JP2017106130A - Carbon short fiber unwoven fabric and composite body - Google Patents

Carbon short fiber unwoven fabric and composite body Download PDF

Info

Publication number
JP2017106130A
JP2017106130A JP2015239479A JP2015239479A JP2017106130A JP 2017106130 A JP2017106130 A JP 2017106130A JP 2015239479 A JP2015239479 A JP 2015239479A JP 2015239479 A JP2015239479 A JP 2015239479A JP 2017106130 A JP2017106130 A JP 2017106130A
Authority
JP
Japan
Prior art keywords
carbon
fiber
thermoplastic resin
fibers
carbon short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015239479A
Other languages
Japanese (ja)
Other versions
JP6785547B2 (en
Inventor
鍛治 裕夫
Hiroo Kaji
裕夫 鍛治
高岡 和千代
Kazuchiyo Takaoka
和千代 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2015239479A priority Critical patent/JP6785547B2/en
Publication of JP2017106130A publication Critical patent/JP2017106130A/en
Application granted granted Critical
Publication of JP6785547B2 publication Critical patent/JP6785547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon short fiber unwoven fabric excellent in processability without damaging dispersibility of a carbon short fiber during heating or heating pressing treatment when manufacturing a carbon fiber reinforced thermoplastic resin composite body and during hot press processing for manufacturing a molded article from the carbon fiber reinforced thermoplastic resin composite body and a composite body by laminating the carbon short fiber unwoven fabric and a thermoplastic resin film.SOLUTION: There is provided a carbon short fiber unwoven fabric containing a carbon short fiber, a thermoplastic resin fiber and a fibrillation cellulose fiber and a composite body by laminating the carbon short fiber unwoven fabric and a thermoplastic resin film.SELECTED DRAWING: None

Description

本発明は、炭素短繊維不織布及び炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体に関する。   The present invention relates to a carbon short fiber nonwoven fabric and a composite formed by laminating a carbon short fiber nonwoven fabric and a thermoplastic resin film.

炭素繊維と樹脂を複合化してなる炭素繊維強化樹脂複合体は、金属材料に匹敵する強度・弾性率を有しながら、金属材料よりも比重が小さいため、部材の軽量化を図ることができ、また、発錆の問題もなく、酸やアルカリにも強いという性質を有していることから、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等で使用されている。   Carbon fiber reinforced resin composite formed by combining carbon fiber and resin has strength and elastic modulus comparable to metal materials, but has a smaller specific gravity than metal materials, so the weight of members can be reduced, In addition, it has no rust problem and is resistant to acids and alkalis, so it is used in electronic equipment materials, electrical equipment materials, civil engineering materials, building materials, automotive materials, aircraft materials, and various manufacturing industries. Used in manufacturing parts such as robots and rolls.

炭素繊維強化樹脂複合体は、長繊維織布、開繊織物、一方向性ウェブ、短繊維不織布等の炭素繊維布帛と、熱硬化性樹脂、熱可塑性樹脂等の樹脂とを複合させた複合体である。最も一般的な炭素繊維強化樹脂複合体には、長繊維不織布と熱硬化性樹脂とを複合させた複合体であるが、設計が難しい、均質材料ではない、成形加工時間が長い、高価等の課題があった。   The carbon fiber reinforced resin composite is a composite in which a carbon fiber fabric such as a long fiber woven fabric, a spread fabric, a unidirectional web, and a short fiber nonwoven fabric is combined with a resin such as a thermosetting resin or a thermoplastic resin. It is. The most common carbon fiber reinforced resin composite is a composite of a long fiber nonwoven fabric and a thermosetting resin, but it is difficult to design, is not a homogeneous material, has a long molding time, is expensive, etc. There was a problem.

これらの課題を解決した炭素繊維強化樹脂複合体として、炭素短繊維を含有する不織布(炭素短繊維不織布)と熱可塑性樹脂とが複合された炭素繊維強化熱可塑性樹脂複合体が提案されている(例えば、特許文献1〜6参照)。炭素短繊維不織布が使用されることによって、均質性が高まり、熱可塑性樹脂が使用されることによって、易設計・加工性が得られ、安価であり、さらに、リサイクルが可能となっている。   As a carbon fiber reinforced resin composite that has solved these problems, a carbon fiber reinforced thermoplastic resin composite in which a nonwoven fabric containing carbon short fibers (carbon short fiber nonwoven fabric) and a thermoplastic resin is combined has been proposed ( For example, refer to Patent Documents 1 to 6). By using a carbon short fiber nonwoven fabric, homogeneity is enhanced, and by using a thermoplastic resin, easy design and processability are obtained, it is inexpensive, and recycling is possible.

炭素繊維強化熱可塑性樹脂複合体としては、炭素短繊維と熱可塑性樹脂粉末又は繊維とを含む炭素短繊維不織布を積層してなる複合体、炭素短繊維不織布に溶融した熱可塑性樹脂又は熱可塑性樹脂の溶液・分散液とを複合してなる複合体、炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体等が知られている。これらの炭素繊維強化熱可塑性樹脂複合体を製造する場合には、加熱又は加熱加圧処理が施される。また、炭素繊維強化熱可塑性樹脂複合体は、そのままで、又は他の材料と組み合わせて、加熱加圧加工(熱プレス加工)が施されることによって、成型品となる。従来の炭素短繊維不織布は、炭素短繊維と熱可塑性樹脂粉末又は繊維とを含む炭素短繊維不織布、炭素短繊維のみを含む炭素短繊維不織布等であったため、加熱又は加熱加圧処理及び加熱加圧加工等によって、炭素短繊維不織布中の熱可塑性樹脂が流動し、炭素短繊維の分散性が崩れ、均一な炭素繊維強化熱可塑性樹脂複合体又は成型品が得られないという問題があった。特に、炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体において、炭素短繊維不織布中の熱可塑性樹脂の融点よりも、熱可塑性樹脂フィルムの融点が高い場合には、この問題が発生しやすかった。   Carbon fiber reinforced thermoplastic resin composites include composites of carbon short fiber nonwoven fabrics containing carbon short fibers and thermoplastic resin powders or fibers, thermoplastic resins or thermoplastic resins melted in carbon short fiber nonwoven fabrics. Known are composites formed by combining the above solutions and dispersions, composites formed by laminating short carbon fiber nonwoven fabrics and thermoplastic resin films, and the like. When manufacturing these carbon fiber reinforced thermoplastic resin composites, a heating or heating and pressing treatment is performed. In addition, the carbon fiber reinforced thermoplastic resin composite is formed into a molded product by being subjected to heat and pressure processing (hot press processing) as it is or in combination with other materials. Conventional carbon short fiber nonwoven fabrics are carbon short fiber nonwoven fabrics containing carbon short fibers and thermoplastic resin powders or fibers, carbon short fiber nonwoven fabrics containing only carbon short fibers, and the like. There has been a problem that the thermoplastic resin in the carbon short fiber nonwoven fabric flows due to pressure processing or the like, the dispersibility of the carbon short fibers is lost, and a uniform carbon fiber reinforced thermoplastic resin composite or molded product cannot be obtained. In particular, in a composite formed by laminating a short carbon fiber nonwoven fabric and a thermoplastic resin film, this problem occurs when the melting point of the thermoplastic resin film is higher than the melting point of the thermoplastic resin in the short carbon fiber nonwoven fabric. It was easy to occur.

