行い、負極にプレドープを行った。
プレドープ後の非水系ハイブリッドキャパシタを25℃環境下、0.5Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電流放電を1時間行うことにより電圧を3.0Vに調整した。続いて、非水系ハイブリッドキャパシタを60℃の恒温槽に12時間保管した。
温度25℃、露点−40℃のドライエアー環境下で、エージング後の非水系ハイブリッドキャパシタのアルミラミネート包材の一部を開封した。続いて、減圧チャンバーの中に上記非水系ハイブリッドキャパシタを入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。減圧シール機に非水系ハイブリッドキャパシタを入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
[静電容量、Ra・Fの測定]
得られた非水系ハイブリッドキャパシタについて、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、上述した方法により、静電容量Fと25℃における内部抵抗Raを算出し、Ra・Fとエネルギー密度E/Vとを得た。得られた結果を表1に示す。
正極前駆体の正極活物質、アルカリ金属化合物の種類、配合比及びその平均粒子径、組成、予備混合の有無を、それぞれ表1に示すとおりとした他は実施例1と同様にして実施例2〜27と比較例1〜8の正極前駆体及び非水系ハイブリッドキャパシタをそれぞれ作製し、各種の評価を行った。得られた評価結果を表1に示す。
<正極前駆体(組成i)の製造>
活性炭2を87.5質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N−メチルピロリドン)を混合し、その混合物をPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17m/sの条件で分散して塗工液を得た。上記塗工液を東レエンジニアリング社製のダイコーターを用いて厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体(組成i)を得た。得られた正極前駆体を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。得られた正極前駆体(組成i)について、実施例1と同様にして評価を行った。その結果を表1に示す。
得られた正極前駆体(組成i)と負極活物質単位質量当たり211mAh/gに相当する金属リチウム箔を負極1の負極活物質層表面に貼り付けた負極を用いた他は実施例1と同様にして非水系ハイブリッドキャパシタの組立及び注液、含浸、封止を実施した。
《比較例10》
正極活物質を活性炭1とした他は比較例9と同様にして比較例10の正極前駆体及び非水系ハイブリッドキャパシタを作製し、各種の評価を行った。その結果を表1に示す。
Claims (9)
- 正極活物質以外のアルカリ金属化合物と、正極集電体と、前記正極集電体の片面又は両面に正極活物質層とを有し、前記正極活物質層は、炭素材料を含む正極活物質を含有する、正極前駆体であって、
前記正極集電体を除く前記正極前駆体の質量を基準として、前記アルカリ金属化合物の重量比をX質量%とするとき、5≦X≦50であり、
前記正極前駆体表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対する炭素マッピングの面積重複率をA1%とするとき、30≦A1≦90である、正極前駆体。 - 前記正極前駆体表面のSEM−EDXにより得られる元素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングに対するフッ素マッピングの面積重複率をA2%とするとき、1≦A2≦50である、請求項1に記載の正極前駆体。
- BIB加工した前記正極前駆体断面のSEM−EDXにより得られる酸素マッピングにおいて、明るさの平均値を基準に二値化した酸素マッピングの面積をA3%とするとき、5≦A3≦60であり、かつ0.5≦A3/X≦2.0である、請求項1又は2に記載の正極前駆体。
- 前記アルカリ金属化合物が、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムからなる群から選択される少なくとも1種である、請求項1〜3のいずれか1項に記載の正極前駆体。
- 前記アルカリ金属化合物は、前記アルカリ金属化合物の総質量を基準として10質量%以上の炭酸リチウムを含む、請求項1〜4のいずれか1項に記載の正極前駆体。
- 前記アルカリ金属化合物の平均粒子径が、0.1μm以上10μm以下である、請求項1〜5のいずれか1項に記載の正極前駆体。
- 前記正極活物質は、前記炭素材料として活性炭を含有する、請求項1〜6のいずれか1項に記載の正極前駆体。
- 前記活性炭は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつBET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す、請求項7に記載の正極前駆体。
- 前記活性炭は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5を満たし、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.8<V2≦3.0を満たし、かつBET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す、請求項7に記載の正極前駆体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016192438A JP6786334B2 (ja) | 2016-09-30 | 2016-09-30 | 正極前駆体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016192438A JP6786334B2 (ja) | 2016-09-30 | 2016-09-30 | 正極前駆体 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018056402A true JP2018056402A (ja) | 2018-04-05 |
JP2018056402A5 JP2018056402A5 (ja) | 2019-09-05 |
JP6786334B2 JP6786334B2 (ja) | 2020-11-18 |
Family
