JP2018050423A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2018050423A
JP2018050423A JP2016185586A JP2016185586A JP2018050423A JP 2018050423 A JP2018050423 A JP 2018050423A JP 2016185586 A JP2016185586 A JP 2016185586A JP 2016185586 A JP2016185586 A JP 2016185586A JP 2018050423 A JP2018050423 A JP 2018050423A
Authority
JP
Japan
Prior art keywords
power line
current
reactor
voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016185586A
Other languages
English (en)
Other versions
JP7021846B2 (ja
Inventor
幸二朗 朝川
Kojiro Asakawa
幸二朗 朝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016185586A priority Critical patent/JP7021846B2/ja
Publication of JP2018050423A publication Critical patent/JP2018050423A/ja
Application granted granted Critical
Publication of JP7021846B2 publication Critical patent/JP7021846B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】モータが接続された第1電力ラインの電圧の変動を抑制する。【解決手段】第1昇圧コンバータ54のリアクトルの電流の位相と第2昇圧コンバータ55のリアクトルの電流の位相とがずれるように第1、第2昇圧コンバータを制御する。これにより、第1昇圧コンバータのリアクトルの電流の位相と第2昇圧コンバータのリアクトルの電流の位相とが一致するように第1、第2昇圧コンバータのスイッチング素子を制御するものに比して、第1電力ライン46を流れる電流の変動を抑制することができ、これにより、第1電力ラインの電圧の変動を抑制する。【選択図】図1

