JP2018012312A - Carbon short fiber reinforcement film and method for producing carbon short fiber reinforcement structure - Google Patents

Carbon short fiber reinforcement film and method for producing carbon short fiber reinforcement structure Download PDF

Info

Publication number
JP2018012312A
JP2018012312A JP2016144878A JP2016144878A JP2018012312A JP 2018012312 A JP2018012312 A JP 2018012312A JP 2016144878 A JP2016144878 A JP 2016144878A JP 2016144878 A JP2016144878 A JP 2016144878A JP 2018012312 A JP2018012312 A JP 2018012312A
Authority
JP
Japan
Prior art keywords
short fiber
carbon short
carbon
nonwoven fabric
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016144878A
Other languages
Japanese (ja)
Other versions
JP6702536B2 (en
Inventor
高岡 和千代
Kazuchiyo Takaoka
和千代 高岡
近藤 健
Ken Kondo
健 近藤
壹裕 藤本
Kazuhiro Fujimoto
壹裕 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Fuji Shokai Co Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Fuji Shokai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd, Fuji Shokai Co Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2016144878A priority Critical patent/JP6702536B2/en
Publication of JP2018012312A publication Critical patent/JP2018012312A/en
Application granted granted Critical
Publication of JP6702536B2 publication Critical patent/JP6702536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon short fiber reinforcement film excellent in productivity and workability and a method for producing a carbon short fiber reinforcement structure.SOLUTION: There are provided a method for producing a carbon short fiber reinforcement film which includes heating and pressurizing a laminate of a non-woven fabric containing a carbon short fiber and a thermoplastic film from both surfaces of the laminate with a roll to integrate the non-woven fabric and the thermoplastic film or a method for producing a carbon short fiber reinforcement structure which includes sticking a plurality of the carbon short fiber reinforcement films, where the non-woven fabric contains microfibrillated cellulose.SELECTED DRAWING: None

Description

本発明は、炭素短繊維強化フィルム及び炭素短繊維強化構造体の製造方法に関する。   The present invention relates to a carbon short fiber reinforced film and a method for producing a carbon short fiber reinforced structure.

炭素繊維と樹脂を複合化してなる炭素繊維強化樹脂複合体は、金属材料に匹敵する強度・弾性率を有しながら、金属材料よりも比重が小さいため、部材の軽量化を図ることができ、また、鉄などの金属板のように発錆の問題も無く、酸やアルカリにも強いという性質を有していることから、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等で使用されている。   Carbon fiber reinforced resin composite formed by combining carbon fiber and resin has strength and elastic modulus comparable to metal materials, but has a smaller specific gravity than metal materials, so the weight of members can be reduced, In addition, there is no problem of rusting like metal plates such as iron, and since it has the property of being resistant to acids and alkalis, electronic device materials, electrical device materials, civil engineering materials, building materials, automotive materials, Used in aircraft materials, manufacturing parts such as robots and rolls used in various manufacturing industries.

炭素繊維強化樹脂複合体は、長繊維織布、開繊織物、一方向性ウェブ、短繊維不織布等の炭素繊維布帛と、熱硬化性樹脂、熱可塑性樹脂等の樹脂とを複合させた複合体である。最も一般的な炭素繊維強化樹脂複合体には、長繊維織布と熱硬化性樹脂とを複合させた複合体であるが、設計が難しい、均質材料ではない、成形加工時間が長い、高価等の課題があった。   The carbon fiber reinforced resin composite is a composite in which a carbon fiber fabric such as a long fiber woven fabric, a spread fabric, a unidirectional web, and a short fiber nonwoven fabric is combined with a resin such as a thermosetting resin or a thermoplastic resin. It is. The most common carbon fiber reinforced resin composite is a composite of a long fiber woven fabric and a thermosetting resin, but it is difficult to design, is not a homogeneous material, has a long molding time, is expensive, etc. There was a problem.

これらの課題を解決した炭素繊維強化樹脂複合体として、炭素短繊維を熱可塑性樹脂と混練し、複合体として射出成形用材料して用いる方法(例えば特許文献1)が知られているが、炭素繊維は混練時に破断しやすく繊維長が短くなり、充分な特性を得られないばかりか、数百ミクロン以下のフィルム状の構造体を得ることが難しいなどの問題があった。これに対して、予め炭素短繊維を含有してなる不織布(炭素短繊維不織布)を作製し、炭素短繊維不織布と熱可塑性樹脂を熱プレス成形法により複合させる方法が提案されているが(特許文献2〜7参照)、枚葉による加工法であるので、生産性が劣るという課題があった。また、真空成形法などに適した意匠性に優れたフィルムのようには取り扱えないという課題があった。   As a carbon fiber reinforced resin composite that solves these problems, a method (for example, Patent Document 1) in which short carbon fibers are kneaded with a thermoplastic resin and used as a material for injection molding as a composite is known. The fibers are prone to breakage during kneading, and the fiber length is shortened, so that sufficient characteristics cannot be obtained, and it is difficult to obtain a film-like structure of several hundred microns or less. On the other hand, a method has been proposed in which a non-woven fabric containing carbon short fibers (carbon short fiber non-woven fabric) is prepared in advance, and the carbon short fiber non-woven fabric and a thermoplastic resin are combined by a hot press molding method (patent). Since the processing method is based on single wafers, there is a problem that productivity is inferior. Moreover, the subject that it was not able to handle like the film excellent in the designability suitable for the vacuum forming method etc. occurred.

特開平07−156146号公報JP 07-156146 A 特開2013−208791号公報JP 2013-208791 A 特開2013−202891号公報JP 2013-202891 A 特開2011−21303号公報JP 2011-21303 A 特開2004−43985号公報JP 2004-43985 A 特開2011−194852号公報JP 2011-194852 A 特開2014−224333号公報JP 2014-224333 A

本発明の課題は、生産性及び加工性の優れた、炭素短繊維強化フィルム及び炭素短繊維強化構造体の製造方法を提供することである。   The subject of this invention is providing the manufacturing method of the carbon short fiber reinforced film and carbon short fiber reinforced structure excellent in productivity and workability.

上記課題は、下記発明によって解決することができる。   The above problems can be solved by the following invention.

(1)炭素短繊維を含有してなる不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化する炭素短繊維強化フィルムの製造方法において、該不織布がミクロフィブリル化セルロースを含有することを特徴とする炭素短繊維強化フィルムの製造方法。 (1) A carbon short fiber reinforced film in which the nonwoven fabric and the thermoplastic film are integrated by performing heat and pressure treatment with rolls from both sides of the laminate of the nonwoven fabric and the thermoplastic film containing carbon short fibers. In the manufacturing method, the nonwoven fabric contains microfibrillated cellulose, The manufacturing method of the carbon short fiber reinforced film characterized by the above-mentioned.

