JP2018031475A - 流体動圧軸受装置及びこれを備えるモータ - Google Patents

流体動圧軸受装置及びこれを備えるモータ Download PDF

Info

Publication number
JP2018031475A
JP2018031475A JP2017153217A JP2017153217A JP2018031475A JP 2018031475 A JP2018031475 A JP 2018031475A JP 2017153217 A JP2017153217 A JP 2017153217A JP 2017153217 A JP2017153217 A JP 2017153217A JP 2018031475 A JP2018031475 A JP 2018031475A
Authority
JP
Japan
Prior art keywords
bearing
bearing sleeve
radial
peripheral surface
fluid dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017153217A
Other languages
English (en)
Other versions
JP6942002B2 (ja
Inventor
正志 山郷
Masashi Yamasato
正志 山郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Publication of JP2018031475A publication Critical patent/JP2018031475A/ja
Application granted granted Critical
Publication of JP6942002B2 publication Critical patent/JP6942002B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

【課題】ラジアル軸受部の軸受性能に優れた流体動圧軸受装置を提供する。【解決手段】内周面8aでラジアル軸受隙間を形成する軸受スリーブ8と、ラジアル軸受隙間に生じる流体の動圧作用で軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2とを備え、軸受スリーブ8が、径方向隙間11に形成された接着剤層12を介してハウジング7の内周に固定された流体動圧軸受装置1において、ハウジング7の内周面7a1と軸受スリーブ8の外周面8dとの間に接着剤層12が介在しない円筒状の非接着部13が設けられており、この非接着部13は、少なくともその軸方向一部領域が、ラジアル軸受部R1,R2のうち、流体動圧が最大となる最大圧力発生領域VMAXと軸方向でオーバーラップするように設けられている。【選択図】図5

