以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の実施形態である電池モジュール10に搭載される電池スタック12の斜視図である。また、図2は、電池モジュール10の模式図である。なお、図2では、セパレータ20の図示は、省略している。
電池モジュール10は、モジュールケース50と、当該モジュールケース50に収容される電池スタック12と、を備えている。なお、一つのモジュールケース50に収容される電池スタック12は、一つでもよいし、複数でもよい。
電池スタック12は、電池積層体14と、当該電池積層体14の積層方向両側に配される一対のエンドプレート16と、を備えている。さらに、電池積層体14は、電池セル18と、樹脂からなるセパレータ20と、を厚み方向に交互に積層して構成される。
ここで、電池セル18は、充放電可能な二次電池、例えば、リチウムイオン二次電池や、ナトリウムイオン二次電池等である。本実施形態の電池セル18は、電極体が扁平な直方体形状のセルケースに収容された角型電池である。電池セル18の上端面からは、正極端子22pおよび負極端子22nが突出している。この正極端子22pおよび負極端子22nは、幅方向に間隔をあけて配置されている。なお、図1では、正極端子22pおよび負極端子22nを略円筒形として図示しているが、これら端子22p,22nの形状は適宜、変更されてもよい。
電池セル18の上端面のうち幅方向中央、すなわち、正極端子22pおよび負極端子22nの間には、ガス放出弁(図示せず)が設けられている。ガス放出弁は、電池セル18の異常反応時に、当該電池セル18の内部で発生したガスを放出する弁である。ガス放出弁は、電池セル18の内圧が一定未満の場合には、閉鎖しているが、内圧が一定以上になれば、開放され、ガスを外部に放出する。このガス放出弁は、例えば、電池セル18のケースのうちの一部を、一定以上の圧力を受けたときに破断するように薄肉に形成する等して構成される。ただし、ガス放出弁の構成は、これに限定されず、適宜、変更されてもよい。
複数の電池セル18は、厚み方向に積層される。このとき、複数の電池セル18は、正極端子22pと負極端子22nが積層方向に交互に並ぶように、その向きを交互に替えて配される。すなわち、ある電池セル18を、向かって右側に正極端子22pが位置するように配置した場合には、次の電池セル18は、向かって右側に負極端子22nが位置するように配置する。そして、積層方向に隣接する正極端子22pと負極端子22nをバスバ(図示せず)で順次、連結することで、複数の電池セル18が、電気的に直列に接続される。
電池セル18と電池セル18との間には、セパレータ20が配される。換言すれば、電池積層体14は、複数の電池セル18と複数のセパレータ20とを、交互に積層して成る。セパレータ20は、絶縁性材料からなり、略平板のベース部と、当該ベース部(図1では見えず)の周縁から厚み方向に張り出す枠部26と、ベース部の上端から突出するダクト片28と、を備えている。ベース部は、電池セル18の間に配される部分で、その表面には、冷媒流路を構成するためのリブが複数、間隔を開けて形成されている。
枠部26は、電池セル18の周面に沿う形状をしており、電池セル18の面方向への移動を規制する。セパレータ20の上端、かつ、幅方向中央には、ダクト片28が設けられている。ダクト片28は、セパレータ20のベース部の上端から突出形成されており、電池セル18の上端面に向かって開口した略U字形状となっている。このダクト片28の上面は、電池セル18のガス放出弁と対向している。また、ダクト片28は、セパレータ20のベース部よりも厚み方向に張り出しており、隣接する他のセパレータ20のダクト片28と密着する。複数のダクト片28が互いに密着することで、電池積層体14には、積層方向に延びるトンネルが形成される。このトンネルは、ガス放出弁から放出されたガスが流れる排煙ダクトとなる。
電池セル18およびセパレータ20からなる電池積層体14の積層方向両側には、一対のエンドプレート16が配される。この電池積層体14および一対のエンドプレート16で構成される積層体が、電池スタック12である。なお、電池スタック12は、樹脂からなるセパレータ20等を有する関係上、積層方向にバネ定数を持った伸縮体となる。エンドプレート16は、アルミニウム等の金属、あるいは、十分な剛性を有した樹脂等からなる板材である。本実施形態では、このエンドプレート16のうち、積層方向外側面であるスタック側対向面17を、下方に近づくにつれて、厚みが低下するような傾斜面としている。換言すれば、電池スタック12は、下方に近づくにつれて、積層方向長さが小さくなっている。かかる構成とするのは、電池積層体14に適切な拘束荷重Ftを付与するためであるが、これについては、後述する。
モジュールケース50は、アルミニウム等の金属からなる箱部材で、電池スタック12を収容するための収容空間56が形成されている。このモジュールケース50は、ロアケース52と、アッパーカバー54と、に大別される。ロアケース52は、電池スタック12を収容する収容ケースとして機能するものである。なお、一つのロアケース52に収容する電池スタック12の個数は、限定されておらず、一つでもよいし、複数でもよい。また、ロアケース52には、電池スタック12に加えて、さらに、他の部材、例えば、冷却ファンや冷却ダクト、ヒータ、ジャンクションボックス等(いずれも図示せず)が収容されてもよい。
ロアケース52には、電池スタック12を収容する収容空間56が形成されている。収容空間56は、上部が開口した空間で、この上部開口から電池スタック12を押し入れることができる。収容空間56の積層方向両端面であるケース側対向面58、すなわち、スタック側対向面17との対向面は、下方に近づくにつれて、収容空間56の積層方向長さが小さくなるような傾斜面となっている。
ここで、このケース側対向面58の傾斜角度は、スタック側対向面17の傾斜角度とほぼ同じとなっている。また、無負荷状態における電池スタック12の下端における積層方向長さをDsとし、収容空間56の下端の積層方向長さをDdとした場合、Dd<Dsである(図3参照)。また、収容空間56の上端の積層方向長さをDuとした場合、Ds<Duである。かかる構成とすることで、収容空間56に押し込み収容されて収縮した電池スタック12に拘束荷重Ftを付与できるが、これについては後述する。
アッパーカバー54は、ロアケース52の上部を覆う。このアッパーカバー54は、ロアケース52に電池スタック12や、必要な他部材(例えば冷却ファン等)を収容した後、ロアケース52の上側に配され、ロアケース52と締結される。
ところで、これまでの説明で明らかな通り、本実施形態では、電池スタック12および収容空間56の積層方向端面を、傾斜面としている。かかる構成とする理由について、従来技術と比較して説明する。電極体を角型のセルケースに収容した角型電池(電池セル18)では、その表面全体に、均等に圧力が付与されることが望ましい。付与される圧力に偏りがあると、電池セル18の内部において、金属(リチウム)の析出や、内部短絡、ガス発生、ひいては、セルケースの変形等の意図しない劣化が起こり、電池モジュールの信頼性が低下するおそれがある。
そこで、従来から、複数の電池セル18を厚み方向に積層して電池積層体14を構成した後、当該電池積層体14に積層方向圧縮の力、すなわち、拘束荷重Ftを付与することが提案されている。拘束荷重Ftが付与されることで、電池セル18の表面に圧力が付与されるとともに、電池積層体14を構成する複数の電池セル18およびセパレータ20の相互の動きが規制され、拘束される。
