JPS62191599A - Production of inorganic paper - Google Patents

Production of inorganic paper

Info

Publication number
JPS62191599A
JPS62191599A JP3434686A JP3434686A JPS62191599A JP S62191599 A JPS62191599 A JP S62191599A JP 3434686 A JP3434686 A JP 3434686A JP 3434686 A JP3434686 A JP 3434686A JP S62191599 A JPS62191599 A JP S62191599A
Authority
JP
Japan
Prior art keywords
fibers
fiber
inorganic
paper
fiber length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3434686A
Other languages
Japanese (ja)
Inventor
中田 幸次郎
富男 新井
公男 日吉
羽仁 潔
竹井 多賀子
江藤 昌平
不可三 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Prefecture
Mitsubishi Electric Corp
Original Assignee
Shizuoka Prefecture
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Prefecture, Mitsubishi Electric Corp filed Critical Shizuoka Prefecture
Priority to JP3434686A priority Critical patent/JPS62191599A/en
Publication of JPS62191599A publication Critical patent/JPS62191599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Paper (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複合系プラスチックスの補強基拐として有
効な無機ペーパーの製造法に関する・〔従来の技術〕 一般に複合系プラスチックスの補強材料として汎用され
ているものは9粒子状の無機化合物すなわち充填剤、あ
るいは各種パルプを原料とする紙。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for producing inorganic paper that is effective as a reinforcing material for composite plastics. The most commonly used paper is paper made from nine particulate inorganic compounds, that is, fillers, or from various pulps.

さらに補強性の閤いものとして、ガラス繊維に代表され
る各種の無機繊維化合物が知られている。
Furthermore, various inorganic fiber compounds typified by glass fiber are known as reinforcing materials.

これらの補強材料は複合系プラスチックスの要求性能や
コストに応じて種々選択され使用されている。
Various reinforcing materials are selected and used depending on the required performance and cost of composite plastics.

べ 上述のような無機化合物を含む複合系プラチテツクスの
成形材料の形態は粉末、ベレット、シート状と様々であ
るが、&層成形品を得る場合、シート状が必要となる。
The molding material for composite plastics containing the above-mentioned inorganic compounds has various forms such as powder, pellet, and sheet, but in order to obtain a &layer molded product, a sheet is required.

シート状成形材料の特徴は。What are the characteristics of sheet-form molding materials?

厚肉成形品や大形成形品さらに薄肉成形品や複雑な形状
でも容易に成形できるなどの利点を持っている。従来、
シート状の無機補強材料としては。
It has the advantage of being able to easily mold thick-walled molded products, large-sized molded products, thin-walled molded products, and complex shapes. Conventionally,
As a sheet-shaped inorganic reinforcing material.

ガラス繊維や炭素繊維などの織布又は短繊維を均一に散
布し結合剤によシ繊維を接着させた不織布などがあ夛、
複合系プラスチックの補強材料として使用されている。
There are many woven fabrics such as glass fibers and carbon fibers, and non-woven fabrics made by uniformly dispersing short fibers and bonding the fibers with a binder.
Used as a reinforcing material for composite plastics.

これらの補強材料は9通常液状樹脂や溶剤に溶かした樹
脂液を含浸させた後。
These reinforcing materials are usually made by impregnating them with a liquid resin or a resin solution dissolved in a solvent.

乾燥し半硬化状態にしたシートラ成形している。It is dried and semi-cured and then molded into sheet la.

成形品の特性は、使用する樹脂と補強材料の比率に太き
(依存し、補強材料の比率が高(なる程。
The characteristics of a molded product depend on the ratio of the resin and reinforcing material used, and the higher the ratio of reinforcing material (I see).

補強材料が有している固有の特性に近づ(。Approaching the inherent properties of reinforcing materials (.

しかし、補強材料の充填率には限界があシ、補ではラン
ダムに分散している場合、約52体積%。
However, there is a limit to the filling rate of the reinforcing material, which is approximately 52% by volume when randomly distributed.

一方向に揃った場合、約82体積%と計算されているが
実際には計算値まで補強材料を充填した校合系プラスチ
ックの製造は困難となっている。
When the reinforcing material is aligned in one direction, it is calculated to be about 82% by volume, but in reality, it is difficult to manufacture collated plastics filled with reinforcing material up to the calculated value.