Description

本発明は、流体動圧軸受装置及びこれを備えるモータに関する。
周知のように、流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有する。このため、流体動圧軸受装置は、種々の電気機器に搭載される各種モータ、例えば、HDD等のディスク駆動装置に組み込まれるスピンドルモータ用、PC等に組み込まれるファンモータ用、あるいはレーザビームプリンタに組み込まれるポリゴンスキャナモータ用の軸受装置などとして好適に使用されている。
例えば、下記の特許文献1〜3には、ハウジングと、ハウジングの内周に固定された軸受スリーブと、軸受スリーブの内周面で形成され、流体(例えば、潤滑油)が介在するラジアル軸受隙間と、ラジアル軸受隙間内の流体に生じる動圧作用で支持すべき軸(軸受スリーブの内周に挿入される軸部材)をラジアル方向に相対回転自在に非接触支持するラジアル軸受部と、を備えた種々の形態の流体動圧軸受装置が開示されている。
特開2004−116667号公報 特開2010−96202号公報 特開2010−255777号公報
上記の流体動圧軸受装置において、軸受スリーブの内周面精度(真円度や円筒度等)は、ラジアル軸受隙間の隙間幅精度、ひいてはラジアル軸受部の軸受性能(荷重支持能力)を大きく左右する。例えば、ハウジングに対する軸受スリーブの固定方法として圧入を選択した場合、圧入による締め付け力により軸受スリーブが変形し、軸受スリーブの内周面精度に悪影響が及び易くなる。
このため、軸受スリーブは、いわゆる隙間接着によりハウジングの内周に固定する場合が多い。ここでいう隙間接着とは、ハウジングの内周に軸受スリーブをすきまばめ(JIS B 0401−1参照)することで互いに対向するハウジングの内周面と軸受スリーブの外周面との間に径方向隙間を形成し、この径方向隙間に介在させた接着剤を硬化させることで両者を固定する方法である。このような固定方法であれば、軸受スリーブがハウジングから締め付け力を受けないため、軸受スリーブの内周面の精度低下を防止できると考えられていた。しかしながら、本発明者の検証によれば、ハウジングの内周に軸受スリーブを隙間接着した場合でも、軸受スリーブの内周面精度が低下する場合があることが判明した。
以上の実情に鑑み、本発明は、いわゆる隙間接着によりハウジングの内周に軸受スリーブが固定される流体動圧軸受装置において、軸受スリーブの内周面精度を高め、もってラジアル軸受部の軸受性能を一層高めることを目的とする。
本発明者の検証によれば、前述した軸受スリーブの内周面精度の低下問題は、
(1)温度変化(特に、接着剤として熱硬化型接着剤を使用する場合、当該接着剤を硬化させるために実施される加熱処理)に伴うハウジングと軸受スリーブの変形量が相互に異なること。
(2)ハウジングと軸受スリーブの間に介在する接着剤(接着剤層)が温度変化の影響を受けて膨張・収縮する場合があること。
などに起因して生じることが判明した。上記(1)の問題は、例えば、ハウジングと軸受スリーブを同種材料、あるいは線膨張係数が近似した材料で形成すれば解消できるとも考えられる。しかしながら、ハウジングと軸受スリーブに対する要求特性は互いに異なり、ハウジングおよび軸受スリーブの形成材料としては、通常、それぞれに対する要求特性を最大限満足し得るものが選択される。そのため、ハウジングおよび/または軸受スリーブの形成材料をいたずらに変更するのは得策ではない。そこで、本発明者が鋭意検討を進めた結果、上記(2)を可及的に解消し得る技術手段を見出し、本発明を創案するに至った。
すなわち、上記の目的を達成するために創案された本発明は、内周面に、支持すべき軸部材の外周面との間にラジアル軸受隙間を形成するラジアル軸受面を有する軸受スリーブと、軸受スリーブを内周に固定したハウジングと、ラジアル軸受隙間に生じる流体の動圧作用で軸部材と軸受スリーブをラジアル方向に相対回転自在に非接触支持するラジアル軸受部とを備え、軸受スリーブが、その外周面とハウジングの内周面との間の径方向隙間に形成された接着剤層を介してハウジングの内周に固定された流体動圧軸受装置において、径方向隙間を介して互いに対向するハウジングの内周面と軸受スリーブの外周面との間に、接着剤層が介在しない円筒状の非接着部が設けられ、この非接着部は、少なくともその軸方向一部領域が、ラジアル軸受部のうち、流体動圧が最大となる最大圧力発生領域と軸方向でオーバーラップするように設けられていることを特徴とする。なお、ここでいう「最大圧力発生領域」とは、例えば、ラジアル軸受隙間内の流体に動圧作用を発生させるための動圧発生部として図3に示す形態のものを採用した場合、ラジアル軸受部(のラジアル軸受隙間)のうち、環状丘部Acの対向領域である。
ラジアル軸受隙間に生じる流体の動圧作用で軸部材と軸受スリーブをラジアル方向に相対回転自在に非接触支持するラジアル軸受部、すなわち、いわゆる動圧軸受からなるラジアル軸受部の軸受性能(荷重支持能力)は、ラジアル軸受隙間内の流体に動圧作用を発生させるべく、互いに対向する軸部材の外周面および軸受スリーブの内周面(ラジアル軸受面)の少なくとも一方に設けられる動圧発生部の形態に応じて軸方向の各所で異なり、ラジアル軸受部のうち、流体動圧が最大となる最大圧力発生領域において最も高くなる。従って、動圧軸受からなるラジアル軸受部の軸受性能を高める上では、ラジアル軸受部の最大圧力発生領域においてラジアル軸受隙間の隙間幅精度を高めることが最も効果的である。
上記のように、径方向隙間を介して互いに対向するハウジングの内周面と軸受スリーブの外周面との間に接着剤層が介在しない円筒状の非接着部を設けておけば、軸受スリーブの内周面のうち、非接着部と軸方向でオーバーラップする円筒領域には、接着剤層の膨張・収縮の影響が及び難くなる。このため、非接着部の少なくとも軸方向一部領域がラジアル軸受部の最大圧力発生領域と軸方向でオーバーラップするように設けられていれば、最大圧力発生領域の少なくとも一部領域において、ラジアル軸受隙間の隙間幅精度が変動(低下)し難くなる。これにより、ラジアル軸受部の軸受性能を効果的に高めることが可能となる。
非接着部は、例えば、その軸方向全域が最大圧力発生領域と軸方向でオーバーラップするように設けることができる(図5参照)。係る構成は、例えば、相対密度が80%以上90%未満の多孔質体で形成された軸受スリーブを用いる場合に好ましく採用することができる。なお、ここでいう「相対密度」とは真密度比とも称され、以下の関係式から算出される。
相対密度=(軸受スリーブ全体の密度/真密度)×100[%]
上式における「真密度」とは、溶製材のように内部に気孔が存在しない材料の理論密度を意味し、「軸受スリーブ全体の密度」は、例えばJIS Z2501に規定された方法により測定することができる。
非接着部は、その軸方向一方側および他方側の端部が、それぞれ、最大圧力発生領域の軸方向一方側および他方側の端部よりも軸方向外側に位置するように設けることもできる[図7(a)参照]。このようにすれば、非接着部の軸方向全域を最大圧力発生領域と軸方向でオーバーラップさせる場合に比べて非接着部の軸方向の形成範囲が拡大されるので、ラジアル軸受面の精度低下を防止する上で有利となる。係る構成は、例えば、相対密度が90%以上95%以下の多孔質体で形成された軸受スリーブを採用する場合に好ましく採用することができる。
相対密度が90%以上95%以下の多孔質体からなる軸受スリーブを採用する場合、少なくとも外周面の表面開孔が封止された軸受スリーブを用いるのが好ましい。上記表面開孔を封止した封孔部は、例えば、軸受スリーブの表層部を塑性変形させることで形成することができる。
銅を含む焼結金属の多孔質体で形成された軸受スリーブは、比較的安価に製造(量産)可能でありながら、各部(特にラジアル軸受面)の形状精度やラジアル軸受面の摺動性が良好である。そのため、このような軸受スリーブは、ラジアル軸受部の軸受性能に優れた流体動圧軸受装置を実現する上で好ましく採用し得る。
以上の構成において、非接着部は、径方向隙間の隙間幅よりも大きい径方向寸法を有する環状凹部で構成することができる。このようにすれば、特に、径方向隙間に接着剤を充填・硬化させる過程(接着剤層の形成過程)で環状凹部内に接着剤が充填された場合でも、環状凹部内の接着剤を毛細管力によって径方向隙間側に移動させることができる。そのため、上記の非接着部を確実に設けることができ、これを通じて軸受スリーブの内周面精度の向上効果を適切に享受することができる。なお、毛細管力による径方向隙間側への接着剤の移動を適切に実行可能とするため、環状凹部に、軸方向外側に向かうにつれて漸次縮径した縮径部を設け、この縮径部を径方向隙間と軸方向で隣接配置するのが好ましい。
接着剤層は、熱硬化型接着剤で形成することができる。熱硬化型接着剤であれば、所定の条件で加熱処理を実施することにより、ハウジングと軸受スリーブを確実に接着固定することができる。熱硬化型接着剤は、これを硬化させるための加熱処理が必須であるが、加熱処理時の温度上昇に伴って一旦その粘度が低下する。そのため、特に、非接着部を上記の環状凹部で構成しておけば、接着剤層の形成過程で環状凹部内に接着剤(熱硬化型接着剤)が充填された場合でも、環状凹部内の接着剤を円滑かつ確実に径方向隙間側に移動させることができる、という利点がある。