特開2013−208791号公報JP 2013-208791 A 特開2013−202891号公報JP 2013-202891 A 特開2011−21303号公報JP 2011-21303 A 特開2004−43985号公報JP 2004-43985 A 特開2011−194852号公報JP 2011-194852 A 特開2014−224333号公報JP 2014-224333 A

本発明の課題は、炭素繊維強化熱可塑性樹脂複合体製造時の加熱又は加熱加圧処理時及び炭素繊維強化熱可塑性樹脂複合体から成型品を製造する熱プレス加工時において、炭素短繊維の分散性が崩れない、加工性に優れた炭素短繊維不織布と、該炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体を提供することである。   An object of the present invention is to disperse short carbon fibers during heating or heat-pressure treatment during the production of a carbon fiber reinforced thermoplastic resin composite and during hot press processing for producing a molded product from the carbon fiber reinforced thermoplastic resin composite. It is to provide a composite comprising a carbon short fiber nonwoven fabric excellent in processability and a laminate of the carbon short fiber nonwoven fabric and a thermoplastic resin film.

上記課題は、下記発明によって解決することができる。   The above problems can be solved by the following invention.

(1)炭素短繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有してなる炭素短繊維不織布。 (1) A carbon short fiber nonwoven fabric comprising carbon short fibers, thermoplastic resin fibers, and fibrillated cellulose fibers.

(2)フィブリル化セルロース繊維が、不織布中の全繊維に対して、2〜20質量%であることを特徴とする(1)記載の炭素短繊維不織布。 (2) The short carbon fiber nonwoven fabric according to (1), wherein the fibrillated cellulose fiber is 2 to 20% by mass with respect to all the fibers in the nonwoven fabric.

(3)(1)又は(2)記載の炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体。 (3) A composite formed by laminating the short carbon fiber nonwoven fabric according to (1) or (2) and a thermoplastic resin film.

本発明によれば、炭素繊維強化熱可塑性樹脂複合体製造時の加熱又は加熱加圧処理時及び炭素繊維強化熱可塑性樹脂複合体から成型品を製造する熱プレス加工時において、炭素短繊維の分散性が崩れない、加工性に優れた炭素短繊維不織布を得ることができる。本発明の炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体は、加熱又は加熱加圧処理及び熱プレス加工において、炭素短繊維不織布の炭素短繊維の均一性が保持されるため、均一な炭素繊維強化熱可塑性樹脂複合体を得ることができる。   According to the present invention, the short carbon fibers are dispersed at the time of heating or heat pressure treatment at the time of producing the carbon fiber reinforced thermoplastic resin composite and at the time of hot press processing for producing a molded product from the carbon fiber reinforced thermoplastic resin composite. A carbon short fiber nonwoven fabric excellent in processability that does not lose its properties can be obtained. Since the composite formed by laminating the carbon short fiber nonwoven fabric and the thermoplastic resin film of the present invention maintains the uniformity of the carbon short fibers of the carbon short fiber nonwoven fabric in heating or heat-pressing treatment and heat press processing. A uniform carbon fiber reinforced thermoplastic resin composite can be obtained.

本発明の炭素短繊維不織布は、炭素短繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有してなる不織布である。   The carbon short fiber nonwoven fabric of the present invention is a nonwoven fabric comprising carbon short fibers, thermoplastic resin fibers, and fibrillated cellulose fibers.

炭素短繊維としては、ポリアクリロニトリルを原料とするPAN系炭素短繊維、ピッチ類を原料とするピッチ系炭素短繊維が挙げられる。炭素短繊維の繊維径は3〜20μmであることが好ましく、5〜15μmであることがより好ましい。また、炭素短繊維の繊維長は1〜30mmであることが好ましく、3〜12mmであることがより好ましい。   Examples of the carbon short fibers include PAN-based carbon short fibers using polyacrylonitrile as a raw material and pitch-based carbon short fibers using pitch as a raw material. The fiber diameter of the short carbon fibers is preferably 3 to 20 μm, and more preferably 5 to 15 μm. Moreover, it is preferable that the fiber length of a carbon short fiber is 1-30 mm, and it is more preferable that it is 3-12 mm.

熱可塑性樹脂繊維は、炭素短繊維が不織布から脱離することを防止し、炭素短繊維不織布に強度を付与ために添加される。熱可塑性樹脂繊維としては、非結晶性のポリビニルアルコール(ビニロン)短繊維、表面が低融点化されているポリエステル芯鞘繊維、未延伸ポリエステル繊維、ポリカーボネート(PC)繊維、ポリオレフィン繊維、表面が低融点化されているポリオレフィン芯鞘繊維、表面が酸変性ポリオレフィンよりなるポリオレフィン繊維、脂肪族ポリアミド繊維、未延伸ポリフェニレンスルフィド繊維、ポリエーテルケトンケトン繊維等が挙げられる。   The thermoplastic resin fiber is added to prevent the carbon short fibers from being detached from the nonwoven fabric and to impart strength to the carbon short fiber nonwoven fabric. Thermoplastic resin fibers include non-crystalline polyvinyl alcohol (vinylon) short fibers, polyester core-sheath fibers whose surfaces have a low melting point, unstretched polyester fibers, polycarbonate (PC) fibers, polyolefin fibers, and low melting points on the surface. Polyolefin core-sheath fibers that have been formed, polyolefin fibers whose surface is made of acid-modified polyolefin, aliphatic polyamide fibers, unstretched polyphenylene sulfide fibers, polyether ketone ketone fibers, and the like.