(2)炭素短繊維を含有してなる不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化して炭素短繊維強化フィルムを製造し、さらに、該炭素短繊維強化フィルムを複数枚貼り合わせる炭素短繊維強化構造体の製造方法において、該不織布がミクロフィブリル化セルロースを含有することを特徴とする炭素短繊維強化構造体の製造方法。 (2) A carbon short fiber reinforced film is obtained by integrating the nonwoven fabric and the thermoplastic film by heat and pressure treatment with rolls from both sides of the laminate of the nonwoven fabric and the thermoplastic film containing carbon short fibers. A method for producing a carbon short fiber reinforced structure, wherein the nonwoven fabric contains microfibrillated cellulose in a method for producing a carbon short fiber reinforced structure in which a plurality of carbon short fiber reinforced films are bonded together Method.

本発明によれば、連続した炭素短繊維強化フィルムが得られるために、そのまま単層で又は炭素短繊維強化フィルムを複数枚重ねて貼り合わせることにより、炭素短繊維の繊維長を損なうことなく、所定の厚み、物性及び加工性の優れた炭素短繊維強化構造体を得ることができる。   According to the present invention, in order to obtain a continuous carbon short fiber reinforced film, by laminating a plurality of carbon short fiber reinforced films as a single layer as it is, without impairing the fiber length of the carbon short fiber, A carbon short fiber reinforced structure excellent in predetermined thickness, physical properties and processability can be obtained.

本発明における、炭素短繊維を含有してなる不織布(炭素短繊維不織布)としては、湿式法又は乾式法により製造される湿式不織布又は乾式不織布を用いることができる。そして、炭素短繊維不織布は、結着材として、熱可塑性短繊維、熱可塑性エマルジョン等を含むことができる。この結着材によって、炭素短繊維不織布に強度を容易に付与することができる。   As the nonwoven fabric (carbon short fiber nonwoven fabric) containing carbon short fibers in the present invention, a wet nonwoven fabric or a dry nonwoven fabric produced by a wet method or a dry method can be used. And a carbon short fiber nonwoven fabric can contain a thermoplastic short fiber, a thermoplastic emulsion, etc. as a binder. With this binder, strength can be easily imparted to the carbon short fiber nonwoven fabric.

炭素短繊維としては、ポリアクリロニトリルを原料とするPAN系炭素繊維、ピッチ類を原料とするピッチ系炭素短繊維が挙げられる。炭素短繊維の繊維径は3μm以上20μm以下であることが好ましく、5μm以上15μm以下であることがより好ましい。また、炭素短繊維の繊維長は、湿式不織布の場合は、3mm以上40mm以下であることが好ましく、乾式不織布の場合は、20mm以上120mm以下であることが好ましい。   Examples of short carbon fibers include PAN-based carbon fibers made from polyacrylonitrile and pitch-based carbon short fibers made from pitches. The fiber diameter of the short carbon fibers is preferably 3 μm or more and 20 μm or less, and more preferably 5 μm or more and 15 μm or less. In addition, the fiber length of the short carbon fibers is preferably 3 mm or more and 40 mm or less in the case of a wet nonwoven fabric, and is preferably 20 mm or more and 120 mm or less in the case of a dry nonwoven fabric.

本発明において、炭素短繊維としてリサイクル炭素短繊維を用いることができる。一般的に用いられる炭素繊維プリプレグは、航空機用、スポーツ用をはじめ、エポキシ樹脂が含浸されており、炭素繊維をリサイクルするには、樹脂の除去が不可欠である。除去方法としては、アルゴン、窒素などの不活性ガス中又は水蒸気中で、焼結除去する方法が知られている。特に過熱水蒸気による焼結方法は、大気下で熱を奪われると、過熱水蒸気が水に戻ることから、安価で環境を汚染しない有効な方法である。炭素繊維プリプレグによる構造体はアングルプライ積層体など多様な形態をしており、通常は一定サイズに落としてから、焼結処理し、熱硬化性樹脂を除去して、裁断する。この場合、繊維長の異なるリサイクル炭素短繊維が得られる。   In the present invention, recycled carbon short fibers can be used as the carbon short fibers. Commonly used carbon fiber prepregs are impregnated with epoxy resins such as aircraft and sports, and removal of the resin is indispensable for recycling the carbon fibers. As a removal method, a method of sintering and removing in an inert gas such as argon or nitrogen or in water vapor is known. In particular, the sintering method using superheated steam is an effective method that is inexpensive and does not pollute the environment because the superheated steam returns to water when heat is taken away in the atmosphere. Structures made of carbon fiber prepreg have various forms such as an angle ply laminate, and are usually cut to a certain size, then sintered, removed from the thermosetting resin, and cut. In this case, recycled carbon short fibers having different fiber lengths are obtained.

乾式不織布の製造方法を説明する。まず、大気中で解繊された炭素短繊維をウェッブに展開し、カード法などで分散さる。この時、結着材として熱可塑性短繊維を併用する場合は、炭素短繊維と一緒に解繊分散させて、熱処理を施す。また、結着材として熱可塑性エマルジョンを併用する場合には、炭素短繊維のウェッブに熱可塑性エマルジョンを付与して熱処理を施す。結着材によって、強度を持たせて、乾式不織布とする。   A method for producing a dry nonwoven fabric will be described. First, carbon short fibers defibrated in the atmosphere are spread on a web and dispersed by the card method or the like. At this time, when the thermoplastic short fibers are used in combination as the binder, the fibers are defibrated and dispersed together with the carbon short fibers and subjected to heat treatment. Moreover, when using a thermoplastic emulsion together as a binder, a thermoplastic emulsion is provided to the web of a short carbon fiber, and it heat-processes. The binder is used to give strength and make a dry nonwoven fabric.

湿式不織布の製造方法を説明する。まず、水中で炭素短繊維を解繊し、次に、円網、短網、長網、傾斜短網などの抄紙網で漉き上げて、乾燥・加熱処理等を施して、湿式不織布とする。そして、乾式不織布と同様に、熱可塑性短繊維、熱可塑性エマルジョン等の結着材によって、強度を持たせて、湿式不織布とする。   The manufacturing method of a wet nonwoven fabric is demonstrated. First, short carbon fibers are defibrated in water, and then rolled up with a papermaking net such as a circular net, short net, long net, or slanted short net, and dried, heat treated, etc. to obtain a wet nonwoven fabric. And like a dry type nonwoven fabric, it gives strength with binders, such as a thermoplastic short fiber and a thermoplastic emulsion, and makes it a wet nonwoven fabric.

本発明では、乾式不織布、湿式不織布のいずれの不織布も利用できるが、薄い不織布を利用する場合には、繊維の分散性が優れている湿式不織布を利用することが好ましい。また、厚い不織布を利用する場合には、製造方法の簡素で、厚みを持たせるのに有利な、乾式不織布を利用することが好ましい。   In the present invention, any of a dry nonwoven fabric and a wet nonwoven fabric can be used. However, when a thin nonwoven fabric is used, it is preferable to use a wet nonwoven fabric having excellent fiber dispersibility. Moreover, when using a thick nonwoven fabric, it is preferable to use a dry nonwoven fabric which is simple for the production method and advantageous for providing thickness.

熱可塑性短繊維としては、非結晶性のポリビニルアルコール(ビニロン)短繊維、表面が低融点化されているポリエステル芯鞘短繊維、未延伸ポリエステル短繊維、ポリカーボネート(PC)短繊維、ポリオレフィン短繊維、表面が低融点化されているポリオレフィン芯鞘短繊維、表面が酸変性ポリオレフィンよりなるポリオレフィン短繊維、脂肪族ポリアミド短繊維、未延伸ポリフェニレンスルフィド短繊維、ポリエーテルケトンケトン短繊維等の熱可塑性を有する樹脂の短繊維が挙げられる。   Examples of thermoplastic short fibers include amorphous polyvinyl alcohol (vinylon) short fibers, polyester core-sheath short fibers whose surfaces have a low melting point, unstretched polyester short fibers, polycarbonate (PC) short fibers, polyolefin short fibers, Polyolefin core-sheath short fiber whose surface has a low melting point, polyolefin short fiber whose surface is made of acid-modified polyolefin, aliphatic polyamide short fiber, unstretched polyphenylene sulfide short fiber, polyether ketone ketone short fiber, etc. Resin short fibers may be mentioned.

熱可塑性エマルジョンとしては、アクリル樹脂、スチレンアクリル樹脂、酸変性されたポリオレフィン、酸変性されたαオレフィンを含むポリオレフィン、アイオノマー、塩素化ポリオレフィンなどの熱可塑性を有する樹脂のエマルジョンが用いられる。   As the thermoplastic emulsion, an emulsion of a resin having thermoplasticity such as an acrylic resin, a styrene acrylic resin, an acid-modified polyolefin, a polyolefin containing an acid-modified α-olefin, an ionomer, or a chlorinated polyolefin is used.

熱可塑性を有する樹脂の融点は60℃以上260℃以下であることが好ましく、60℃以上230℃以下であることがより好ましく、60℃以上180℃以下であることがさらに好ましく、80℃以上160℃以下であることが特に好ましい。   The melting point of the thermoplastic resin is preferably 60 ° C. or higher and 260 ° C. or lower, more preferably 60 ° C. or higher and 230 ° C. or lower, further preferably 60 ° C. or higher and 180 ° C. or lower, and more preferably 80 ° C. or higher and 160 ° C. or lower. It is particularly preferable that the temperature is not higher than ° C.

熱可塑性短繊維の繊維径は3μm以上40μm以下であることが好ましく、5μm以上20μm以下であることがより好ましい。また、熱可塑性短繊維の繊維長は1mm以上120mm以下であることが好ましく、3mm以上40mm以下であることがより好ましい。   The fiber diameter of the thermoplastic short fiber is preferably 3 μm or more and 40 μm or less, and more preferably 5 μm or more and 20 μm or less. Further, the fiber length of the thermoplastic short fibers is preferably 1 mm or more and 120 mm or less, and more preferably 3 mm or more and 40 mm or less.

炭素短繊維と結着材の含有比率(質量基準による、炭素短繊維:結着材)は、8.5:0.0〜5:4であることが好ましく、8.5:0.5〜5:4であることがより好ましく、8:1〜6:3であることが更に好ましい。結着材は必須成分では無いが、炭素短繊維と結着材の含有比率を上記範囲内とすることにより、炭素短繊維強化フィルム及び炭素短繊維強化構造体の強度を容易に高めることができる。   The content ratio of the short carbon fibers and the binder (based on mass basis, short carbon fibers: binder) is preferably 8.5: 0.0 to 5: 4, and 8.5: 0.5 to 5: 4 is more preferable, and 8: 1 to 6: 3 is still more preferable. Although the binder is not an essential component, the strength of the carbon short fiber reinforced film and the carbon short fiber reinforced structure can be easily increased by setting the content ratio of the short carbon fiber and the binder within the above range. .

本発明の炭素短繊維強化フィルムの製造方法では、炭素短繊維不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化する。また、本発明の炭素短繊維強化構造体の製造方法では、炭素短繊維不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化して炭素短繊維強化フィルムを製造し、さらに、該炭素短繊維強化フィルムを複数枚貼り合わせる。これらの工程において、例えばPEEKを用いた場合、PEEKの融点が350℃近傍にあるため、400℃以上の過熱装置が必要となる。本発明では、炭素短繊維不織布が、ミクロフィブリル化セルロースを含有するため、加熱加圧処理時や炭素短繊維強化フィルムの貼り合わせ時に、炭素短繊維不織布内で炭素短繊維の分散性が崩れず、炭素短繊維が破断することがない。その結果、連続した炭素短繊維強化フィルムを生産性良く得ることができる。本発明で得られた炭素短繊維強化フィルムは、単層で炭素短繊維強化構造体として使用することもできる。さらに、炭素短繊維強化フィルムを複数枚重ねて貼り合わせることにより、炭素短繊維強化構造体を得ることもできる。本発明では、ミクロフィブリル化セルロースを含有することによって、この貼り合わせ時にも、炭素短繊維の繊維長を損なうことなく、所定の厚み、物性及び加工性の優れた炭素短繊維強化構造体を得ることができる。   In the method for producing a carbon short fiber reinforced film of the present invention, the nonwoven fabric and the thermoplastic film are integrated by subjecting the laminate of the carbon short fiber nonwoven fabric and the thermoplastic film to heat and pressure treatment with rolls. Further, in the method for producing a carbon short fiber reinforced structure of the present invention, the nonwoven fabric and the thermoplastic film are integrated by performing heat and pressure treatment with rolls from both sides of the laminate of the carbon short fiber nonwoven fabric and the thermoplastic film. To produce a carbon short fiber reinforced film, and a plurality of the carbon short fiber reinforced films are bonded together. In these steps, for example, when PEEK is used, since the melting point of PEEK is around 350 ° C., a superheater of 400 ° C. or higher is required. In the present invention, since the carbon short fiber nonwoven fabric contains microfibrillated cellulose, the dispersibility of the carbon short fibers does not collapse in the carbon short fiber nonwoven fabric during the heat and pressure treatment or when the carbon short fiber reinforced film is bonded. The short carbon fiber does not break. As a result, a continuous carbon short fiber reinforced film can be obtained with high productivity. The carbon short fiber reinforced film obtained in the present invention can be used as a carbon short fiber reinforced structure with a single layer. Furthermore, a carbon short fiber reinforced structure can also be obtained by laminating a plurality of carbon short fiber reinforced films. In the present invention, by containing microfibrillated cellulose, a carbon short fiber reinforced structure excellent in predetermined thickness, physical properties and processability is obtained without impairing the fiber length of the carbon short fiber even at the time of bonding. be able to.