Description

本発明は、制御装置に関し、詳しくは、電源装置に搭載される制御装置に関する。
従来、この種の制御装置としては、第1,第2バッテリと、第1,第2昇圧コンバータと、を備える電源装置に搭載され、第1,第2昇圧コンバータを制御するものが提案されている(例えば、特許文献1参照)。電源装置では、第1昇圧コンバータは、モータに接続された第1電力ラインと第1バッテリに接続された第2電力ラインとに接続されている。第2昇圧コンバータは、第1電力ラインと第2バッテリが接続された第3電力ラインとに接続されている。制御装置は、第1,第2昇圧コンバータのそれぞれのリアクトルの電流がそれぞれの目標電流となるように第1,第2昇圧コンバータを電流フィードバック制御している。
特開2016−119802号公報
上述の制御装置では、モータのパワー変動の周波数が第1,第2昇圧コンバータの電流フィードバック制御の共振周波数に近づくと、第1,第2リアクトル電流が大きく変動するため、モータに接続された第1電力ラインの電圧が大きく変動してしまう。第1電力ラインの電圧が大きく変動すると、モータのパワー変動が更に大きくなり、第1,第2リアクトル電流の変動も大きくなり、第1電力ラインの電圧の変動が更に大きくなってしまう。こうした第1電力ラインの電圧の変動は、抑制されることが望ましい。
本発明の制御装置は、モータが接続された第1電力ラインの電圧の変動を抑制することを主目的とする。
本発明の制御装置は、上述の主目的を達成するために以下の手段を採った。
本発明の制御装置は、
少なくとも1つのバッテリを有する蓄電装置と、スイッチング素子とダイオードとリアクトルとを有しモータが接続された第1電力ラインと前記蓄電装置が接続された第2電力ラインとに接続されると共に前記第2電力ラインと前記第1電力ラインとの間で電圧の変更を伴って電力をやりとりする第1昇圧コンバータと、スイッチング素子とダイオードとリアクトルとを有し前記第1電力ラインと前記蓄電装置が接続された第3電力ラインとに接続されると共に前記第3電力ラインと前記第1電力ラインとの間で電圧の変更を伴って電力をやりとりする第2昇圧コンバータと、を備える電源装置に搭載され、
前記第1昇圧コンバータのリアクトルの電流が第1目標電流となると共に前記第2昇圧コンバータのリアクトルの電流が第2目標電流となるように前記第1,第2昇圧コンバータのスイッチング素子を電流フィードバック制御する制御手段を備える制御装置であって、
前記制御手段は、前記第1昇圧コンバータのリアクトルの電流の位相と前記第2昇圧コンバータの前記リアクトルの電流の位相とがずれるように前記第1,第2昇圧コンバータのスイッチング素子を制御する、
ことを要旨とする。
この本発明の制御装置では、第1昇圧コンバータのリアクトルの電流の位相と第2昇圧コンバータのリアクトルの電流の位相とがずれるように第1,第2昇圧コンバータのスイッチング素子を制御する。これにより、第1昇圧コンバータのリアクトルの電流の位相と第2昇圧コンバータのリアクトルの電流の位相とが一致するように第1,第2昇圧コンバータのスイッチング素子を制御するものに比して、第1電力ラインを流れる電流の変動を抑制することができる。これにより、第1電力ラインの電圧の変動を抑制することができる。
こうした本発明の制御装置において、前記制御手段は、前記第1電力ラインの電圧と目標電圧との差が所定差以上であるときに、前記第1昇圧コンバータのリアクトルの電流の位相と前記第2昇圧コンバータのリアクトルの電流の位相とがずれるように前記第1,第2昇圧コンバータのスイッチング素子を制御してもよい。ここで、「所定差」は、第1電力ラインの電圧が目標電圧から大きく変動しているか否かを判断するための閾値である。こうすれば、第1電力ラインの電圧と目標電圧との差が所定差以上であるときに、第1電力ラインを流れる電流の変動を抑制するから、より適正なタイミングで、第1電力ラインの電圧の変動を抑制することができる。
また、本発明の制御装置において、前記制御手段は、前記モータのパワー変動の周波数の1次成分が前記電流フィードバック制御の共振周波数帯内であるときに、前記第1昇圧コンバータのリアクトルの電流の位相と前記第2昇圧コンバータのリアクトルの電流の位相とがずれるように前記第1,第2昇圧コンバータのスイッチング素子を制御してもよい。モータのパワー変動の周波数の1次成分が電流フィードバック制御における共振周波数帯内にあるときには、第1電力ラインの電圧の変動が特に大きくなる。そのため、モータのパワー変動の周波数の1次成分が共振帯域内であるときに、第1昇圧コンバータのリアクトルの電流の位相と第2昇圧コンバータのリアクトルの電流の位相とをずらすことにより、より適正なタイミングで、第1電力ラインの電圧の変動を抑制することができる。
さらに、本発明の制御装置において、前記第1電力ラインに接続され前記モータを駆動するインバータと、前記モータが目標トルクで駆動されるように矩形波制御モードを含む複数の制御モードで前記インバータを制御するインバータ制御手段と、を備え、前記制御手段は、前記インバータ制御手段が前記矩形波制御モードで前記インバータを制御しているときに、前記第1昇圧コンバータのリアクトルの電流の位相と前記第2昇圧コンバータのリアクトルの電流の位相とがずれるように前記第1,第2昇圧コンバータのスイッチング素子を制御してもよい。矩形制御モードでインバータを制御しているときには、矩形制御モードと異なるモードでインバータを制御しているときに比して、第1電力ラインの電圧の変動に対するモータのパワー変動が大きくなる。そのため、矩形波制御モードでインバータを制御しているときに、第1リアクトルの電流と第2リアクトルの電流との位相差をずらすことにより、より適正なタイミングで、第1電力ラインの電圧の変動を抑制することができる。
