JP2018054780A - 光源装置及びプロジェクター - Google Patents

光源装置及びプロジェクター Download PDF

Info

Publication number
JP2018054780A
JP2018054780A JP2016189247A JP2016189247A JP2018054780A JP 2018054780 A JP2018054780 A JP 2018054780A JP 2016189247 A JP2016189247 A JP 2016189247A JP 2016189247 A JP2016189247 A JP 2016189247A JP 2018054780 A JP2018054780 A JP 2018054780A
Authority
JP
Japan
Prior art keywords
light
incident
condensing
optical path
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016189247A
Other languages
English (en)
Inventor
航 安松
Ko Yasumatsu
航 安松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016189247A priority Critical patent/JP2018054780A/ja
Publication of JP2018054780A publication Critical patent/JP2018054780A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】光の利用効率を向上できる光源装置及びプロジェクターを提供すること。
【解決手段】光源装置は、固体光源を含む光出射部と、光出射部から入射される光にそれぞれ含まれる第1光及び第2光を分離する光分離素子と、光分離素子にて分離された第1光が入射される第1入射部と、光分離素子にて分離された第2光が入射される第2入射部と、光分離素子と第1入射部との間の第1光の光路に配置され、入射される第1光を集光して第1入射部に入射させる第1集光素子と、光分離素子と第2入射部との間の第2光の光路に配置され、入射される第2光を集光して第2入射部に入射させる第2集光素子と、第1光の光路、及び、第2光の光路のうち、光路長が長い第1光の光路において、第1集光素子より光分離素子側に配置される集光レンズと、を備える。
【選択図】図2