熱可塑性樹脂繊維の融点は60〜260℃であることが好ましく、60〜230℃であることがより好ましく、60〜180℃であることが更に好ましく、80〜160℃であることが特に好ましい。熱可塑性樹脂繊維の融点がこの温度範囲であることによって、不織布製造工程における加熱処理によって、結着性が付与され、炭素短繊維不織布に強度が付与される。   The melting point of the thermoplastic resin fiber is preferably 60 to 260 ° C, more preferably 60 to 230 ° C, still more preferably 60 to 180 ° C, and particularly preferably 80 to 160 ° C. When the melting point of the thermoplastic resin fiber is within this temperature range, the heat treatment in the nonwoven fabric manufacturing process imparts binding properties and imparts strength to the carbon short fiber nonwoven fabric.

熱可塑性樹脂繊維の繊維径は3〜40μmであることが好ましく、5〜20μmであることがより好ましい。また、熱可塑性樹脂繊維の繊維長は1〜20mmであることが好ましく、3〜12mmであることがより好ましい。   The fiber diameter of the thermoplastic resin fiber is preferably 3 to 40 μm, and more preferably 5 to 20 μm. Moreover, it is preferable that the fiber length of a thermoplastic resin fiber is 1-20 mm, and it is more preferable that it is 3-12 mm.

本発明の炭素短繊維不織布では、炭素短繊維に加えて、フィブリル化セルロース繊維と熱可塑性樹脂繊維とを併用することによって、加熱又は加熱加圧処理時及び熱プレス加工時において、炭素短繊維の分散性が崩れない、加工性に優れた炭素短繊維不織布を得ることができる。   In the short carbon fiber nonwoven fabric of the present invention, in addition to the short carbon fiber, by using the fibrillated cellulose fiber and the thermoplastic resin fiber in combination, at the time of heating or heat press treatment and hot press processing, It is possible to obtain a carbon short fiber non-woven fabric excellent in processability that does not lose dispersibility.

フィブリル化セルロース繊維とは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下であるセルロース繊維である。長さと幅のアスペクト比が20〜100000であることが好ましい。また、変法濾水度が0〜770mlであることが好ましく、0〜600mlであることがより好ましい。さらに、質量平均繊維長が0.1〜2mmであることが好ましい。本発明における変法濾水度は、ふるい板として線径0.14mm、目開き0.18mmの金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を用い、試料濃度を0.1%にした以外はJIS P8121(1995年版)に準拠して測定した濾水度である。   The fibrillated cellulose fiber is not a film shape, but a fiber shape having a portion finely divided mainly in a direction parallel to the fiber axis, and at least a part thereof is a cellulose fiber having a fiber diameter of 1 μm or less. The aspect ratio of length to width is preferably 20 to 100,000. Moreover, it is preferable that modified drainage is 0-770 ml, and it is more preferable that it is 0-600 ml. Furthermore, the mass average fiber length is preferably 0.1 to 2 mm. The modified freeness in the present invention is that a wire mesh (made by PULP AND PAPER RESEARCH INSTITUTE OF CANADA) having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. It is a freeness measured in accordance with JIS P8121 (1995 edition).

フィブリル化セルロースのフィブリル化度合いは、低濃度での分散液粘度で把握することも可能である。粘度が高くなるほど、フィブリル化が進行しているが、粘度が高過ぎる場合は、繊維長が短くなり過ぎている可能性がある。フィブリル化セルロースの分散液(濃度0.5質量%)の粘度が、B型粘度計(ローターNo.2、ローター回転数60rpm、温度23〜25℃)を用いた場合、50〜200cpであることが好ましい。   The degree of fibrillation of fibrillated cellulose can also be grasped by the dispersion viscosity at a low concentration. As the viscosity increases, fibrillation progresses, but if the viscosity is too high, the fiber length may be too short. The viscosity of the fibrillated cellulose dispersion (concentration 0.5% by mass) is 50 to 200 cp when a B-type viscometer (rotor No. 2, rotor rotation speed 60 rpm, temperature 23 to 25 ° C.) is used. Is preferred.

フィブリル化セルロース繊維の含有量が少な過ぎると、加熱又は加熱加圧処理時及び熱プレス加工時において、加熱温度が高過ぎた場合に、炭素短繊維の分散性が崩れることがある。逆に、フィブリル化セルロース繊維の含有量が多過ぎると、不織布製造時に脱水された後、フィブリル化セルロース同士が密な構造を形成して、フィルム状となり、熱プレス加工時に炭素短繊維不織布内への熱可塑性樹脂フィルムが進入し難くなる。また、炭素短繊維不織布と熱可塑性樹脂繊維とを積層してなる複合体に、ボイドが見られる場合がある。フィブリル化セルロース繊維の含有量は、不織布中の全繊維に対して、2〜20質量%であることが好ましく、2〜15質量%であることがより好ましく、5〜15質量%であることが更に好ましい。   If the content of the fibrillated cellulose fiber is too small, the dispersibility of the short carbon fibers may be lost if the heating temperature is too high during the heating or heating / pressing treatment and during the hot press processing. On the other hand, if the content of fibrillated cellulose fibers is too large, the fibrillated celluloses form a dense structure after being dehydrated during the production of the nonwoven fabric, forming a film, and into the carbon short fiber nonwoven fabric during hot press processing. It becomes difficult for the thermoplastic resin film to enter. Moreover, a void may be seen in the composite body which laminates | stacks a carbon short fiber nonwoven fabric and a thermoplastic resin fiber. The content of the fibrillated cellulose fiber is preferably 2 to 20% by mass, more preferably 2 to 15% by mass, and 5 to 15% by mass with respect to all the fibers in the nonwoven fabric. Further preferred.