そして、本発明の制御装置において、前記制御手段は、前記第1昇圧コンバータのリアクトルの電流の位相と前記第2昇圧コンバータのリアクトルの電流の位相とが180度ずれるように前記第1,第2昇圧コンバータのスイッチング素子を制御してもよい。こうすれば、第1電力ラインの電圧の変動をより抑制することができる。
本発明の一実施例としての制御装置を搭載した電源装置を備える駆動装置20の構成の概略を示す構成図である。 実施例のECU70により実行される昇圧制御ルーチンの一例を示すフローチャートである。 電気1次周波数Xと、リアクトルL1の電流IL1(第1低電圧系電力ライン47の電流)と目標電流IL1*との電流比R(=IL1/IL1*)と、の関係の一例を示す説明図である。 絶対値(|VH−VH*|)が所定値dVref以上であると判定された場合において、通常のスイッチング制御を行なったときにおけるリアクトルL1,L2の電流IL1,IL2,電流IL1と電流IL2との電流和(IL1+IL2)の時間変化の一例を示す説明図である。 絶対値(|VH−VH*|)が所定値dVref以上であると判定された場合において、トランジスタT31(トランジスタT32)とトランジスタT41(トランジスタT42)とを異なる位相のスイッチング制御信号を用いて駆動したときにおけるリアクトルL1,L2の電流IL1,IL2,電流IL1と電流IL2との電流和(IL1+IL2)の時間変化の一例を示す説明図である。 変形例の駆動装置120の構成の概略を示す構成図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての制御装置を搭載した電源装置を備える駆動装置20の構成の概略を示す構成図である。実施例の駆動装置20は、図1に示すように、モータ30と、インバータ41と、第1,第2昇圧コンバータ54,55と、第1,第2バッテリ50,51と、電子制御ユニット(以下、「ECU」という)70と、を備える。なお、実施例では、第1,第2バッテリ50,51と第1,第2昇圧コンバータ54,55とが「電源装置」に相当し、ECU70が「制御装置」に相当する。
モータ30は、例えば同期発電電動機として構成されている。
インバータ41は、高電圧系電力ライン46に接続されている。このインバータ41は、6つのトランジスタT11〜T16と、6つのダイオードD11〜D16と、を備える。トランジスタT11〜T16は、それぞれ、高電圧系電力ライン46の正極母線と負極母線とに対して、ソース側とシンク側になるように、2個ずつペアで配置されている。6つのダイオードD11〜D16は、それぞれ、トランジスタT11〜T16に逆方向に並列接続されている。トランジスタT11〜T16の対となるトランジスタ同士の接続点の各々には、モータ30の三相コイル(U相,V相,W相)の各々が接続されている。したがって、インバータ41に電圧が作用しているときに、ECU70によって、対となるトランジスタT11〜T16のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータ30が回転駆動される。
第1昇圧コンバータ54は、インバータ41が接続された高電圧系電力ライン46と第1バッテリ50が接続された第1低電圧系電力ライン47とに接続されている。この第1昇圧コンバータ54は、2つのトランジスタT31,T32と、2つのダイオードD31,D32と、リアクトルL1と、を有する。トランジスタT31は、高電圧系電力ライン46の正極母線に接続されている。トランジスタT32は、トランジスタT31と、高電圧系電力ライン46および第1低電圧系電力ライン47の負極母線と、に接続されている。2つのダイオードD31,D32は、それぞれ、トランジスタT31,T32に逆方向に並列に接続されている。リアクトルL1は、トランジスタT31,T32の中間点と、第1低電圧系電力ライン47の正極母線と、に接続されている。第1昇圧コンバータ54は、ECU70によって、トランジスタT31,T32のオン時間の割合が調節されることにより、第1低電圧系電力ライン47の電力を電圧の昇圧を伴って高電圧系電力ライン46に供給したり、高電圧系電力ライン46の電力を電圧の降圧を伴って第1低電圧系電力ライン47に供給したりする。
第2昇圧コンバータ55は、高電圧系電力ライン46と第2バッテリ51に接続された第2低電圧系電力ライン48とに接続されている。この第2昇圧コンバータ55は、2つのトランジスタT41,T42と、2つのダイオードD41,D42と、リアクトルL2と、を有する。トランジスタT41は、高電圧系電力ライン46の正極母線に接続されている。トランジスタT42は、トランジスタT41と高電圧系電力ライン46および第2低電圧系電力ライン48の負極母線と、に接続されている。2つのダイオードD41,D42は、それぞれ、トランジスタT41,T42に逆方向に並列に接続されている。リアクトルL2は、トランジスタT41,T42の中間点と、第2低電圧系電力ライン48の正極母線と、に接続されている。第2昇圧コンバータ55は、ECU70によって、トランジスタT41,T42のオン時間の割合が調節されることにより、第2低電圧系電力ライン48の電力を電圧の昇圧を伴って高電圧系電力ライン46に供給したり、高電圧系電力ライン46の電力を電圧の降圧を伴って第2低電圧系電力ライン48に供給したりする。