Description

本発明は、光源装置及びプロジェクターに関する。
従来、光源装置と、当該光源装置から出射された光を変調して画像情報に応じた画像を形成する光変調装置と、当該光変調装置によって形成された画像をスクリーン等の被投射面上に拡大投射する投射光学装置と、を備えたプロジェクターが知られている。このようなプロジェクターとして、青色レーザー等の励起光源と、励起光源から出射される青色光である励起光により励起されて蛍光(所定波長帯域の光)を生じる蛍光部材と、を有する光源装置を備えたプロジェクターが知られている(例えば、特許文献1参照)。
この特許文献1に記載の光源装置は、それぞれ上記した励起光源及び蛍光部材の他、偏光ビームスプリッターと、1/4波長板と、集光光学系と、を備える。そして、励起光源から出射されたs偏光の励起光は、偏光ビームスプリッターにて反射され、1/4波長板及び集光光学系を介して蛍光部材の蛍光体層に入射される。この蛍光体層は、励起光の一部を当該励起光とは波長帯が異なる蛍光に波長変換する。蛍光部材の反射膜は、蛍光体層から入射される蛍光と、蛍光に波長変換されなかった励起光とを、蛍光体層側に反射させる。これら蛍光及び励起光が集光光学系を介して1/4波長板を再度通過する過程にて、当該励起光は、p偏光に変換される。この偏光ビームスプリッターは、s偏光を反射させ、p偏光を透過させるとともに、蛍光を偏光方向に関係なく透過させる特性を有する。このため、p偏光に変換された励起光と蛍光とは、偏光ビームスプリッターを通過して、光学エンジン部に白色光として入射される。
特開2012−4009号公報
ところで、蛍光は、蛍光体層における励起光の照射位置から放射状に出射されるが、上記特許文献1に記載の光源装置では、蛍光に波長変換されなかった励起光は、反射膜によって反射されるだけである。このため、蛍光部材から出射される蛍光及び励起光のそれぞれの光束径が異なってしまい、当該光源装置から出射される光による照度むらが生じる他、投射される画像に色むらが生じる可能性がある。
これに対し、励起光源から出射された励起光を分離し、一方の励起光を蛍光体層に入射させて蛍光を生じさせるとともに、他方の励起光を拡散層に入射させて当該蛍光と同様に拡散させた拡散光を生じさせ、これら蛍光及び拡散光を合成して出射する構成が考えられる。
しかしながら、励起光源に使用されている固体光源の実装精度がばらつく等して、当該励起光源から励起光が外側に広がる光として出射されると、上記一方の励起光及び上記他方の励起光のそれぞれの光束径は次第に大きくなり、これら励起光が蛍光体層及び拡散層に適切に入射されづらくなる。特に、当該一方の励起光が蛍光体層に入射される光路の光路長と、当該他方の励起光が拡散層に入射される光路の光路長とが異なる場合には、光路長が長い方の励起光の光束径は、光路長が短い方の励起光の光束径より大きくなりやすく、蛍光体層又は拡散層に一層入射されづらくなるという問題がある。
本発明は、上記課題の少なくとも一部を解決することを目的としたものであり、光の利用効率を向上させることができる光源装置及びプロジェクターを提供することを目的の1つとする。
本発明の第1態様に係る光源装置は、固体光源を含む光出射部と、前記光出射部から入射される光にそれぞれ含まれる第1光及び第2光を分離する光分離素子と、前記光分離素子にて分離された前記第1光が入射される第1入射部と、前記光分離素子にて分離された前記第2光が入射される第2入射部と、前記光分離素子と前記第1入射部との間の前記第1光の光路に配置され、入射される前記第1光を集光して前記第1入射部に入射させる第1集光素子と、前記光分離素子と前記第2入射部との間の前記第2光の光路に配置され、入射される前記第2光を集光して前記第2入射部に入射させる第2集光素子と、前記第1光の光路、及び、前記第2光の光路のうち、光路長が長い前記第1光の光路において、前記第1集光素子より前記光分離素子側に配置される集光レンズと、を備えることを特徴とする。
なお、第1集光素子及び第2集光素子としては、例えば、少なくとも1枚のピックアップレンズによってそれぞれ構成できる。
上記第1態様によれば、光分離素子と第1入射部との間の第1光の光路は、光分離素子と第2入射部との間の第2光の光路より長い。そして、当該第1光の光路には、入射される第1光を第1入射部に入射させる第1集光素子より光分離素子側の位置に、集光レンズが配置されている。これによれば、光路長が長いことによって第2光より広がりやすい第1光を、上記集光レンズによって集光して第1集光素子に入射させることができる。このため、第1光の光束径が広がることを抑制できるので、第1集光素子を介して当該第1光を第1入射部に適切に入射させやすくすることができる。従って、固体光源の実装精度が低い場合でも、第1集光素子及び第2集光素子の他、上記集光レンズによって、第1光及び第2光を第1入射部及び第2入射部に適切に入射させることができる。これにより、当該固体光源から出射された光の利用効率を向上させることができる。
一方、上記のように第1光の光束径が広がる場合でも、第1集光素子を大きくすれば、当該第1集光素子が第1光の略全てを集光して第1入射部に入射させることは可能である。例えば、第1集光素子が複数のレンズによって構成されている場合、最も光分離素子側に位置するレンズの有効径を、想定される第1光の光束径(広がった場合の光束径)より大きくすれば、第1光の略全てを当該レンズに入射させることができ、ひいては、当該第1光の略全てを第1入射部に入射させることは可能である。
しかしながら、この場合、第1集光素子、ひいては、光源装置が大型となる。この他、有効径を大きくしながら焦点距離を維持することは難しいことから、第1集光素子の焦点距離が長くなりやすくなり、第1光の光路も長くなりやすいことから、この点においても光源装置が大型となる。
これに対し、上記集光レンズによって第1光の光束径が広がることを抑制できるので、上記第1集光素子を大きくする必要がない。従って、比較的小さい第1集光素子を採用でき、光源装置の小型化を図ることができる。
本発明の第2態様に係る光源装置は、固体光源を含む光出射部と、前記光出射部から入射される光にそれぞれ含まれる第1光及び第2光を分離する光分離素子と、前記光分離素子にて分離された前記第1光が入射される第1入射部と、前記光分離素子にて分離された前記第2光が入射される第2入射部と、前記光分離素子にて分離された前記第1光を前記第1入射部に導く反射部材と、前記光分離素子と前記反射部材との間に配置される集光レンズと、を備え、前記光分離素子と前記第1入射部との間の前記第1光の光路は、前記光分離素子と前記第2入射部との間の前記第2光の光路より長いことを特徴とする。
上記第2態様によれば、光分離素子と第2入射部との間の第2光の光路より長い、光分離素子と第1入射部との間の第1光の光路において、当該光分離素子と反射部材との間には、集光レンズが配置されている。これによれば、上記第1態様に係る光源装置と同様に、光路長が長いことによって第2光より広がりやすい第1光を、上記集光レンズによって集光して第1入射部に入射させやすくすることができる。従って、固体光源の実装精度が低い場合でも、上記集光レンズによって、第1光を第1入射部に適切に入射させることができ、当該固体光源から出射された光の利用効率を向上させることができる。
また、上記第1態様に係る光源装置と同様に、上記集光レンズによって第1光の光束径が広がることを抑制できるので、上記第1集光素子を大きくする必要がない。従って、比較的小さい第1集光素子を採用でき、光源装置の小型化を図ることができる。
上記第2態様では、前記反射部材と前記第1入射部との間の前記第1光の光路に配置され、入射される前記第1光を集光して前記第1入射部に入射させる第1集光素子と、前記光分離素子と前記第2入射部との間の前記第2光の光路に配置され、入射される前記第2光を集光して前記第2入射部に入射させる第2集光素子と、を備えることが好ましい。
なお、第1集光素子及び第2集光素子としては、上記のように、例えば、少なくとも1枚のピックアップレンズによってそれぞれ構成できる。
このような構成によれば、第1集光素子によって、反射部材にて反射された第1光を第1入射部に入射させやすくすることができる他、第2集光素子によって、光分離素子にて分離された第2光を第2入射部に入射させやすくすることができる。従って、第1光及び第2光の利用効率を一層向上させることができる。
上記第1及び第2態様では、前記第1入射部は、入射された前記第1光に基づく光を反射させる特性を有し、前記第2入射部は、入射された前記第2光に基づく光を反射させる特性を有し、前記第1入射部にて反射され、前記第1集光素子及び前記集光レンズを介して出射される光は、前記光分離素子にて分離されて前記集光レンズに入射される前記第1光と略平行であることが好ましい。
このような構成によれば、例えば、光分離素子が第1入射部を介して入射される光と、第2入射部を介して入射される光とを合成する構成である場合に、光分離素子から集光レンズに入射される第1光と、第1入射部を介して集光レンズから出射される光とが略平行であることにより、当該光の光束径と、第2入射部を介して光分離素子に入射される光の光束径とを揃えやすくすることができる。従って、光源装置が、照度むらが発生しにくい光を出射できる。
上記第1及び第2態様では、前記光分離素子と前記第1入射部との間の前記第1光の光路に配置され、入射される光を円偏光に変換する位相差素子を有し、前記第1入射部は、入射される前記第1光を拡散させた拡散光を出射する光拡散部であり、前記第2入射部は、入射される前記第2光の波長を変換させた変換光を出射する波長変換部であり、前記光出射部から出射される光のうち、前記第1光は、p偏光であり、前記第2光は、s偏光であり、前記光分離素子は、入射されるp偏光を透過させ、入射されるs偏光を反射させ、前記変換光を透過させる特性を有することが好ましい。
このような第1光としては、青色光を例示でき、変換光としては、緑色光及び赤色光を含む光を例示できる。
このような構成によれば、光分離素子にて、入射される光から第1光及び第2光を確実に分離できる他、第1入射部にて拡散されて光分離素子に入射される拡散光と、第2入射部を介して光分離素子に入射される変換光とを確実に合成して出射できる。
ここで、波長変換層が蛍光体を含む場合には、上記のように、変換光としての蛍光は放射状に拡散されるが、第1入射部が光拡散部であることから、当該蛍光と同様に、第1光を拡散させることができる。このため、光分離素子に入射される際の蛍光の光束径と、拡散光の光束径とを揃えやすくすることができる。従って、第1光が青色光であり、当該蛍光が緑色光及び赤色光を含む光である場合に、照度むら及び色むらの少ない白色光を光源装置が出射できる。
また、s偏光を透過させ、p偏光を反射させる光分離素子では、このような機能を実現する層数が多くなり、光の損失が多くなる。これに対し、p偏光を透過させ、s偏光を反射させる光分離素子とすることにより、層数を少なくすることができ、光の損失の発生を抑制できる。
上記第1及び第2態様では、前記集光レンズ及び前記第1集光素子と、前記第2集光素子とは、前記光分離素子にて反射される前記拡散光の光束径と、前記光分離素子を透過する前記変換光の光束径とを略一致させることが好ましい。
このような構成によれば、光分離素子にて合成されて出射される拡散光及び変換光のそれぞれの光束径が略一致するので、拡散光が青色光であり、変換光が緑色光及び赤色光を含む光である場合に、照度むら及び色むらの少ない白色光を確実に出射できる。
上記第1及び第2態様では、前記第1入射部及び前記第2入射部は、同一基板上に位置することが好ましい。
このような構成によれば、第1入射部と第2入射部とをそれぞれ別部材によって構成する場合に比べて、部品点数を削減できる。特に、第1入射部及び第2入射部のそれぞれが位置する基板を回転させる構成では、これら第1入射部及び第2入射部のそれぞれを個別に回転させる回転装置を設ける必要がない。このため、当該構成では、部品点数の削減を確実に図ることができる他、光源装置の大型化を抑制できる。