本発明に係る流体動圧軸受装置は、ラジアル軸受部の軸受性能に優れる、という特徴を有することから、さらにロータマグネットおよびステータコイルを有する各種モータ、具体的には、ディスク駆動装置(特にHDD)用のスピンドルモータ、PC用のファンモータ、LBP用のポリゴンスキャナモータ等に組み込んで好適に使用することができる。
以上より、本発明によれば、ラジアル軸受隙間の形成に直接関与する軸受スリーブの内周面精度を高めることができるので、ラジアル軸受部の軸受性能が高められた流体動圧軸受装置を提供することができる。
スピンドルモータの一例を概念的に示す断面図である。 本発明の第1実施形態に係る流体動圧軸受装置を示す断面図である。 ハウジングの内周に軸受スリーブを固定したアセンブリの断面図である。 軸受スリーブの下端面の平面図である。 図3に示すアセンブリの部分拡大図である。 (a)図は、ハウジングと軸受スリーブの組付工程における初期段階を示す図、(b)図は、同組付工程における途中段階を示す図、(c)図は、同組付工程において軸受スリーブの挿入完了段階を示す図である。 (a)図は、ハウジングの内周に高密度の軸受スリーブを固定したアセンブリの部分拡大断面図、(b)図は、(a)図の部分拡大図である。 本発明の第2実施形態に係る流体動圧軸受装置を示す断面図である。 本発明の第3実施形態に係る流体動圧軸受装置を示す断面図である。 (a)図および(b)図は、何れも、非接着部の変形例を示す拡大図である。 接着固定前後で軸受スリーブの内径寸法がどの程度変化するかを確認した結果を示す図である。 ハウジングと軸受スリーブの接着強度の確認結果を示す図である。
以下、本発明の実施の形態を図面に基づいて説明する。
図1に、スピンドルモータの一構成例を概念的に示す。同図に示すスピンドルモータは、HDD等のディスク駆動装置に用いられるものであって、流体動圧軸受装置1と、流体動圧軸受装置1の軸部材2に固定されたディスクハブ3と、半径方向隙間を介して対向するステータコイル4およびロータマグネット5と、内周に流体動圧軸受装置1のハウジング7を固定したモータベース6とを備える。ロータマグネット5はディスクハブ3に固定され、ステータコイル4はモータベース6に固定されている。ディスクハブ3には、所定枚数(図示例では2枚)のディスクDが保持されている。このような構成を有するスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、これに伴って軸部材2、ディスクハブ3及びディスクDが一体的に回転する。
図2に、本発明の第1実施形態に係る流体動圧軸受装置1を示す。この流体動圧軸受装置1は、軸部材2と、軸方向一方側および他方側の端部が開口したハウジング7と、ハウジング7の内周に固定された軸受スリーブ8と、ハウジング7の軸方向他方側の端部開口を閉塞する蓋部材10とを備え、ハウジング7の内部空間には流体としての潤滑油(密な散点ハッチングで示す)が充填されている。なお、以下では、説明の便宜上、蓋部材10が配置された側を下側、これとは軸方向の反対側を上側というが、流体動圧軸受装置1の使用態様を限定するものではない。
軸部材2は、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを有し、軸部2aおよびフランジ部2bは、例えばステンレス鋼等の金属材料で形成される。軸部2aは、軸受スリーブ8の内周に挿入され、フランジ部2bは、ハウジング7、軸受スリーブ8および蓋部材10の間に画成される空間内に配置される。
ハウジング7は、黄銅やステンレス鋼等の金属材料(溶製材)、あるいは樹脂材料で略円筒状に形成され、円筒状の筒部7aと、筒部7aよりも径方向内側に突出した短円筒状のシール部7bとを一体に有する。筒部7aの内周面は、相対的に小径の小径内周面7a1と、小径内周面7a1の下側に配置され、相対的に大径の大径内周面7a2とを有する。
シール部7bの内周面7b1は、下方に向けて漸次縮径したテーパ面状に形成されており、対向する軸部2aの円筒状外周面2a1との間に下方に向けて漸次縮径したくさび状のシール空間Sを形成する。シール空間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール空間Sの軸方向範囲内に保持する。図示は省略するが、くさび状のシール空間Sは、径一定の円筒面状に形成されたシール部7bの内周面7b1と、上方に向けて漸次縮径するテーパ面状に形成された軸部2aの外周面2a1とで形成することもできる。
蓋部材10は、黄銅やステンレス鋼等の金属材料、あるいは樹脂材料で円板状に形成され、ハウジング7の筒部7aの大径内周面7a2に固定される。蓋部材10の上端面10aは円環状のスラスト軸受面を有し、該スラスト軸受面には、スラスト軸受部T2のスラスト軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(スラスト動圧発生部)Cが形成されている。図示は省略するが、スラスト動圧発生部Cは、例えば、後述するスラスト動圧発生部B(図4参照)と同様に、スパイラル形状の動圧溝と、動圧溝を区画する凸状の丘部とを周方向に交互に配して構成される。
軸受スリーブ8は円筒状をなし、その内周面8aには、円筒面状のラジアル軸受面が軸方向に離間した二箇所に設けられている。2つのラジアル軸受面には、それぞれ、図3に示すように、ラジアル軸受部R1,R2のラジアル軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)A1,A2が形成されている。図示例のラジアル動圧発生部A1,A2は、何れも、軸方向に対して傾斜し、周方向に離間して設けられた複数の上側動圧溝Aa1と、上側動圧溝Aa1とは反対方向に傾斜し、周方向に離間して設けられた複数の下側動圧溝Aa2と、両動圧溝Aa1,Aa2を区画する凸状の丘部(図中クロスハッチングで示す)とで構成され、丘部は全体としてヘリングボーン形状に形成されている。すなわち、丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられた環状丘部Acとからなる。ラジアル動圧発生部A1においては、上側動圧溝Aa1の方が下側動圧溝Aa2よりも軸方向寸法が大きく、ラジアル動圧発生部A2を構成する両動圧溝Aa1,Aa2の軸方向寸法は、ラジアル動圧発生部A1の下側動圧溝Aa2の軸方向寸法と同寸である。
軸受スリーブ8の下端面8bにはスラスト軸受面が設けられ、このスラスト軸受面には、図4に示すように、スラスト軸受部T1のスラスト軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(スラスト動圧発生部)Bが形成されている。図示例のスラスト動圧発生部Bは、スパイラル形状の動圧溝Baと、動圧溝Baを区画する凸状の丘部Bb(図中クロスハッチングで示す)とを周方向に交互に配して構成される。
図2および図3に示すように、軸受スリーブ8の上端面8cには、環状溝8c1と、径方向外側および内側の端部が環状溝8c1および軸受スリーブ8の上端内周チャンファにそれぞれ開口した径方向溝8c2とが形成されている。また、軸受スリーブ8の外周面8dには、一又は複数(本実施形態では三本)の軸方向溝8d1が形成されている。
以上の構成を有する軸受スリーブ8は、多孔質体、ここでは銅および鉄を主成分とする焼結金属の多孔質体で形成される。すなわち、本実施形態の軸受スリーブ8は、例えば銅粉末(銅系粉末)および鉄粉末(鉄系粉末)を主成分とする原料粉末の圧粉体を加熱・焼結することで形成された銅鉄系の焼結体からなり、ここでは、保油能力や機械的強度を考慮して、80%以上90%未満の相対密度を有するものが使用される。軸受スリーブ8の内周面8aに設けられるラジアル動圧発生部A1,A2は、焼結体に寸法矯正加工(サイジング)を施すのと同時に型成形される。軸受スリーブ8の下端面8bに設けられるスラスト動圧発生B、軸受スリーブ8の上端面8cに設けられる環状溝8c1および径方向溝8c2、並びに軸受スリーブ8の外周面8dに設けられる軸方向溝8d1は、例えば、上記圧粉体を圧縮成形するのと同時に、あるいは焼結体にサイジングを施すのと同時に型成形される。
軸受スリーブ8は、その上端面8cをシール部7bの下端に当接させた状態でハウジング7の筒部7aの内周に固定されている。より詳細には、図5に示すように、軸受スリーブ8を筒部7aの内周にすきまばめすることで互いに対向する軸受スリーブ8の外周面8dと筒部7aの小径内周面7a1との間に径方向隙間11を形成し、この径方向隙間11に介在させた接着剤を硬化させることで筒部7aの内周に軸受スリーブ8が固定される。要するに、軸受スリーブ8は、径方向隙間11に形成した接着剤層12(図5中クロスハッチングで示す)を介してハウジング7の筒部7aの内周に固定されている。接着剤層12を構成する接着剤として、ここではエポキシ樹脂系接着剤に代表される熱硬化型接着剤を使用している。使用可能な熱硬化型接着剤の具体例としては、90℃程度でゲル化(硬化を開始)し、100℃程度で完全に硬化する味の素ファインテクノ社製のAE−780を挙げることができる。