従来特開昭60−81399号に示されているように、
無機繊維をミクロフィブリル化した有機繊維を結合剤と
して抄紙して無機ペーパーを製造していた。
As previously shown in Japanese Patent Application Laid-Open No. 60-81399,
Inorganic paper was manufactured by using organic fibers, which are microfibrillated inorganic fibers, as a binder.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

最高充填率(計算値)に近い高性能の複合系プラスチッ
クを製造するためには補強材料の形態が大きなウェイト
ラ持っている。上記従来の不織布の場合数ミリメートル
から数センチメートルの短繊維がランダムに重なった状
態で結合剤により結合しているため、短繊維の繊維長が
長いと空隙率の小さい不織布の製造は困難となる。また
、短繊維の分布が不均質になるため、複合系プラスチッ
クの特性にバラツキが生じるなどの欠点がある。
In order to manufacture high-performance composite plastics with close to the maximum filling rate (calculated value), the form of the reinforcing material must have a large weight latitude. In the case of the conventional nonwoven fabrics mentioned above, short fibers of several millimeters to several centimeters are randomly overlapped and bonded by a binder, so if the length of the short fibers is long, it is difficult to produce a nonwoven fabric with low porosity. . Furthermore, since the distribution of the short fibers becomes non-uniform, there are drawbacks such as variations in the properties of the composite plastic.

不織布の空隙率を小さくする方法として短繊維の繊維長
を短かくすれば可能であるが、繊維間の結合力を増加さ
せる必要があり多量の結合剤を必要とする。結合剤の増
加は複合系プラスチ−Jザて倉¥性低下につながるため
好ましくない。即ち、従来のものに、ペーパー中の空隙
率および含浸性のコントロールが困難であり、そのため
品質のバラツキが太きいという問題点があった。
Although it is possible to reduce the porosity of a nonwoven fabric by shortening the fiber length of short fibers, it is necessary to increase the bonding force between the fibers, and a large amount of binder is required. An increase in the amount of binder is undesirable because it leads to a decrease in the durability of the composite plastic. That is, the conventional paper had a problem in that it was difficult to control the porosity and impregnability of the paper, resulting in wide variations in quality.

この発明はかかる問題点を解決するためになされたもの
で、適度の空隙率と優れた含浸性を有し。
This invention was made to solve these problems, and has a suitable porosity and excellent impregnability.

従来と同程度の少ない結合剤によシ形成された無機ペー
パーの製造法を得ることを目的とする。
The object of the present invention is to obtain a method for producing an inorganic paper formed using as little binder as the conventional method.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の無機ペーパーの製造法は、繊維径が100μ
m以下で、繊維長が繊維径の2〜500倍の範囲の無機
繊維を所望の繊維長分布に調整制御する工程、および上
記調整制御された無機繊維を主成分とし、結合剤として
繊維径が10μm以下までフィブリル化された有機繊維
を混合し分散して抄紙する工程を施すものである。
In the method for producing inorganic paper of this invention, the fiber diameter is 100 μm.
m or less and the fiber length is in the range of 2 to 500 times the fiber diameter to a desired fiber length distribution. This process involves mixing and dispersing organic fibers fibrillated to a diameter of 10 μm or less to form paper.

〔作用〕[Effect]

この発明における繊維長分布のWM整によフ、繊維長の
長いものと短いものを適当に組合せて充填量を計算値近
くまで高めることができ、しかも品質が均一となり、さ
らに優れた含浸性を保持して空隙率を小さくすることが
できる。
Due to the WM adjustment of the fiber length distribution in this invention, the filling amount can be increased to close to the calculated value by appropriately combining long and short fiber lengths, and the quality is uniform and even better impregnating properties can be achieved. It is possible to maintain the porosity and reduce the porosity.