更に、このように同一基板上に第1入射部及び第2入射部が位置する場合には、1つの光出射部から出射されて第1入射部に入射される第1光の光路と、当該1つの光出射部から出射されて第2入射部に入射される第2光の光路とで光路長が異なりやすくなり、上記問題が発生しやすくなる。これに対し、第2光の光路より光路長が長い第1光の光路に集光レンズが設けられることによって、第1入射部に第1光を入射させやすくすることができるので、固体光源から出射された光の利用効率を向上させることができる。
上記第1及び第2態様では、前記光出射部は、複数の前記固体光源と、複数の前記固体光源から出射された光を平行化するコリメーター光学素子と、前記コリメーター光学素子から出射された光の径を調整するアフォーカル光学素子と、前記アフォーカル光学素子から出射された光の照度を均一化するホモジナイザー光学素子と、を備えることが好ましい。
このような構成によれば、ホモジナイザー光学素子によって照度が均一化された第1光及び第2光を、第1入射部及び第2入射部に入射させることができる。
ここで、アフォーカル光学素子の光軸に対して平行な光が、コリメーター光学素子から入射される場合には、当該アフォーカル光学素子によって、複数の固体光源から出射された光の光束径を縮径できる。従って、光源装置の小型化を図ることができる。
しかしながら、複数の固体光源に実装精度のばらつき等が生じると、コリメーター光学素子からアフォーカル光学素子に入射される光が、当該アフォーカル光学素子の光軸に対して平行な光でなくなる可能性がある。この場合、アフォーカル光学素子による光束径の縮径が十分でなくなる他、当該アフォーカル光学素子から出射される光の中心軸が、光源装置に予め設定された光軸(照明光軸)に対して傾斜しやすくなる。このような各固体光源の実装精度のばらつきの影響は、アフォーカル光学素子での縮径の倍率が高いほど大きくなる。このため、第2光の光路より光路長が長い第1光の光路においては、第1光を第1集光素子に入射させづらくなるという問題が顕著となる。
これに対し、上記のように、当該第1光の光路に設けられた集光レンズによって、ホモジナイザー光学素子及び光分離素子を介してアフォーカル光学素子から入射される第1光を集光できるので、上記実装精度のばらつき等が生じても、第1入射部に当該第1光を入射させやすくすることができる。従って、固体光源から出射された光の利用効率を向上させることができる他、コリメーター光学素子及びアフォーカル光学素子が無い場合に比べて光源装置を小型化できる。
本発明の第3態様に係るプロジェクターは、上記光源装置と、前記光源装置から出射された光を変調する光変調装置と、前記光変調装置によって変調された光を投射する投射光学装置と、を備えることを特徴とする。
上記第3態様によれば、それぞれ上記した第1及び第2態様に係る光源装置と同様の効果を奏することができ、これにより、輝度の高い画像を形成及び投射できる。
本発明の第1実施形態に係るプロジェクターの構成を示す模式図。 上記第1実施形態における光源装置の構成を示す模式図。 上記第1実施形態における波長変換素子を励起光の入射側から見た図。 本発明の第2実施形態に係るプロジェクターが備える光源装置の構成を示す模式図。
[第1実施形態]
以下、本発明の第1実施形態について、図面に基づいて説明する。
[プロジェクターの概略構成]
図1は、本実施形態に係るプロジェクター1の構成を示す模式図である。なお、以下の各図では、各構成を見やすくするために、寸法の縮尺を異ならせて示す場合がある。
本実施形態に係るプロジェクター1は、内部に設けられた光源装置4から出射された光を変調して画像情報に応じた画像を形成し、当該画像を被投射面であるスクリーンSC上に拡大投射する表示装置である。このプロジェクター1は、図1に示すように、外装筐体2と、当該外装筐体2に収容される画像投射装置3と、を備える。この他、図示を省略するが、プロジェクター1は、当該プロジェクター1の動作を制御する制御装置、当該プロジェクター1を構成する電子部品に電力を供給する電源装置、及び、冷却対象を冷却する冷却装置を備える。
そして、プロジェクター1は、光源装置4(図2参照)において光分離素子42によって分離された励起光のうち、蛍光に変換される励起光の光路より光路長が長い、青色光として利用される励起光の光路に、集光レンズ43が設けられ、これにより、当該青色光として利用される励起光を光拡散部483に入射させやすくしている点を特徴の1つとしている。
以下、プロジェクター1の各構成について説明する。
[画像投射装置の構成]
画像投射装置3は、上記制御装置による制御の下、上記画像情報に応じた画像を形成及び投射する。この画像投射装置3は、設定された照明光軸上にそれぞれ配置された光源装置4、均一化装置5、色分離装置6、電気光学装置7及び投射光学装置8を備える。
これらのうち、光源装置4は、白色光である照明光WLを均一化装置5に向けて出射する。この光源装置4の構成については、後に詳述する。
[均一化装置の構成]
均一化装置5は、光源装置4から入射される照明光WLの中心軸に対する直交面(光軸直交面)の照度を均一化するものである。具体的に、均一化装置5は、後述する各光変調装置72の被照明領域である画像形成領域(変調領域)における照度分布を均一化する。この均一化装置5は、第1レンズアレイ51、第2レンズアレイ52、偏光変換素子53及び重畳レンズ54を備える。
第1レンズアレイ51は、入射される照明光WLを複数の部分光束に分割する。
第2レンズアレイ52は、第1レンズアレイ51によって分割された複数の部分光束を、重畳レンズ54とともに各光変調装置72の上記画像形成領域に重畳させる。
偏光変換素子53は、第2レンズアレイ52と重畳レンズ54との間に配置され、入射される複数の部分光束の偏光方向を揃える機能を有する。
[色分離装置の構成]
色分離装置6は、均一化装置5から入射される照明光WLを赤色光LR、緑色光LG及び青色光LBに分離する。この色分離装置6は、ダイクロイックミラー61,62、反射ミラー63,64,65及びリレーレンズ66,67を備える。
ダイクロイックミラー61は、均一化装置5から入射される照明光WLを赤色光LRと、緑色光LG及び青色光LBを含む光とに分離する。具体的に、ダイクロイックミラー61は、赤色光LRを透過させ、緑色光LG及び青色光LBを含む光を反射させる。このダイクロイックミラー61を透過した赤色光LRは、反射ミラー63によって光変調装置72Rに向けて反射される。
ダイクロイックミラー62は、ダイクロイックミラー61から入射される光を緑色光LGと青色光LBとに分離する。具体的に、ダイクロイックミラー62は、緑色光LGを光変調装置72Gに向けて反射させ、青色光LBを透過させる。
反射ミラー64,65は、青色光LBの光路に配置され、分離された青色光LBを光変調装置72Bに導く。
リレーレンズ66,67は、青色光LBの光路に配置される。これらリレーレンズ66,67は、青色光LBの光路長が赤色光LRや緑色光LGの光路長よりも長いことに起因する青色光LBの損失を補償する。
[電気光学装置の構成]
電気光学装置7は、それぞれ入射される各色光LB,LG,LRを色光毎に変調し、変調された各色光LB,LG,LRを合成して、投射光学装置8によって投射される画像を形成する。この電気光学装置7は、それぞれ3つのフィールドレンズ71及び光変調装置72と、1つの色合成装置73と、を備える。
フィールドレンズ71(赤、緑及び青用のフィールドレンズを、それぞれ71R,71G,71Bとする)は、それぞれ入射される赤色光LR、緑色光LG及び青色光LBを平行化する。
光変調装置72(赤、緑及び青用の光変調装置を、それぞれ72R,72G,72Bとする)は、それぞれ入射される上記色光LR,LG,LBを変調して、画像情報に応じた画像光を形成する。これら光変調装置72は、入射される色光を変調する液晶パネルと、当該液晶パネルの入射側及び出射側に配置される一対の偏光板と、を備えて構成される。
色合成装置73は、各光変調装置72R,72G,72Bから入射される画像光を合成し、合成された画像光を投射光学装置8に向けて出射する。この色合成装置73は、例えばクロスダイクロイックプリズムにより構成できるが、複数のダイクロイックミラーによって構成してもよい。
[投射光学装置の構成]
投射光学装置8は、色合成装置73にて合成された画像光を被投射面としてのスクリーンSCに投射する。このような投射光学装置8としては、図示を省略するが、鏡筒内に複数のレンズが配置された組レンズを採用できる。
このような画像投射装置3により、スクリーンSCに拡大された画像が投射される。
[光源装置の構成]
図2は、光源装置4の構成を示す模式図である。
光源装置4は、上記のように、照明光WLを均一化装置5に向けて出射する。この光源装置4は、図2に示すように、光出射部41、光分離素子42、集光レンズ43、反射部材44、位相差素子45、第1集光素子46、第2集光素子47及び波長変換装置48を備える。
これらのうち、光出射部41、集光レンズ43及び反射部材44は、第1照明光軸Ax1上に配置されている。また、位相差素子45及び第1集光素子46は、第1照明光軸Ax1に直交する第2照明光軸Ax2上に配置されている。更に、第2集光素子47は、第1照明光軸Ax1に直交し、かつ、第2照明光軸Ax2と平行な第3照明光軸Ax3上に配置されている。そして、波長変換装置48を構成する光拡散部483の一部は、第2照明光軸Ax2上に位置し、同じく波長変換装置48を構成する波長変換部484の一部は、第3照明光軸Ax3上に位置している。なお、光分離素子42は、第1照明光軸Ax1と第3照明光軸Ax3との交差部分に配置される。
[光出射部の構成]
光出射部41は、光分離素子42に励起光BLを出射する。この光出射部41は、光源部411、アフォーカル光学素子412、ホモジナイザー光学素子413及び位相差素子414を備える。
[光源部の構成]
光源部411は、第1照明光軸Ax1に直交する面内にLD(Laser Diode)である固体光源SSがマトリクス状に複数配列されたアレイ光源4111と、コリメーター光学素子4112と、を備える。
複数の固体光源SSのそれぞれは、青色光である励起光BLを出射する。これら固体光源は、励起光BLとして、例えばピーク波長が460nmのレーザー光を出射する。なお、本実施形態では、各固体光源SSは、S偏光の励起光を出射する。
コリメーター光学素子4112は、各固体光源SSに応じた複数のコリメーターレンズCLを有し、当該各固体光源SSから出射された励起光BLを平行光に変換する。このようなコリメーター光学素子4112を通過した励起光BLは、アフォーカル光学素子412に入射される。
[アフォーカル光学素子の構成]
アフォーカル光学素子412は、光源部411から入射される励起光BLの光束径を調整する。具体的に、アフォーカル光学素子412は、当該励起光BLを集光して光束径を縮小(縮径)させ、更に平行化して出射する光学素子である。このアフォーカル光学素子412は、それぞれ凸レンズ及び凹レンズであるレンズ4121とレンズ4122とから構成されている。このようなアフォーカル光学素子412から出射された励起光BLは、ホモジナイザー光学素子413に入射される。
[ホモジナイザー光学素子の構成]
ホモジナイザー光学素子413は、励起光BLの強度分布を被照明領域において均一な状態(いわゆるトップハット分布)に変換する。このホモジナイザー光学素子413は、本実施形態では、第1マルチレンズ4131及び第2マルチレンズ4132とから構成されている。
第1マルチレンズ4131は、第1照明光軸Ax1に対する直交面内に、複数の第1レンズがマトリクス状に配列された構成を有する。そして、第1マルチレンズ4131は、当該複数の第1レンズによって入射される励起光を複数の部分光束(励起部分光束)に分割する。
第2マルチレンズ4132は、第1照明光軸Ax1に対する直交面内に、上記複数の第1レンズに応じた複数の第2レンズがマトリクス状に配列された構成を有する。そして、第2マルチレンズ4132は、第1マルチレンズ4131により分割された複数の励起部分光束を、第1集光素子46及び第2集光素子47とともに、それぞれ上記被照明領域である波長変換装置48の光拡散部483及び波長変換部484に重畳させる。
[位相差素子の構成]