図3および図5に示すように、径方向隙間11を介して互いに対向する軸受スリーブ8の外周面8dとハウジング7の筒部7aの小径内周面7a1との間には、接着剤層12が介在しない円筒(短円筒)状の非接着部13、すなわち軸受スリーブ8とハウジング7の筒部7aとを全周に亘って接着固定していない部分が上下二箇所に離間して設けられている。非接着部13は、径方向寸法が径方向隙間11の隙間幅δ1よりも大きい環状凹部14で構成され、環状凹部14は、筒部7aの小径内周面7a1に溝深さδの環状溝7cを設けることで形成される。各環状凹部14は、径一定の円筒状部14aと、円筒状部14aの軸方向両側に設けられ、軸方向外側に向かうにつれて漸次縮径した縮径部14b,14cとを有する。従って、各環状凹部14の縮径部14b,14cは、接着剤層12が形成された径方向隙間11と軸方向で隣接配置されている。
図2および図3に示すように、非接着部13(環状凹部14)は、少なくともその軸方向一部領域が、動圧軸受からなるラジアル軸受部R1,R2のうち、流体動圧が最大となる最大圧力発生領域VMAXと軸方向でオーバーラップするように設けられる。本実施形態の非接着部13は、図5に拡大して示すように、その軸方向全域が最大圧力発生領域VMAXと軸方向でオーバーラップするように設けられる。本実施形態におけるラジアル軸受部R1,R2の最大圧力発生領域VMAXは、それぞれ、ラジアル動圧発生部A1,A2を構成する環状丘部Acの対向領域である。従って、図5に示すように、非接着部13(環状凹部14)の軸方向寸法(環状溝7cの溝幅)をL、環状丘部Acの軸方向寸法をL1とすると、L≦L1の関係式が成立し、かつ非接着部13は、その上端部および下端部が、それぞれ、環状丘部Acの上端部および下端部よりも軸方向内側に位置するように(環状丘部Acの軸方向範囲内に位置するように)設けられる。
以下、以上の構成を有する流体動圧軸受装置1の組立方法について、ハウジング7の内周に軸受スリーブ8を接着固定する方法を中心に説明する。
まず、図6(a)に示すように、環状溝7cが上下に離間した二箇所に設けられたハウジング7の小径内周面7a1のうち、下側の環状溝7cよりも下方側の領域に接着剤(熱硬化型接着剤)12’を全周に亘って塗布してから、ハウジング7の下端開口部を介して軸受スリーブ8を筒部7aの内周に挿入する。軸受スリーブ8の挿入がある程度進展すると、軸受スリーブ8が接着剤12’に接触し、軸受スリーブ8の上端外周縁部付近に接着剤12’が付着する。以降、軸受スリーブ8の挿入が進展するのに伴い、軸受スリーブ8に付着した接着剤12’が軸受スリーブ8の挿入方向後方側に相対移動し、互いに対向する軸受スリーブ8の外周面8dとハウジング7の小径内周面7a1との間の径方向隙間11に接着剤12’が充填されていく[以上、図6(b)(c)参照]。
図6(a)に示す態様でハウジング7の小径内周面7a1に塗布した接着剤12’に軸受スリーブ8の上端外周縁部が接触すると、軸受スリーブ8の上端外周縁部には比較的多量の接着剤12’が付着する。このとき、接着剤12’の塗布箇所よりも軸受スリーブ8の挿入方向前方側(上側)に環状溝7cが存在しなければ、軸受スリーブ8の上端外周縁部に付着した接着剤12’の多くは軸受スリーブ8とともに軸受スリーブ8の挿入方向前方側に移動する。そのため、径方向隙間11に必要量の接着剤12’を介在させることができず、ハウジング7と軸受スリーブ8の間に所望の接着強度を確保できなくなる可能性がある。また、余剰の接着剤12’が軸受スリーブ8の上端面8cを介して軸受スリーブ8の内周に回り込み、ラジアル軸受部R1の軸受性能に悪影響を及ぼす可能性もある。
これに対し、上記のように、小径内周面7a1のうち環状溝7cよりも軸受スリーブ8の挿入方向後方側(特に、下側の環状溝7cよりも下側)に接着剤12’を予め塗布すれば、軸受スリーブ8の挿入に伴って軸受スリーブ8の上端外周縁部付近に付着した接着剤12’が上下二箇所の環状溝7cで捕捉されるため、上記のような問題発生の可能性が可及的に低減される。そのため、軸受スリーブ8の挿入完了後には、径方向隙間11の略全域[図6(c)中に、符号Yで示す軸方向領域]に接着剤12’を介在させることができる。
以上のようにして、ハウジング7の内周に軸受スリーブ8が仮固定されたアセンブリを製作した後、このアセンブリに加熱処理を施すことで接着剤12’を硬化させ、軸受スリーブ8をハウジング7に対して接着固定する。接着剤12’として前述の味の素ファインテクノ社製AE−780を使用する場合、アセンブリに対する加熱処理は、例えば、以下のような手順で行われる。
(A)内部温度が室温(25℃)程度に保たれた加熱容器に上記のアセンブリを投入する。(B)加熱容器の内部温度を、接着剤12’が完全に硬化可能な温度(100℃程度)に到達するまで徐々に昇温させる。
(C)容器内部温度を100℃程度で所定時間保持する。
上記(B)のステップでは、加熱容器の内部温度が上昇するのに伴い、接着剤12’の粘度が徐々に低下し、加熱容器の内部温度が接着剤12’のゲル化温度に到達する直前段階においては、接着剤12’の粘度がほぼゼロになる。これに伴い、ハウジング7の環状溝7cで形成される環状凹部14内に介在する接着剤12’は、毛細管力によって径方向寸法が相対的に小さい径方向隙間11に引き込まれ、その後硬化する。特に、本実施形態では、環状凹部14が軸方向外側に向かうにつれて漸次縮径した縮径部14b,14cを有し、該縮径部14b,14cが径方向隙間11と軸方向で隣接配置されているので、接着剤12’の粘度低下に伴って環状凹部14(環状溝7c)内に介在する接着剤12’は、径方向隙間11に円滑に引き込まれる。
以上により、図3および図5に示す態様でハウジング7の内周に軸受スリーブ8が接着固定されたアセンブリ、すなわち、径方向隙間11に形成された接着剤層12を介してハウジング7の内周に軸受スリーブ8が固定されたアセンブリであって、径方向隙間11を介して互いに対向するハウジング7の小径内周面7a1と軸受スリーブ8の外周面8dとの間に接着剤層12が介在しない円筒状の非接着部13が設けられたアセンブリ、が得られる。
以上のようにして得られたアセンブリのうち、軸受スリーブ8の内周に軸部材2の軸部2aを挿入してから、蓋部材10をハウジング7の筒部7aの大径内周面7a2に固定する。具体的には、まず、軸部材2のフランジ部2bの上端面2b1を軸受スリーブ8の下端面8bに当接させると共に、フランジ部2bの下端面2b2に蓋部材10の上端面10aを当接させ、スラスト軸受部T1,T2のスラスト軸受隙間の隙間幅をゼロの状態にする。その後、軸部材2を両スラスト軸受隙間の隙間幅の合計量だけ下方に移動させることで蓋部材10をハウジング7に対して下降移動させ、その位置でハウジング7と蓋部材10を固定する。そして、いわゆる真空含浸等の手法により、焼結金属製の軸受スリーブ8の内部気孔も含め、ハウジング7の内部空間に潤滑油を充満させる。以上により、図2に示す流体動圧軸受装置1が完成する。
以上の構成からなる流体動圧軸受装置1において、軸部材2と軸受スリーブ8が相対回転すると(本実施形態では軸部材2が回転する)、軸受スリーブ8の内周面8aに設けた上下2つのラジアル軸受面とこれに対向する軸部2aの外周面2a1との間にラジアル軸受隙間がそれぞれ形成される。そして、軸部材2の回転に伴い、両ラジアル軸受隙間に形成される油膜の圧力がラジアル動圧発生部A1,A2の動圧作用によって高められ、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が上下に離間して形成される。これと同時に、軸受スリーブ8の下端面8bに設けたスラスト軸受面とフランジ部2bの上端面2b1との間、および蓋部材10の上端面10aとフランジ部2bの下端面2b2との間にスラスト軸受隙間がそれぞれ形成される。そして、軸部材2の回転に伴い、両スラスト軸受隙間に形成される油膜の圧力がスラスト動圧発生部B,Cの動圧作用によって高められ、軸部材2をスラスト一方向およびスラスト他方向に非接触支持するスラスト軸受部T1,T2が形成される。
軸部材2の回転時には、ラジアル動圧発生部A1を構成する上側動圧溝Aa1と下側動圧溝Aa2との軸方向寸法差により、軸部2aの外周面2a1と軸受スリーブ8の内周面8aとの間の径方向隙間(ラジアル軸受部R1のラジアル軸受隙間)に介在する潤滑油は下方に押し込まれ、第1スラスト軸受部T1のスラスト軸受隙間→軸受スリーブ8の軸方向溝8d1で形成される軸方向の流体通路→軸受スリーブ8の上端外周チャンファ等で形成される環状空間→軸受スリーブ8の環状溝8c1および径方向溝8c2で形成される流体通路という経路を循環して、ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。これにより、ハウジング7の内部空間を満たす潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。