ミクロフィブリル化セルロースとは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下であるセルロース繊維である。長さと幅のアスペクト比が20〜100000であることが好ましい。また、変法濾水度が0ml以上770ml以下であることが好ましく、0ml以上600ml以下であることがより好ましい。さらに、質量平均繊維長が0.1mm以上2mm以下であることが好ましい。本発明における変法濾水度は、ふるい板として線径0.14mm、目開き0.18mmの金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を用い、試料濃度を0.1%にした以外はJIS P8121(1995年版)に準拠して測定した濾水度である。   The microfibrillated cellulose is not a film shape but a fiber shape having a portion finely divided mainly in a direction parallel to the fiber axis, and at least a part thereof is a cellulose fiber having a fiber diameter of 1 μm or less. The aspect ratio of length to width is preferably 20 to 100,000. Further, the modified freeness is preferably from 0 ml to 770 ml, more preferably from 0 ml to 600 ml. Furthermore, the mass average fiber length is preferably 0.1 mm or more and 2 mm or less. The modified freeness in the present invention is that a wire mesh (made by PULP AND PAPER RESEARCH INSTITUTE OF CANADA) having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. It is a freeness measured in accordance with JIS P8121 (1995 edition).

ミクロフィブリル化セルロースのフィブリル化度合いは、低濃度での分散液粘度で把握することも可能である。粘度が高くなるほど、フィブリル化が進行しているが、粘度が高過ぎる場合は、繊維長が短くなり過ぎている可能性がある。ミクロフィブリル化セルロースの分散液(濃度0.5質量%)の粘度が、B型粘度計(ローターNo.2、ローター回転数60rpm、温度23℃以上25℃以下)を用いた場合、50cp以上200cp以下であることが好ましい。   The degree of fibrillation of microfibrillated cellulose can also be grasped by the dispersion viscosity at a low concentration. As the viscosity increases, fibrillation progresses, but if the viscosity is too high, the fiber length may be too short. When the viscosity of the microfibrillated cellulose dispersion (concentration 0.5% by mass) is a B-type viscometer (rotor No. 2, rotor rotational speed 60 rpm, temperature 23 ° C. or higher and 25 ° C. or lower), 50 cp or more and 200 cp The following is preferable.

ミクロフィブリル化セルロース繊維の含有量が少な過ぎると、炭素短繊維強化フィルム製造時又は炭素短繊維強化構造体製造時において、加熱温度が高過ぎた場合に、炭素短繊維の分散性が崩れることがある。逆に、ミクロフィブリル化セルロース繊維の含有量が多過ぎると、炭素短繊維不織布製造時に、ミクロフィブリル化セルロース同士が密な構造を形成して、フィルム状となり、炭素短繊維強化フィルム製造時又は炭素短繊維強化構造体製造時に、炭素短繊維不織布内へ熱可塑性フィルムが進入し難くなる。また、炭素短繊維強化フィルムに、ボイドが見られる場合がある。ミクロフィブリル化セルロースの含有量は、炭素短繊維不織布中の全繊維に対して、0.5質量%以上20質量%以下であることが好ましく、2質量%以上15質量%以下であることがより好ましい。   If the content of the microfibrillated cellulose fiber is too small, the dispersibility of the carbon short fiber may be lost when the heating temperature is too high during the production of the carbon short fiber reinforced film or the carbon short fiber reinforced structure. is there. Conversely, if the content of the microfibrillated cellulose fiber is too large, the microfibrillated cellulose forms a dense structure at the time of carbon short fiber nonwoven fabric production, and becomes a film, and at the time of carbon short fiber reinforced film production or carbon At the time of manufacturing the short fiber reinforced structure, it becomes difficult for the thermoplastic film to enter the carbon short fiber nonwoven fabric. In addition, voids may be seen in the short carbon fiber reinforced film. The content of the microfibrillated cellulose is preferably 0.5% by mass or more and 20% by mass or less, and more preferably 2% by mass or more and 15% by mass or less with respect to all the fibers in the short carbon fiber nonwoven fabric. preferable.

ミクロフィブリル化セルロース用のセルロース材料としては、植物パルプ、溶剤紡糸セルロース、半合成セルロース等が挙げられる。植物パルプとしては、広葉樹材(L材)や針葉樹材(N材)を用いたクラフトパルプ(KP)、溶解パルプ(DP)、溶解クラフトパルプ(DKP)などの木質系パルプが挙げられる。また、藁、麻、コットン、コットンリンターなどの非木質系パルプも挙げられる。市販品としては、セリッシュ(登録商標、ダイセルファインケム社製)が挙げられる。なお、セルロース材料の結晶形には、I型、II型、III型、IV型等があるが、耐熱性の観点から、I型、II型が好ましく、I型がより好ましい。I型のセルロース材料源としては、コットンパルプ、コットンリンターパルプ、麻パルプ、ケナフパルプなどの非木質系パルプで、リグニン及びヘミセルロースの含有量が低減されたパルプ、L材又はN材から得られる、リグニン及びヘミセルロースの含有量が低減されたKP、DP、DKPなどの木質系パルプが挙げられる。特に、コットン系材料が好ましい。   Cellulose materials for microfibrillated cellulose include vegetable pulp, solvent-spun cellulose, semi-synthetic cellulose and the like. Examples of plant pulp include woody pulp such as kraft pulp (KP), dissolved pulp (DP), and dissolved kraft pulp (DKP) using hardwood (L material) and softwood (N material). Moreover, non-woody pulps such as straw, hemp, cotton, and cotton linter are also included. As a commercially available product, serisch (registered trademark, manufactured by Daicel FineChem) can be mentioned. The crystal form of the cellulose material includes type I, type II, type III, type IV, and the like. From the viewpoint of heat resistance, type I and type II are preferable, and type I is more preferable. As the type I cellulose material source, non-woody pulp such as cotton pulp, cotton linter pulp, hemp pulp, kenaf pulp, etc., which is obtained from pulp with reduced lignin and hemicellulose content, L material or N material, And wood pulps such as KP, DP and DKP with a reduced content of hemicellulose. In particular, a cotton material is preferable.

ミクロフィブリル化セルロースを得るためには、セルロース材料が、まず、水中で分散され、機械的に粉砕される。そして、セルロース材料の繊維が解繊されてミクロフィブリルが形成される。セルロース材料を解繊する装置としては、ディスクリファイナー、石臼型磨砕機、高圧ホモジナイザー、ボールミル、水中カウンターコリジョン法用装置、超音波破砕器等が挙げられる。これらの装置を適宜組み合わせて使用することもできる。   In order to obtain microfibrillated cellulose, the cellulosic material is first dispersed in water and mechanically ground. And the fiber of a cellulose material is defibrated and a microfibril is formed. Examples of the device for defibrating the cellulose material include a disc refiner, a stone mill type grinder, a high-pressure homogenizer, a ball mill, an underwater counter collision method device, and an ultrasonic crusher. These devices can be used in appropriate combination.

本発明の炭素短繊維強化フィルムの製造方法では、炭素短繊維不織布と、熱可塑性フィルムを貼り合わせて一体化することによって、炭素短繊維強化フィルムを製造する。   In the method for producing a carbon short fiber reinforced film of the present invention, a carbon short fiber reinforced film is produced by laminating and integrating a carbon short fiber nonwoven fabric and a thermoplastic film.

熱可塑性フィルムの熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィン系樹脂;ポリメチルメタクリレート樹脂等のメタクリル系樹脂;ポリスチレン樹脂、ABS樹脂、AS樹脂等のポリスチレン系樹脂;ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリ1,4−シクロヘキシルジメチレンテレフタレート(PCT)樹脂等のポリエステル系樹脂;6−ナイロン樹脂、6,6−ナイロン樹脂等のポリアミド(PA)樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン(POM)樹脂;ポリカーボネート(PC)樹脂;ポリフェニレンサルファイド(PPS)樹脂;変性ポリフェニレンエーテル(PPE)樹脂;ポリエーテルイミド(PEI)樹脂;ポリスルホン(PSF)樹脂;ポリエーテルスルホン(PES)樹脂;ポリケトン樹脂;ポリアリレート(PAR)樹脂;ポリエーテルニトリル(PEN)樹脂;ポリエーテルケトン(PEK)樹脂;ポリエーテルエーテルケトン(PEEK)樹脂;ポリエーテルケトンケトン(PEKK)樹脂;ポリイミド(PI)樹脂;ポリアミドイミド(PAI)樹脂;フッ素(F)樹脂;液晶ポリエステル樹脂等の液晶ポリマー樹脂;ポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系又はフッ素系等の熱可塑性エラストマー;又はこれらの共重合体樹脂や変性樹脂;アイオノマー樹脂等が挙げられる。これらの樹脂の中から、1種又は2種以上を用いることができる。燃焼性の観点から、PC、PPS、PEEK、PEI等が好ましい。   The thermoplastic resin of the thermoplastic film includes polyolefin resins such as polyethylene resin, polypropylene (PP) resin and polybutylene resin; methacrylic resins such as polymethyl methacrylate resin; polystyrene resins such as polystyrene resin, ABS resin and AS resin. Polyester resins such as polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate resin, polyethylene naphthalate (PEN) resin, poly 1,4-cyclohexyldimethylene terephthalate (PCT) resin; 6 -Polyamide (PA) resin such as nylon resin and 6,6-nylon resin; polyvinyl chloride resin; polyoxymethylene (POM) resin; polycarbonate (PC) resin; polyphenylene sulfide ( PS) resin; modified polyphenylene ether (PPE) resin; polyetherimide (PEI) resin; polysulfone (PSF) resin; polyethersulfone (PES) resin; polyketone resin; polyarylate (PAR) resin; polyether nitrile (PEN) Polyetherketone (PEK) resin; Polyetheretherketone (PEEK) resin; Polyetherketoneketone (PEKK) resin; Polyimide (PI) resin; Polyamideimide (PAI) resin; Fluorine (F) resin; Liquid crystalline polyester resin Liquid crystal polymer resins such as polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene or fluorine, etc .; or copolymer resins and modified resins thereof; Mer resins. Among these resins, one type or two or more types can be used. From the viewpoint of combustibility, PC, PPS, PEEK, PEI and the like are preferable.

アイオノマー樹脂としては、エチレン−不飽和カルボン酸共重合樹脂のカルボキシル基の一部を金属イオンで中和してなるエチレン系アイオノマー樹脂が挙げられる。カルボキシル基の10モル%以上、好ましくは10モル%以上90モル%以下を金属イオンで中和したものが使用される。金属イオンとしては、リチウム、ナトリウムなどのアルカリ金属、亜鉛、マグネシウム、カルシウムなどのアルカリ土類金属のような多価金属イオンを挙げることができる。   Examples of the ionomer resin include an ethylene ionomer resin obtained by neutralizing a part of the carboxyl group of the ethylene-unsaturated carboxylic acid copolymer resin with a metal ion. A product obtained by neutralizing 10 mol% or more, preferably 10 mol% or more and 90 mol% or less of the carboxyl group with a metal ion is used. Examples of the metal ions include polyvalent metal ions such as alkali metals such as lithium and sodium, and alkaline earth metals such as zinc, magnesium and calcium.

炭素短繊維不織布と熱可塑性フィルムは、両面から連続的に加熱加圧処理されることにより、炭素短繊維強化フィルムとなる。連続的に加熱・加圧する方法としては、ロール法が優れている。加熱温度としては、熱可塑性フィルムの融点前後が適当であるが、動作中や加圧場所での温度の変化又は振れには注意が必要であって、温度の振れが大きくなると、炭素短繊維不織布や熱可塑性フィルムの断裂や、熱可塑性フィルムの炭素短繊維不織布への浸透性にムラが生ずるので、温度の振れは1℃以内であることが好ましく、0.5℃以内であることがより好ましい。加圧としては、線圧で10N/mm以上600N/mm以下であることが好ましい。速度としては、1m/min以上100m/min以下であることが好ましく、3m/min以上40m/min以下であることがより好ましい。これらの条件は、選択する材料によって適宜調整する必要がある。   The carbon short fiber nonwoven fabric and the thermoplastic film are continuously heated and pressurized from both sides to become a carbon short fiber reinforced film. The roll method is excellent as a method of continuously heating and pressurizing. As the heating temperature, a temperature around the melting point of the thermoplastic film is appropriate, but attention should be paid to temperature changes or fluctuations during operation or in a pressurized place. Or the thermoplastic film is torn or the permeability of the thermoplastic film into the carbon short fiber nonwoven fabric is uneven. Therefore, the temperature fluctuation is preferably within 1 ° C, more preferably within 0.5 ° C. . As the pressurization, the linear pressure is preferably 10 N / mm or more and 600 N / mm or less. The speed is preferably 1 m / min or more and 100 m / min or less, and more preferably 3 m / min or more and 40 m / min or less. These conditions need to be appropriately adjusted depending on the material to be selected.

ロールは、積層体の両面に対を成して配置されるが、単対でも良いし、複数対用いることもできる。また、スーパーエンジニアリング・プラスチック系の熱可塑性フィルムについては、予備加熱のための装置を設けることができる。積層体としては、1層の炭素短繊維不織布と1層の熱可塑性フィルムからなる積層体、1層の炭素短繊維不織布の両側に熱可塑性フィルムを配置する積層体、1層の熱可塑性フィルムの両側に炭素短繊維不織布を配置する積層体、複数の炭素短繊維不織布と複数の熱可塑性フィルムを交互に配置する積層体、複数の炭素短繊維不織布と複数の熱可塑性フィルムをランダムに配置する積層体等が挙げられる。しかし、製造された炭素短繊維強化フィルムの厚みが厚くなりすぎると、ロール状に巻き取ることが難しくなるので、炭素短繊維強化フィルムの厚みは、20μm以上500μm以下であることが好ましく、30μm以上250μm以下であることがより好ましい。   The rolls are arranged in pairs on both sides of the laminate, but a single pair or a plurality of pairs may be used. Moreover, about the super engineering plastics-type thermoplastic film, the apparatus for preheating can be provided. As a laminate, a laminate composed of one layer of carbon short fiber nonwoven fabric and one layer of thermoplastic film, a laminate in which thermoplastic films are arranged on both sides of one layer of carbon short fiber nonwoven fabric, and one layer of thermoplastic film Laminated body in which carbon short fiber nonwoven fabrics are arranged on both sides, a laminated body in which a plurality of carbon short fiber nonwoven fabrics and a plurality of thermoplastic films are alternately arranged, a laminate in which a plurality of carbon short fiber nonwoven fabrics and a plurality of thermoplastic films are randomly arranged Examples include the body. However, if the produced short carbon fiber reinforced film is too thick, it is difficult to wind it into a roll. Therefore, the thickness of the short carbon fiber reinforced film is preferably 20 μm or more and 500 μm or less, preferably 30 μm or more. More preferably, it is 250 μm or less.

ロールとしては、ロール軸方向に表面温度が高い精度で保たれる必要があるので、ヒートパイプ機能を有するジャケット室と、ロール軸方向に多層加熱層を作ることが可能な、電磁誘導加熱方法を組み合わせたロールを用いることが好ましい。このようなロールとしては、連続生産の場合は、トクデン社製誘導発熱ジャケットロール(登録商標)が優れており、バッチ式や半バッチ式での生産の場合には、誘導発熱ジャケットロール(登録商標)と同じ原理の、トクデン社製誘導発熱ジャケットプレートが優れている。   As the roll, since the surface temperature needs to be maintained with high accuracy in the roll axis direction, a jacket chamber having a heat pipe function and an electromagnetic induction heating method capable of forming a multilayer heating layer in the roll axis direction are used. It is preferable to use a combined roll. As such a roll, Tokuden's induction heating jacket roll (registered trademark) is excellent in continuous production, and in the case of batch or semi-batch production, induction heating jacket roll (registered trademark). The induction heating jacket plate manufactured by Tokuden Co., Ltd., which has the same principle as (1), is excellent.

本発明で得られた炭素短繊維強化フィルムは、単層で炭素短繊維強化構造体として使用することもできる。さらに、炭素短繊維強化フィルムを複数枚重ねて貼り合わせることにより、炭素短繊維強化構造体を得ることもできる。本発明で得られた炭素短繊維強化フィルムは、裁断して用いることも可能である。貼り合わせには、熱プレス成形や、真空成形などの成形加工を使用することができる。   The carbon short fiber reinforced film obtained in the present invention can be used as a carbon short fiber reinforced structure with a single layer. Furthermore, a carbon short fiber reinforced structure can also be obtained by laminating a plurality of carbon short fiber reinforced films. The short carbon fiber reinforced film obtained in the present invention can be cut and used. For the bonding, a molding process such as hot press molding or vacuum molding can be used.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。なお、実施例中における部や百分率は断りの無い限り、すべて質量によるものである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. All parts and percentages in the examples are based on mass unless otherwise specified.

(ミクロフィブリル化セルロースの作製)
リンターパルプ(質量平均繊維長1.2mm)を、増幸産業社製マスコロイダー(登録商標、装置名:MKZA12)を用いて、磨砕処理を行い、ミクロフィブリル化セルロースを作製した。さらに高圧ホモジナイザー(BOS製MC2)を用い50MPaで4回処理した。ミクロフィブリル化セルロースの分散液(濃度0.5質量%)での粘度をB型粘度計(ローターNo.2、ローター回転数60rpm、温度23℃以上25℃以下)で測定したところ、170cpであった。
(Preparation of microfibrillated cellulose)
The linter pulp (mass average fiber length: 1.2 mm) was subjected to a grinding treatment using a mass colloider (registered trademark, apparatus name: MKZA12) manufactured by Masuko Sangyo Co., Ltd., to produce microfibrillated cellulose. Furthermore, it processed 4 times at 50 Mpa using the high pressure homogenizer (MC2 made from BOS). The viscosity of the microfibrillated cellulose dispersion (concentration: 0.5% by mass) was measured with a B-type viscometer (rotor No. 2, rotor rotational speed 60 rpm, temperature 23 ° C. or higher and 25 ° C. or lower). It was.

(炭素短繊維)
炭素短繊維:繊維径7μm、繊維長6mm
(Short carbon fiber)
Carbon short fiber: Fiber diameter 7μm, fiber length 6mm

(熱可塑性短繊維)
熱可塑性短繊維:繊維径4.5μm、繊維長3mm、未延伸PET繊維
(Thermoplastic short fibers)
Thermoplastic short fiber: Fiber diameter 4.5 μm, fiber length 3 mm, unstretched PET fiber

<実施例1〜4及び比較例1>
(炭素短繊維不織布の製造)
表1の繊維配合比率で、分散濃度0.2質量%で5分間、繊維を水に分散して、90メッシュの円網型抄紙機で、速度3m/minで漉き上げて、表面温度150℃のヤンキードライヤーにて10秒乾燥し、目付量25g/m、厚み150μm、幅40cm、長さ100mの炭素短繊維不織布を作製し、ロール状に巻き取った。
<Examples 1-4 and Comparative Example 1>
(Manufacture of carbon short fiber nonwoven fabric)
With the fiber blending ratio shown in Table 1, the fiber was dispersed in water for 5 minutes at a dispersion concentration of 0.2% by mass, and then spun at a speed of 3 m / min with a 90 mesh circular paper machine. The carbon short fiber non-woven fabric having a basis weight of 25 g / m 2 , a thickness of 150 μm, a width of 40 cm, and a length of 100 m was prepared and wound into a roll.

Figure 2018012312
Figure 2018012312

(炭素短繊維強化フィルム1の製造)
炭素短繊維不織布と熱可塑性フィルム(樹脂:PEEK)100μmを、360℃に加熱したロール対で、速度5m/min、線圧150N/mmで挟み込み、厚み115μmの炭素短繊維強化フィルムを作製した。
(Manufacture of carbon short fiber reinforced film 1)
A carbon short fiber nonwoven fabric and a thermoplastic film (resin: PEEK) 100 μm were sandwiched between roll pairs heated to 360 ° C. at a speed of 5 m / min and a linear pressure of 150 N / mm to produce a carbon short fiber reinforced film having a thickness of 115 μm.

(炭素短繊維強化フィルム2の製造)
炭素短繊維不織布2と熱可塑性フィルム(樹脂:無延伸PP、東洋紡製、トーヨータック(登録商標)E−100、融点160℃)100μmを、210℃に加熱したロール対で、速度5m/min、線圧80N/mmで挟み込み、厚み115μmの炭素短繊維強化フィルムを作製した。
(Manufacture of carbon short fiber reinforced film 2)
A roll of carbon short fiber nonwoven fabric 2 and a thermoplastic film (resin: unstretched PP, manufactured by Toyobo, ToyoTac (registered trademark) E-100, melting point 160 ° C.) 100 μm heated to 210 ° C., at a speed of 5 m / min, A carbon short fiber reinforced film having a thickness of 115 μm was produced by sandwiching at a linear pressure of 80 N / mm.

(炭素短繊維強化樹脂複合体の製造)
得られた炭素短繊維強化フィルム1及び2を、それぞれ、裁断し、熱プレス法により貼り合わせ、厚み4mmの炭素短繊維強化構造体として、長さ80mm、幅10mm試験片を5本切り出し、これに150℃で3時間熱処理を施した後、冷却して、万能材料試験機(株式会社ティー・エス・イー、装置名:オートコム(登録商標、AutoCOM)AC−100)でその曲げ弾性率を測定した。平均値の結果を表2に示した。
(Manufacture of carbon short fiber reinforced resin composite)
The obtained carbon short fiber reinforced films 1 and 2 were each cut and bonded together by a hot press method, and 5 pieces of 80 mm long and 10 mm wide test pieces were cut out as a carbon short fiber reinforced structure having a thickness of 4 mm. After heat treatment at 150 ° C. for 3 hours, it was cooled and its flexural modulus was measured with a universal material testing machine (TSE Co., Ltd., device name: Autocom (registered trademark, AutoCOM) AC-100). It was measured. The average results are shown in Table 2.

<比較例2:PEEK射出成形体>
炭素短繊維とPEEK樹脂を質量比15/85で複合して、これを二軸延伸機で混練した後、長さ80mm、幅10mm、厚み4mmの試験片を、射出成形法によって作製し、これに280℃で3時間熱処理を施し、冷却後、実施例1と同様に曲げ弾性率を測定し、平均値を表2に示した。
<Comparative example 2: PEEK injection molded body>
After compounding carbon short fibers and PEEK resin at a mass ratio of 15/85 and kneading them with a biaxial stretching machine, a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was produced by an injection molding method. Was subjected to a heat treatment at 280 ° C. for 3 hours, and after cooling, the flexural modulus was measured in the same manner as in Example 1, and the average values are shown in Table 2.

<比較例3:PP射出成形体>
炭素短繊維とホモタイプPP樹脂を質量比20/80で複合して、これを二軸延伸機で混練した後、長さ80mm、幅10mm、厚み4mmの試験片を、射出成形法によって作製し、これに150℃、3時間熱処理を施し、冷却後、実施例1と同様に曲げ弾性率を測定し、平均値を表2に示した。
<Comparative Example 3: PP injection molded article>
After compounding carbon short fibers and homotype PP resin at a mass ratio of 20/80 and kneading them with a biaxial stretching machine, a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm was produced by an injection molding method. This was subjected to heat treatment at 150 ° C. for 3 hours, and after cooling, the flexural modulus was measured in the same manner as in Example 1, and the average values are shown in Table 2.

Figure 2018012312
Figure 2018012312

炭素短繊維不織布がミクロフィブリル化セルロースを含有していない比較例1では、炭素短繊維不織布は加熱加圧処理時に侵入してくる、熱可塑性フィルムの勢いに耐えきれず、熱可塑性短繊維を含有しているにもかかわらず、破断してしまい、炭素短繊維強化フィルムを製造できなかった。これに対し、炭素短繊維不織布がミクロフィブリル化セルロースを含有している実施例1〜4では、熱可塑性短繊維の有無によること無く、炭素短繊維強化フィルムを製造することができた。   In Comparative Example 1 in which the carbon short fiber nonwoven fabric does not contain microfibrillated cellulose, the carbon short fiber nonwoven fabric cannot withstand the momentum of the thermoplastic film that enters during the heat and pressure treatment, and contains the thermoplastic short fibers. In spite of this, it broke and could not produce a carbon short fiber reinforced film. On the other hand, in Examples 1-4 in which the carbon short fiber nonwoven fabric contains microfibrillated cellulose, a carbon short fiber reinforced film could be produced without depending on the presence or absence of thermoplastic short fibers.

また、実施例1〜4で製造した炭素繊維強化樹脂複合体と炭素短繊維を含有する射出成形体(比較例2及び3)とを比較すると、実施例1〜4で製造された炭素短繊維強化樹脂複合体の方が曲げ弾性率が向上していることが判明した。   Moreover, when the carbon fiber reinforced resin composite produced in Examples 1 to 4 and the injection-molded product containing carbon short fibers (Comparative Examples 2 and 3) are compared, the carbon short fibers produced in Examples 1 to 4 are used. It was found that the reinforced resin composite had an improved flexural modulus.

以上のように、実施例で得られた炭素短繊維強化フィルムは、ロールで巻き取ることが可能で、さらに貼り合わせて、炭素繊維強化樹脂構造体も製造することできるなど、加工性に優れ、かつ得られた炭素繊維強化樹脂複合体は優れた物性も有していた。   As described above, the short carbon fiber reinforced films obtained in the examples can be wound with a roll, and can be bonded together to produce a carbon fiber reinforced resin structure. In addition, the obtained carbon fiber reinforced resin composite also had excellent physical properties.

本発明で得られる炭素短繊維強化フィルム及び炭素短繊維強化構造体は、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、各種製造業で使用されるロボット、ロール等の製造部品等に利用可能である。   The carbon short fiber reinforced film and carbon short fiber reinforced structure obtained in the present invention are manufactured parts such as electronic equipment materials, electrical equipment materials, civil engineering materials, building materials, automobile materials, robots and rolls used in various manufacturing industries. Etc. are available.

Claims (2)

炭素短繊維を含有してなる不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化する炭素短繊維強化フィルムの製造方法において、該不織布がミクロフィブリル化セルロースを含有することを特徴とする炭素短繊維強化フィルムの製造方法。   In the method for producing a carbon short fiber reinforced film in which the nonwoven fabric and the thermoplastic film are integrated by subjecting the laminate of the nonwoven fabric containing the carbon short fibers and the thermoplastic film to heat and pressure treatment with rolls from both sides. The method for producing a carbon short fiber reinforced film, wherein the nonwoven fabric contains microfibrillated cellulose. 炭素短繊維を含有してなる不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化して炭素短繊維強化フィルムを製造し、さらに、該炭素短繊維強化フィルムを複数枚貼り合わせる炭素短繊維強化構造体の製造方法において、該不織布がミクロフィブリル化セルロースを含有することを特徴とする炭素短繊維強化構造体の製造方法。   By heating and pressing with a roll from both sides of a laminate of a nonwoven fabric and a thermoplastic film containing carbon short fibers, the nonwoven fabric and the thermoplastic film are integrated to produce a carbon short fiber reinforced film, Furthermore, in the method for producing a carbon short fiber reinforced structure in which a plurality of the carbon short fiber reinforced films are bonded together, the nonwoven fabric contains microfibrillated cellulose.
JP2016144878A 2016-07-22 2016-07-22 Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method Active JP6702536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016144878A JP6702536B2 (en) 2016-07-22 2016-07-22 Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016144878A JP6702536B2 (en) 2016-07-22 2016-07-22 Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2018012312A true JP2018012312A (en) 2018-01-25
JP6702536B2 JP6702536B2 (en) 2020-06-03

Family

ID=61019068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016144878A Active JP6702536B2 (en) 2016-07-22 2016-07-22 Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method

Country Status (1)

Country Link
JP (1) JP6702536B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172797A (en) * 2018-03-28 2019-10-10 古河電気工業株式会社 Fiber reinforced resin composite material, laminate thereof, composition for fiber reinforced resin composite material, and method for producing fiber reinforced resin composite material
JP2020029021A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Carbon fiber unwoven fabric composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139026A1 (en) * 2022-08-26 2024-03-01 Safran METHOD FOR MANUFACTURING A COMPOSITE PLATE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684917A (en) * 1979-08-24 1981-07-10 Ford Motor Co Reinforcing sheet material and manufacture of its molding article
JPS61263744A (en) * 1985-05-20 1986-11-21 センチユリ−・フアイバ−株式会社 Extremely thin carbon fiber sheet and manufacture thereof
JPS62191599A (en) * 1986-02-19 1987-08-21 静岡県 Production of inorganic paper
JP2004043985A (en) * 2002-07-09 2004-02-12 Yuuhou:Kk Method for producing nonwoven fabric and sheetlike forming material
JP2011021303A (en) * 2009-07-17 2011-02-03 Mitsubishi Plastics Inc Carbon fiber nonwoven fabric, carbon fiber-reinforced resin sheet, and carbon fiber-reinforced resin molded form
JP2017106130A (en) * 2015-12-08 2017-06-15 三菱製紙株式会社 Carbon short fiber unwoven fabric and composite body
JP2017133131A (en) * 2016-01-29 2017-08-03 三菱製紙株式会社 Recycled carbon short fiber nonwoven fabric, and composite body
JP2017172083A (en) * 2016-03-25 2017-09-28 三菱製紙株式会社 Carbon short fiber nonwoven fabric and composite

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684917A (en) * 1979-08-24 1981-07-10 Ford Motor Co Reinforcing sheet material and manufacture of its molding article
JPS61263744A (en) * 1985-05-20 1986-11-21 センチユリ−・フアイバ−株式会社 Extremely thin carbon fiber sheet and manufacture thereof
JPS62191599A (en) * 1986-02-19 1987-08-21 静岡県 Production of inorganic paper
JP2004043985A (en) * 2002-07-09 2004-02-12 Yuuhou:Kk Method for producing nonwoven fabric and sheetlike forming material
JP2011021303A (en) * 2009-07-17 2011-02-03 Mitsubishi Plastics Inc Carbon fiber nonwoven fabric, carbon fiber-reinforced resin sheet, and carbon fiber-reinforced resin molded form
JP2017106130A (en) * 2015-12-08 2017-06-15 三菱製紙株式会社 Carbon short fiber unwoven fabric and composite body
JP2017133131A (en) * 2016-01-29 2017-08-03 三菱製紙株式会社 Recycled carbon short fiber nonwoven fabric, and composite body
JP2017172083A (en) * 2016-03-25 2017-09-28 三菱製紙株式会社 Carbon short fiber nonwoven fabric and composite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172797A (en) * 2018-03-28 2019-10-10 古河電気工業株式会社 Fiber reinforced resin composite material, laminate thereof, composition for fiber reinforced resin composite material, and method for producing fiber reinforced resin composite material
JP2020029021A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Carbon fiber unwoven fabric composite
JP7019534B2 (en) 2018-08-22 2022-02-15 三菱製紙株式会社 Carbon fiber non-woven fabric complex

Also Published As

Publication number Publication date
JP6702536B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6718244B2 (en) Recycled carbon fiber reinforced thermoplastic resin composite
JP6785547B2 (en) Carbon fiber reinforced thermoplastic resin composite
Wang et al. Preparation of Ultralong Cellulose Nanofibers and Optically Transparent Nanopapers Derived from Waste Corrugated Paper Pulp.
Baez et al. Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films
Petrucci et al. Tensile and fatigue characterisation of textile cotton waste/polypropylene laminates
Hervy et al. Sample geometry dependency on the measured tensile properties of cellulose nanopapers
US10875284B2 (en) Composite products of paper and cellulose nanofibrils and process of making
KR101677099B1 (en) multi-layered composite using nanofibrillated cellulose and thermoplastic matrix polymer
JP6791467B2 (en) Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure
JP2011144473A (en) Carbon fiber/thermoplastic resin composite material, method for producing the same and electric field-shielding material
JP6702536B2 (en) Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method
US20150298441A1 (en) Sandwich material
Fang et al. Characterization and analyses of degradable composites made with needle-punched jute nonwoven and polylactic acid (PLA) membrane
JP2011190549A (en) Fiber-mixed mat-shaped molded product and fiber-reinforced molded product
JP2020165048A (en) Carbon fiber nonwoven fabric and carbon fiber-reinforced resin composite
JP2019157315A (en) Carbon fiber non-woven fabric and composite
Smaradhana et al. A progress on nanocellulose as binders for loose natural fibres
JP7386776B2 (en) Carbon fiber-containing wet-laid nonwoven fabric
JP6503182B2 (en) Molded body and method for producing the same
JP2020040268A (en) Carbon fiber non-woven fabric composite
JP6718235B2 (en) Carbon fiber reinforced thermoplastic resin composite
JP6829174B2 (en) Carbon fiber non-woven fabric
JP2021155553A (en) Continuous manufacturing method of nonwoven fabric-like prepreg
JP2017172083A (en) Carbon short fiber nonwoven fabric and composite
CN110914343A (en) Fiber-reinforced body and member using same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200423

R150 Certificate of patent or registration of utility model

Ref document number: 6702536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250