位相差素子414は、1/2波長板である。この位相差素子414を通過することにより、ホモジナイザー光学素子413から入射されるs偏光の励起光BLは、一部がp偏光に変換され、s偏光の励起光BLsとp偏光の励起光BLpとが混在した励起光BLとなって出射される。このような位相差素子414を透過した励起光BLは、光分離素子42に入射される。
[光分離素子の構成]
光分離素子42は、第1照明光軸Ax1及び第3照明光軸Ax3に対して45°傾斜するように配置されている。この光分離素子42は、光出射部41(位相差素子414)から入射される励起光BLに含まれる励起光BLpと励起光BLsとを分離する特性を有する他、後述する波長変換装置48に励起光が入射されて生じる蛍光を、当該蛍光の偏光状態にかかわらず透過させる特性を有する。すなわち、光分離素子42は、所定波長領域の光についてはs偏光とp偏光とを分離するが、他の所定波長領域の光についてはs偏光及びp偏光のそれぞれを透過させる、波長選択性の偏光分離特性を有する。
このような光分離素子42により、位相差素子414から入射された励起光BLのうち、励起光BLpは、第1照明光軸Ax1に沿って集光レンズ43側に透過され、励起光BLsは、第3照明光軸Ax3に沿って第2集光素子47側に反射される。すなわち、光分離素子42は、励起光BLpを集光レンズ43(ひいては光拡散部483)に向けて出射し、励起光BLsを第2集光素子47(ひいては波長変換部484)に向けて出射する。
以下、光分離素子42によって分離される励起光のうち、光拡散部483に向かう励起光を第1励起光(本発明の第1光に相当)とし、波長変換部484に向かう励起光を第2励起光(本発明の第2光に相当)とする。
[集光レンズの構成]
集光レンズ43は、光分離素子42によって分離されて光拡散部483(第1入射部に相当)に入射される第1励起光の光路において、第1集光素子46より光分離素子42側に位置する。詳述すると、集光レンズ43は、当該第1励起光の光路において最も上流側に位置し、光拡散部483から光分離素子42に戻る第1励起光の光路において最も下流側に位置する。この集光レンズ43は、光分離素子42側に突出する平凸レンズであり、光分離素子42から入射される第1励起光(励起光BLp)を集光し、当該第1励起光の光束径を狭める。なお、本実施形態では、集光レンズ43は、入射される光束を集光して縮径する機能を有するとしたが、当該集光レンズ43の光軸(第1照明光軸Ax1と一致)に沿う平行光に変換する構成としてもよい。
[反射部材及び位相差素子の構成]
反射部材44は、集光レンズ43を通過した第1励起光を反射させ、第2照明光軸Ax2上に位置する位相差素子45に入射させる。この反射部材44は、平板状のミラーとして構成されている。
位相差素子45は、本発明の位相差素子であり、1/4波長板である。この位相差素子45は、入射されるp偏光の第1励起光である励起光BLpを、円偏光の励起光BLcに変換する。
[第1集光素子の構成]
第1集光素子46は、位相差素子45を通過した第1励起光(励起光BLc)を後述する波長変換装置48(光拡散部483)に集光する他、当該波長変換装置48にて反射されて入射される第1励起光を集光して、位相差素子45に再度入射させる。このような第1集光素子46は、本実施形態では、2つのレンズ461,462を有するピックアップレンズ群として構成されている。しかしながら、これに限らず、第1集光素子46は、1つ、或いは、3つ以上のピックアップレンズを有する構成であってもよい。
なお、第1励起光(励起光BLc)は、光拡散部483にて反射されることにより、当該光拡散部483に入射されるときの円偏光とは逆回りの円偏光となる。このため、位相差素子45を再度通過する過程にて、当該逆回りの円偏光である励起光BLcは、p偏光に対して偏光方向が90°回転されたs偏光の第1励起光(励起光BLf)に変換される。この励起光BLfは、上記反射部材44にて反射されて第1照明光軸Ax1に沿って、上記励起光BLpとは反対方向に進行し、上記集光レンズ43を介して光分離素子42に入射される。この光分離素子42は、上記偏光分離特性を有するので、第1励起光(励起光BLf)は、当該光分離素子42にて第3照明光軸Ax3に沿う方向に反射され、上記均一化装置5(第1レンズアレイ51)に青色光として入射される。
[第2集光素子の構成]
第2集光素子47は、上記のように、第3照明光軸Ax3上に位置する。この第2集光素子47は、光分離素子42にて分離された第2励起光(励起光BLs)を後述する波長変換装置48(波長変換部484)に集光する他、当該波長変換部484から出射された蛍光を集光して、光分離素子42に再度入射させる。このような第2集光素子47は、第1集光素子46と同様に、2つのレンズ471,472を有するピックアップレンズ群として構成されている。しかしながら、これに限らず、第2集光素子47は、1つ、或いは、3つ以上のレンズを有する構成であってもよい。
なお、波長変換部484から出射された蛍光は非偏光光であり、光分離素子42が上記波長選択性の偏光分離特性を有する。このことから、第2集光素子47から光分離素子42に入射された蛍光は、第3照明光軸Ax3に沿って光分離素子42を通過して、均一化装置5(第1レンズアレイ51)に向けて緑色光及び赤色光として出射される。これにより、青色光である上記第1励起光(励起光BLf)と併せて、白色の照明光WLが、均一化装置5に入射される。
[波長変換装置の構成]
波長変換装置48は、上記第2励起光(励起光BLs)を波長変換して蛍光を出射する他、上記第1励起光(励起光BLc)を拡散反射させる拡散反射装置としても機能する。すなわち、波長変換装置48は、入射された励起光に基づく光を、当該励起光の入射側に出射する反射型の波長変換装置である。このような波長変換装置48は、波長変換素子481及び回転装置487を備える。
これらのうち、回転装置487は、平板状に形成された波長変換素子481を回転させるモーター等により構成されている。
図3は、波長変換素子481を励起光(第1励起光及び第2励起光)の入射側から見た図である。
波長変換素子481は、図2及び図3に示すように、基板482と、当該基板482における励起光の入射面4821に位置する光拡散部483及び波長変換部484と、を有する。
基板482は、図3に示すように円板状に形成されており、光拡散部483及び波長変換部484を支持する他、これら光拡散部483及び波長変換部484にて生じた熱を放熱する放熱部材としても機能する。このため、基板482は、熱伝導率が高く、耐熱性に優れる材料によって形成されることが好ましい。このような材料としては、例えばアルミニウム等の金属が挙げられる。
光拡散部483は、本発明の第1入射部に相当し、上記入射面4821の中心側(内周側)に円形状に形成されている。この光拡散部483は、第1集光素子46から入射される第1励起光(励起光BLc)を拡散反射させて、所定の角度分布を有する拡散光(散乱光)を出射する。このような光拡散部483における外周側の一部は、上記第2照明光軸Ax2上に位置しており、当該一部に、上記第1励起光が入射される。この第1励起光の入射位置は、波長変換素子481が回転装置487によって回転されると変更され、これにより、常に同じ位置に当該第1励起光が入射されることが抑制される。
なお、光拡散部483としては、入射される第1励起光をランバート反射させる拡散反射層を採用できる。この種の光拡散部483を採用することにより、波長変換部484にて等方発光した蛍光YLと同等の角度分布を有する第1励起光が得られる。なお、光拡散部483の構造としては、光透過性材料の表面に凹凸を形成したものや、光透過性材料の屈折率と異なる屈折率を有する粒子を当該光透過性材料中に分散させたもの、等を採用できる。
波長変換部484は、本発明の第2入射部に相当し、上記入射面4821において光拡散部483より外周側に円環状に形成されている。この波長変換部484と上記光拡散部483とは、基板482の中央に位置する回転軸Rx(上記回転装置487による回転の回転軸)を中心とする同心円状に、所定間隔を隔てて配置されている。しかしながら、これに限らず、これら波長変換部484及び光拡散部483は、接触していてもよい。しかしながら、放熱性を確保する観点から、波長変換部484と光拡散部483とは離れていることが好ましい。
このような波長変換部484は、入射面4821上に積層された波長変換層485及び反射層486を有する。
波長変換層485は、入射される光の波長を変換する蛍光体を含んでおり、上記第2励起光を吸収して、当該第2励起光から波長が変換された変換光としての黄色の蛍光YLを拡散出射する。この蛍光体の材料は、出射される蛍光の波長に応じて設定されるが、当該材料は、1種でも、2種以上でもよい。
反射層486は、波長変換層485と入射面4821との間に位置しており、当該波長変換層485にて生成された蛍光のうち、反射層486側に進行する蛍光YLを波長変換層485側に反射させる。
このような円環状の波長変換部484の一部は、上記第3照明光軸Ax3上に位置しており、当該一部に、上記第2励起光が入射される。この第2励起光の入射位置は、波長変換素子481が回転装置487によって回転されると変更され、これにより、常に同じ位置に第2励起光が入射されて、波長変換層485に熱飽和が生じることが抑制される。
そして、波長変換部484によって生じた蛍光YLは、上記のように、第2集光素子47に入射され、光分離素子42を通過して、第3照明光軸Ax3上に位置する均一化装置5(第1レンズアレイ51)に入射される。
[集光レンズの機能]
上記したように、光分離素子42から第2集光素子47を介して波長変換装置48(波長変換部484)に至る第2励起光の光路は、光分離素子42から集光レンズ43、反射部材44及び第1集光素子46を介して波長変換装置48(光拡散部483)に至る第1励起光の光路より光路長が短い。換言すると、光分離素子42と光拡散部483との間の第1励起光の光路は、光分離素子42と波長変換部484との間の第2励起光の光路より光路長が長い。このため、アレイ光源4111を構成する固体光源SSの実装精度がばらつくと、当該アレイ光源4111から出射され、ひいては、光出射部41から出射される励起光が広がりやすくなる。このような場合、第1集光素子46及び第2集光素子47に、第1励起光及び第2励起光を適切に入射させづらくなる。この場合、光拡散部483及び波長変換部484に入射される光量が少なくなり、各固体光源SSから出射されて画像形成に用いられる光の利用効率が低下する。特に、第1励起光の光路は、第2励起光の光路より光路長が長いため、当該第1励起光の光束径が大きくなって、上記問題が生じやすくなる。
これに対し、第1励起光の光路上で、第1集光素子46より光分離素子42側に、上記集光レンズ43が配置されている。換言すると、当該集光レンズ43は、第1励起光の光路上で、光分離素子42と反射部材44との間に配置されている。これにより、第1励起光の広がりを抑制でき、当該第1励起光の光束径の拡大を抑制できるので、第1集光素子46を介して光拡散部483に第1励起光を入射させやすくすることができ、上記問題が生じることを抑制できる。
ここで、上記光源装置4と同様の構成を有するものの集光レンズ43がない光源装置について検討する。
このような光源装置において、第1集光素子46において光分離素子42にて分離された第1励起光が入射されるレンズ461の有効径を、想定される第1励起光の光束径(広がった場合の光束径)より大きくすれば、上記集光レンズ43が無い場合でも、レンズ461を含む第1集光素子46が、分離された第1励起光の略全てを集光して光拡散部483に入射させることは可能である。しかしながら、この場合、第1集光素子46、ひいては、光源装置が大型となる。この他、レンズの有効径を大きくしながら焦点距離を維持することは、設計上困難であることから、有効径が大きなレンズ461が採用されると、第1集光素子46の焦点距離が長くなりやすくなる。このため、第1励起光の光路も長くなりやすくなり、この点においても光源装置が大型となる。
これに対し、上記集光レンズ43によって第1励起光の光束径が広がることを抑制できるので、第1集光素子46を大きくする必要がない。従って、比較的小さい第1集光素子46を採用でき、光源装置4の小型化を図ることができる。