高電圧系電力ライン46の正極母線と負極母線とには、平滑用のコンデンサ46aが取り付けられている。第1低電圧系電力ライン47の正極母線と負極母線とには、平滑用のコンデンサ47aが取り付けられている。第2低電圧系電力ライン48の正極母線と負極母線とには、平滑用のコンデンサ48aが取り付けられている。
第1バッテリ50は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、上述したように、第1低電圧系電力ライン47に接続されている。第2バッテリ51は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、上述したように、第2低電圧系電力ライン48に接続されている。実施例では、第1バッテリ50は、高容量タイプのバッテリとして構成されており、第2バッテリ51は、第1バッテリ50に比して定格容量が小さい(且つ出力密度が高い)バッテリとして構成されている。第1,第2バッテリ50,51は、ECU70によって管理されている。
ECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。
ECU70には、モータ30や第1,第2昇圧コンバータ54,55を駆動制御するのに必要な各種センサからの信号が入力ポートを介して入力されている。ECU70に入力される信号としては、例えば、モータ30の回転子の回転位置を検出する回転位置検出センサ43からの回転位置θmなどを挙げることができる。また、コンデンサ46aの端子間に取り付けられた電圧センサ46bからのコンデンサ46a(高電圧系電力ライン46)の電圧VH,コンデンサ47aの端子間に取り付けられた電圧センサ47bからのコンデンサ47a(第1低電圧系電力ライン47)の電圧VL1,コンデンサ48aの端子間に取り付けられた電圧センサ48bからのコンデンサ48a(第2低電圧系電力ライン48)の電圧VL2,第1,第2バッテリ50,51の端子間に設置された電圧センサからの第1,第2バッテリ50,51の電圧Vb1,Vb2なども挙げることができる。更に、第1低電圧系電力ライン47の正極母線に取り付けられた電流センサ54aからのリアクトルL1の電流IL1,第2低電圧系電力ライン48の正極母線に取り付けられた電流センサ55aからのリアクトルL2の電流IL2,第1,第2バッテリ50,51の出力端子に取り付けられた電流センサ50a,51aからの第1,第2バッテリ50,51の電流Ib1,Ib2なども挙げることができる。
ECU70からは、インバータ41のトランジスタT11〜T16へのスイッチング制御信号や第1,第2昇圧コンバータ54,55のトランジスタT31,T32,T41,T42へのスイッチング制御信号などが出力ポートを介して出力されている。
ECU70は、回転位置検出センサ43からのモータ30の回転子の回転位置θmに基づいてモータ30の回転数Nmを演算している。ECU70は、電流センサ50a,51aからの第1,第2バッテリ50,51の電流Ib1,Ib2の積算値に基づいて蓄電割合SOC1,SOC2を演算している。ここで、蓄電割合SOC1,SOC2は、第1,第2バッテリ50,51の定格容量(全容量)Sr1,Sr2に対する第1,第2バッテリ50,51から放電可能な電力の容量の割合である。
こうして構成された実施例の駆動装置20では、ECU70は、モータ30のトルク指令Tm*を設定し、モータ30がトルク指令Tm*で駆動されるようにインバータ41のトランジスタT11〜T16のスイッチング制御を行なう。
インバータ41のスイッチング制御では、モータ30の目標駆動点(トルク指令Tm*,回転数Nm)に基づいて複数の制御モードから1つの制御モードを選択してインバータ41をスイッチング制御する。インバータ41の制御モードは、それぞれ図示しないマップにより、モータの回転数およびトルクが低い領域から順に、三角波比較によるパルス幅変調(PWM)制御による正弦波制御モード,三角波の振幅を超えた振幅で正弦波状の出力電圧指令値を生成して変換した過変調電圧としてのPWM信号でインバータをスイッチングする過変調制御モード,トルク指令に応じた電圧位相の矩形波電圧でインバータをスイッチングする矩形波制御モードが選択される。これは、モータ30やインバータ41の特性として、矩形波制御方式,過変調制御方式,正弦波制御方式の順で、モータ30の出力応答性や制御性がよくなり出力が小さくなりインバータ41のスイッチング損失などが大きくなるという特性を踏まえて、低回転数低トルクの領域では、正弦波制御方式でインバータ41を制御することによってモータ30の出力応答性や制御性を良くし、高回転数高トルク領域では、矩形波制御方式でインバータ41を制御することによって大きな出力を可能とすると共にインバータ41のスイッチング損失などを低減するためである。
また、ECU70は、モータ30の目標駆動点(トルク指令Tm*,回転数Nm)に基づいて、高電圧系電力ライン46の目標電圧VH*を設定する。続いて、高電圧系電力ライン46の電圧VHを目標電圧VH*にするための第1,第2昇圧コンバータ54,55のトータル目標電流IL*を設定する。そして、トータル目標電流IL*に第1,第2昇圧コンバータ54,55(リアクトルL1,L2)の分配比D1,D2を乗じて、リアクトルL1,L2の目標電流IL1*,IL2を設定する。分配比D1,D2は、それぞれトータル目標電流IL*のうち第1,第2昇圧コンバータ54,55(リアクトルL1,L2)を介して第1,第2低電圧系電力ライン47,48と高電圧系電力ライン46との間でやりとりされる電流の割合である。実施例では、分配比D1を、蓄電割合SOC1と蓄電割合SOC2との和に対する蓄電割合SOC1の割合(=SOC1/(SOC1+SOC2))に設定し、分配比D2を、蓄電割合SOC1と蓄電割合SOC2との和に対する蓄電割合SOC2の割合(=SOC2/(SOC1+SOC2)に設定している。そして、第1,第2昇圧コンバータ54,55のリアクトルL1,L2の電流IL1,IL2が目標電流IL1*,IL2*となるように、第1,第2昇圧コンバータ54,55のトランジスタT31,T32,T41,T42のスイッチング制御を行なう。
次に、こうして構成された駆動装置20の動作、特に、第1,第2昇圧コンバータ54,55の制御について説明する。図2は、実施例のECU70により実行される昇圧制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間(例えば、数msec)毎に繰り返し実行される。
本ルーチンが実行されると、ECU70は、高電圧系電力ライン46の電圧VHや目標電圧VH*,電気1次周波数Xを入力する処理を実行する(ステップS100)。電圧VHは、電圧センサ 46bにより検出されたものを入力している。目標電圧VH*は、モータ30の目標駆動点(トルク指令Tm*,回転数Nm)に基づいて設定されたものを入力している。電気1次周波数Xは、モータ30のパワー変動の周波数の1次成分である。電気1次周波数Xは、モータ30の回転数Nmとモータ30の極数Pとを用いて次式(1)により計算したものを入力している。
X=Nm・P/2 (1)
続いて、インバータ41の制御モードが矩形波制御モードであり且つ電気1次周波数Xが判定用閾値α以上判定用閾値β以下であるか否かを判定する(ステップS110)。インバータ41の制御モードが矩形波制御モードであるか否かを判定するのは、矩形波制御モードであるときには、他の制御モードであるときに比して、高電圧系電力ライン46の電圧VHの変動に対するモータ30のパワーの変動が大きくなると考えられるからである。判定用閾値α、βは、上述したようにリアクトルL1,L2を目標電流IL1*,IL2*に一致させるためのフィードバック制御(以下、「電流フィードバック制御」という)を実行したときにおいて第1,第2昇圧コンバータ54,55に共振が生じる共振周波数faを含む共振周波数帯の下限周波数,上限周波数として予め実験や解析などにより定めたものである。図3は、電気1次周波数Xと、リアクトルL1の電流IL1(第1低電圧系電力ライン47の電流)と目標電流IL1*との電流比R(=IL1/IL1*)と、の関係の一例を示す説明図である。図中、ハッチングを施した領域が第1昇圧コンバータ54に共振が生じる共振周波数帯である。図示するように、電気1次周波数Xが共振周波数帯内であるときに、電流比Rが比較的大きくなる。なお、実施例では、電気1次周波数Xと、リアクトルL2の電流IL2(第2低電圧系電力ライン48の電流)と目標電流IL2*との電流比R(=IL2/IL2*)と、の関係は、図3と同一の関係であり、第2昇圧コンバータ55に共振が生じる共振周波数帯は、図3に示す共振周波数帯と同一である。したがって、電気1次周波数Xが判定用閾値α以上判定用閾値β以下であるか否かは、電流フィードバック制御を実行したときにモータ30の電気1次周波数Xが第1,第2昇圧コンバータ54,55の共振周波数帯内となるか否かを判定する処理となる。したがって、ステップS110の処理は、高電圧系電力ライン46の電圧VHの変動に対するモータ30のパワーの変動が大きくなり且つ第1,第2昇圧コンバータ54,55に共振が生じる可能性があるか否かを判定する処理となっている。
インバータ41の制御モードが矩形波制御モードではないと判定されたり、電気1次周波数Xが判定用閾値α以上判定用閾値β以下ではないと判定されたときには、通常のスイッチング制御を実行して(ステップS120)、本ルーチンを終了する。通常のスイッチング制御では、トランジスタT31(トランジスタT32)とトランジスタT41(トランジスタT42)とを同一の位相のスイッチング制御信号を用いて駆動する。
インバータ41の制御モードが矩形波制御モードであり且つ電気1次周波数Xが判定用閾値α以上判定用閾値β以下であると判定されたときには、続いて、電圧VHと目標電圧VH*との差の絶対値(|VH−VH*|)が所定値dVref以上であるか否かを判定する(ステップS130)。ここで、所定値dVrefは、高電圧系電力ライン46の電圧VHの変動が大きくなっているか否かを判定するための閾値であり、例えば、数10Vなどに設定される。
絶対値(|VH−VH*|)が所定値dVref未満であると判定されたときには、高電圧系電力ライン46の電圧VHの変動が小さいと判断して、通常のスイッチング制御を実行して(ステップS120)、本ルーチンを終了する。
絶対値(|VH−VH*|)が所定値dVref以上であると判定されたときには、高電圧系電力ライン46の電圧VHの変動が大きくなっていると判断して、トランジスタT31(トランジスタT32)とトランジスタT41(トランジスタT42)とを異なる位相のスイッチング制御信号を用いて駆動して(ステップS140)、本ルーチンを終了する。ステップS140の処理では、トランジスタT31(トランジスタT32)のスイッチング制御信号の位相とトランジスタT41(トランジスタT42)のスイッチング制御信号の位相とを180度(半周期)ずらしている。
図4は、絶対値(|VH−VH*|)が所定値dVref以上であると判定された場合において、通常のスイッチング制御を行なったときにおけるリアクトルL1,L2の電流IL1,IL2,電流IL1と電流IL2との電流和(IL1+IL2)の時間変化の一例を示す説明図である。図5は、絶対値(|VH−VH*|)が所定値dVref以上であると判定された場合において、トランジスタT31(トランジスタT32)とトランジスタT41(トランジスタT42)とを異なる位相のスイッチング制御信号を用いて駆動したときにおけるリアクトルL1,L2の電流IL1,IL2,電流IL1と電流IL2との電流和(IL1+IL2)の時間変化の一例を示す説明図である。図4,5において、目標電流IL1,IL2*を破線で示している。絶対値(|VH−VH*|)が所定値dVref以上であると判定されたときに通常のスイッチング制御を行なうと、図4に示すように、リアクトルL1の電流IL1のリプル成分の位相とリアクトルL2の電流IL2のリプル成分の位相とが一致して、電流和(IL1+IL2)のリプルが大きくなり、電圧VHの変動が増加する。絶対値(|VH−VH*|)が所定値dVref以上であると判定されたときに、図5に示すように、トランジスタT31(トランジスタT32)のスイッチング制御信号の位相とトランジスタT41(トランジスタT42)のスイッチング制御信号の位相とを180度(半周期)ずらすことにより、電流和(IL1+IL2)のリプルがより小さくなる。これにより、電圧VHの変動を抑制することができる。
以上説明した実施例の駆動装置20によれば、第1昇圧コンバータのリアクトルの電流の位相と第2昇圧コンバータのリアクトルの電流の位相とがずれるように第1,第2昇圧コンバータを制御することにより、高電圧系電力ライン46の電圧VHの変動を抑制することができる。
実施例の駆動装置20では、ステップS110の処理で、インバータ41の制御モードが矩形波制御モードであり且つ電気1次周波数Xが判定用閾値α以上判定用閾値β以下であるか否かを判定しているが、インバータ41の制御モードが矩形波制御モードであるか否かと電気1次周波数Xが判定用閾値α以上判定用閾値β以下であるか否かとのうちの一方のみを判定してもよい。
実施例の駆動装置20では、ステップS110〜S140の処理を実行しているが、ステップS110の処理とステップS120のいずれか一方のみとステップS130,S140の処理を実行してもいいし、ステップS110,S120,S130の処理を実行せずに、ステップS100の処理とステップS140の処理とを実行してもよい。
実施例の駆動装置20では、ステップS140の処理で、トランジスタT31(トランジスタT32)のスイッチング制御信号の位相とトランジスタT41(トランジスタT42)のスイッチング制御信号の位相とを180度(半周期)ずらしている。しかしながら、トランジスタT31(トランジスタT32)のスイッチング制御信号の位相とトランジスタT41(トランジスタT42)のスイッチング制御信号の位相とがずれていればよいから、例えば、トランジスタT31(トランジスタT32)のスイッチング制御信号の位相とトランジスタT41(トランジスタT42)のスイッチング制御信号の位相とが180度より小さい所定値(例えば、90度など)としてもよい。
実施例では、駆動装置20を、第1,第2バッテリ50,51と、第1,第2昇圧コンバータ54,55と、を備え、第1昇圧コンバータ54が高電圧系電力ライン46と第1バッテリ50が接続された第1低電圧系電力ライン47に接続され、第2昇圧コンバータ55が高電圧系電力ライン46と第2バッテリ51が接続された第2低電圧系電力ライン48とに接続されている構成としている。しかしながら、図6の変形例の駆動装置120に例示するように、バッテリ150と、第1,第2昇圧コンバータ54、55と、を備え、第1昇圧コンバータ54が高電圧系電力ライン46とバッテリ150が接続された低電圧系電力ライン147に接続され、第2昇圧コンバータ55が高電圧系電力ライン46と低電圧系電力ライン147に接続されている構成としてもよい。
実施例では、駆動装置20を、モータ30と、インバータ41とを備える構成としているが、複数のモータと、高電圧系電力ライン46に接続され各モータを駆動するための複数のインバータとを備えるものとしてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、第1,第2バッテリ50,51が「蓄電装置」に相当し、第1昇圧コンバータ54が「第1昇圧コンバータ」に相当し、第2昇圧コンバータ55が「第2昇圧コンバータ」に相当し、ECU70が「制御手段」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、制御装置の製造産業などに利用可能である。
20 駆動装置、30 モータ、41 インバータ、43 回転位置検出センサ、46 高電圧系電力ライン、46a,47a,48a コンデンサ、46b,47b,48b 電圧センサ、47 第1低電圧系電力ライン、48 第2低電圧系電力ライン、50 第1バッテリ、50a,51a 電流センサ、51 第2バッテリ、54 第1昇圧コンバータ、54a,55a 電流センサ、55 第2昇圧コンバータ、70 電子制御ユニット(ECU)、147 低電圧系電力ライン、150 バッテリ、Cn1,Cn2 接続点、D11〜D16,D31,D32,D41,D42 ダイオード、L1,L2 リアクトル、T11〜T16,T31,T32,T41,T42 トランジスタ。

Claims (1)

  1. 少なくとも1つのバッテリを有する蓄電装置と、スイッチング素子とダイオードとリアクトルとを有しモータが接続された第1電力ラインと前記蓄電装置が接続された第2電力ラインとに接続されると共に前記第2電力ラインと前記第1電力ラインとの間で電圧の変更を伴って電力をやりとりする第1昇圧コンバータと、スイッチング素子とダイオードとリアクトルとを有し前記第1電力ラインと前記蓄電装置が接続された第3電力ラインとに接続されると共に前記第3電力ラインと前記第1電力ラインとの間で電圧の変更を伴って電力をやりとりする第2昇圧コンバータと、を備える電源装置に搭載され、
    前記第1昇圧コンバータのリアクトルの電流が第1目標電流となると共に前記第2昇圧コンバータのリアクトルの電流が第2目標電流となるように前記第1,第2昇圧コンバータのスイッチング素子を電流フィードバック制御する制御手段を備える制御装置であって、
    前記制御手段は、前記第1昇圧コンバータのリアクトルの電流の位相と前記第2昇圧コンバータのリアクトルの電流の位相とがずれるように前記第1,第2昇圧コンバータのスイッチング素子を制御する、
    制御装置。
JP2016185586A 2016-09-23 2016-09-23 制御装置 Active JP7021846B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016185586A JP7021846B2 (ja) 2016-09-23 2016-09-23 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016185586A JP7021846B2 (ja) 2016-09-23 2016-09-23 制御装置