この拘束荷重Ftを得るために、従来では、拘束バンド100と呼ばれる金属製のバンドを利用していた。図5は、従来技術の電池スタック12の一例を示す図である。図5に示す通り、従来は、電池積層体14の積層方向両端に一対のエンドプレート16を配し、さらに、所定の長さの拘束バンド100の両端を、一対のエンドプレート16に固定している。ここで、拘束バンド100の長さは、当該拘束バンド100の両端に固定されたエンドプレート16間の距離が、無負荷状態における電池積層体14の長さより短くなるように設定されている。そのため、拘束バンド100の両端に一対のエンドプレート16を固定することで、電池積層体14が、一対のエンドプレート16で圧縮されながら挟持されることになる。そして、これにより、電池積層体14に拘束荷重Ftが付与される。
ただし、こうした拘束バンド100を利用する従来技術で、各電池セル18の表面に均等に圧力を付与するためには、拘束バンド100を複数本(例えば、電池積層体14の上側に二本、下側に二本の合計四本)、設ける必要がある。そのため、従来技術では、部品点数の増加を招いていた。また、複数の拘束バンド100の両端は、それぞれ、リベット締結等で、エンドプレート16に固定されている。したがって、拘束バンド100が四本あれば、少なくとも八箇所をリベット締結する必要があり、電池モジュール10の組み付け工数の増加も招いていた。
さらに、拘束バンド100を利用した技術では、電池積層体14に付与される拘束荷重Ftは、拘束バンド100の長さ(エンドプレート16間距離)、および、電池積層体14のバネ定数Kによって定まるが、この電池積層体14のバネ定数Kには個体差がある。その結果、拘束バンド100の長さが同じであっても、電池積層体14によって、付与される拘束荷重Ftが異なってしまう。そのため、従来技術で拘束荷重Ftを均一にするためには、電池積層体14のバネ定数Kに応じて、拘束バンド100の長さを変える必要があり、部品種類数の増加を招いていた。
一方、本実施形態では、電池スタック12および収容空間56の積層方向端面(スタック側対向面17およびケース側対向面58)を、傾斜面としている。かかる構成とすることで、拘束バンド100を用いることなく、電池積層体14に適切な拘束荷重Ftを付与することができる。これについて図3を参照して説明する。
ロアケース52に電池スタック12を組み付ける際には、図3に示すように、収容空間56の上部開口から電池スタック12を当該収容空間56に押し入れる。ここで、既述した通り、無負荷状態における電池スタック12の下端長さDsは、収容空間56の上端長さDuより小さく、かつ、収容空間56の下端長さDdよりも大きい。そのため、電池スタック12は、途中までは、ケース側対向面58に当たることなく、収容空間56内に進入できるが、一定以上、進入すると、電池スタック12のスタック側対向面17がケース側対向面58に当たることになる。スタック側対向面17がケース側対向面58に当たった状態で、電池スタック12をさらに、下方に押し込むと、ケース側対向面58は、スタック側対向面17により、下向きの力F1を受ける。この下向きの力F1は、ケース側対向面58に平行な力F2と、ケース側対向面58に垂直な垂直分力F3とに分解される。同時に、スタック側対向面17には、この垂直分力F3の垂直抗力F4が発生する。そして、電池スタック12は、この垂直抗力F4の水平方向の分力F5の大きさの力を、積層方向両側から受ける。つまり、電池スタック12は、F5×2の拘束荷重Ftを受けることになる。なお、ケース側対向面58と水平と成す角度をαとした場合、垂直分力F3および垂直抗力F4の大きさは、F1・sinαであり、垂直抗力F4の水平方向分力F5の大きさは、F4・sinα=F1・sin2αとなる。そして、拘束荷重Ftは、Ft=2・F1・sin2αとなる。
こうした拘束荷重Ftを受けて、電池スタック12は、積層方向に収縮変形する。例えば、電池スタック12を、収容空間56の底部まで押し込んだ際、電池スタック12の積層方向長さは、無負荷状態と比べてε=Ds−Ddだけ小さくなる。このとき、電池スタック12は、変形量εにバネ定数Kを乗じた大きさの拘束荷重Ft=K×εを受ける。そして、このとき電池スタック12を構成する複数の電池セル18は、その全面に均等に圧力がかかることになる。