フィブリル化セルロース繊維用のセルロース材料としては、植物パルプ、溶剤紡糸セルロース、半合成セルロース等が挙げられる。植物パルプとしては、広葉樹材(L材)や針葉樹材(N材)を用いたクラフトパルプ(KP)、溶解パルプ(DP)、溶解クラフトパルプ(DKP)などの木質系パルプが挙げられる。また、藁、麻、コットン、コットンリンターなどの非木質系パルプも挙げられる。市販品としては、セリッシュ(登録商標、ダイセルファインケム社製)が挙げられる。なお、セルロース材料の結晶形には、I型、II型、III型、IV型等があるが、耐熱性の観点から、I型、II型が好ましく、I型がより好ましい。I型のセルロース材料源としては、コットンパルプ、コットンリンターパルプ、麻パルプ、ケナフパルプなどの非木質系パルプで、リグニン及びヘミセルロースの含有量が低減されたパルプ、L材又はN材から得られる、リグニン及びヘミセルロースの含有量が低減されたKP、DP、DKPなどの木質系パルプが挙げられる。特に、コットン系材料が好ましい。   Cellulose materials for fibrillated cellulose fibers include vegetable pulp, solvent-spun cellulose, semi-synthetic cellulose and the like. Examples of plant pulp include woody pulp such as kraft pulp (KP), dissolved pulp (DP), and dissolved kraft pulp (DKP) using hardwood (L material) and softwood (N material). Moreover, non-woody pulps such as straw, hemp, cotton, and cotton linter are also included. As a commercially available product, serisch (registered trademark, manufactured by Daicel FineChem) can be mentioned. The crystal form of the cellulose material includes type I, type II, type III, type IV, and the like. From the viewpoint of heat resistance, type I and type II are preferable, and type I is more preferable. As the type I cellulose material source, non-woody pulp such as cotton pulp, cotton linter pulp, hemp pulp, kenaf pulp, etc., which is obtained from pulp with reduced lignin and hemicellulose content, L material or N material, And wood pulps such as KP, DP and DKP with a reduced content of hemicellulose. In particular, a cotton material is preferable.

フィブリル化セルロースを得るためには、セルロース材料が、まず、水中で分散され、機械的に粉砕される。そして、セルロース材料の繊維が解繊されてミクロフィブリルが形成される。セルロース材料を解繊する装置としては、ディスクリファイナー、石臼型磨砕機、高圧ホモジナイザー、ボールミル、水中カウンターコリジョン法用装置、超音波破砕器等が挙げられる。これらの装置を適宜組み合わせて使用することもできる。   To obtain fibrillated cellulose, the cellulosic material is first dispersed in water and mechanically ground. And the fiber of a cellulose material is defibrated and a microfibril is formed. Examples of the device for defibrating the cellulose material include a disc refiner, a stone mill type grinder, a high-pressure homogenizer, a ball mill, an underwater counter collision method device, and an ultrasonic crusher. These devices can be used in appropriate combination.

炭素短繊維と熱可塑性樹脂繊維の含有比率(質量基準)は、8.5:0.5〜5:4であることが好ましく、より好ましく、8:1〜6:3であることが更に好ましい。炭素短繊維と熱可塑性樹脂の含有比率を上記範囲内とすることにより、炭素短繊維不織布及び複合体並びに成型品の強度を高めることができる。   The content ratio (mass basis) of the short carbon fiber and the thermoplastic resin fiber is preferably 8.5: 0.5 to 5: 4, more preferably 8: 1 to 6: 3. . By setting the content ratio of the short carbon fiber and the thermoplastic resin within the above range, the strength of the short carbon fiber nonwoven fabric, the composite, and the molded product can be increased.

本発明における炭素短繊維不織布は、湿式抄造法で製造された湿式抄造不織布であることが好ましい。湿式抄造法では、まず、炭素短繊維、熱可塑性樹脂繊維、フィブリル化セルロース繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01〜0.50質量%に調整されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。   The short carbon fiber nonwoven fabric in the present invention is preferably a wet papermaking nonwoven fabric produced by a wet papermaking method. In the wet papermaking method, first, short carbon fibers, thermoplastic resin fibers, and fibrillated cellulose fibers are uniformly dispersed in water, and then passed through processes such as screen (removal of foreign matters, lumps, etc.), and the final fiber concentration is reduced to 0. The slurry adjusted to 0.01 to 0.50% by mass is made by a paper machine to obtain a wet paper. In order to make the dispersibility of the fibers uniform, chemicals such as dispersants, antifoaming agents, hydrophilic agents, antistatic agents, polymer thickeners, mold release agents, antibacterial agents, bactericides, etc. may be added during the process. is there.

抄紙機としては、例えば、長網、円網、傾斜ワイヤー等の抄紙網を単独で使用した抄紙機、同種又は異種の2以上の抄紙網がオンラインで設置されているコンビネーション抄紙機等を使用することができる。また、不織布が2層以上の多層構造の場合には、各々の抄紙機で抄き上げた湿紙を積層する抄き合わせ法や、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して積層とする流延法等で、不織布を製造することができる。繊維を分散したスラリーを流延する際に、先に形成した層は湿紙状態であっても、乾燥状態であってもいずれでも良い。また、2枚以上の乾燥状態の層を熱融着させて、多層構造の不織布とすることもできる。   As the paper machine, for example, a paper machine using a paper net such as a long net, a circular net, or an inclined wire alone, or a combination paper machine in which two or more paper nets of the same type or different types are installed online is used. be able to. In addition, when the nonwoven fabric has a multilayer structure of two or more layers, a paper making method in which wet papers made by each paper machine are laminated, or after one layer is formed, fibers are dispersed on the layer. The nonwoven fabric can be produced by a casting method in which the slurry is cast to form a laminate. When casting the slurry in which the fibers are dispersed, the previously formed layer may be either a wet paper state or a dry state. In addition, two or more dry layers can be heat-sealed to form a multilayered nonwoven fabric.

本発明において、不織布が多層構造である場合、各層の繊維配合が同一である多層構造であっても良く、各層の繊維配合が異なっている多層構造であっても良い。多層構造である場合、各層の坪量が下がることにより、スラリーの繊維濃度を下げることができるため、不織布の地合が良くなり、その結果、不織布の地合の均一性が向上する。また、各層の地合が不均一であった場合でも、積層することで補填できる。さらに、抄紙速度を上げることができ、操業性が向上するという効果も得られる。   In the present invention, when the nonwoven fabric has a multilayer structure, it may have a multilayer structure in which the fiber blend of each layer is the same, or may have a multilayer structure in which the fiber blend of each layer is different. In the case of a multilayer structure, since the fiber concentration of the slurry can be lowered by lowering the basis weight of each layer, the formation of the nonwoven fabric is improved, and as a result, the uniformity of the formation of the nonwoven fabric is improved. Moreover, even when the formation of each layer is non-uniform | heterogenous, it can compensate by laminating | stacking. Furthermore, the papermaking speed can be increased, and the operability can be improved.