以上で説明したように、本発明に係る流体動圧軸受装置1においては、接着剤層12が形成された径方向隙間11を介して互いに対向するハウジング7の小径内周面7a1と軸受スリーブ8の外周面8dとの間に接着剤層12が介在しない円筒(短円筒)状の非接着部13が設けられる。このような非接着部13が設けられていれば、軸受スリーブ8の内周面8a(ラジアル軸受面)のうち、非接着部13と軸方向でオーバーラップする円筒領域には、接着剤層12の膨張・収縮の影響が及び難くなる。このため、非接着部13の少なくとも軸方向一部領域(本実施形態では軸方向全域)を、ラジアル軸受部R1,R2の最大圧力発生領域VMAXと軸方向でオーバーラップするように設けておけば、最大圧力発生領域VMAXの少なくとも一部領域において、ラジアル軸受部R1,R2のラジアル軸受隙間の隙間幅精度が変動し難くなる。これにより、ラジアル軸受部R1,R2の軸受性能を効果的に高めることが可能となる。
前述のとおり、ラジアル軸受部R1,R2の軸受性能は、ラジアル軸受隙間の隙間幅精度に影響を受けることから、ラジアル軸受部R1,R2の軸受性能を高める上では、非接着部13の軸方向の形成範囲(軸方向寸法L:図5参照)を拡大するのが有利であるとも考えられる。しかしながら、非接着部13の軸方向の形成範囲を拡大するほど、接着剤層12の軸方向の形成範囲が縮小することから、ハウジング7に対する軸受スリーブ8の接着強度が弱まり易くなる。特に、以上で説明したように、相対密度が80%以上90%未満の焼結金属からなる軸受スリーブ8を用いた場合、接着剤層12の形成過程では、径方向隙間11に介在させた接着剤12’が毛細管力によって軸受スリーブ8の内部気孔に吸い込まれ易い。このため、非接着部13の軸方向の形成範囲をむやみに拡大すると、ハウジング7と軸受スリーブ8の間に所望の接着強度を確保することができなくなる。ハウジング7と軸受スリーブ8の間に所望の接着強度が確保されていない場合、例えば流体動圧軸受装置1に対して大きな衝撃荷重が負荷されると、ハウジング7に対する軸受スリーブ8の相対位置等に狂いが生じ、流体動圧軸受装置1の軸受性能が低下する。
軸受スリーブ8を黄銅等の非多孔質材料で形成すれば、接着剤12’の吸い込みに起因した接着強度の低下を防止することができるため、非接着部13の軸方向の形成範囲を拡大することができる。しかしながら、焼結金属からなる軸受スリーブ8であれば、その内部気孔で潤滑油を保持することができるため、ラジアル軸受部R1,R2のラジアル軸受隙間やスラスト軸受部T1のスラスト軸受隙間における油膜切れを可及的に防止し、ラジアル軸受部R1,R2およびスラスト軸受部T1の軸受性能を安定的に発揮可能とする上で有利である。
そこで、軸受スリーブ8を焼結金属で形成する場合に享受し得る上記の作用効果を損なわずに、非接着部13の軸方向の形成範囲を拡大するためには、例えば、相対密度が90%以上に高められた高密度の焼結金属からなる軸受スリーブ8を用いるのが有効である。但し、軸受スリーブ8の相対密度を高め過ぎると、軸受スリーブ8の内部気孔での保油量が減少するために軸受隙間の油膜切れ防止効果が損なわれる可能性がある。そのため、焼結軸受スリーブ8の相対密度は95%以下にするのが好ましい。
ハウジング7の内周に、相対密度が90%以上に高められた焼結金属(銅鉄系の焼結金属)製の軸受スリーブ8を固定してなるアセンブリの部分拡大断面図を図7(a)に示す。同図に示す軸受スリーブ8は、その相対密度が90%以上に高められている以外に、少なくとも外周面8dの表面開孔を封止した封孔部15を有する点において、以上で説明した軸受スリーブ8と構成を異にしている。封孔部15は、軸受スリーブ8の表層部の内部気孔に樹脂材料等の封孔材を含浸・硬化させることで形成することもできるが、本実施形態では、軸受スリーブ8(の基材である焼結体)に塑性加工としてのサイジング加工を施すことで封孔部15を形成している。
すなわち、詳細な図示は省略するが、上記の封孔部15は、軸方向に相対移動可能に同軸配置された軸状のコア、円筒状のダイおよび上下パンチを有するサイジング金型を用いて形成することができる。具体的には、まず、軸受スリーブ8を下パンチの上端面に載置してから、コアを下降させ、軸受スリーブ8の内周にコアを挿入(すきまばめ)する。次いで、上パンチを下降移動させ、上下パンチで軸受スリーブ8を軸方向に挟持した後、コア、上パンチおよび下パンチを一体的に下降させてダイの内周に軸受スリーブ8を圧入する。ダイの内周面に対する軸受スリーブ8の外周面8dの圧入代は、軸受スリーブ8の大きさに応じて変更されるが、例えば、径方向の肉厚(内周面8aと外周面8dの間の径差)が2mm以下の軸受スリーブ8の場合、100μm以上とする。
ダイの内周に軸受スリーブ8を圧入した後、上パンチをさらに下降させて軸受スリーブ8を軸方向に圧縮すると、軸受スリーブ8が径方向に膨張変形し、軸受スリーブ8の外周面8dがダイの内周面に強く押し付けられる。これにより、軸受スリーブ8の外径側表層部(特に外周面8d)が塑性変形し、外周面8dの表面開孔を封止する封孔部15が形成される。本実施形態のように軸受スリーブ8が銅鉄系の焼結金属からなる場合、封孔部15は、図7(b)に模式的に示すように、軸受スリーブ8が有するFe組織とCu組織のうち、主に、相対的に軟質のCu組織が部分的に塑性変形することで形成される。従って、同図に示すように、軸受スリーブ8にサイジング加工を施すことで軸受スリーブ8に形成される封孔部15は、Cu組織の一部が塑性変形してなる変形部16を有する。
相対密度が90%以上に高められた焼結金属(銅鉄系の焼結金属)からなり、かつ、外周面8dの表面開孔を封止する封孔部15を有する軸受スリーブ8を用いることにより、接着剤層12の形成過程で軸受スリーブ8の内部気孔に接着剤12’が吸い込まれ難くなるので、図7(a)に示すように、非接着部13の軸方向の形成範囲(軸方向寸法L)を拡大しても、ハウジング7に対する軸受スリーブ8の接着強度を高めることができる。図示例では、L>L1の関係式を満たし、かつ非接着部13(環状凹部14)の上端部および下端部が、それぞれ、ラジアル動圧発生部A1(A2)の環状丘部Acの上端部および下端部よりも軸方向外側に位置するように非接着部13を設けている。なお、上記構成の軸受スリーブ8を採用することにより、ハウジング7に対する軸受スリーブ8の接着強度(単位面積当たりの接着強度)を高めることができると言えども、非接着部13の軸方向寸法Lを過剰に拡大すると、ハウジング7に対する軸受スリーブ8の接着強度が却って低下する。そのため、非接着部13の軸方向寸法Lは、環状丘部Acの軸方向寸法L1の6倍未満(L<6L1)とするのが好ましい。
以上、本発明の第1実施形態に係る流体動圧軸受装置1を説明したが、本発明を適用し得る流体動圧軸受装置は上記の実施形態に限られない。以下、図面を参照しながら本発明を適用し得る他の実施形態に係る流体動圧軸受装置を説明するが、説明の簡略化を図るため、上述した流体動圧軸受装置1と共通する構成については詳細説明を省略する。
図8に、本発明の第2実施形態に係る流体動圧軸受装置21を示す。この流体動圧軸受装置21が図2等に示す流体動圧軸受装置1と異なる主な点は、ハウジングとして、円筒状の筒部7aと、筒部7aの下端開口を閉塞する底部7d(蓋部材10に相当する部位)とが一体に設けられた有底筒状のハウジング17を使用している点、および内周面9aでシール空間Sを形成するシール部9がハウジング17とは別部材で構成され、ハウジング17の上端部内周に圧入、接着等の適宜の手段で固定されている点、にある。従って、動圧軸受からなるスラスト軸受部T2のスラスト軸受隙間は、フランジ部2bの下端面2b2とハウジング17の底部17dの上端面17d1との間に形成される。
図9に本発明の第3実施形態に係る流体動圧軸受装置31を示す。この流体動圧軸受装置31が、図2等に示す流体動圧軸受装置1と異なる主な点は、
・ハウジングとして、内周に軸受スリーブ8を隙間接着した円筒状の筒部7aと、内径寸法および外径寸法が、それぞれ、筒部7aの内径寸法および外径寸法よりも大きい大径筒部7eとが一体に設けられたハウジング27を使用している点、
・円盤部19aおよび円筒部19bを一体に有する断面逆L字状のシール部材19を軸受スリーブ8の上端に固定し、円盤部19aのテーパ状内周面19a1と軸部2aの円筒状外周面2a1との間に下方に向けて漸次縮径したくさび状の第1シール空間S1を形成すると共に、円筒部19bの円筒状外周面19b2とハウジング27の大径筒部7eのテーパ状内周面7e1との間に下方に向けて漸次縮径したくさび状の第2シール空間S2を形成している点、
などにある。
第1シール空間S1と第2シール空間S2は、何れも潤滑油の油面を保持しており、両シール空間S1,S2は、円盤部19aの下端面19a2に設けた径方向溝19a3で形成される流体通路、軸受スリーブ8の外周面8dに設けた軸方向溝8d1で形成される流体通路、および円筒部19bの下端面とハウジング27の段差面7a4との間の軸方向隙間などを介して連通している。
また、本実施形態の流体動圧軸受装置31では、軸受スリーブ8の外周面8dの軸方向の一部領域のみがハウジング27の筒部7aの小径内周面7a1に隙間接着(両面8d,7a1間の径方向隙間11に形成された接着剤層12を介して固定)されている。このため、軸受スリーブ8の内周面8aのうち、軸受スリーブ8の外周面8dが筒部7aの小径内周面7a1に固定されていない軸方向領域Pの精度は、軸受スリーブ8がハウジング7の内周に固定されても変化しない。特に、図示例の形態では、上記の軸方向領域Pと、ラジアル軸受部R1の最大圧力発生領域VMAXの軸方向略全域とが軸方向でオーバーラップしていることから、ラジアル軸受部R1の軸受性能がハウジング7と軸受スリーブ8の固定態様に大きく影響を受けない。従って、本実施形態において、非接着部13は、ラジアル軸受部R2の最大圧力発生領域VMAXと軸方向でオーバーラップするように設けられる。