ID=61836037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016192438A Active JP6786334B2 (ja) | 2016-09-30 | 2016-09-30 | 正極前駆体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6786334B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020013875A (ja) * | 2018-07-18 | 2020-01-23 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261516A (ja) * | 2005-03-18 | 2006-09-28 | Honda Motor Co Ltd | 電気二重層キャパシタ |
JP2007266064A (ja) * | 2006-03-27 | 2007-10-11 | Honda Motor Co Ltd | 電気二重層キャパシタ |
JP2008177263A (ja) * | 2007-01-17 | 2008-07-31 | Sanyo Electric Co Ltd | 活性炭電極及びその製造方法並びに電気二重層キャパシタ及びハイブリッドキャパシタ |
JP2016012620A (ja) * | 2014-06-27 | 2016-01-21 | 株式会社豊田自動織機 | プリドープ剤、リチウムイオンキャパシタ用正極、並びにリチウムイオンキャパシタ及びその製造方法 |
JP2016173985A (ja) * | 2015-03-17 | 2016-09-29 | 株式会社リコー | 非水電解液蓄電素子 |
-
2016
- 2016-09-30 JP JP2016192438A patent/JP6786334B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261516A (ja) * | 2005-03-18 | 2006-09-28 | Honda Motor Co Ltd | 電気二重層キャパシタ |
JP2007266064A (ja) * | 2006-03-27 | 2007-10-11 | Honda Motor Co Ltd | 電気二重層キャパシタ |
JP2008177263A (ja) * | 2007-01-17 | 2008-07-31 | Sanyo Electric Co Ltd | 活性炭電極及びその製造方法並びに電気二重層キャパシタ及びハイブリッドキャパシタ |
JP2016012620A (ja) * | 2014-06-27 | 2016-01-21 | 株式会社豊田自動織機 | プリドープ剤、リチウムイオンキャパシタ用正極、並びにリチウムイオンキャパシタ及びその製造方法 |
JP2016173985A (ja) * | 2015-03-17 | 2016-09-29 | 株式会社リコー | 非水電解液蓄電素子 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020013875A (ja) * | 2018-07-18 | 2020-01-23 | 旭化成株式会社 | 非水系リチウム蓄電素子 |
Also Published As
Publication number | Publication date |
---|---|
JP6786334B2 (ja) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6227837B1 (ja) | 非水系リチウム型蓄電素子 | |
WO2017126697A1 (ja) | 非水系リチウム型蓄電素子 | |
JP6851928B2 (ja) | 正極スラリー | |
KR102320298B1 (ko) | 정극 도공액, 정극 전구체, 및 비수계 리튬 축전 소자 | |
JP2018029200A (ja) | 正極前駆体 | |
WO2017126690A1 (ja) | 非水系リチウム型蓄電素子 | |
JP6786335B2 (ja) | 非水系リチウム蓄電素子 | |
JP6914015B2 (ja) | 非水系アルカリ金属型蓄電素子 | |
JP6912337B2 (ja) | 非水系リチウム蓄電素子 | |
JP2020013875A (ja) | 非水系リチウム蓄電素子 | |
JP6786334B2 (ja) | 正極前駆体 | |
JP2018056428A (ja) | 非水系リチウム型蓄電素子用の負極 | |
JP2018056425A (ja) | 非水系リチウム型蓄電素子 | |
JP6698493B2 (ja) | 非水系リチウム蓄電素子 | |
JP6815148B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6829572B2 (ja) | 捲回式非水系リチウム型蓄電素子 | |
JP6754260B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6754656B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018056443A (ja) | 正極前駆体 | |
JP2020013867A (ja) | 正極前駆体 | |
JP2018056434A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056429A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056409A (ja) | 非水系リチウム型蓄電素子 | |
JP6754655B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018056430A (ja) | 非水系リチウム型蓄電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190726 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201028 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6786334 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |