JP2018017148A - 熱発電システム - Google Patents

熱発電システム Download PDF

Info

Publication number
JP2018017148A
JP2018017148A JP2016146629A JP2016146629A JP2018017148A JP 2018017148 A JP2018017148 A JP 2018017148A JP 2016146629 A JP2016146629 A JP 2016146629A JP 2016146629 A JP2016146629 A JP 2016146629A JP 2018017148 A JP2018017148 A JP 2018017148A
Authority
JP
Japan
Prior art keywords
rotor
rankine cycle
working medium
expander
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016146629A
Other languages
English (en)
Other versions
JP6774249B2 (ja
Inventor
秀之 種岡
Hideyuki Taneoka
秀之 種岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2016146629A priority Critical patent/JP6774249B2/ja
Publication of JP2018017148A publication Critical patent/JP2018017148A/ja
Application granted granted Critical
Publication of JP6774249B2 publication Critical patent/JP6774249B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】装置をより効果的に小型化する。【解決手段】加熱される作動媒体が循環する流路、流路に設けられ作動媒体を循環させるランキンサイクルポンプ、及び流路に設けられ作動媒体を膨張させて回転エネルギを生成する膨張器を含むランキンサイクルと、膨張器により生成された回転エネルギを用いて発電可能、かつ、ランキンサイクルポンプを駆動するための駆動力を出力可能なモータジェネレータ部と、を備え、モータジェネレータ部は、ランキンサイクルポンプの回転軸と連結され、複数の永久磁石が交互に異なる極性となるように周方向に配設された第1回転子と、第1回転子の外周側に空隙を介して対向して設けられ、膨張器の回転軸と連結され、複数の軟磁性体が周方向に配設された第2回転子と、第2回転子の外周側に空隙を介して対向して設けられ、複数の電機子が周方向に配設された固定子と、を含む、熱発電システムが提供される。【選択図】図2

Description

本発明は、熱発電システムに関する。
従来、熱を利用して機械エネルギを生成するランキンサイクルが知られている。例えば、車両に適用されるランキンサイクルは、車両において生じるエンジンの廃熱を用いて機械エネルギを生成する。ランキンサイクルは、具体的には、加熱される作動媒体が循環する流路と、当該流路に設けられ作動媒体を循環させるランキンサイクルポンプと、及び当該流路に設けられ作動媒体を膨張させて回転エネルギを生成する膨張器と、を含む。さらに、膨張器に発電機を接続することによって、膨張器により生成された回転エネルギを用いて発電することができる。このように、ランキンサイクル及び発電機を含む熱発電システムによって、熱を利用した発電である熱発電が実現される。このような熱発電システムに関する分野において、装置を小型化するために、ランキンサイクルポンプ及び膨張器の双方に発電機を連結させる技術が提案されている。
例えば、特許文献1には、廃熱回収効率が低下せずに、コンパクトでコストを低減した車両用廃熱回収システムを提供するために、車両の廃熱により作動流体を加熱する熱交換器、当該熱交換器で加熱された作動流体を膨張させる膨張機、当該膨張機で膨張された作動流体を冷却するコンデンサ、及び当該コンデンサで冷却された作動流体を循環するポンプを有するランキンサイクルと、当該ポンプ及び当該膨張機に連結する負荷機とを備える車両用排熱回収システムにおいて、負荷機が、モータとして当該ポンプを駆動すると共に発電機として当該膨張機の動力を利用して発電を行うようにする技術が開示されている。
特開2006−242174号公報
このように、ランキンサイクルポンプ及び膨張器の双方に発電機を連結させることによって、ランキンサイクルポンプを専用の電動モータによって駆動させるように構成した場合と比較して、装置を小型化することができる。しかしながら、熱発電システムに関する分野において、装置をより効果的に小型化することが望ましいと考えられる。
ランキンサイクルポンプ及び膨張器の双方に発電機を連結させた場合において、ランキンサイクルポンプ及び膨張器の回転軸が一体に回転するように構成され得る。このような場合、ランキンサイクルポンプ及び膨張器の回転速度の差を調整することは困難であるので、ランキンサイクルポンプ及び膨張器のそれぞれから下流側へ吐出される作動媒体の流量(以下、吐出流量とも称する。)の差を調整することが困難となり得る。
ランキンサイクルポンプ及び膨張器の吐出流量の差が固定の場合、膨張器に供給される気相の作動媒体の体積(以下、蒸気体積流量とも称する。)は略一定となる。このような場合において、理想気体の状態方程式によれば、膨張器へ供給される気相の作動媒体の温度(以下、蒸気温とも称する。)及び圧力(以下、蒸気圧とも称する。)は、相関を有する。よって、蒸気温が上昇することによって、蒸気圧が過剰に高くなり得るので、膨張器が破損するおそれがある。一方、蒸気温が低下することによって、蒸気圧が過剰に低くなり得るので、膨張器によって生成される回転エネルギの減少に伴い、発電量が減少し得る。従って、蒸気温に応じて、ランキンサイクルポンプ及び膨張器の吐出流量の差を調整する必要が生じる。
ここで、ランキンサイクルポンプ及び膨張器の双方に発電機を連結させた場合において、ランキンサイクルポンプ及び膨張器の1回転あたりの吐出量を調整する機構を設けることによって、ランキンサイクルポンプ及び膨張器の吐出流量の差を調整可能とすることが考えられる。しかしながら、そのような機構は、比較的部品点数が多いので、装置をより効果的に小型化することが困難となり得る。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、装置をより効果的に小型化することが可能な、新規かつ改良された熱発電システムを提供することにある。
上記課題を解決するために、本発明のある観点によれば、加熱される作動媒体が循環する流路、前記流路に設けられ前記作動媒体を循環させるランキンサイクルポンプ、及び前記流路に設けられ前記作動媒体を膨張させて回転エネルギを生成する膨張器を含むランキンサイクルと、前記膨張器により生成された回転エネルギを用いて発電可能、かつ、前記ランキンサイクルポンプを駆動するための駆動力を出力可能なモータジェネレータ部と、を備え、前記モータジェネレータ部は、前記ランキンサイクルポンプの回転軸と連結され、複数の永久磁石が交互に異なる極性となるように周方向に配設された第1回転子と、前記第1回転子の外周側に空隙を介して対向して設けられ、前記膨張器の回転軸と連結され、複数の軟磁性体が周方向に配設された第2回転子と、前記第2回転子の外周側に空隙を介して対向して設けられ、複数の電機子が周方向に配設された固定子と、を含む、熱発電システムが提供される。
前記軟磁性体の数は、前記永久磁石の極対数に前記複数の電機子の極対数を加算して得られる値であってもよい。
前記固定子の前記複数の電機子に流れる交流電流の周波数を制御することにより、前記固定子によって発生する回転磁界の回転速度を制御する制御装置を備え、前記制御装置は、前記回転磁界の回転速度を制御することにより、前記第1回転子及び前記第2回転子の回転速度を制御してもよい。
前記制御装置は、前記膨張器へ供給される気相の前記作動媒体の温度である蒸気温に応じて、前記第1回転子及び前記第2回転子の回転速度の比である回転速度比を制御してもよい。
前記制御装置は、前記蒸気温が所定の圧力における前記作動媒体の沸点より高い場合、前記蒸気温が高くなるにつれて、前記回転速度比を増大させてもよい。
前記制御装置は、前記蒸気温が前記所定の圧力における前記作動媒体の沸点以下である場合、前記蒸気温が低くなるにつれて、前記回転速度比を増大させてもよい。
前記制御装置は、前記熱発電システムを始動させるときに、前記第1回転子の回転速度を、前記ランキンサイクルの前記作動媒体が加熱される程度が大きいほど、高い回転速度まで上昇させてもよい。
前記制御装置は、前記熱発電システムを停止させるときに、前記回転磁界の回転を停止させてもよい。
前記ランキンサイクルの前記作動媒体は、車両のエンジンの廃熱によって、加熱されてもよい。
以上説明したように本発明によれば、装置をより効果的に小型化することが可能となる。
本発明の実施形態に係る車両の充電システムの概略構成の一例を示す模式図である。 同実施形態に係るモータジェネレータ部及び周囲の構成の一例を示す説明図である。 同実施形態に係るモータジェネレータ部の構成の一例を示す断面図である。 作動媒体の蒸気圧曲線の一例を示す説明図である。 蒸気温と目標蒸気圧との関係性の一例について説明するための説明図である。 蒸気温と目標回転速度比との関係性を表すマップの一例を示す説明図である。 同実施形態に係る制御装置が行う処理の流れの一例を示すフローチャートである。 熱発電システムを始動させるときにおける、モータジェネレータ部の挙動の一例を示す共線図である。 熱発電システムが始動した後における、モータジェネレータ部の挙動の一例を示す共線図である。 熱発電システムを停止させるときにおける、モータジェネレータ部の一例を示す共線図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<1.充電システムの構成>
まず、図1を参照して、本発明の実施形態に係る車両の充電システム10の概略構成について説明する。図1は、本実施形態に係る充電システム10の概略構成の一例を示す模式図である。図1に示したように、充電システム10は、主に、エンジン11と、駆動力伝達系51と、駆動輪21と、高電圧バッテリ31と、走行用モータジェネレータ41と、モータジェネレータ部300と、ランキンサイクル70と、制御装置100と、を備える。また、充電システム10では、ランキンサイクル70及びモータジェネレータ部300を少なくとも含んで、熱発電システム90が構成される。
エンジン11は、車両の走行状態に応じて運転又は停止する。例えば、エンジン11は、車両の走行中において要求トルクに応じて運転又は停止する。エンジン11の運転により生成された駆動力は、駆動力伝達系51を介して、駆動輪21へ伝達される。エンジン11のシリンダブロックやシリンダヘッドには、冷却水が循環する冷却水流路13が、エンジン11を冷却するために、設けられている。エンジン11の廃熱は、冷却水流路13内を循環する冷却水によって回収される。冷却水流路13は、エンジン11の外部においてランキンサイクル70の熱交換器74と接続され、熱交換器74においてランキンサイクル70の作動媒体と熱交換を行う。
高電圧バッテリ31は、高電圧(例えば、200V)の電力供給源である。具体的には、高電圧バッテリ31は、モータジェネレータ部300及び車両の駆動力を出力する走行用モータジェネレータ41へ電力をそれぞれ供給する他、車両内の各種装置へ電力を供給する低電圧バッテリへ電力を供給する。高電圧バッテリ31には、モータジェネレータ部300により発電された電力及び走行用モータジェネレータ41により発電された電力が、それぞれ蓄電される。
走行用モータジェネレータ41は、車両の駆動力を生成する駆動用モータとしての機能を有する。また、走行用モータジェネレータ41は、車両の減速時に車両の運動エネルギを用いて発電し、発電された電力を高電圧バッテリ31へ蓄電する制動発電用発電機としての機能を有する。走行用モータジェネレータ41は、例えば、三相交流式のモータとインバータ装置とを備え、インバータ装置を介して高電圧バッテリ31と電気的に接続されている。なお、当該インバータ装置はコンバータ装置としての機能も有する。
走行用モータジェネレータ41が駆動用モータとして機能する場合、高電圧バッテリ31から供給される直流電力がインバータ装置によって交流電力に変換され、モータへ供給される。それにより、モータによって駆動力が生成される。走行用モータジェネレータ41により生成された駆動力は、駆動力伝達系51を介して、駆動輪21へ伝達される。制御装置100は、インバータ装置を制御することによって、走行用モータジェネレータ41による駆動力の生成を制御する。
走行用モータジェネレータ41が車両の減速時に制動発電用発電機として機能する場合、制御装置100によりインバータ装置が制御されることによって、駆動輪21の回転エネルギを用いてモータにより発電が行われ、発電された交流電力がインバータ装置により直流電力に変換され、高電圧バッテリ31へ蓄電される。それにより、駆動輪21の回転に抵抗が与えられ、制動力が発生する。制御装置100は、インバータ装置を制御することによって、走行用モータジェネレータ41による発電を制御する。具体的には、制御装置100は、インバータ装置を介して走行用モータジェネレータ41の出力電圧を制御する。
ランキンサイクル70は、車両のエンジン11の廃熱を用いて、機械エネルギを生成する。図1に示したように、ランキンサイクル70は、作動媒体流路71と、ランキンサイクルポンプ73と、熱交換器74と、膨張器75と、凝縮器77と、タンク79と、を含む。
作動媒体流路71は、加熱される作動媒体が循環する流路である。作動媒体として、例えば、水、フロン、又はアルコールが適用され得る。
ランキンサイクルポンプ73は、タンク79に貯留された作動媒体を吸い上げ、作動媒体流路71内で作動媒体を循環させるポンプである。ランキンサイクルポンプ73は、モータジェネレータ部300と接続される。具体的には、ランキンサイクルポンプ73の回転軸73aが、後述するモータジェネレータ部300の第1回転子と連結される。また、ランキンサイクルポンプ73は、モータジェネレータ部300によって駆動される。具体的には、制御装置100からの動作指示に基づいてモータジェネレータ部300により駆動力が生成され、当該駆動力がランキンサイクルポンプ73の回転軸73aへ出力されることによって、ランキンサイクルポンプ73の駆動が制御されるように構成される。
熱交換器74には、作動媒体流路71及び冷却水流路13が接続される。熱交換器74において、作動媒体と冷却水との間で熱交換が行われる。それにより、作動媒体は、エンジン11の廃熱を有する冷却水によって加熱され、気化する。
膨張器75は、熱交換器74で気化した作動媒体を膨張させて回転エネルギを生成する。具体的には、膨張器75において、作動媒体は膨張室へ吸入され、膨張室で作動媒体が膨張し、羽根車が作動媒体の流れを受けることにより、当該羽根車と接続された回転軸75aの回転運動のエネルギが生成される。膨張器75はモータジェネレータ部300と接続されている。具体的には、膨張器75の回転軸75aが、後述するモータジェネレータ部300の第2回転子と連結されている。また、膨張器75により生成された回転エネルギは、回転軸75aからモータジェネレータ部300へ伝達される。
凝縮器77は、膨張器75を通過した気相の作動媒体を凝縮する。凝縮器77は、具体的には、作動媒体が有する熱を作動媒体流路71の外部へ放出させることによって、当該作動媒体を冷却する。それにより、気相の作動媒体が凝縮される。凝縮器77によって凝縮された作動媒体は、タンク79へ貯留される。タンク79へ貯留された作動媒体は、再び、ランキンサイクルポンプ73によって吸い上げられる。このように、作動媒体は、ランキンサイクルポンプ73、熱交換器74、膨張器75、凝縮器77、及びタンク79を順に流れることによって、ランキンサイクル70において循環する。
モータジェネレータ部300は、膨張器75により生成された回転エネルギを用いて発電可能である。また、モータジェネレータ部300は、ランキンサイクルポンプ73を駆動するための駆動力を出力可能である。モータジェネレータ部300は、例えば、インバータ装置を備え、インバータ装置を介して高電圧バッテリ31と電気的に接続されている。なお、当該インバータ装置はコンバータ装置としての機能も有する。
モータジェネレータ部300が膨張器75により生成された回転エネルギを用いて発電する熱発電用発電機として機能する場合、制御装置100によりインバータ装置が制御されることによって、発電が行われ、発電された交流電力(具体的には、三相交流電力)がインバータ装置により直流電力に変換され、高電圧バッテリ31へ蓄電される。制御装置100は、インバータ装置を制御することによって、モータジェネレータ部300による発電を制御する。具体的には、制御装置100は、インバータ装置を介してモータジェネレータ部300の出力電圧を制御する。
モータジェネレータ部300がランキンサイクルポンプ73を駆動するための駆動力を出力する駆動用モータとして機能する場合、高電圧バッテリ31から供給される直流電力がインバータ装置によって交流電力(具体的には、三相交流電力)に変換され、モータジェネレータ部300へ供給される。それにより、モータジェネレータ部300によって駆動力が生成される。モータジェネレータ部300により生成された駆動力は、ランキンサイクルポンプ73の回転軸73aへ出力される。それにより、ランキンサイクルポンプ73が駆動される。本実施形態では、モータジェネレータ部300により生成された駆動力は、膨張器75の回転軸75aへも出力され得る。それにより、膨張器75の回転速度が制御され得る。制御装置100は、インバータ装置を制御することによって、モータジェネレータ部300による駆動力の生成を制御する。
本実施形態に係るモータジェネレータ部300は、ランキンサイクルポンプ73の回転軸73aと連結される第1回転子と、膨張器75の回転軸75aと連結される第2回転子と、固定子と、を含む。モータジェネレータ部300において、固定子に交流電流が流れることによって、回転磁界が発生するように構成されている。また、モータジェネレータ部300において、第1回転子、第2回転子、及び回転磁界の回転速度は、所定の関係性を有する。それにより、ランキンサイクルポンプ73及び膨張器75の吐出流量の差を調整することが可能となるので、装置をより効果的に小型化することができる。なお、モータジェネレータ部300の詳細については、後述する。
また、モータジェネレータ部300において、上述したインバータ装置は、具体的には、固定子と電気的に接続されている。ゆえに、固定子が、インバータ装置を介して高電圧バッテリ31と電気的に接続されている。モータジェネレータ部300において、制御装置100により、固定子に流れる交流電流の周波数が制御されることによって、固定子によって発生する回転磁界の回転速度が制御されるように構成され得る。それにより、後述するように、モータジェネレータ部300における第1回転子及び第2回転子の回転速度が制御される。
以上説明したように、本実施形態では、熱を利用した発電である熱発電を実行可能な熱発電システム90が、ランキンサイクル70及びモータジェネレータ部300を少なくとも含んで、構成される。
また、充電システム10には、ポンプ回転速度センサ201と、膨張器回転速度センサ203と、蒸気温センサ205と、水温センサ207と、が設けられてもよい。
ポンプ回転速度センサ201は、ランキンサイクルポンプ73の回転速度を検出し、検出結果を出力する。ポンプ回転速度センサ201は、例えば、ランキンサイクルポンプ73の回転軸73aの近傍に設けられる。
膨張器回転速度センサ203は、膨張器75の回転速度を検出し、検出結果を出力する。膨張器回転速度センサ203は、例えば、膨張器75の回転軸75aの近傍に設けられる。
蒸気温センサ205は、膨張器75へ供給される作動媒体の温度である蒸気温を検出し、検出結果を出力する。蒸気温センサ205は、例えば、ランキンサイクル70の作動媒体流路71の膨張器75より上流側に設けられる。
水温センサ207は、エンジン11の冷却水の温度を検出し、検出結果を出力する。水温センサ207は、例えば、エンジン11の近傍に設けられる。
制御装置100は、演算処理装置であるCPU(Central Processing Unit)、CPUが使用するプログラムや演算パラメータ等を記憶する記憶素子であるROM(Read Only Memory)、CPUの実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する記憶素子であるRAM(Random Access Memory)等で構成される。
制御装置100は、充電システム10を構成する各装置の動作を制御する。例えば、制御装置100は、制御対象である各アクチュエータに対して電気信号を用いて動作指令を行う。具体的には、制御装置100は、モータジェネレータ部300の発電及び駆動、並びに、走行用モータジェネレータ41の発電及び駆動を制御する。制御装置100は、より具体的には、モータジェネレータ部300の固定子に流れる交流電流の周波数を制御することによって、固定子によって発生する回転磁界の回転速度を制御する。また、制御装置100は、各センサから出力された情報を受信する。制御装置100は、CAN(Controller Area Network)通信を用いて各センサと通信を行ってもよい。なお、本実施形態に係る制御装置100が有する機能は複数の制御装置により分割されてもよく、その場合、当該複数の制御装置は、CAN等の通信バスを介して、互いに接続されてもよい。なお、制御装置100の詳細については、後述する。
<2.モータジェネレータ部>
続いて、図2及び図3を参照して、本実施形態に係るモータジェネレータ部300について説明する。具体的には、モータジェネレータ部300の構成について説明した後に、モータジェネレータ部300における第1回転子、第2回転子、及び回転磁界の回転速度の関係性について説明する。
(構成)
まず、図2及び図3を参照して、本実施形態に係るモータジェネレータ部300の構成について説明する。図2は、本実施形態に係るモータジェネレータ部300及び周囲の構成の一例を示す説明図である。図3は、本実施形態に係るモータジェネレータ部300の構成の一例を示す断面図である。具体的には、図3は、モータジェネレータ部300の中心軸と直交する図2に示したA−A断面についての断面図である。
図2及び図3に示したように、モータジェネレータ部300は、第1回転子310と、第1回転子310の外周側に空隙を介して対向して設けられる第2回転子320と、第2回転子320の外周側に空隙を介して対向して設けられる固定子330と、を含む。また、第1回転子310は、ランキンサイクルポンプ73の回転軸73aと連結される。それにより、ランキンサイクルポンプ73の回転軸73aを第1回転子310と同期して回転可能にすることができる。また、第2回転子320は、膨張器75の回転軸75aと連結される。それにより、膨張器75の回転軸75aを第2回転子320と同期して回転可能にすることができる。なお、第2回転子320は、例えば、後述するように、略円筒形状を有する。第2回転子320は、一端側の開口部を閉鎖するように当該一端側に設けられた接続部340を介して、膨張器75の回転軸75aと連結されてもよい。接続部340は、例えば、第2回転子320の中心軸と同軸の円板形状を有する。接続部340は、第2回転子320と一体として形成されてもよく、別体として形成されてもよい。
具体的には、モータジェネレータ部300の第1回転子及び第2回転子は、固定子330の中心軸まわりに回転可能である。また、固定子330の中心軸と、ランキンサイクルポンプ73の回転軸73aと、膨張器75の回転軸75aとは、同軸上に位置してもよい。また、第1回転子310及び第2回転子320は、ランキンサイクルポンプ73の回転軸73a及び膨張器75の回転軸75aのそれぞれと同一の部材の一部により構成されてもよく、ランキンサイクルポンプ73の回転軸73a及び膨張器75の回転軸75aのそれぞれと異なる部材により構成されてもよい。
以下では、第1回転子310とランキンサイクルポンプ73の回転軸73aとの間で直接的に動力の伝達が行われ、第1回転子310及びランキンサイクルポンプ73の回転軸73aの回転速度が一致する例について、主に説明する。また、第2回転子320と膨張器75の回転軸75aとの間で直接的に動力の伝達が行われ、第2回転子320及び膨張器75の回転軸75aの回転速度が一致する例について、主に説明する。また、以下では、ランキンサイクルポンプ73の回転軸73a及び膨張器75の回転軸75aの回転速度を、それぞれ、単に、ランキンサイクルポンプ73及び膨張器75の回転速度とも称する。
なお、第1回転子310又は第2回転子320は、それぞれランキンサイクルポンプ73の回転軸73a又は膨張器75の回転軸75aとギヤ等の減速機を介して接続されてもよい。その場合、第1回転子310及びランキンサイクルポンプ73の回転軸73aの回転速度、又は第2回転子320及び膨張器75の回転軸75aの回転速度は、減速機の減速比に応じて互いに異なり得る。
第1回転子310には、複数の永久磁石313が交互に異なる極性となるように周方向に配設される。第1回転子310は、例えば、略円柱形状を有し、図2及び図3に示したように、略円柱形状を有する円柱部材311と、複数の永久磁石313と、を含む。
円柱部材311の中心軸は、具体的には、固定子330の中心軸と同軸上に位置する。また、円柱部材311は、例えば、各種金属によって構成され得る。複数の永久磁石313は、例えば、図3に示したように、円柱部材311における外周側に、円柱部材311の周方向に沿って等間隔に設けられる。永久磁石313の各々は、外周側においてN極又はS極の極性を有する。第1回転子310では、具体的には、外周側においてN極の極性を有する永久磁石313と、外周側においてS極の極性を有する永久磁石313とが周方向に交互に配設される。また、永久磁石313の各々は、円柱部材311の軸方向に延在する。永久磁石313の当該軸方向の長さは、例えば、図2に示したように、固定子330の軸方向の長さと略一致してもよい。
本実施形態では、図3に示したように、第1回転子310には16個の永久磁石313が設けられるので、複数の永久磁石313の極対数n1は8であるが、複数の永久磁石313の極対数n1の値は特に限定されない。なお、極対数n1は、第1回転子310におけるN極及びS極のペアの数を意味する。
第2回転子320には、複数の軟磁性体323が周方向に配設される。第2回転子320は、例えば、略円筒形状を有し、図2及び図3に示したように、略円筒形状を有する円筒部材321と、複数の軟磁性体323と、を含む。
円筒部材321の中心軸は、具体的には、固定子330の中心軸と同軸上に位置する。また、円筒部材321は、例えば、非磁性体であるステンレス鋼によって構成され得る。複数の軟磁性体323は、例えば、図3に示したように、円筒部材321の外周面と内周面との間に、円筒部材321の周方向に沿って等間隔に設けられる。また、軟磁性体323の各々は、円筒部材321の軸方向に延在する。軟磁性体323の当該軸方向の長さは、例えば、図2に示したように、固定子330の軸方向の長さと略一致してもよい。
本実施形態では、図3に示したように、軟磁性体323の数n2は16であるが、軟磁性体323の数n2は特に限定されない。
固定子330には、複数の電機子が周方向に配設される。固定子330は、例えば、略円筒形状を有し、図2及び図3に示したように、略円筒形状を有する鉄心331と、複数のコイル333と、を含む。
鉄心331は、例えば、複数の鋼板を積層して形成される。鉄心331の内周部には、複数のスロット331aが設けられる。具体的には、鉄心331の内周部には、図3に示したように、複数のスロット331aが鉄心331の周方向に沿って等間隔に設けられる。また、スロット331aの各々は、鉄心331の軸方向に延在する。このようなスロット331aの各々にコイル333が巻回される。具体的には、U相、V相、及びW相のコイル333のペアが鉄心331の周方向に沿って複数設けられる。鉄心331においてコイル333の各々が巻回された部分及び当該コイル333の各々が、固定子330における電機子の各々に相当する。
本実施形態では、鉄心331及び複数のコイル333によって形成される複数の電機子の極対数n3は8である。なお、固定子330の複数の電機子の極対数n3は特に限定されない。なお、極対数n3は、固定子330におけるN極及びS極のペアの数を意味する。
上述したように、固定子330は、インバータ装置を介して高電圧バッテリ31と電気的に接続されている。具体的には、当該インバータ装置は、固定子330のコイル333と電気的に接続されている。よって、モータジェネレータ部300が熱発電用発電機又は駆動用モータとして機能する場合において、複数のコイル333に交流電流が流れる。具体的には、このような場合において、複数のコイル333に三相交流電流が流れるように構成される。固定子330には複数の電機子が周方向に配設されているので、複数のコイル333に三相交流電流が流れることによって、固定子330の中心軸まわりに回転する回転磁界が発生する。
(第1回転子、第2回転子、及び回転磁界の回転速度の関係性)
続いて、本実施形態に係るモータジェネレータ部300における第1回転子310、第2回転子320、及び回転磁界の回転速度の関係性について説明する。
上述したように、本実実施形態に係るモータジェネレータ部300は、複数の永久磁石313が交互に異なる極性となるように周方向に配設された第1回転子310と、第1回転子310の外周側に空隙を介して対向して設けられ、複数の軟磁性体323が周方向に配設された第2回転子320と、第2回転子320の外周側に空隙を介して対向して設けられ、複数の電機子が周方向に配設された固定子330と、を含む。
近年、モータジェネレータ部300のこのような構成と同様の構成を有する磁束変調型モータと称される装置が知られている。具体的には、一般的な磁束変調型モータは、複数の永久磁石が交互に異なる極性となるように周方向に配設された第1ロータと、第1ロータの外周側に空隙を介して対向して設けられ、複数の軟磁性体が周方向に配設された第2ロータと、第2ロータの外周側に空隙を介して対向して設けられ、複数の電機子が周方向に配設されたステータと、を備える。なお、本実施形態における第1回転子310、第2回転子320、及び固定子330が、それぞれ磁束変調型モータにおける第1ロータ、第2ロータ、及びステータに対応する。
このような磁束変調型モータでは、ステータの複数の電機子に交流電流が流れることによって、ステータの中心軸まわりに回転する回転磁界が発生する。ここで、磁束変調型モータにおける第1ロータ、第2ロータ、及び当該回転磁界の回転速度の関係性は、遊星歯車機構におけるサンギヤ、キャリア、及びリングギヤの回転速度の関係性と対応することが知られている。以下、本実施形態に係るモータジェネレータ部300における第1回転子、第2回転子、及び回転磁界の回転速度の関係性についての理解を容易にするために、一般的な磁束変調型モータにおける第1ロータ、第2ロータ、及び回転磁界の回転速度の関係性について説明する。
ステータの複数の電機子に交流電流が流れているときには、当該複数の電機子によって、ステータと第1ロータとの間の空間に磁束を生じさせる力としての起磁力Fが生じる。磁束変調型モータの径方向の所定の基準軸から周方向に角度θだけ傾いた方向(以下、θ方向とも称する。)についての時刻tにおける起磁力Fは、ステータの複数の電機子の極対数をn30とし、回転磁界の回転速度をω30とすると、以下の式(1)によって表される。なお、式(1)におけるK1は、磁束変調型モータにおける各種設計仕様に応じて設定される係数である。
Figure 2018017148
また、第2ロータには複数の軟磁性体が周方向に配設されるので、ステータと第1ロータとの間の空間おいて生じる磁束の起磁力Fに対する大きさを表す値としてのパーミアンスPの空間分布は、第2ロータの姿勢に応じて、変動する。θ方向についての時刻tにおけるパーミアンスPは、軟磁性体の数をn20とし、第2ロータの回転速度をω20とすると、以下の式(2)によって表される。なお、式(2)におけるK2及びK3は、磁束変調型モータにおける各種設計仕様に応じて設定される係数である。
Figure 2018017148
式(1)及び式(2)に基づいて、ステータと第1ロータとの間の空間おいて生じる磁束φの分布を算出し得る。具体的には、θ方向についての時刻tにおける磁束φは、式(1)によって表される起磁力Fに式(2)によって表されるパーミアンスPを乗じることによって得られるので、以下の式(3)によって表される。
Figure 2018017148
ここで、式(3)の右辺を、三角関数の加法定理を用いて整理することによって、以下の式(4)が導出される。
Figure 2018017148
以下、式(4)の右辺の第1項、第2項、及び第3項をそれぞれ、磁束φの第1成分、第2成分、及び第3成分と称する。式(4)の右辺の第2項及び第3項によれば、磁束φの第2成分の空間周波数及び第3成分の空間周波数は、それぞれ(n20−n30)及び(n20+n30)である。また、式(4)の右辺の第2項及び第3項によれば、磁束φの第2成分の回転速度ω102及び第3成分の回転速度ω103は、それぞれ以下の式(5)及び式(6)によって表される。
Figure 2018017148
ゆえに、第1ロータの永久磁石の極対数n10を(n20−n30)に設定することによって、第1ロータを式(5)によって表される磁束φの第2成分の回転速度ω102で回転させることができる。また、第1ロータの永久磁石の極対数n10を(n20+n30)に設定することによって、第1ロータを式(6)によって表される磁束φの第2成分の回転速度ω103で回転させることができる。
ここで、磁束変調モータでは、例えば、第1ロータの永久磁石の極対数n10は(n20−n30)に設定される。その場合、第1ロータの回転速度ω10は、式(5)によって表される磁束φの第2成分の回転速度ω102と一致する。ゆえに、式(5)のω102にω10を代入して整理することによって、第1ロータ、第2ロータ、及び回転磁界の回転速度の関係性を示す以下の式(7)が導出される。
Figure 2018017148
上述したように、第1ロータの永久磁石の極対数n10は、第2ロータの軟磁石の数n20からステータの複数の電機子の極対数n30を減算して得られる値である。換言すると、軟磁性体の数n20は、永久磁石の極対数n10に複数の電機子の極対数n30を加算して得られる値である。ゆえに、このような関係に基づいて、式(7)の軟磁石の数n20に(n10+n30)を代入することによって、以下の式(8)が導出される。
Figure 2018017148
ここで、サンギヤ及びリングギヤの歯数がそれぞれM10及びM30である場合に、遊星歯車機構におけるサンギヤの回転速度U10、キャリアの回転速度U20、及びリングギヤの回転速度U30の関係性は、以下の式(9)によって表されることが知られている。
Figure 2018017148
式(8)及び式(9)によって、磁束変調型モータにおける第1ロータ、第2ロータ、及び当該回転磁界の回転速度の関係性は、遊星歯車機構におけるサンギヤ、キャリア、及びリングギヤの回転速度の関係性と対応することが示された。
ところで、本実施形態に係るモータジェネレータ部300における第1回転子310、第2回転子320、及び固定子330は、上述したように、上記で説明した磁束変調型モータにおける第1ロータ、第2ロータ、及びステータに対応する。また、本実施形態に係るモータジェネレータ部300では、例えば、第1回転子310における複数の永久磁石313の極対数n1は8であり、第2回転子320における軟磁性体323の数n2は16であり、固定子330における複数の電機子の極対数n3は8である。このように、本実施形態では、第2回転子320の軟磁性体323の数n2は、第1回転子310の永久磁石313の極対数n1に第1回転子310の永久磁石313の極対数n1を加算して得られる値である。
ゆえに、式(8)によれば、本実施形態に係るモータジェネレータ部300における第1回転子310の回転速度ω1、第2回転子320の回転速度ω2、及び回転磁界の回転速度ω1の関係性は、以下の式(10)によって表される。
Figure 2018017148
よって、本実施形態に係るモータジェネレータ部300における第1回転子310、第2回転子320、及び回転磁界の回転速度の関係性は、遊星歯車機構におけるサンギヤ、キャリア、及びリングギヤの回転速度の関係性と対応する。遊星歯車機構のサンギヤ、キャリア、及びリングギヤの回転速度は、具体的には、共線図上において、直線上に並ぶ関係にある。ゆえに、回転磁界の回転速度ω3を調整することによって、第1回転子310の回転速度ω1及び第2回転子320の回転速度ω2を相対的に調整することができる。例えば、回転磁界の回転速度ω3を上昇させることによって、第1回転子310の回転速度ω1に対して第2回転子320の回転速度ω2を上昇させることができる。
また、本実施形態によれば、ランキンサイクルポンプ73の回転軸73aを第1回転子310と同期して回転させることができる。また、膨張器75の回転軸75aを第2回転子320と同期して回転させることができる。それにより、回転磁界の回転速度ω3を調整することによって、ランキンサイクルポンプ73及び膨張器75の回転速度を相対的に調整することができる。ゆえに、ランキンサイクルポンプ73及び膨張器75の回転速度の差を調整することができる。よって、比較的部品点数が多い機構を設けることなく、ランキンサイクルポンプ73及び膨張器75の吐出流量の差を調整することができる。従って、装置をより効果的に小型化することができる。
<3.制御装置>
続いて、図4〜図6を参照して、本実施形態に係る制御装置100が有する機能について説明する。
制御装置100は、固定子330の複数の電機子に流れる交流電流の周波数を制御することにより、固定子330によって発生する回転磁界の回転速度ω3を制御する。具体的には、制御装置100は、固定子330のコイル333と接続されるインバータ装置へ動作指示を出力することによって、固定子330の複数の電機子に流れる交流電流の周波数を制御し得る。また、制御装置100は、回転磁界の回転速度ω3を制御することにより、第1回転子310の回転速度ω1及び第2回転子320の回転速度ω2を制御する。それにより、第1回転子310の回転速度ω1及び第2回転子320の回転速度ω2を相対的に調整することが実現される。ゆえに、ランキンサイクルポンプ73及び膨張器75の回転速度を相対的に調整することができるので、ランキンサイクルポンプ73及び膨張器75の吐出流量の差を調整することが実現される。
制御装置100は、例えば、膨張器75へ供給される気相の作動媒体の温度である蒸気温に応じて、第1回転子310の回転速度ω1及び第2回転子320の回転速度ω2の比である回転速度比を制御する。それにより、蒸気温に応じて、ランキンサイクルポンプ73及び膨張器75の吐出流量の差を適切に調整することができる。以下、回転速度比は、第2回転子320の回転速度ω2を第1回転子310の回転速度ω1によって除して得られる値を意味するものとして説明する。換言すると、回転速度比は、第1回転子310の回転速度ω1に対する第2回転子320の回転速度ω2の割合である。ゆえに、回転速度比は、ランキンサイクルポンプ73の回転速度に対する膨張器75の回転速度の割合に相当する。よって、回転速度比は、ランキンサイクルポンプ73の吐出量に対する膨張器75の吐出量の割合に相当する。
制御装置100は、具体的には、膨張器75へ供給される気相の作動媒体の圧力である蒸気圧が、蒸気温に応じて設定される蒸気圧の目標値としての目標蒸気圧に近づくように、回転速度比を制御する。目標蒸気圧は、例えば、車両の各種設計仕様等に基づいて予め設定された蒸気圧の上限値P10に優先的に設定される。上限値P10は、具体的には、ランキンサイクル70を構成する部材の機械的強度又は作動媒体の物性に基づいて、より大きな発電量を確保する観点から設定され得る。以下、図4及び図5を参照して、蒸気温と目標蒸気圧との関係性について説明する。
図4は、作動媒体の蒸気圧曲線C10の一例を示す説明図である。図4では、横軸に作動媒体の温度をとり、縦軸に作動媒体の圧力をとった場合における、各圧力に対する沸点を表す蒸気圧曲線C10が示されている。なお、図4に示した蒸気圧曲線C10は、作動媒体の状態図の一部に相当し、図4において、各圧力に対する凝固点を表す融解曲線及び各温度に対する昇華圧を表す昇華曲線の図示は、省略されている。
図4に示したように、蒸気圧の上限値P10に対応する沸点は、蒸気圧曲線C10上の点D1に対応する温度Tmb10となる。蒸気圧曲線C10より高温側の領域において、作動媒体は気相となり、蒸気圧曲線C10より低温側の領域において、作動媒体は液相となる。ゆえに、作動媒体の圧力が上限値P10である場合において、作動媒体の温度が温度Tmb10より高いときには、作動媒体は気相となる。よって、蒸気温が温度Tmb10より高い場合、目標蒸気圧は、図5に示したように、上限値P10に設定される。
一方、作動媒体の圧力が上限値P10である場合において、作動媒体の温度が温度Tmb10より低いときには、作動媒体は液相となる。ここで、作動媒体は、各温度において、図4に示した蒸気圧曲線C10上の点に対応する圧力である飽和蒸気圧以下の領域において、気相となる。よって、蒸気温が温度Tmb10より低い場合、目標蒸気圧は、例えば、各蒸気温についての飽和蒸気圧に設定される。飽和蒸気圧は、図4に示したように、作動媒体の温度が低くなるにつれて、低下する。ゆえに、蒸気温が温度Tmb10以下である場合、目標蒸気圧は、具体的には、図5に示したように、蒸気温が低いほど、小さい値に設定される。このように、蒸気温が温度Tmb10以下である場合において、各蒸気温についての目標蒸気圧として、上限値P10に近い値を優先的に設定することによって、発電量を増大させることができる。
制御装置100は、具体的には、蒸気圧が図5に示した目標蒸気圧となるように、蒸気温に応じて、回転速度比を制御する。制御装置100は、例えば、図6に示したマップM10を用いて回転速度比を制御する。マップM10は、蒸気温と目標回転速度比との関係性を表す。目標回転速度比は、蒸気温に応じて設定される回転速度比の目標値である。制御装置100は、マップM10を用いて、目標回転速度比に近づくように、蒸気温に基づいて、回転速度比を制御する。制御装置100は、例えば、ポンプ回転速度センサ201及び膨張器回転速度センサ203から出力される検出結果に基づいて得られる回転速度比が目標回転速度比に近づくように、回転速度比を制御してもよい。なお、制御装置100の記憶素子には、固定子330の複数の電機子に流れる交流電流の周波数の指令値と蒸気温との関係性を示す情報が予め記憶されていてもよく、制御装置100は、当該情報を用いて、回転速度比を制御してもよい。また、蒸気温は、蒸気温センサ205から出力される検出結果に基づいて得られる。
図5に示したように、蒸気温が温度Tmb10より高い場合、目標蒸気圧は、蒸気温によらず上限値P10である。理想気体の状態方程式によれば、蒸気圧は、蒸気温を膨張器75に供給される気相の作動媒体の体積である蒸気体積流量によって除して得られる値と相関を有する。ゆえに、蒸気温が温度Tmb10より高い場合において、蒸気温が高くなるにつれて、蒸気体積流量が増大するように、目標回転速度比を設定することによって、蒸気圧を、蒸気温によらず上限値P10に維持することができる。上述したように、回転速度比は、ランキンサイクルポンプ73の吐出量に対する膨張器75の吐出量の割合に相当する。ゆえに、マップM10において、図6に示したように、蒸気温が温度Tmb10より高い場合、目標回転速度比は、蒸気温が高いほど、大きい値に設定される。
このように、制御装置100は、蒸気温が所定の圧力である上限値P10における作動媒体の沸点である温度Tmb10より高い場合、蒸気温が高くなるにつれて、回転速度比を増大させてもよい。それにより、蒸気温が温度Tmb10より高い場合において、蒸気圧を、蒸気温によらず上限値P10に維持することができる。ゆえに、蒸気温が上昇することによって、蒸気圧が過剰に高くなることを防止することができる。よって、膨張器75が破損することを防止することができる。また、蒸気温が低下することによって、蒸気圧が過剰に低くなることを防止することができる。よって、膨張器75によって生成される回転エネルギの減少に伴って、発電量が減少することを防止することができる。
また、図5に示したように、蒸気温が温度Tmb10以下である場合、目標蒸気圧は、蒸気温が低いほど小さい値に設定される。理想気体の状態方程式によれば、蒸気体積流量が大きいほど、蒸気圧は低くなる。ゆえに、蒸気温が温度Tmb10以下である場合において、蒸気温が低くなるにつれて、蒸気体積流量が増大するように、目標回転速度比を設定することによって、蒸気圧を、蒸気温が低いほど、小さい値にすることができる。上述したように、回転速度比は、ランキンサイクルポンプ73の吐出量に対する膨張器75の吐出量の割合に相当する。ゆえに、マップM10において、図6に示したように、蒸気温が温度Tmb10以下である場合、目標回転速度比は、蒸気温が低いほど、大きい値に設定される。
このように、制御装置100は、蒸気温が上限値P10における作動媒体の沸点である温度Tmb10以下である場合、蒸気温が低くなるにつれて、回転速度比を増大させてもよい。それにより、蒸気温が温度Tmb10以下である場合において、蒸気圧を、各蒸気温についての飽和蒸気圧に一致させることができる。ゆえに、各蒸気温について、蒸気温を比較的高い値にすることができるので、発電量を増大させることができる。
また、制御装置100は、熱発電システム90を始動させるときに、第1回転子310の回転速度ω1を、ランキンサイクル70の作動媒体が加熱される程度が大きいほど、高い回転速度まで上昇させてもよい。作動媒体が加熱される程度が大きいほど、ランキンサイクル70によって回収可能な熱量が大きい。また、ランキンサイクルポンプ73の回転軸73aは、第1回転子310と同期して回転可能である。ゆえに、ランキンサイクル70によって回収可能な熱量に応じて、ランキンサイクルポンプ73の回転速度を制御することができるので、発電効率を向上させることができる。
制御装置100は、具体的には、熱発電システム90を始動させると判定された場合に、回転速度ω1の目標値としての目標回転速度まで上昇させる。目標回転速度は、例えば、水温センサ207によって検出されたエンジン11の冷却水の温度に基づいて算出し得る。具体的には、制御装置100は、冷却水の温度が高いほど、ランキンサイクル70の作動媒体が加熱される程度が大きいと判断し、目標回転速度として、大きな値を算出する。なお、エンジン11の冷却水の温度は、水温センサ207から出力される検出結果に基づいて得られる。制御装置100は、具体的には、熱発電システム90を始動させると判定された場合に、回転速度ω1が目標回転速度まで上昇するように、回転磁界の回転速度ω3を制御する。
熱発電システム90を始動させるか否かの判定は、制御装置100によって行われてもよく、制御装置100と異なる他の制御装置によって行われてもよい。例えば、高電圧バッテリ31の残存容量SOC(State Of Charge)、エンジン11の駆動状態、又は冷却水の温度に基づいて、熱発電システム90を始動させるか否かの判定が行われ得る。
また、制御装置100は、熱発電システム90を停止させるときに、回転磁界の回転を停止させてもよい。具体的には、制御装置100は、熱発電システム90を停止させるときに、固定子330の複数の電機子に流れる交流電流の周波数を0へ近づけることによって、回転磁界の回転を停止させる。
制御装置100は、熱発電システム90を停止させると判定された場合に回転磁界の回転を停止させてもよい。熱発電システム90を停止させるか否かの判定は、制御装置100によって行われてもよく、制御装置100と異なる他の制御装置によって行われてもよい。例えば、イグニッションスイッチのオンオフ状態、熱発電システム90における故障の有無、熱発電システム90による発電量、又は高電圧バッテリ31の残存容量SOCに基づいて、熱発電システム90を停止させるか否かの判定が行われ得る。具体的には、制御装置100は、イグニッションスイッチのオフになったことを示す情報を受信した場合に、熱発電システム90を停止させると判定してもよい。また、制御装置100は、高電圧バッテリ31の残存容量SOCが比較的高い場合に、熱発電システム90を停止させると判定してもよい。また、制御装置100は、熱発電システム90において故障が発生した場合に、熱発電システム90を停止させると判定してもよい。
<4.動作>
続いて、本実施形態に係る制御装置100が行う処理の流れについて説明する。
(制御フロー)
まず、図7に示すフローチャートを参照して、本実施形態に係る制御装置100による制御フローについて説明する。図7は、本実施形態に係る制御装置100が行う処理の流れの一例を示すフローチャートである。図7に示した処理は、熱発電システム90を始動させると判定された場合に、実行され得る。
図4に示したように、まず、制御装置100は、第1回転子310の回転速度ω1を目標回転速度まで上昇させる(ステップS501)。次に、制御装置100は、回転速度比を目標回転速度比まで上昇させる(ステップS503)。次に、制御装置100は、回転速度比を目標回転速度比に維持する(ステップS505)。そして、制御装置100は、熱発電システム90を停止させるか否かの判定を行う(ステップS507)。熱発電システム90を停止させると判定されなかった場合(ステップS507/NO)、ステップS507の判定処理が繰り返される。一方、熱発電システム90を停止させると判定された場合(ステップS507/YES)、制御装置100は、回転磁界の回転を停止させ(ステップS509)、図7に示した処理は終了する。
(モータジェネレータ部の挙動)
続いて、図8〜図10を参照して、本実施形態に係る制御装置100による制御が行われた場合における、モータジェネレータ部300の挙動について説明する。図8〜図10は、熱発電システム90の各駆動状態におけるモータジェネレータ部300の挙動の一例を示す共線図である。各共線図において、モータジェネレータ部300の第1回転子310、第2回転子320、及び回転磁界についての、熱発電システム90の各駆動状態における回転速度が示されている。
ここで、遊星歯車機構のサンギヤ、キャリア、及びリングギヤの回転速度は、共線図上において、直線上に並ぶ関係にある。また、上述したように、モータジェネレータ部300における第1回転子310、第2回転子320、及び回転磁界の回転速度の関係性は、遊星歯車機構におけるサンギヤ、キャリア、及びリングギヤの回転速度の関係性と対応する。ゆえに、図8〜図10に示す共線図上において、第1回転子310、第2回転子320、及び回転磁界の回転速度は、直線上に並ぶ関係にある。なお、当該共線図において、第1回転子310、第2回転子320、及び回転磁界の回転速度を示す各縦軸の間隔は、第1回転子310の永久磁石313の極対数n1と固定子330における複数の電機子の極対数n3との比に応じて定められる。
図8は、熱発電システム90を始動させるときにおける、モータジェネレータ部300の挙動の一例を示す共線図である。図8では、熱発電システム90が始動する前における各回転速度が二点鎖線によって示されている。図8に示したように、熱発電システム90が始動する前において、第1回転子310、第2回転子320、及び回転磁界の回転速度は、0となっている。
熱発電システム90を始動させるときにおいて、膨張器75は回転していないので、膨張器75において回転エネルギは生成されない。制御装置100は、モータジェネレータ部300を駆動用モータとして機能させ、ランキンサイクルポンプ73の回転軸73aへ駆動力を出力させる。制御装置100は、熱発電システム90を始動させるときにおいて、図8に示したように、第1回転子310の回転方向と逆方向に回転磁界を回転させる。第1回転子310の回転方向は、作動媒体がランキンサイクルポンプ73によってタンク79から吸い上げられ、作動媒体流路71内を循環している場合に相当するランキンサイクル70が正常に動作している場合における、ランキンサイクルポンプ73の回転方向と一致する方向である。なお、第2回転子320の回転方向は第1回転子310の回転方向と一致する。
このように、制御装置100によって、第1回転子310の回転方向と逆方向に回転磁界が回転するように、固定子330の複数の電機子に流れる交流電流の周波数が制御されることによって、図8に示したように、第1回転子310の回転速度ω1は、上昇する。また、第1回転子310の回転速度ω1は、制御装置100により回転磁界の回転速度ω3が制御されることによって、目標回転速度まで上昇する。
なお、図8では、理解を容易にするために、各回転速度が模式的に図示されているが、ランキンサイクルポンプ73が駆動された後において、厳密には、膨張器75の回転速度が上昇し始めることに伴って、第2回転子320の回転速度ω2は上昇し始める。
図9は、熱発電システム90が始動した後における、モータジェネレータ部300の挙動の一例を示す共線図である。具体的には、図9は、第1回転子の回転速度ω1が目標回転速度まで上昇した後における、モータジェネレータ部300の挙動の一例を示す共線図である。図9では、第1回転子の回転速度ω1が目標回転速度まで上昇したときにおける各回転速度が二点鎖線によって示されている。
第1回転子の回転速度ω1が目標回転速度まで上昇した後において、膨張器75の回転速度は比較的低いので、膨張器75において生成される回転エネルギの量は比較的少ない。制御装置100は、モータジェネレータ部300を駆動用モータとして機能させ、膨張器75の回転軸75aへ駆動力を出力させる。制御装置100は、第1回転子の回転速度ω1が目標回転速度まで上昇した後において、図9に示したように、第1回転子310の回転方向と一致する方向に回転磁界を回転させ、回転速度ω3を上昇させる。
このように、制御装置100によって、第1回転子310の回転方向と一致する方向に回転磁界の回転速度ω3が上昇することによって、図9に示したように、第1回転子310の回転速度ω1に対して第2回転子320の回転速度ω2が上昇する。それにより、第1回転子310の回転速度ω1に対する第2回転子320の回転速度ω2の割合である回転速度比を上昇させることができる。上述したように、制御装置100は、目標回転速度比に近づくように、回転速度比を制御する。ここで、回転速度比が目標回転速度比に到達した後において、蒸気温は変動し得る。制御装置100は、具体的には、図6に示したマップM10を用いて、目標回転速度比に近づくように、蒸気温に基づいて、回転速度比を制御する。
それにより、本実施形態によれば、蒸気温に応じて、ランキンサイクルポンプ73及び膨張器75の吐出流量の差を適切に調整することができる。ゆえに、蒸気温が上昇することによって、蒸気圧が過剰に高くなることを防止することができるので、膨張器75が破損することを防止することができる。また、蒸気温が低下することによって、蒸気圧が過剰に低くなることを防止することができるので、膨張器75によって生成される回転エネルギの減少に伴って、発電量が減少することを防止することができる。
回転速度比は、目標回転速度比に到達するまで上昇した後、目標回転速度比を追従するように変動する。ここで、回転速度比が目標回転速度比に到達した後において、膨張器75の回転速度は比較的高いので、膨張器75において生成される回転エネルギの量は比較的多い。ゆえに、制御装置100は、基本的に、モータジェネレータ部300を熱発電用発電機として機能させ、発電を行わせる。
図10は、熱発電システムを停止させるときにおける、モータジェネレータ部の挙動の一例を示す共線図である。具体的には、図10は、熱発電システム90を停止させると判定された後におけるモータジェネレータ部の挙動の一例を示す共線図である。図9では、回転速度比が目標回転速度比に維持されているときにおける各回転速度が二点鎖線によって示されている。
制御装置100は、熱発電システム90を停止させると判定された後において、固定子330の複数の電機子に流れる交流電流の周波数を0へ近づける。固定子330の複数の電機子に流れる交流電流の周波数が低下することによって、回転磁界の回転速度ω3が低下する。ゆえに、図10に示したように、回転磁界の回転速度ω3が低下することに伴って、第1回転子310の回転速度ω1及び第2回転子320の回転速度ω2が低下する。それにより、第1回転子310、第2回転子320、及び回転磁界の回転が停止するので、熱発電システム90が停止する。
<5.むすび>
以上説明したように、本実施形態によれば、モータジェネレータ部300は、第1回転子310と、第1回転子310の外周側に空隙を介して対向して設けられる第2回転子320と、第2回転子320の外周側に空隙を介して対向して設けられる固定子330と、を含む。第1回転子310には、複数の永久磁石313が交互に異なる極性となるように周方向に配設される。第2回転子320には、複数の軟磁性体323が周方向に配設される。固定子330には、複数の電機子が周方向に配設される。ゆえに、モータジェネレータ部300における第1回転子310、第2回転子320、及び回転磁界の回転速度の関係性は、遊星歯車機構におけるサンギヤ、キャリア、及びリングギヤの回転速度の関係性と対応する。
また、第1回転子310は、ランキンサイクルポンプ73の回転軸73aと連結される。それにより、ランキンサイクルポンプ73の回転軸73aを第1回転子310と同期して回転可能にすることができる。また、第2回転子320は、膨張器75の回転軸75aと連結される。それにより、膨張器75の回転軸75aを第2回転子320と同期して回転可能にすることができる。ゆえに、回転磁界の回転速度ω3を調整することによって、ランキンサイクルポンプ73及び膨張器75の回転速度を相対的に調整することができる。それにより、ランキンサイクルポンプ73及び膨張器75の回転速度の差を調整することができる。よって、比較的部品点数が多い機構を設けることなく、ランキンサイクルポンプ73及び膨張器75の吐出流量の差を調整することができる。従って、装置をより効果的に小型化することができる。
上記では、本発明に係る熱発電システムをハイブリッド車両に適用した例について説明したが、本発明の技術的範囲は係る例に限定されない。例えば、本発明に係る熱発電システムは、エンジン11から出力される駆動力によって走行し、動力源として高電圧バッテリ31を有しない車両にも適用され得る。その場合、ランキンサイクル70によって生成された機械エネルギを用いてモータジェネレータ部300により発電された電力は、車両内の各種装置へ電力を供給する低電圧バッテリへ蓄電されてもよい。
また、上記では、エンジン11の運転により生成された駆動力は、駆動力伝達系51を介して、駆動輪21へ伝達される例について説明したが、本発明に係る技術的範囲は係る例に限定されない。例えば、エンジン11の運転により生成された駆動力は、エンジン11と接続された図示しない発電機へ伝達され、当該発電機による発電に用いられてもよい。なお、当該発電機によって発電された電力は、高電圧バッテリ31へ蓄電されるように構成し得る。
また、上記では、ランキンサイクル70は、車両のエンジン11の廃熱を回収する冷却水との間で熱交換を行うことにより、機械エネルギを生成する例について説明したが、本発明に係る技術的範囲は係る例に限定されない。例えば、ランキンサイクル70は、車両のエンジン11の廃熱を有する排気ガスとの間で熱交換を行うことにより、機械エネルギを生成してもよい。係る場合において、熱交換器74には、作動媒体流路71及び排気ガスの配管が接続され得る。
また、上記では、バッテリが高電圧バッテリ31である例について説明したが、本発明に係る技術的範囲は係る例に限定されず、例えば、バッテリは車両内の各種装置へ電力を供給する低電圧バッテリであってもよい。係る場合には、モータジェネレータ部300及び走行用モータジェネレータ41はそれぞれ低電圧バッテリと電気的に接続され、モータジェネレータ部300で発電される電力及び制動発電において走行用モータジェネレータ41で発電される電力は、それぞれ低電圧バッテリへ蓄電されるように構成し得る。
また、上記では、ランキンサイクル70及びモータジェネレータ部300を含む熱発電システム90が、車両に適用される例について説明したが、本発明の技術的範囲は、係る例に限定されない。例えば、本発明に係る熱発電システムは、船舶等の他の移動体や、工場等の施設についても適用可能である。
また、本明細書においてフローチャートを用いて説明した処理は、必ずしもフローチャートに示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明は係る例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は応用例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
10 充電システム
11 エンジン
13 冷却水流路
21 駆動輪
31 高電圧バッテリ
41 走行用モータジェネレータ
51 駆動力伝達系
70 ランキンサイクル
71 作動媒体流路
73 ランキンサイクルポンプ
73a 回転軸
74 熱交換器
75 膨張器
75a 回転軸
77 凝縮器
79 タンク
90 熱発電システム
100 制御装置
201 ポンプ回転速度センサ
203 膨張器回転速度センサ
205 蒸気温センサ
207 水温センサ
300 モータジェネレータ部
310 第1回転子
311 円柱部材
313 永久磁石
320 第2回転子
321 円筒部材
323 軟磁性体
330 固定子
331 鉄心
331a スロット
333 コイル

Claims (9)

  1. 加熱される作動媒体が循環する流路、前記流路に設けられ前記作動媒体を循環させるランキンサイクルポンプ、及び前記流路に設けられ前記作動媒体を膨張させて回転エネルギを生成する膨張器を含むランキンサイクルと、
    前記膨張器により生成された回転エネルギを用いて発電可能、かつ、前記ランキンサイクルポンプを駆動するための駆動力を出力可能なモータジェネレータ部と、
    を備え、
    前記モータジェネレータ部は、
    前記ランキンサイクルポンプの回転軸と連結され、複数の永久磁石が交互に異なる極性となるように周方向に配設された第1回転子と、
    前記第1回転子の外周側に空隙を介して対向して設けられ、前記膨張器の回転軸と連結され、複数の軟磁性体が周方向に配設された第2回転子と、
    前記第2回転子の外周側に空隙を介して対向して設けられ、複数の電機子が周方向に配設された固定子と、
    を含む、
    熱発電システム。
  2. 前記軟磁性体の数は、前記永久磁石の極対数に前記複数の電機子の極対数を加算して得られる値である、請求項1に記載の熱発電システム。
  3. 前記固定子の前記複数の電機子に流れる交流電流の周波数を制御することにより、前記固定子によって発生する回転磁界の回転速度を制御する制御装置を備え、
    前記制御装置は、前記回転磁界の回転速度を制御することにより、前記第1回転子及び前記第2回転子の回転速度を制御する、
    請求項1又は2に記載の熱発電システム。
  4. 前記制御装置は、前記膨張器へ供給される気相の前記作動媒体の温度である蒸気温に応じて、前記第1回転子及び前記第2回転子の回転速度の比である回転速度比を制御する、請求項3に記載の熱発電システム。
  5. 前記制御装置は、前記蒸気温が所定の圧力における前記作動媒体の沸点より高い場合、前記蒸気温が高くなるにつれて、前記回転速度比を増大させる、請求項4に記載の熱発電システム。
  6. 前記制御装置は、前記蒸気温が前記所定の圧力における前記作動媒体の沸点以下である場合、前記蒸気温が低くなるにつれて、前記回転速度比を増大させる、請求項5に記載の熱発電システム。
  7. 前記制御装置は、前記熱発電システムを始動させるときに、前記第1回転子の回転速度を、前記ランキンサイクルの前記作動媒体が加熱される程度が大きいほど、高い回転速度まで上昇させる、請求項3〜6のいずれか一項に記載の熱発電システム。
  8. 前記制御装置は、前記熱発電システムを停止させるときに、前記回転磁界の回転を停止させる、請求項3〜7のいずれか一項に記載の熱発電システム。
  9. 前記ランキンサイクルの前記作動媒体は、車両のエンジンの廃熱によって、加熱される、請求項1〜8のいずれか一項に記載の熱発電システム。
JP2016146629A 2016-07-26 2016-07-26 熱発電システム Active JP6774249B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146629A JP6774249B2 (ja) 2016-07-26 2016-07-26 熱発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146629A JP6774249B2 (ja) 2016-07-26 2016-07-26 熱発電システム

Publications (2)

Publication Number Publication Date
JP2018017148A true JP2018017148A (ja) 2018-02-01
JP6774249B2 JP6774249B2 (ja) 2020-10-21

Family

ID=61081530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146629A Active JP6774249B2 (ja) 2016-07-26 2016-07-26 熱発電システム

Country Status (1)

Country Link
JP (1) JP6774249B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242174A (ja) * 2005-02-02 2006-09-14 Toyota Industries Corp 車両用排熱回収システム
JP2008157152A (ja) * 2006-12-25 2008-07-10 Denso Corp ランキンサイクル
JP2010023698A (ja) * 2008-07-22 2010-02-04 Honda Motor Co Ltd 動力装置
JP2011079408A (ja) * 2009-10-06 2011-04-21 Honda Motor Co Ltd 動力システム
JP2011084113A (ja) * 2009-10-13 2011-04-28 Honda Motor Co Ltd 動力装置
JP2012041933A (ja) * 2011-10-25 2012-03-01 Sanden Corp ランキン回路及び車両の廃熱利用システム
JP2013057265A (ja) * 2011-09-07 2013-03-28 Kobe Steel Ltd 発電設備
JP2014114939A (ja) * 2012-12-12 2014-06-26 Mitsubishi Heavy Ind Ltd 磁気カップリング
JP2014125991A (ja) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd 排熱回収発電装置の運転監視システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242174A (ja) * 2005-02-02 2006-09-14 Toyota Industries Corp 車両用排熱回収システム
JP2008157152A (ja) * 2006-12-25 2008-07-10 Denso Corp ランキンサイクル
JP2010023698A (ja) * 2008-07-22 2010-02-04 Honda Motor Co Ltd 動力装置
JP2011079408A (ja) * 2009-10-06 2011-04-21 Honda Motor Co Ltd 動力システム
JP2011084113A (ja) * 2009-10-13 2011-04-28 Honda Motor Co Ltd 動力装置
JP2013057265A (ja) * 2011-09-07 2013-03-28 Kobe Steel Ltd 発電設備
JP2012041933A (ja) * 2011-10-25 2012-03-01 Sanden Corp ランキン回路及び車両の廃熱利用システム
JP2014114939A (ja) * 2012-12-12 2014-06-26 Mitsubishi Heavy Ind Ltd 磁気カップリング
JP2014125991A (ja) * 2012-12-27 2014-07-07 Mitsubishi Heavy Ind Ltd 排熱回収発電装置の運転監視システム

Also Published As

Publication number Publication date
JP6774249B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
JP6315622B2 (ja) 車両
JP4654289B2 (ja) 補機駆動装置
JP2017189051A (ja) モータの制御装置
CN102780442B (zh) 电动机装置及其控制方法
JP2008245486A (ja) モータ制御装置、制御方法及び制御プログラム
JP4385185B2 (ja) 電動機の制御装置
JP4699309B2 (ja) 電動機の制御装置
JP3359321B2 (ja) 駆動システム及び駆動システムの運転のための方法
JP2012205326A (ja) 回転電機システム
Tashiro et al. A novel control method for in-wheel SR motor to implement torque vectoring control for compact EV
JP6597441B2 (ja) モータの制御装置
US11581842B2 (en) Magnet temperature estimating device for motor and hybrid vehicle provided with the same
JP6774249B2 (ja) 熱発電システム
JP2007267514A (ja) 電動4輪駆動車及び電動4輪駆動車に用いられる電動モータ
JP6855978B2 (ja) 永久磁石同期発電装置及び発電設備
JP6619979B2 (ja) 充電制御装置
JP2005160278A (ja) 同期モータおよびそれを用いた車両ユニット
JP2015067156A (ja) 回転電機
JP6729888B1 (ja) 電動機
JP2016193681A (ja) 車両用回転電機の冷却装置
JP6860351B2 (ja) ランキンサイクルの制御装置
JP6535262B2 (ja) 車両の制御装置
JP2017066922A (ja) 車両の制御装置
JP2019097301A (ja) スイッチトリラクタンスモータの制御装置
JP6786270B2 (ja) 車両

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250