本実施形態では、軸受スリーブ8の外周面8dの軸方向一部領域のみがハウジングの内周面に接着固定されるため、軸方向寸法が同寸の軸受スリーブ8を使用すると仮定すると、軸受スリーブ8の外周面8dの軸方向全域がハウジングの内周面に接着固定される場合(例えば、図2)に比べ、ハウジングに対する軸受スリーブ8の接着強度が低くなる。そのため、本実施形態では、図8の拡大図中に示すように、筒部7aの小径内周面7a1の上端部に小径内周面7a1よりも大径の大径内周面7fを設け、この大径内周面7fと軸受スリーブ8の外周面8dとの間に接着剤溜り(径方向隙間11に形成される接着剤層12よりも径方向の肉厚が大きい接着剤層12が形成された部位)を設けている。
以上、本発明の実施形態に係る流体動圧軸受装置1,21,31について説明したが、これらの流体動圧軸受装置には本発明の要旨を逸脱しない範囲で適宜の変更を施すことが可能である。
例えば、非接着部13を構成する環状凹部14は、図10(a)に示すように、ハウジング7の小径内周面7a1に断面V字状の溝底形状を有する環状溝7cを設けることで形成することができる他、図10(b)に示すように、溝底面の一部が円弧面状をなす環状溝7cをハウジング7の小径内周面7a1に設けることで形成することもできる。なお、図10(a)に示す形態の場合、環状凹部14は、円筒状部14aが省略され、縮径部14b,14cのみで構成される。また、以上の実施形態では、ハウジング7の内周面7a1に環状溝7cを設けることで非接着部13(環状凹部14)を形成するようにしたが、この非接着部13は、径方向隙間11を介してハウジング7の内周面7a1と対向する軸受スリーブ8の外周面8dに環状溝を設けることで形成することができる他、径方向隙間11を介して対向するハウジング7の内周面7a1および軸受スリーブ8の外周面8dの双方に環状溝を設けることで形成することもできる。
また、以上の実施形態では、ハウジングの内周に軸受スリーブ8を接着固定(隙間接着)するための接着剤12’として熱硬化型接着剤を使用したが、本発明は、熱硬化型接着剤以外の接着剤、例えば嫌気性接着剤を用いてハウジングの内周に軸受スリーブ8が接着固定される流体動圧軸受装置にも好ましく適用することができる。但し、熱硬化型接着剤であれば、これを硬化させる過程で一旦粘度が下がる関係上、径方向隙間11を介して互いに対向するハウジングの内周面と軸受スリーブ8の外周面との間に、所望の接着剤層12と非接着部13とを容易に形成できるという利点がある。
また、以上の実施形態では、銅鉄系の焼結金属の多孔質体からなる軸受スリーブ8を使用したが、本発明は、銅を含むその他の焼結金属(例えば、銅−ステンレス鋼系の焼結金属や、銅−鉄−ステンレス鋼系の焼結金属)で形成された軸受スリーブ8を使用する場合や、焼結金属以外の多孔質体、例えば多孔質樹脂で形成された軸受スリーブ8を使用する場合にも好ましく適用することができる。また、本発明は、黄銅等の軟質金属や樹脂材料等、非多孔質材料で形成された軸受スリーブ8を使用する場合にも適用することができる。
また、ラジアル動圧発生部A1,A2の形状は以上で示したものに限られるわけではなく、要求特性等に応じて適宜変更されるのはもちろんである。また、ラジアル動圧発生部A1,A2は、軸受スリーブ8の内周面8aに対向する軸部2aの外周面2a1に設けても構わない。
また、本発明は、軸部材2を回転側、軸受スリーブ8を静止側とした流体動圧軸受装置のみならず、軸部材2を静止側、軸受スリーブ8を回転側とした流体動圧軸受装置にも好ましく適用することができる。
また、本発明は、送風用の羽根を有するロータ、あるいはポリゴンミラーが軸部材2に設けられる流体動圧軸受装置にも好ましく適用することができる。すなわち、本発明は、図1に示すディスク駆動装置用のスピンドルモータのみならず、PC用のファンモータやレーザビームプリンタ(LBP)用のポリゴンスキャナモータ等、その他の電気機器用モータに組み込まれる流体動圧軸受装置にも好ましく適用することができる。
本発明の有用性を実証するため、以下に説明する2種類の確認試験(第1および第2の確認試験)を実施した。
[第1の確認試験]
第1の確認試験では、内周面形状、具体的には、環状溝7cの溝幅(環状凹部14の軸方向寸法)Lおよび溝深さδ(図5参照)が相互に異なる三種類のハウジング(ここでは、図8に示すハウジング27)を、それぞれ10個準備した。次いで、味の素ファインテクノ社製の熱硬化型接着剤AE−780を使用し、各ハウジングの内周に、内周面に図3に示すラジアル動圧発生部A1,A2が形成された軸受スリーブ8を図5に示す態様で隙間接着した。そして、
(a)接着前後での軸受スリーブの内径寸法変化量(より詳細には、ラジアル動圧発生部A2を構成する環状丘部Acの形成領域における内径寸法変化量)
(b)ハウジングに対する軸受スリーブの接着強度
を確認した。なお、上記の接着強度は、軸受スリーブに軸方向荷重を付与し、接着剤層が破壊された(ハウジングから軸受スリーブが抜け落ちた)際の軸方向荷重(抜去力)で評価した。
第1の確認試験の実施に際して準備した三種類のハウジング(第1〜第3のハウジング)および軸受スリーブは以下のとおりである。
・第1のハウジング:環状溝なし(L=0mm、δ=0mm)
・第2のハウジング:L=1mm、δ=0.05mm
・第3のハウジング:L=2.5mm、δ=0.05mm
・軸受スリーブ:環状丘部Acの軸方向寸法L1(図3参照)=0.6mm
・ハウジングの内周面と軸受スリーブの外周面との間に形成される径方向隙間の隙間幅δ1(図5参照)=0.005mm
上記(a)(b)の確認結果を図11および図12にそれぞれ示す。図11および図12中の「サンプル1」〜「サンプル3」とは、それぞれ、上記の第1〜第3のハウジングの内周に上記の軸受スリーブを隙間接着してなるアセンブリである。
図11に示すとおり、軸受スリーブの内径寸法(環状丘部Acの形成領域における内径寸法)は、サンプル1において平均で1.05μm程度小さくなり、サンプル2において平均で0.4μm小さくなり、また、サンプル3において平均で0.15μm程度大きくなった。この確認結果から、軸受スリーブの内径寸法変化量の絶対値は環状溝の溝幅Lが大きくなるほど小さくなることがわかる。従って、軸受スリーブ8の内周面精度(特にラジアル軸受面の精度)を向上する上では、図5に示すように、径方向隙間11を介して互いに対向する軸受スリーブ8の外周面8dとハウジング7の内周面7a1との間に接着剤層12が介在しない円環状の非接着部13を設けることが有利であり、さらには、非接着部13の軸方向寸法を拡大することが一層有利であると言える。
一方、図12に示すとおり、ハウジングに対する軸受スリーブの接着強度は、環状溝7c(非接着部13)の軸方向寸法が拡大するほど低下し、特にサンプル3では、接着強度の低下が顕著であった。
以上より、実際のところは、必要とされる接着強度等に応じて非接着部の軸方向寸法を決定付ければ良いが、ラジアル軸受部の軸受性能を高めるためには、非接着部を、ラジアル軸受部の最大圧力発生領域(の軸方向全域)と軸方向でオーバーラップするように設けるのが好ましいと言える。
[第2の確認試験]
第2の確認試験では、多孔質体からなる軸受スリーブの相対密度と、軸受スリーブの外周面の表面開孔を封止する封孔部の有無とがハウジングと軸受スリーブの間の接着強度にどの程度影響を与えるかを確認した。具体的には、以下の(1)(2)の構成を有する軸受スリーブを、図2に示す黄銅製のハウジングの内周に隙間接着した場合の接着強度(10個のサンプルの平均値)を確認した。両者を固定するために使用した接着剤は、第1の確認試験と同様に、味の素ファインテクノ社製の熱硬化型接着剤AE−780である。
(1)相対密度が80%以上90%未満(87%)の銅鉄系の焼結金属からなり、外周面に封孔部を有さない軸受スリーブ(図5参照)。
(2)相対密度が90%以上(93%)の銅鉄系の焼結金属からなり、外周面に封孔部を有する軸受スリーブ[図7(a)参照]。
上記(1)の軸受スリーブ8を用いた場合、抜去力の平均値は985Nであったのに対し、上記(2)の軸受スリーブ8を用いた場合、抜去力の平均値は3202Nであった。
以上より、多孔質体からなる軸受スリーブを用いる場合、軸受スリーブの相対密度を高める(高密度の軸受スリーブを用いる)こと、さらには軸受スリーブの外周面に封孔部を設けることが、ハウジングに対する軸受スリーブの接着強度を高め、信頼性に富む流体動圧軸受装置を実現する上で好ましいと言える。
1 流体動圧軸受装置
2 軸部材
7 ハウジング
7a 筒部
7a1 小径内周面
7c 環状溝
8 軸受スリーブ
8d 外周面
11 径方向隙間
12 接着剤層
12’ 接着剤
13 非接着部
14 環状凹部
14b 縮径部
14c 縮径部
15 封孔部
A1、A2 ラジアル動圧発生部
Ac 環状丘部
L 非接着部(環状凹部)の軸方向寸法
L1 環状丘部の軸方向寸法
R1、R2 ラジアル軸受部
T スラスト軸受部
MAX 最大圧力発生領域
δ 環状溝の溝深さ
δ1 径方向隙間の隙間幅

Claims (11)

  1. 内周面に、支持すべき軸部材の外周面との間にラジアル軸受隙間を形成するラジアル軸受面を有する軸受スリーブと、軸受スリーブを内周に固定したハウジングと、前記ラジアル軸受隙間に生じる流体の動圧作用で前記軸部材と前記軸受スリーブをラジアル方向に相対回転自在に非接触支持するラジアル軸受部とを備え、前記軸受スリーブが、その外周面と前記ハウジングの内周面との間の径方向隙間に形成された接着剤層を介して前記ハウジングの内周に固定された流体動圧軸受装置において、
    前記径方向隙間を介して互いに対向する前記ハウジングの内周面と前記軸受スリーブの外周面との間に前記接着剤層が介在しない円筒状の非接着部が設けられ、該非接着部は、少なくともその軸方向一部領域が、前記ラジアル軸受部のうち、流体動圧が最大となる最大圧力発生領域と軸方向でオーバーラップするように設けられていることを特徴とする流体動圧軸受装置。
  2. 前記非接着部は、その軸方向全域が前記最大圧力発生領域と軸方向でオーバーラップするように設けられている請求項1に記載の流体動圧軸受装置。
  3. 前記軸受スリーブは、相対密度が80%以上90%未満の多孔質体で形成されている請求項2に記載の流体動圧軸受装置。
  4. 前記非接着部の軸方向一方側および他方側の端部が、それぞれ、前記最大圧力発生領域の軸方向一方側および他方側の端部よりも軸方向外側に位置している請求項1に記載の流体動圧軸受装置。
  5. 前記軸受スリーブは、相対密度が90%以上95%以下の多孔質体で形成されている請求項4に記載の流体動圧軸受装置。
  6. 前記軸受スリーブのうち、少なくとも外周面の表面開孔が封止されている請求項5に記載の流体動圧軸受装置。
  7. 前記軸受スリーブが、銅を含む焼結金属の多孔質体で形成されている請求項1〜6の何れか一項に記載の流体動圧軸受装置。
  8. 前記非接着部が、前記径方向隙間の隙間幅よりも大きい径方向寸法を有する筒状凹部で構成された請求項1〜7の何れか一項に記載の流体動圧軸受装置。
  9. 前記筒状凹部は、軸方向外側に向かうにつれて漸次縮径した縮径部を有し、該縮径部が前記径方向隙間と軸方向で隣接配置されている請求項8に記載の流体動圧軸受装置。
  10. 前記接着剤層が、熱硬化型接着剤で形成されている請求項1〜9の何れか一項に記載の流体動圧軸受装置。
  11. 請求項1〜10の何れか一項に記載の流体動圧軸受装置と、ロータマグネットと、ステータコイルとを有するモータ。
JP2017153217A 2016-08-23 2017-08-08 流体動圧軸受装置及びこれを備えるモータ Active JP6942002B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016162628 2016-08-23
JP2016162628 2016-08-23