つまり、本実施形態によれば、電池スタック12を収容空間56内において下方に押し込むだけで、電池スタック12に積層方向圧縮の力である拘束荷重を付与できる。このとき、拘束バンドは不要であるため、従来技術に比べて、部品点数や組み付け工数を大幅に低減できる。
また、電池スタック12に付与する拘束荷重Ftの大きさは、当該電池スタック12を下方に押し込む力、すなわち、組み付け荷重F1の大きさと、両対向面17,58の傾斜角度と、によって定まる。そして、両対向面17,58の傾斜角度は、ほぼ固定であるため、拘束荷重Ftは、組み付け荷重F1さえ調節すれば、自由に調節できる。あるいは、上述したとおり、拘束荷重Ftは、電池スタック12の変形量εとバネ定数Kとの乗算値であるため、電池スタック12の変形量ε、ひいては、電池スタック12の押し込み量を調節して、拘束荷重Ftを調節してもよい。いずれにしても、本実施形態によれば、電池スタック12ごとのバネ定数のバラツキに応じて、拘束用部品の寸法を個別に調整する必要がない。結果として、部品種類数を低減しつつも、電池スタック12に適切な拘束荷重Ftを付与できる。
収容空間56内において、電池スタック12を所定の組み付け荷重で押し下げることで、当該電池スタック12に所望の拘束荷重が付与できれば、当該電池スタック12を固定する。電池スタック12の固定方法としては、種々考えられる。本実施形態では、電池スタック12を所望の押し込み位置で固定するために、スタック側対向面17およびケース側対向面58それぞれの表面に鋸歯状凹凸60,62を形成している。これについて図4を参照して説明する。
図4に示す通り、本実施形態では、スタック側対向面17に、水平面60aと、下方に近づくにつれて内側に近づく傾斜面60bとが、上下方向に、所定ピッチで交互に並ぶ鋸歯状凹凸60を形成している。同様に、ケース側対向面58にも、水平面62aと、下方に近づくにつれて内側(電池スタック12側)に近づく傾斜面62bとが、上下方向に、所定ピッチで交互に並ぶ鋸歯状凹凸62を形成している。スタック側対向面17の鋸歯状凹凸60、および、ケース側対向面58の鋸歯状凹凸62は、その配設ピッチおよび傾斜面60b,62bの傾斜角度は、ほぼ同じとなっており、一方の鋸歯状凹凸の山部が、他方の鋸歯状凹凸の谷部に係合できるようになっている。
かかる構成の電池スタック12を収容空間56内で下方に押し込んだ場合、両対向面17,58の鋸歯状凹凸60,62の傾斜面60b,62bが互いに当たるため、電池スタック12の下方への移動が許容される。一方で、一度、押し込まれた電池スタック12が上方に移動しようとしたときには、両対向面17,58の鋸歯状凹凸60,62の水平面60a,62aが互いに係止し合うため、電池スタック12の上方への移動が阻害される。その結果、電池スタック12は、押し込まれた位置で固定される。
なお、ここで説明した固定方法は、一例であり、所望の深さまで押しこまれた電池スタック12の上方への移動を防止できるのであれば、他の固定方法でもよい。例えば、アッパーカバー54で、電池スタック12の上面を押さえることで、電池スタック12を固定してもよい。また、電池スタック12を、螺合や溶接等の固定手段で固定してもよい。
また、これまで説明した構成は、一例であり、少なくとも電池スタック12の積層方向一端面と、収容空間56の前記一端面との対向面と、が傾斜しているのであれば、その他の構成は、変更されてもよい。例えば、上述の説明では、電池スタック12の積層方向両端面、および、収容空間56の積層方向両端面を傾斜面としているが、いずれか一方のみを傾斜面とし、他方は、垂直面としてもよい。また、本実施形態で例示した電池セル18やセパレータ20の形状や個数は、全て一例であり、電池セル18が角型であるのであれば、その他の構成は、適宜、変更されてもよい。また、本実施形態では、複数の電池セル18を直列接続しているが、複数の電池セル18は、並列接続されてもよい。