[集光レンズ、第1集光素子及び第2集光素子の特性]
ここで、光源装置4から均一化装置5に入射される青色光としての第1励起光(励起光BLf)の光束径と、黄色光である蛍光YLの光束径とが揃っていないと、これら第1励起光及び蛍光YLによって形成される照明光WLに照度むらが生じる他、当該照明光WLを用いて形成される画像光に色むらが発生する。
これに対し、集光レンズ43及び第1集光素子46と、第2集光素子47とは、光分離素子42を介して均一化装置5に向けてそれぞれ出射される第1励起光及び蛍光YLのそれぞれの光束径を揃える特性を有する。具体的に、集光レンズ43、第1集光素子46及び第2集光素子47は、上記光拡散部483にて拡散反射された第1励起光によって第1レンズアレイ51上に形成される光源像の大きさと、上記波長変換部484にて生じた蛍光YLによって第1レンズアレイ51上に形成される光源像の大きさとが揃うように設計されている。換言すると、集光レンズ43及び第1集光素子46の合成焦点距離と、第2集光素子47の合成焦点距離とが一致し、それぞれの合成焦点位置が第1レンズアレイ51上に位置するように設計されている。これにより、光源装置4から均一化装置5に入射される第1励起光及び蛍光YLのそれぞれの光束径を揃えることができ、上記問題の発生を抑制できる。
このような集光レンズ43、第1集光素子46及び第2集光素子47の特性は、光拡散部483及び波長変換部484が同一の基板482上に位置しない場合や、入射面4821からの光拡散部483の第1励起光の入射位置と、入射面4821からの波長変換部484の第2励起光の入射位置とが異なる場合でも同様である。
一方、第1励起光及び蛍光YLが、均一化装置5が配置される第3照明光軸Ax3に対して略平行な平行光でないと、第1レンズアレイ51以降の光学部品に、これら第1励起光及び蛍光YLが適切に入射されなくなり、上記光出射部41(光源部411)から出射されて画像形成に用いられる光の利用効率が低下する。
これに対し、集光レンズ43は、光分離素子42から入射される第1励起光(励起光BLp)に対して略平行に、第1集光素子46から入射されて光分離素子42に出射される第1励起光(励起光BLf)を出射する。すなわち、集光レンズ43は、第1励起光(励起光BLf)を第1励起光(励起光BLp)と略平行に出射する。また、第2集光素子47も同様に、光分離素子42から入射される第2励起光(励起光BLs)に対して略平行に、波長変換部484から入射されて光分離素子42に出射される蛍光YLを出射する。これにより、それぞれ第3照明光軸Ax3に対して略平行な第1励起光及び蛍光YLを第1レンズアレイ51に入射させることができ、上記問題の発生を抑制できる。
以上説明した本実施形態に係るプロジェクター1によれば、以下の効果がある。
光分離素子42と光拡散部483との間の第1励起光の光路は、光分離素子42と波長変換部484との間の第2励起光の光路より光路長が長い。そして、当該第1励起光の光路には、第1集光素子46より光分離素子42側の位置に、集光レンズ43が配置されている。換言すると、集光レンズ43は、第1励起光の光路において、光分離素子42と反射部材44との間に配置されている。これによれば、上記のように、外側に広がりやすい第1励起光を、集光レンズ43によって集光して第1集光素子46、ひいては、光拡散部483に入射させやすくすることができる。従って、アレイ光源4111における固体光源SSに実装精度のばらつき等が生じた場合でも、第1集光素子46及び第2集光素子47の他、上記集光レンズ43によって、第1励起光及び第2励起光を光拡散部483及び波長変換部484に適切に入射させることができる。よって、固体光源SSから出射されて画像形成に用いられる光の利用効率を向上させることができる。
また、上記のように、集光レンズ43によって第1励起光の光束径が広がることを抑制できるので、比較的小さい第1集光素子46を採用でき、光源装置4の小型化を図ることができる。
第1励起光の光路において、反射部材44と光拡散部483との間には、上記第1集光素子46が配置され、第2励起光の光路において、光分離素子42と波長変換部484との間には、上記第2集光素子47が配置されている。これによれば、各集光素子46,47によって、第1励起光及び第2励起光を光拡散部483及び波長変換部484に入射させやすくすることができる。従って、第1励起光及び第2励起光の利用効率を一層向上させることができる。
光拡散部483は、入射された第1励起光を拡散反射させ、波長変換部484は、入射された第2励起光を波長変換させた蛍光を当該第2励起光の入射側に反射させる。そして、光拡散部483にて反射されて、第1集光素子46及び集光レンズ43を介して出射される第1励起光(励起光BLf)は、光分離素子42にて分離されて集光レンズ43に入射される第1励起光(励起光BLp)と略平行である。これによれば、光分離素子42にて、第1励起光(励起光BLf)の光束径と、蛍光YLの光束径とを揃えやすくすることができる。従って、出射される光によって照度むらが生じることを抑制でき、ひいては、投射画像に色むらが生じることを抑制できる。
第1励起光の光路には、光分離素子42と光拡散部483との間に位相差素子45が設けられている。また、光出射部41から出射される励起光のうち、第1励起光は、p偏光の励起光BLpであり、第2励起光は、s偏光の励起光BLsである。そして、光分離素子42は、入射されるp偏光を透過させ、入射されるs偏光を反射させ、変換光としての蛍光YLを偏光状態にかかわらずに透過させる特性を有する。
これによれば、光分離素子42にて、入射される励起光から第1励起光及び第2励起光を確実に分離できる他、光拡散部483を介して光分離素子42に入射される第1励起光(拡散された第1励起光)と、波長変換部484を介して光分離素子42に入射される蛍光YLとを確実に合成して出射できる。
この他、光拡散部483によって、第1励起光を拡散させることができるので、光分離素子42に入射される蛍光YLの光束径と、第1励起光の光束径とを揃えやすくすることができる。従って、青色光である第1励起光と、黄色の蛍光YL(緑色光及び赤色光を含む光)とを含み、かつ、照度むら及び色むらの少ない白色光を光源装置4が出射できる。そして、これにより、照度むら及び色むらの少ない投射画像を投射できる。
また、s偏光を透過させ、p偏光を反射させる光分離素子では、このような機能を実現する層数が多くなり、光の損失が多くなる。これに対し、p偏光を透過させ、s偏光を反射させる光分離素子42を採用することにより、当該光分離素子42における層数を少なくすることができ、光の損失の発生を抑制できる。
集光レンズ43及び第1集光素子46と、第2集光素子47とは、光分離素子42にて反射される第1励起光の光束径と、当該光分離素子42を透過する蛍光YLの光束径とを略一致させる特性を有する。これによれば、光源装置4が、照度むら及び色むらの少ない白色光を確実に出射でき、ひいては、照度むら及び色むらの少ない投射画像を確実に投射できる。
第1入射部としての光拡散部483と、第2入射部としての波長変換部484とは、同一の基板482上に位置する。これによれば、光拡散部483と波長変換部484とをそれぞれ別部材によって構成する場合に比べて、部品点数を削減できる。また、基板482を回転装置487によって回転させることにより、これら光拡散部483及び波長変換部484を冷却できるので、当該光拡散部483及び波長変換部484のそれぞれを個別に回転させる回転装置を設ける必要がない。これにより、部品点数の削減を確実に図ることができる他、光源装置4の大型化を抑制できる。
このように、同一の基板482上に光拡散部483及び波長変換部484が位置する場合には、光出射部41から光拡散部483に入射される第1励起光の光路と、当該光出射部41から波長変換部484に入射される第2励起光の光路とで光路長が異なりやすくなる。これに対し、第2励起光の光路より光路長が長い第1励起光の光路に上記集光レンズ43が設けられることにより、光拡散部483に第1励起光を入射させやすくすることができる。従って、上記光の利用効率を向上させることができる。
光出射部41は、複数の固体光源SS、コリメーター光学素子4112、アフォーカル光学素子412及びホモジナイザー光学素子413を備える。これによれば、ホモジナイザー光学素子413によって照度が均一化された第1励起光及び第2励起光を、光拡散部483及び波長変換部484に入射させることができる。
ここで、アフォーカル光学素子412の光軸に対して平行な励起光が、コリメーター光学素子4112から入射される場合には、当該アフォーカル光学素子412によって当該励起光の光束径を縮径できる。従って、光源装置4の小型化を図ることができる。
しかしながら、複数の固体光源SSに実装精度のばらつき等が生じると、コリメーター光学素子4112からアフォーカル光学素子412に入射される励起光が、当該アフォーカル光学素子412の光軸(第1照明光軸Ax1と一致)に対して平行な光でなくなる可能性がある。この場合、アフォーカル光学素子412による光束径の縮径が十分でなくなる他、当該アフォーカル光学素子412から出射される励起光の中心軸が、第1照明光軸Ax1に対して傾斜しやすくなる。このような各固体光源SSの実装精度のばらつきの影響は、アフォーカル光学素子412での縮径の倍率が高いほど大きくなる。このため、第2励起光の光路より光路長が長い第1励起光の光路においては、第1励起光を第1集光素子46に入射させづらくなるという問題が顕著となる。
これに対し、上記第1励起光の光路に設けられた集光レンズ43によって、ホモジナイザー光学素子413及び光分離素子42を介してアフォーカル光学素子412から入射される第1励起光を集光できるので、上記実装精度のばらつき等が生じた場合でも、第1励起光を第1集光素子46に入射させやすくすることができる。従って、各固体光源SSから出射された光の利用効率を向上させることができる他、コリメーター光学素子4112及びアフォーカル光学素子412が無い場合に比べて光源装置4を小型化できる。
[第2実施形態]
以下、本発明の第2実施形態について説明する。
本実施形態に係るプロジェクターは、上記プロジェクター1と同様の構成を備える。ここで、当該プロジェクター1は、反射型の波長変換装置48を有する光源装置4を備えていた。これに対し、本実施形態に係るプロジェクターは、透過型の波長変換装置を有する光源装置を備える。この点で、本実施形態に係るプロジェクターと、上記プロジェクター1とは相違する。なお、以下の説明では、既に説明した部分と同一又は略同一である部分については、同一の符号を付して説明を省略する。
図4は、本実施形態に係るプロジェクターが備える光源装置4Aを示す模式図である。
本実施形態に係るプロジェクターは、光源装置4に代えて光源装置4Aを有する他は、上記プロジェクター1と同様の構成及び機能を有する。
光源装置4Aは、上記光源装置4と同様に、均一化装置5に向けて白色の照明光を出射する。この光源装置4Aは、図4に示すように、光出射部41、光分離素子42A、集光レンズ43、反射部材44、第1集光素子46、第2集光素子47、波長変換装置48A、第3集光素子491、反射部材492、第4集光素子493及び光合成素子494を備える。
これらのうち、光出射部41、光分離素子42A、第2集光素子47、第4集光素子493及び光合成素子494は、直線状に延びる第1照明光軸Bx1上に配置されている。また、集光レンズ43は、第1照明光軸Bx1に直交する第2照明光軸Bx2上に配置され、反射部材44は、第2照明光軸Bx2と、当該第2照明光軸Bx2に直交し、かつ、第1照明光軸Bx1に平行な第3照明光軸Bx3との交差部分に配置される。更に、第1集光素子46及び第3集光素子491は、当該第3照明光軸Bx3上に配置され、反射部材492は、第3照明光軸Bx3と、当該第3照明光軸Bx3に直交し、かつ、第2照明光軸Bx2に平行な第4照明光軸Bx4との交差部分に配置される。
光分離素子42Aは、上記光分離素子42と同様に、光出射部41から入射される青色光である励起光から第1励起光及び第2励起光を分離する。この光分離素子42Aは、偏光分離素子によって構成され、本実施形態では、s偏光の第1励起光を反射させて集光レンズ43に入射させ、p偏光の第2励起光を透過させて第2集光素子47に入射させる。