湿式抄造法では、抄紙網で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することによって、シート状の湿式抄造不織布が得られる。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることを言う。熱ロールの表面温度は、100〜180℃が好ましく、100〜160℃がより好ましく、110〜160℃が更に好ましい。圧力は、好ましくは50〜1000N/cmであり、より好ましくは100〜800N/cmである。   In the wet papermaking method, a wet papermaking nonwoven fabric in sheet form is obtained by drying wet paper produced by a papermaking net with a Yankee dryer, air dryer, cylinder dryer, suction drum dryer, infrared dryer, or the like. When the wet paper is dried, it is brought into close contact with a hot roll such as a Yankee dryer and dried by heat and pressure to improve the smoothness of the contacted surface. Hot-pressure drying means that wet paper is pressed against a hot roll with a touch roll or the like and dried. The surface temperature of the hot roll is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and still more preferably 110 to 160 ° C. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.

本発明の複合体は、炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体である。複合体は、炭素短繊維不織布と熱可塑性樹脂フィルムとを重ね合わせて、加熱処理又は加熱加圧処理することによって、製造することができる。この複合体を熱圧加工(熱プレス加工)することによって、成型品を製造することができる。   The composite of the present invention is a composite formed by laminating a carbon short fiber nonwoven fabric and a thermoplastic resin film. The composite can be produced by superposing a carbon short fiber nonwoven fabric and a thermoplastic resin film, and subjecting them to heat treatment or heat pressure treatment. A molded product can be produced by subjecting this composite to hot pressing (hot pressing).

熱可塑性樹脂フィルムの熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂等のポリオレフィン系樹脂;ポリメチルメタクリレート樹脂等のメタクリル系樹脂;ポリスチレン樹脂、ABS樹脂、AS樹脂等のポリスチレン系樹脂;ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリ1,4−シクロヘキシルジメチレンテレフタレート(PCT)樹脂等のポリエステル系樹脂;6−ナイロン樹脂、6,6−ナイロン樹脂等のポリアミド(PA)樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン(POM)樹脂;ポリカーボネート(PC)樹脂;ポリフェニレンサルファイド(PPS)樹脂;変性ポリフェニレンエーテル(PPE)樹脂;ポリエーテルイミド(PEI)樹脂;ポリスルホン(PSF)樹脂;ポリエーテルスルホン(PES)樹脂;ポリケトン樹脂;ポリアリレート(PAR)樹脂;ポリエーテルニトリル(PEN)樹脂;ポリエーテルケトン(PEK)樹脂;ポリエーテルエーテルケトン(PEEK)樹脂;ポリエーテルケトンケトン(PEKK)樹脂;ポリイミド(PI)樹脂;ポリアミドイミド(PAI)樹脂;フッ素(F)樹脂;液晶ポリエステル樹脂等の液晶ポリマー樹脂;ポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系又はフッ素系等の熱可塑性エラストマー;又はこれらの共重合体樹脂や変性樹脂;アイオノマー樹脂等が挙げられる。これらの樹脂の中から、1種又は2種以上を用いることができる。燃焼性の観点から、PC、PPS、PEEK、PEI等が好ましい。   Examples of the thermoplastic resin of the thermoplastic resin film include polyolefin resins such as polyethylene resin, polypropylene resin and polybutylene resin; methacrylic resins such as polymethyl methacrylate resin; polystyrene resins such as polystyrene resin, ABS resin and AS resin; polyethylene Polyester resins such as terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate resin, polyethylene naphthalate (PEN) resin, poly 1,4-cyclohexyldimethylene terephthalate (PCT) resin; 6-nylon Polyamide (PA) resin such as resin, 6,6-nylon resin; polyvinyl chloride resin; polyoxymethylene (POM) resin; polycarbonate (PC) resin; polyphenylene sulfide (PP Modified polyphenylene ether (PPE) resin; polyetherimide (PEI) resin; polysulfone (PSF) resin; polyethersulfone (PES) resin; polyketone resin; polyarylate (PAR) resin; polyether nitrile (PEN) resin Polyetherketone (PEK) resin; Polyetheretherketone (PEEK) resin; Polyetherketoneketone (PEKK) resin; Polyimide (PI) resin; Polyamideimide (PAI) resin; Fluorine (F) resin; Liquid crystalline polymer resin: polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, or fluorine-based thermoplastic elastomer; or a copolymer resin or modified resin thereof; ionomer Resins. Among these resins, one type or two or more types can be used. From the viewpoint of combustibility, PC, PPS, PEEK, PEI and the like are preferable.

アイオノマー樹脂としては、エチレン−不飽和カルボン酸共重合樹脂のカルボキシル基の一部を金属イオンで中和してなるエチレン系アイオノマー樹脂が挙げられる。カルボキシル基の10モル%以上、好ましくは10〜90モル%を金属イオンで中和したものが使用される。金属イオンとしては、リチウム、ナトリウムなどのアルカリ金属、亜鉛、マグネシウム、カルシウムなどのアルカリ土類金属のような多価金属イオンを挙げることができる。   Examples of the ionomer resin include an ethylene ionomer resin obtained by neutralizing a part of the carboxyl group of the ethylene-unsaturated carboxylic acid copolymer resin with a metal ion. A product obtained by neutralizing 10 mol% or more, preferably 10 to 90 mol%, of a carboxyl group with a metal ion is used. Examples of the metal ions include polyvalent metal ions such as alkali metals such as lithium and sodium, and alkaline earth metals such as zinc, magnesium and calcium.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。なお、実施例中における部や百分率は断りのない限り、すべて質量によるものである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. In the examples, all parts and percentages are by mass unless otherwise specified.

(フィブリル化セルロースの作製)
リンターパルプ(質量平均繊維長1.2mm)を、増幸産業社製マスコロイダー(登録商標、装置名:MKZA12)を用いて、磨砕処理を行い、フィブリル化セルロースを作製した。フィブリル化セルロースの分散液(濃度0.5質量%)での粘度をB型粘度計(ローターNo.2、ローター回転数60rpm、温度23〜25℃)で測定したところ、80cpであった。
(Production of fibrillated cellulose)
The linter pulp (mass average fiber length: 1.2 mm) was subjected to a grinding treatment using a mascolloider (registered trademark, apparatus name: MKZA12) manufactured by Masuko Sangyo Co., Ltd. to produce fibrillated cellulose. The viscosity of the fibrillated cellulose dispersion (concentration: 0.5 mass%) was measured with a B-type viscometer (rotor No. 2, rotor rotational speed 60 rpm, temperature 23 to 25 ° C.), and was 80 cp.

(炭素短繊維)
炭素短繊維:繊維径7μm、繊維長6mm
(Short carbon fiber)
Carbon short fiber: Fiber diameter 7μm, fiber length 6mm

(熱可塑性樹脂繊維)
熱可塑性樹脂繊維:繊維径4.5μm、繊維長3mm、未延伸PET繊維
(Thermoplastic fiber)
Thermoplastic resin fiber: Fiber diameter 4.5 μm, fiber length 3 mm, unstretched PET fiber

(不織布製造)
表1の繊維配合率で、分散濃度0.2質量%で5分間、繊維を水に分散して、90メッシュの金属ワイヤーで、25cm×25cmサイズの湿紙を形成し、その後、表面温度140℃のヤンキードライヤーにて乾燥し、坪量27g/mの炭素短繊維不織布を得た。
(Nonwoven fabric manufacturing)
With the fiber blending ratio shown in Table 1, the fiber is dispersed in water at a dispersion concentration of 0.2 mass% for 5 minutes to form a 25 cm × 25 cm size wet paper with a 90 mesh metal wire. It dried with the Yankee dryer of 0 degreeC, and obtained the carbon short fiber nonwoven fabric of basic weight 27g / m < 2 >.

Figure 2017106130
Figure 2017106130

(複合体の製造)
実施例及び比較例で製造した炭素短繊維不織布の表裏を、熱可塑性樹脂(PEEK)フィルムで挟み、熱プレス機で、温度360℃、10MPa、5分間加熱加圧加工した後、室温に冷却した。
(Manufacture of complex)
The front and back of the carbon short fiber nonwoven fabric produced in the examples and comparative examples were sandwiched between thermoplastic resin (PEEK) films, heated and pressed with a hot press machine at a temperature of 360 ° C., 10 MPa for 5 minutes, and then cooled to room temperature. .

実施例及び比較例で製造した炭素短繊維不織布、複合体に対して、以下の評価を行い、結果を表2に示した。   The following evaluation was performed on the carbon short fiber nonwoven fabrics and composites produced in Examples and Comparative Examples, and the results are shown in Table 2.

(不織布製造時の状態)
金属ワイヤー面上で、炭素短繊維の分散性を確認し、金属ワイヤーで形成した湿紙をヤンキードライヤーで乾燥させるまでのシートの破断及び炭素短繊維の脱離の有無を観察した(乾燥前)。また、ヤンキードライヤーで乾燥した後の炭素短繊維の脱離の有無も確認した(乾燥後)。
(State when manufacturing non-woven fabric)
On the surface of the metal wire, the dispersibility of the carbon short fibers was confirmed, and the presence or absence of detachment of the carbon short fibers until the wet paper formed with the metal wires was dried with a Yankee dryer was observed (before drying). . In addition, the presence or absence of carbon short fibers after drying with a Yankee dryer was also confirmed (after drying).

(複合体の状態)
熱プレス機で複合体を形成した後に、炭素短不織布の周辺において、炭素短繊維の流れ(流動)が発生しているか、また、複合体のそりの有無やボイドの発生状態を観察した。
(Composite state)
After the composite was formed with a hot press, the short carbon fiber flow (flow) was generated around the short carbon nonwoven fabric, and the presence or absence of warpage of the composite and the occurrence of voids were observed.

Figure 2017106130
Figure 2017106130

炭素短繊維を熱可塑性樹脂繊維とを含有してなる比較例1の炭素短繊維不織布では、複合体の状態を観察したところ、不織布周辺に炭素短繊維の流れが発生していた。これに対し、実施例1〜9の炭素短繊維不織布は、炭素短繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有していることから、炭素短繊維の流れが抑制されていた。   In the carbon short fiber nonwoven fabric of Comparative Example 1 containing carbon short fibers and thermoplastic resin fibers, when the state of the composite was observed, a flow of carbon short fibers was generated around the nonwoven fabric. On the other hand, since the short carbon fiber nonwoven fabrics of Examples 1 to 9 contain short carbon fibers, thermoplastic resin fibers, and fibrillated cellulose fibers, the flow of short carbon fibers was suppressed.

実施例1〜9を比較すると、フィブリル化セルロース繊維の含有量が不織布の全繊維中に対して3質量%未満である実施例2及び実施例3の炭素短繊維不織布では、複合体の状態を観察したところ、炭素短繊維の流れがややあり、また、乾燥前の不織布が破断しやすかったが、使用可レベルであった。また、フィブリル化セルロース繊維の含有量が不織布の全繊維中に対して15質量%超である実施例6の炭素短繊維不織布では、複合体の状態を観察したところ、炭素短繊維の流れはなかったが、使用可レベルではあるものの、少量のボイドが確認された。   When Examples 1-9 are compared, in the carbon short fiber nonwoven fabrics of Example 2 and Example 3 in which the content of fibrillated cellulose fibers is less than 3% by mass based on the total fibers of the nonwoven fabric, the state of the composite is When observed, the flow of short carbon fibers was somewhat, and the nonwoven fabric before drying was easy to break, but it was at a usable level. Further, in the carbon short fiber nonwoven fabric of Example 6 in which the content of fibrillated cellulose fibers is more than 15% by mass based on the total fibers of the nonwoven fabric, the state of the composite was observed, and there was no flow of carbon short fibers. However, although it was at a usable level, a small amount of void was confirmed.

実施例1〜9を比較すると、熱可塑性樹脂繊維の含有量が少なくなっていくと、乾燥後の炭素短繊維の脱離がやや発生したが、使用可レベルであった。また、熱可塑性樹脂繊維の含有量が多くなっていくと、乾燥後の炭素短繊維の脱離は抑制されるが、使用可レベルではあるものの、複合体にそりが発生しやすくなった。   When Examples 1 to 9 were compared, as the content of the thermoplastic resin fibers decreased, the carbon short fibers after drying slightly desorbed, but were at a usable level. Further, when the content of the thermoplastic resin fiber is increased, detachment of the short carbon fiber after drying is suppressed, but although it is at a usable level, the composite is easily warped.

実施例4と比較例2との比較から、セルロース繊維がフィブリル化されることによって、炭素短繊維の脱離が抑制され、複合体において炭素短繊維の流れの発生しないことが確認された。   From the comparison between Example 4 and Comparative Example 2, it was confirmed that the cellulose fibers were fibrillated to suppress the detachment of the carbon short fibers, and the flow of the carbon short fibers did not occur in the composite.

炭素短繊維とフィブリル化セルロース繊維とを含有する比較例3の炭素短繊維不織布では、複合体において、炭素短繊維の流れはなかったものの、乾燥前及び乾燥後の両方において、炭素短繊維の脱離が多く、使用不可レベルであった。   In the carbon short fiber nonwoven fabric of Comparative Example 3 containing carbon short fibers and fibrillated cellulose fibers, there was no flow of carbon short fibers in the composite, but the carbon short fibers were removed both before and after drying. There was much separation, and it was a useless level.

本発明の炭素短繊維不織布及び複合体は、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等に利用可能である。   The carbon short fiber nonwoven fabric and composite of the present invention can be used for manufacturing parts such as electronic equipment materials, electrical equipment materials, civil engineering materials, building materials, automobile materials, aircraft materials, robots and rolls used in various manufacturing industries, etc. It is.

Claims (3)

炭素短繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有してなる炭素短繊維不織布。   A carbon short fiber nonwoven fabric comprising carbon short fibers, thermoplastic resin fibers, and fibrillated cellulose fibers. フィブリル化セルロース繊維が、不織布中の全繊維に対して、2〜20質量%であることを特徴とする請求項1記載の炭素短繊維不織布。   2. The carbon short fiber nonwoven fabric according to claim 1, wherein the fibrillated cellulose fiber is 2 to 20% by mass with respect to all the fibers in the nonwoven fabric. 請求項1又は請求項2記載の炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体。   A composite formed by laminating the carbon short fiber nonwoven fabric according to claim 1 or 2 and a thermoplastic resin film.
JP2015239479A 2015-12-08 2015-12-08 Carbon fiber reinforced thermoplastic resin composite Active JP6785547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015239479A JP6785547B2 (en) 2015-12-08 2015-12-08 Carbon fiber reinforced thermoplastic resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015239479A JP6785547B2 (en) 2015-12-08 2015-12-08 Carbon fiber reinforced thermoplastic resin composite

Publications (2)

Publication Number Publication Date
JP2017106130A true JP2017106130A (en) 2017-06-15
JP6785547B2 JP6785547B2 (en) 2020-11-18

Family

ID=59060540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015239479A Active JP6785547B2 (en) 2015-12-08 2015-12-08 Carbon fiber reinforced thermoplastic resin composite

Country Status (1)

Country Link
JP (1) JP6785547B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012312A (en) * 2016-07-22 2018-01-25 三菱製紙株式会社 Carbon short fiber reinforcement film and method for producing carbon short fiber reinforcement structure
JP2019031749A (en) * 2017-08-04 2019-02-28 三菱製紙株式会社 Carbon short fiber wet type nonwoven fabric and carbon short fiber-reinforced resin composition
JP2019060043A (en) * 2017-09-26 2019-04-18 三菱製紙株式会社 Carbon fiber unwoven fabric
JP2020029021A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Carbon fiber unwoven fabric composite
JP2020040268A (en) * 2018-09-10 2020-03-19 三菱製紙株式会社 Carbon fiber non-woven fabric composite
JP2020151969A (en) * 2019-03-20 2020-09-24 株式会社三五 Method for producing intermediate base material and molded product made of composite material containing thermoplastic resin and reinforcing fiber, and intermediate base material and molded product
CN112848595A (en) * 2020-12-31 2021-05-28 广州金发碳纤维新材料发展有限公司 Easily repaired and easily glued thermoplastic composite plate and forming method
JP7077292B2 (en) 2019-11-22 2022-05-30 三菱製紙株式会社 Carbon staple fiber non-woven fabric

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162900A (en) * 1984-01-27 1985-08-24 三島製紙株式会社 Production of transparent conductive film
JPS60231896A (en) * 1984-04-25 1985-11-18 三島製紙株式会社 Conductive laminated sheet and its production
JPS62191599A (en) * 1986-02-19 1987-08-21 静岡県 Production of inorganic paper
JPH01107093A (en) * 1987-10-19 1989-04-24 Daifuku Seishi Kk Spacer for baking ceramic
JPH03167390A (en) * 1989-11-27 1991-07-19 Mitsubishi Paper Mills Ltd Activated carbon fiber sheet and filter therefrom
JPH03503868A (en) * 1988-04-29 1991-08-29 フエル,バリイ・エム Reinforced thermoplastic honeycomb structure
JPH06257097A (en) * 1993-03-02 1994-09-13 Daifuku Seishi Kk Electrically conductive sheet having density change and its production
JPH0824637A (en) * 1994-07-13 1996-01-30 Toho Rayon Co Ltd Adsorbing material
JPH08257360A (en) * 1995-03-24 1996-10-08 Mitsubishi Paper Mills Ltd Photoreactive material for removing harmful substance
JPH08288091A (en) * 1995-04-14 1996-11-01 Yachiyo Shoji:Kk Static charge eliminating mat
JPH1059777A (en) * 1996-08-21 1998-03-03 Daifuku Seishi Kk Spacer for sintering ceramic material and its manufacture
JP2002266281A (en) * 2001-02-28 2002-09-18 Mitsubishi Paper Mills Ltd Wet type nonwoven fabric, separator for electrochemical element and separator for electric double layer capacitor by using the same fabric
JP2003013390A (en) * 2001-06-28 2003-01-15 Unitika Ltd Sheet for removing harmful material
JP2004342509A (en) * 2003-05-16 2004-12-02 Toshio Kusaka Electroconductive sheet made of paper
JP2004353124A (en) * 2003-05-29 2004-12-16 Mitsubishi Paper Mills Ltd Nonwoven fabric of carbon fiber and method for producing the same
WO2006004012A1 (en) * 2004-07-01 2006-01-12 Asahi Kasei Kabushiki Kaisha Cellulose nonwoven fabric
JP2007059789A (en) * 2005-08-26 2007-03-08 Mitsubishi Paper Mills Ltd Separator for solid electrolytic capacitor
US20090321028A1 (en) * 2006-07-05 2009-12-31 Kazuchiyo Takaoka Sheetlike products and works
JP2011183326A (en) * 2010-03-10 2011-09-22 Mitsubishi Paper Mills Ltd Sheet-like material for dehumidification
DE102013226921A1 (en) * 2013-12-20 2015-06-25 Sgl Automotive Carbon Fibers Gmbh & Co. Kg Nonwoven fabric made of carbon fibers and thermoplastic fibers

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162900A (en) * 1984-01-27 1985-08-24 三島製紙株式会社 Production of transparent conductive film
JPS60231896A (en) * 1984-04-25 1985-11-18 三島製紙株式会社 Conductive laminated sheet and its production
JPS62191599A (en) * 1986-02-19 1987-08-21 静岡県 Production of inorganic paper
JPH01107093A (en) * 1987-10-19 1989-04-24 Daifuku Seishi Kk Spacer for baking ceramic
JPH03503868A (en) * 1988-04-29 1991-08-29 フエル,バリイ・エム Reinforced thermoplastic honeycomb structure
JPH03167390A (en) * 1989-11-27 1991-07-19 Mitsubishi Paper Mills Ltd Activated carbon fiber sheet and filter therefrom
JPH06257097A (en) * 1993-03-02 1994-09-13 Daifuku Seishi Kk Electrically conductive sheet having density change and its production
JPH0824637A (en) * 1994-07-13 1996-01-30 Toho Rayon Co Ltd Adsorbing material
JPH08257360A (en) * 1995-03-24 1996-10-08 Mitsubishi Paper Mills Ltd Photoreactive material for removing harmful substance
JPH08288091A (en) * 1995-04-14 1996-11-01 Yachiyo Shoji:Kk Static charge eliminating mat
JPH1059777A (en) * 1996-08-21 1998-03-03 Daifuku Seishi Kk Spacer for sintering ceramic material and its manufacture
JP2002266281A (en) * 2001-02-28 2002-09-18 Mitsubishi Paper Mills Ltd Wet type nonwoven fabric, separator for electrochemical element and separator for electric double layer capacitor by using the same fabric
JP2003013390A (en) * 2001-06-28 2003-01-15 Unitika Ltd Sheet for removing harmful material
JP2004342509A (en) * 2003-05-16 2004-12-02 Toshio Kusaka Electroconductive sheet made of paper
JP2004353124A (en) * 2003-05-29 2004-12-16 Mitsubishi Paper Mills Ltd Nonwoven fabric of carbon fiber and method for producing the same
WO2006004012A1 (en) * 2004-07-01 2006-01-12 Asahi Kasei Kabushiki Kaisha Cellulose nonwoven fabric
JP2007059789A (en) * 2005-08-26 2007-03-08 Mitsubishi Paper Mills Ltd Separator for solid electrolytic capacitor
US20090321028A1 (en) * 2006-07-05 2009-12-31 Kazuchiyo Takaoka Sheetlike products and works
JP2011183326A (en) * 2010-03-10 2011-09-22 Mitsubishi Paper Mills Ltd Sheet-like material for dehumidification
DE102013226921A1 (en) * 2013-12-20 2015-06-25 Sgl Automotive Carbon Fibers Gmbh & Co. Kg Nonwoven fabric made of carbon fibers and thermoplastic fibers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012312A (en) * 2016-07-22 2018-01-25 三菱製紙株式会社 Carbon short fiber reinforcement film and method for producing carbon short fiber reinforcement structure
JP2019031749A (en) * 2017-08-04 2019-02-28 三菱製紙株式会社 Carbon short fiber wet type nonwoven fabric and carbon short fiber-reinforced resin composition
JP2019060043A (en) * 2017-09-26 2019-04-18 三菱製紙株式会社 Carbon fiber unwoven fabric
JP2020029021A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Carbon fiber unwoven fabric composite
JP7019534B2 (en) 2018-08-22 2022-02-15 三菱製紙株式会社 Carbon fiber non-woven fabric complex
JP2020040268A (en) * 2018-09-10 2020-03-19 三菱製紙株式会社 Carbon fiber non-woven fabric composite
JP2020151969A (en) * 2019-03-20 2020-09-24 株式会社三五 Method for producing intermediate base material and molded product made of composite material containing thermoplastic resin and reinforcing fiber, and intermediate base material and molded product
JP7113432B2 (en) 2019-03-20 2022-08-05 株式会社三五 Method for producing intermediate base material and molded article made of composite material containing thermoplastic resin and reinforcing fiber, and said intermediate base material and said molded article
JP7077292B2 (en) 2019-11-22 2022-05-30 三菱製紙株式会社 Carbon staple fiber non-woven fabric
CN112848595A (en) * 2020-12-31 2021-05-28 广州金发碳纤维新材料发展有限公司 Easily repaired and easily glued thermoplastic composite plate and forming method
CN112848595B (en) * 2020-12-31 2023-05-23 广州金发碳纤维新材料发展有限公司 Thermoplastic composite material plate easy to repair and glue and molding mode

Also Published As

Publication number Publication date
JP6785547B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP6718244B2 (en) Recycled carbon fiber reinforced thermoplastic resin composite
JP6785547B2 (en) Carbon fiber reinforced thermoplastic resin composite
TWI556262B (en) Heat resistant electrical insulating sheet and manufacturing method thereof
TWI730143B (en) Sheet
JP6702536B2 (en) Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method
US20180187375A1 (en) Forming and dewatering of a composite using a double wire press
JP6791467B2 (en) Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure
JP6718235B2 (en) Carbon fiber reinforced thermoplastic resin composite
JP2020165048A (en) Carbon fiber nonwoven fabric and carbon fiber-reinforced resin composite
JP2020040268A (en) Carbon fiber non-woven fabric composite
JP2017172083A (en) Carbon short fiber nonwoven fabric and composite
Rol et al. Production of 100% cellulose nanofibril objects using the molded cellulose process: a feasibility study
JP6829174B2 (en) Carbon fiber non-woven fabric
JP2019157315A (en) Carbon fiber non-woven fabric and composite
WO2019124364A1 (en) Sheet
JP7019534B2 (en) Carbon fiber non-woven fabric complex
JP7077292B2 (en) Carbon staple fiber non-woven fabric
JP2020051000A (en) Manufacturing method of carbon fiber unwoven fabric
JP7030472B2 (en) Carbon staple fiber wet non-woven fabric
JP2019035163A (en) Production method of carbon staple fiber nonwoven fabric
JP2019060031A (en) Method for producing non-woven fabric of carbon short fibers
WO2023074841A1 (en) Fiber aggregate for molding
JP2020158912A (en) Wet nonwoven fabric of short carbon fiber, and carbon fiber reinforced resin
JP2023149892A (en) Continuous manufacturing method of carbon fiber sheet and manufacturing method of carbon fiber-reinforced composite material
JP7386776B2 (en) Carbon fiber-containing wet-laid nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201027

R150 Certificate of patent or registration of utility model

Ref document number: 6785547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250