Publications (2)

Publication Number Publication Date
JP2018050423A true JP2018050423A (ja) 2018-03-29
JP7021846B2 JP7021846B2 (ja) 2022-02-17

Family

ID=61766653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016185586A Active JP7021846B2 (ja) 2016-09-23 2016-09-23 制御装置

Country Status (1)

Country Link
JP (1) JP7021846B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069371A1 (ja) * 2005-12-12 2007-06-21 Mitsubishi Electric Corporation 発光ダイオード点灯装置およびこの装置を使用した車両用灯具点灯装置
JP2012210138A (ja) * 2011-03-11 2012-10-25 Denso Corp 電圧変換回路およびその電圧変換回路を備える電圧変換システム
JP2016119770A (ja) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 故障検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069371A1 (ja) * 2005-12-12 2007-06-21 Mitsubishi Electric Corporation 発光ダイオード点灯装置およびこの装置を使用した車両用灯具点灯装置
JP2012210138A (ja) * 2011-03-11 2012-10-25 Denso Corp 電圧変換回路およびその電圧変換回路を備える電圧変換システム
JP2016119770A (ja) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 故障検出装置

Also Published As

Publication number Publication date
JP7021846B2 (ja) 2022-02-17

Similar Documents

Publication Publication Date Title
JP7370223B2 (ja) 電力変換装置
JP5907137B2 (ja) 電力変換装置および電力変換システム
JP4721538B2 (ja) 動力出力装置
WO2010150786A1 (ja) 電動機駆動装置の制御装置
JP6950560B2 (ja) 電動車両の制御装置
CN116615849A (zh) 电力转换装置
JP2014212612A (ja) 外部給電システム
Salem Design, implementation and control of a SiC-based T5MLC induction drive system
JP4723743B2 (ja) 動力出力装置
WO2020153313A1 (ja) 電力変換装置
CN109121460B (zh) 电动机装置
RU2730301C1 (ru) Устройство управления электромотором
JP2011109869A (ja) 電源装置
JP5577714B2 (ja) 交流モータの制御装置
WO2019165026A1 (en) Dc input current ripple reduction in srm drive for high volumetric power density applications
JP7021846B2 (ja) 制御装置
JP2008312341A (ja) インバータ装置
CN113162481A (zh) 旋转电机装置的控制装置
JP2017153199A (ja) 駆動装置
JP5290048B2 (ja) 車両のモータ制御システム
JP6221824B2 (ja) 電力変換器の制御装置
JP6627633B2 (ja) 電力変換器の制御装置
Kabalci et al. Comparison of Model Predictive Torque Control Based NPC and ANPC Inverters for IM Drive
JP2010183673A (ja) 車両駆動装置
Silva et al. Multi-Objective Optimized Computational Neural Network for Performance Enhancement in Non-Sinusoidal PMSM Drives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210224

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210308

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210316

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210507

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210511

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210817

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211207

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220111

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220204

R150 Certificate of patent or registration of utility model

Ref document number: 7021846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150