このように分離された第1励起光は、集光レンズ43、反射部材44及び第1集光素子46を介して、波長変換装置48Aの光拡散部483Aに入射される。一方、第2励起光は、第2集光素子47を介して、波長変換装置48Aの波長変換部484Aに入射される。すなわち、本実施形態においても、光分離素子42Aと光拡散部483Aとの間の第1励起光の光路は、光分離素子42Aと波長変換部484Aとの間の第2励起光の光路より光路長が長い。
波長変換装置48Aは、上記波長変換装置48と同様に機能するが、透過型の波長変換装置であり、波長変換素子481Aと、当該波長変換素子481Aを回転させる回転装置487と、を有する。これらのうち、波長変換素子481Aは、基板482A、光拡散部483A及び波長変換部484Aを有する。
基板482Aは、上記基板482と同様に、光拡散部483A及び波長変換部484Aを支持する円形状の基板である。この基板482Aは、第1励起光及び第2励起光が透過可能な材料(例えばガラス)により形成されている。なお、光源装置4Aにおいては、波長変換装置48Aに入射される第1励起光及び第2励起光は、基板482Aにおいて、光拡散部483A及び波長変換部484Aの配置側とは反対側の面に入射される。
光拡散部483Aは、本発明の第1入射部に相当し、上記光拡散部483と同様に、基板482Aの中心側(内周側)の位置に円形状に形成されている。この光拡散部483Aの一部は、上記第3照明光軸Bx3上に位置する。そして、光拡散部483Aは、第1集光素子46及び基板482Aを介して入射される第1励起光を透過させる過程にて拡散させる機能を有する。このような光拡散部483Aによって拡散された第1励起光は、第3集光素子491に入射される。
波長変換部484Aは、上記波長変換部484と同様に、光拡散部483の外側に円環状に形成されており、当該波長変換部484Aの一部は、上記第1照明光軸Bx1上に位置する。この波長変換部484Aは、波長変換層485と、当該波長変換層485を挟んで基板482Aとは反対側に位置する反射層486Aと、を有する。
これらのうち、反射層486Aは、波長変換層485にて生成された変換光としての蛍光を透過させ、当該波長変換層485にて蛍光に変換されなかった第2励起光を反射させる反射層である。すなわち、反射層486Aは、黄色光領域の波長の光を透過させ、青色光領域の波長の光を反射させる。これにより、波長変換部484Aから、ほぼ蛍光のみが第1照明光軸Bx1に沿って出射され、当該蛍光は、第4集光素子493に入射される。
第3集光素子491は、上記光拡散部483Aから拡散出射された第1励起光を集光し、第3照明光軸Bx3に沿う平行光として反射部材492に出射する。この第3集光素子491は、2つのレンズ4911,4912を有するピックアップレンズ群として構成されている。しかしながら、これに限らず、第3集光素子491は、1つ、或いは、3つ以上のレンズを有する構成であってもよい。
反射部材492は、第3集光素子491を通過した第1励起光を反射させ、第4照明光軸Bx4と第1照明光軸Bx1との交差部分に位置する光合成素子494に入射させる。この反射部材492は、平板状のミラーとして構成されている。
第4集光素子493は、上記波長変換部484Aから出射された蛍光を集光し、第1照明光軸Bx1に沿う平行光として光合成素子494に向けて出射する。この第4集光素子493は、2つのレンズ4931,4932を有するピックアップレンズ群として構成されているが、上記第3集光素子491と同様に、1つ、或いは、3つ以上のレンズを有する構成であってもよい。
光合成素子494は、ダイクロイックミラーによって構成され、反射部材492から入射される第1励起光を第1照明光軸Bx1に沿うように反射させるとともに、第4集光素子493から入射される蛍光を、第1照明光軸Bx1に沿って透過させる。これにより、当該第1励起光と蛍光とが合成された白色の照明光が、第1照明光軸Bx1上に位置する均一化装置5に入射される。
このような光源装置4Aを備えたプロジェクターによっても、上記プロジェクター1と同様の効果を奏することができる。
[実施形態の変形]
本発明は、上記各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は、本発明に含まれるものである。
上記各実施形態では、光分離素子42,42Aと光拡散部483,483Aとの間の第1励起光の光路の光路長は、当該光分離素子42,42Aと波長変換部484,484Aとの間の第2励起光の光路の光路長より長いとした。しかしながら、これに限らず、光分離素子と波長変換部との間の第2励起光の光路の光路長が、光分離素子と光拡散部との間の第1励起光の光路の光路長より長くてもよい。この場合、波長変換部及び第2励起光が本発明の第1入射部及び第1光に相当し、光拡散部及び第1励起光が本発明の第2入射部及び第2光に相当する。
更に、第1入射部及び第2入射部は、入射された光を拡散する光拡散部、及び、入射された光を波長変換する波長変換部に限らず、他の特性を有する部位であってもよい。加えて、これら第1入射部及び第2入射部に入射される光は、ピーク波長が460nmの青色光である励起光に限らず、他の波長の青色光であってもよく、更に、第1入射部及び第2入射部の機能及び特性によっては、他の光であってもよい。
上記各実施形態では、光源装置4,4Aは、第1励起光を集光して光拡散部483,483Aに入射させる第1集光素子46と、第2励起光を集光して波長変換部484,484Aに入射させる第2集光素子47と、を有するとした。しかしながら、これに限らず、これら第1集光素子46及び第2集光素子47のうち、少なくともいずれかはなくてもよい。また、光源装置4,4Aは、光分離素子42,42Aによって分離された第1励起光を、光拡散部483,483Aに導く反射部材44を有するとした。しかしながら、これに限らず、第1入射部及び第2入射部が、それぞれ分離されて、同一基板上に無い場合等、反射部材44が無い光源装置としてもよい。このように、第1入射部及び第2入射部は同一基板上に無くてもよく、上記の例では、光拡散部483,483A及び波長変換部484,484Aは、同一基板上に無く、それぞれ独立して設けられていてもよい。
上記各実施形態では、波長変換装置48,48Aは、光拡散部483,483A及び波長変換部484,484Aが位置する基板482,482Aを有する波長変換素子481,481Aを、回転装置487によって回転させる構成であった。しかしながら、これに限らず、波長変換装置は、回転装置がなく、波長変換素子が回転されない構成としてもよい。
上記第1実施形態では、集光レンズ43から光分離素子42に入射される第1励起光(励起光BLf)は、当該光分離素子42から集光レンズ43に入射された第1励起光(励起光BLp)と略平行であるとした。しかしながら、これに限らず、これら励起光BLf,BLpは、互いに略平行でなくてもよい。
上記各実施形態では、光分離素子42,42Aは、p偏光を透過させ、s偏光を反射させる構成であった。しかしながら、これに限らず、当該光分離素子42,42Aに代えて、s偏光を透過させ、p偏光を反射させる光分離素子を採用してもよい。
上記各実施形態では、光出射部41は、光源部411、アフォーカル光学素子412、ホモジナイザー光学素子413及び位相差素子414を有する構成とした。また、光源部411は、複数の固体光源SSが実装されたアレイ光源4111と、各固体光源SSに応じて設けられたコリメーターレンズCLを有するコリメーター光学素子4112と、を有するとした。しかしながら、これに限らず、光出射部41の構成は、適宜変更可能である。例えば、複数の固体光源SSのうち、一部の固体光源SSはp偏光を出射し、他の固体光源SSはs偏光を出射する構成とすれば、位相差素子414は無くてもよい。また、当該複数の固体光源SSは、s偏光の励起光を出射するとしたが、p偏光の励起光を出射する構成としてもよい。更に、ホモジナイザー光学素子413に代えて、ロッドインテグレーター等の他の均一化装置を採用してもよい。また、アレイ光源4111から出射される励起光の光束径が十分に小さい場合等においては、アフォーカル光学素子412は無くてもよく、当該アレイ光源4111の各固体光源SSから出射される光が平行光であれば、コリメーター光学素子4112は無くてもよい。
上記各実施形態では、光出射部41は、LDである固体光源SSを有するとした。しかしながら、これに限らず、LED(Light Emitting Diode)等の他の固体光源を採用してもよい。更に、光出射部41が有する固体光源は、複数でなくてもよく、当該固体光源の数は適宜変更可能である。
上記第1実施形態では、波長変換素子481は、光拡散部483と波長変換部484とがそれぞれ独立して基板482上に設けられていた。しかしながら、これに限らず、波長変換素子は、基板482の入射面4821に反射層が形成され、当該反射層の一部に、拡散層及び波長変換層が形成されていてもよい。例えば、波長変換素子481の場合では、拡散層が形成された部位が、反射層と併せて光拡散部(第1入射部及び第2入射部の一方)となり、波長変換層が形成された部位が、反射層と併せて波長変換部(第1入射部及び第2入射部の他方)となる。
上記各実施形態では、波長変換素子481,481Aにおいて、光拡散部483,483Aは、基板482,482Aにおける内周側に位置し、波長変換部484,484Aは、当該基板482,482Aにおける外周側に位置するとした。しかしながら、これに限らず、基板の内周側に波長変換部が位置し、当該基板の外周側に光拡散部が位置していてもよい。一般に、波長変換部の製造コストは光拡散部の製造コストよりも高いので、上記構成によれば、波長変換部の使用量を減らすことができ、波長変換素子、ひいては、光源装置の製造コストを削減できる。
上記各実施形態では、プロジェクターは、3つの光変調装置72(72R,72G,72B)を備えるとした。しかしながら、これに限らず、例えば2つ以下、或いは、4つ以上の光変調装置を備えたプロジェクターにも、本発明を適用可能である。
上記各実施形態では、画像投射装置3は、図1に示した構成及び形状を有するとした。しかしながら、これに限らず、例えば平面視略L字状やU字状等、他の構成及び形状を有する画像投射装置を備えるプロジェクターに、本発明を適用してもよい。
上記各実施形態では、光変調装置72として、光入射面と光出射面とが異なる液晶パネルを用いていた。しかしながら、これに限らず、光変調装置は、光入射面と光出射面とが同一となる反射型の液晶パネルを用いた構成としてもよい。また、入射光束を変調して画像情報に応じた画像を形成可能な光変調装置であれば、マイクロミラーを用いたデバイス、例えば、DMD(Digital Micromirror Device)等を利用したものなど、液晶以外の光変調装置を採用してもよい。
上記実施形態では、本発明による光源装置をプロジェクターに搭載した例を示した。しかしながら、これに限らず、照明器具や自動車のヘッドライト等に、本発明の光源装置を適用してもよい。
1…プロジェクター、4,4A…光源装置、41…光出射部、4111…アレイ光源、4112…コリメーター光学素子、412…アフォーカル光学素子、4121,4122…レンズ、413…ホモジナイザー光学素子、4131…第1マルチレンズ、4132…第2マルチレンズ、414…位相差素子、42,42A…光分離素子、43…集光レンズ、44…反射部材、45…位相差素子、46…第1集光素子、461,462…レンズ、
47…第2集光素子、471,472…レンズ、48,48A…波長変換装置、481,481A…波長変換素子、482,482A…基板、4821…入射面、483,483A…光拡散部(第1入射部)、484,484A…波長変換部(第2入射部)、485…波長変換層、486…反射層、487…回転装置、72(72B,72G,72R)…光変調装置、8…投射光学装置、Ax1…第1照明光軸、Ax2…第2照明光軸、Ax3…第3照明光軸、BLp,BLc,BLf…励起光(第1励起光、第1光)、BLs…励起光(第2励起光、第2光)、CL…コリメーターレンズ、SS…固体光源、YL…蛍光(変換光)。