Publications (2)

Publication Number Publication Date
JP2018031475A true JP2018031475A (ja) 2018-03-01
JP6942002B2 JP6942002B2 (ja) 2021-09-29

Family

ID=61303220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153217A Active JP6942002B2 (ja) 2016-08-23 2017-08-08 流体動圧軸受装置及びこれを備えるモータ

Country Status (1)

Country Link
JP (1) JP6942002B2 (ja)

Also Published As

Publication number Publication date
JP6942002B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
US7988810B2 (en) Sleeve unit, method of manufacturing thereof, and motor using the sleeve unit
JP5306747B2 (ja) 流体軸受装置
JP5207657B2 (ja) 動圧軸受装置の製造方法
JP2007263228A (ja) 動圧軸受装置
US9964144B2 (en) Manufacturing method for fluid dynamic bearing devices
JP2007051717A (ja) 動圧軸受装置の製造方法
JPH11280755A (ja) 流体軸受装置及びこれを用いたスピンドルモータ
JP2018031475A (ja) 流体動圧軸受装置及びこれを備えるモータ
JP2010106994A (ja) 流体軸受装置
JP4754418B2 (ja) 流体軸受装置
JP4790586B2 (ja) 流体軸受装置及びその製造方法
JP2002125344A (ja) 磁気ディスク装置及びディスクドライブ用スピンドルモータ
JP2007327588A (ja) 流体軸受装置
JP4916941B2 (ja) 流体軸受装置およびその製造方法
JP2009228873A (ja) 流体軸受装置
JP4579218B2 (ja) 動圧型軸受ユニットの製造方法
JP4579013B2 (ja) 動圧軸受装置
CN104852502A (zh) 马达、盘片驱动装置以及电子设备
JP2007082339A (ja) 流体軸受装置およびその製造方法
JP2010091004A (ja) 流体動圧軸受装置及びその製造方法
JP4588561B2 (ja) 動圧軸受装置
JP5394182B2 (ja) 流体動圧軸受装置及びその製造方法
JP5335304B2 (ja) 流体動圧軸受装置
JP5133156B2 (ja) 流体動圧軸受装置
JP5335311B2 (ja) 流体動圧軸受装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210907

R150 Certificate of patent or registration of utility model

Ref document number: 6942002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150