Claims (9)

  1. 固体光源を含む光出射部と、
    前記光出射部から入射される光にそれぞれ含まれる第1光及び第2光を分離する光分離素子と、
    前記光分離素子にて分離された前記第1光が入射される第1入射部と、
    前記光分離素子にて分離された前記第2光が入射される第2入射部と、
    前記光分離素子と前記第1入射部との間の前記第1光の光路に配置され、入射される前記第1光を集光して前記第1入射部に入射させる第1集光素子と、
    前記光分離素子と前記第2入射部との間の前記第2光の光路に配置され、入射される前記第2光を集光して前記第2入射部に入射させる第2集光素子と、
    前記第1光の光路、及び、前記第2光の光路のうち、光路長が長い前記第1光の光路において、前記第1集光素子より前記光分離素子側に配置される集光レンズと、を備えることを特徴とする光源装置。
  2. 固体光源を含む光出射部と、
    前記光出射部から入射される光にそれぞれ含まれる第1光及び第2光を分離する光分離素子と、
    前記光分離素子にて分離された前記第1光が入射される第1入射部と、
    前記光分離素子にて分離された前記第2光が入射される第2入射部と、
    前記光分離素子にて分離された前記第1光を前記第1入射部に導く反射部材と、
    前記光分離素子と前記反射部材との間に配置される集光レンズと、を備え、
    前記光分離素子と前記第1入射部との間の前記第1光の光路は、前記光分離素子と前記第2入射部との間の前記第2光の光路より長いことを特徴とする光源装置。
  3. 請求項2に記載の光源装置において、
    前記反射部材と前記第1入射部との間の前記第1光の光路に配置され、入射される前記第1光を集光して前記第1入射部に入射させる第1集光素子と、
    前記光分離素子と前記第2入射部との間の前記第2光の光路に配置され、入射される前記第2光を集光して前記第2入射部に入射させる第2集光素子と、を備えることを特徴とする光源装置。
  4. 請求項1又は請求項3に記載の光源装置において、
    前記第1入射部は、入射された前記第1光に基づく光を反射させる特性を有し、
    前記第2入射部は、入射された前記第2光に基づく光を反射させる特性を有し、
    前記第1入射部にて反射され、前記第1集光素子及び前記集光レンズを介して出射される光は、前記光分離素子にて分離されて前記集光レンズに入射される前記第1光と略平行であることを特徴とする光源装置。
  5. 請求項4に記載の光源装置において、
    前記光分離素子と前記第1入射部との間の前記第1光の光路に配置され、入射される光を円偏光に変換する位相差素子を有し、
    前記第1入射部は、入射される前記第1光を拡散させた拡散光を出射する光拡散部であり、
    前記第2入射部は、入射される前記第2光の波長を変換させた変換光を出射する波長変換部であり、
    前記光出射部から出射される光のうち、
    前記第1光は、p偏光であり、
    前記第2光は、s偏光であり、
    前記光分離素子は、入射されるp偏光を透過させ、入射されるs偏光を反射させ、前記変換光を透過させる特性を有することを特徴とする光源装置。
  6. 請求項5に記載の光源装置において、
    前記集光レンズ及び前記第1集光素子と、前記第2集光素子とは、前記光分離素子にて反射される前記拡散光の光束径と、前記光分離素子を透過する前記変換光の光束径とを略一致させることを特徴とする光源装置。
  7. 請求項1から請求項6のいずれか一項に記載の光源装置において、
    前記第1入射部及び前記第2入射部は、同一基板上に位置することを特徴とする光源装置。
  8. 請求項1から請求項7のいずれか一項に記載の光源装置において、
    前記光出射部は、
    複数の前記固体光源と、
    複数の前記固体光源から出射された光を平行化するコリメーター光学素子と、
    前記コリメーター光学素子から出射された光の径を調整するアフォーカル光学素子と、
    前記アフォーカル光学素子から出射された光の照度を均一化するホモジナイザー光学素子と、を備えることを特徴とする光源装置。
  9. 請求項1から請求項8のいずれか一項に記載の光源装置と、
    前記光源装置から出射された光を変調する光変調装置と、
    前記光変調装置によって変調された光を投射する投射光学装置と、を備えることを特徴とするプロジェクター。
JP2016189247A 2016-09-28 2016-09-28 光源装置及びプロジェクター Pending JP2018054780A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189247A JP2018054780A (ja) 2016-09-28 2016-09-28 光源装置及びプロジェクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189247A JP2018054780A (ja) 2016-09-28 2016-09-28 光源装置及びプロジェクター

Publications (1)

Publication Number Publication Date
JP2018054780A true JP2018054780A (ja) 2018-04-05

Family

ID=61836592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189247A Pending JP2018054780A (ja) 2016-09-28 2016-09-28 光源装置及びプロジェクター

Country Status (1)

Country Link
JP (1) JP2018054780A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182055A1 (ja) 2018-03-22 2019-09-26 国立大学法人京都大学 炎症抑制用の組成物
JP2020160236A (ja) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 光源装置、プロジェクター及び光源モジュール
JP2021015247A (ja) * 2019-07-16 2021-02-12 キヤノン株式会社 光源装置およびこれを備える画像投射装置
US11726396B2 (en) 2019-08-05 2023-08-15 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection-type display apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182055A1 (ja) 2018-03-22 2019-09-26 国立大学法人京都大学 炎症抑制用の組成物
JP2020160236A (ja) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 光源装置、プロジェクター及び光源モジュール
JP2021015247A (ja) * 2019-07-16 2021-02-12 キヤノン株式会社 光源装置およびこれを備える画像投射装置
US11442347B2 (en) 2019-07-16 2022-09-13 Canon Kabushiki Kaisha Light source device having rotating wheel and image projection apparatus including the same
JP7330787B2 (ja) 2019-07-16 2023-08-22 キヤノン株式会社 光源装置およびこれを備える画像投射装置
US11726396B2 (en) 2019-08-05 2023-08-15 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection-type display apparatus

Similar Documents

Publication Publication Date Title
US10852630B2 (en) Illumination device and image display apparatus
US9860493B2 (en) Illumination device and projector
US9804485B2 (en) Light source device, lighting apparatus, and projector
JP6690217B2 (ja) 光源装置及びプロジェクター
US20140268063A1 (en) Lighting device and projector
JP6627364B2 (ja) 光源装置、光源ユニット及びプロジェクター
US9933693B2 (en) Optical device, light source device, and projector
JP6805691B2 (ja) 回転冷却装置、波長変換装置、光拡散装置、光源装置及びプロジェクター
JP2017204357A (ja) 光源装置及びプロジェクター
JP6836132B2 (ja) 光学装置、光源装置、およびプロジェクター
JP6286918B2 (ja) 照明装置及びプロジェクター
JP2015036790A (ja) 光源装置、画像表示装置、及び光学ユニット
JP6464781B2 (ja) 照明装置およびプロジェクター
US10564531B2 (en) Light source device and projector
JP2015049441A (ja) 照明装置及びプロジェクター
JP2017027903A (ja) 照明装置及びプロジェクター
JP2018180107A (ja) 光源装置及びプロジェクター
JP2018054780A (ja) 光源装置及びプロジェクター
JP2018004668A (ja) 光源装置及びプロジェクター
JP6269037B2 (ja) 蛍光発光素子、光源装置およびプロジェクター
US20170242266A1 (en) Illumination device and projector
JP2019008018A (ja) 照明装置およびプロジェクター
JP6451388B2 (ja) 照明装置およびプロジェクター
JP2016142900A (ja) 照明装置およびプロジェクター
WO2023032301A1 (ja) 光源モジュールおよびプロジェクタ

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181119