〔実施例〕〔Example〕

この発明の一実施例に係わる無機繊維としては。 Inorganic fibers according to an embodiment of the present invention include:

例えばガラス繊維、カーボン繊維、炭化ケイ素繊維、ボ
ロン繊維、アルミナ繊維、アルミナシリケート繊維、ク
ォーツ繊維、ジルコニア繊維、アスベスト繊維などの連
続繊維、又は短繊維さらにマグネシア、アルミナ、炭化
ボウ素、炭化ケイ素。
For example, continuous fibers such as glass fibers, carbon fibers, silicon carbide fibers, boron fibers, alumina fibers, alumina silicate fibers, quartz fibers, zirconia fibers, asbestos fibers, or short fibers, as well as magnesia, alumina, boron carbide, and silicon carbide.

蟹化ケイ素、チタン酸カリウム、グラファイトなどのウ
ィスカーを用いることができる。これらの繊維状無機化
合物に繊維長分布を持たせる方法としては、上記無機化
合物が連続繊維の場合、繊維長が50ミリメートルから
数ミクロンの長さの範囲で所定長さに切断した短繊維を
それぞれ調製し。
Whiskers such as silicon canide, potassium titanate, and graphite can be used. As a method for imparting fiber length distribution to these fibrous inorganic compounds, when the above-mentioned inorganic compounds are continuous fibers, each short fiber cut into a predetermined length with a fiber length ranging from 50 mm to several microns is used. Prepare.

この繊維長の異なる短繊維を所定の割合で混合するとい
う方法がある。
There is a method of mixing short fibers having different fiber lengths at a predetermined ratio.

ち密なペーパーを抄紙する場合は、繊維長1ミリメート
ル以下の短繊維を増加させるが多量になると樹脂の含浸
性が低下するのでこの割合は、得ようとする紙の密度と
気孔率によって調整しなければならない。また、数ミリ
メートルの無機短繊維に繊維長分布を持たせる方法とし
ては9強烈なせん断力が加わるミキサーに無機短繊維の
所定量を投入し、一定時間せん断力を加えたものを取シ
出して繊維長分布を持たせるというものである。
When making dense paper, the number of short fibers with a fiber length of 1 mm or less is increased; however, if the amount is too large, the impregnating property of the resin will decrease, so this ratio must be adjusted depending on the density and porosity of the paper to be obtained. Must be. In addition, as a method to give fiber length distribution to inorganic short fibers of several millimeters in length, 9. Put a predetermined amount of inorganic short fibers into a mixer that applies intense shearing force, and take out the inorganic short fibers after applying shearing force for a certain period of time. This is to provide fiber length distribution.

無機繊維の場合、有機繊維に比べ繊維が折れ易いためせ
ん断力を加える時間管理をすれば適度の繊維長分布を持
たせることができる。また、同様の方法として、上記無
機短繊維の所定量を水中に分散させ、せん断力が加わる
回転翼を取p付けた尚速回転機によって、該繊維を混合
することによっても繊維長分布を持たせることができる
。この場合2回転速度の調整及び回転力を加える時間の
w4整さらに繊m濃度の調製によっつ繊維長分布が決定
される。さらに繊維長の非常に短いものの混合が必要な
場合は、上記方法によって繊維長分布を持たせた繊維に
上記ウィスカー全適量添加するのも一方法である。
In the case of inorganic fibers, the fibers break more easily than organic fibers, so if the time for applying shearing force is controlled, a suitable fiber length distribution can be achieved. In addition, as a similar method, a fiber length distribution can be obtained by dispersing a predetermined amount of the above-mentioned inorganic short fibers in water and mixing the fibers with a constant speed rotary machine equipped with rotary blades that apply shearing force. can be set. In this case, the fiber length distribution is determined by adjusting the rotational speed, adjusting the time w4 for applying the rotational force, and adjusting the fiber m concentration. Furthermore, if it is necessary to mix fibers with very short fiber lengths, one method is to add the entire appropriate amount of the above whiskers to the fibers that have been given a fiber length distribution by the above method.

なお、上記無機繊維の繊維径は100μm以下で、繊維
長が繊維径の2〜500倍でなければならない。100
μm以上では無機ペーパーの柔軟性が欠け、2倍以下で
は無機ペーパーの補強性が無くなり500倍以上では繊
維間のからみが生じ均一に分散できな(なる。この発明
の一実施例に関わる結合剤としては例えば綿、亜麻、羊
毛、絹などの天然繊維の不純物を除き繊維径が数ミクロ
ン以下まで解繊された単繊維、あるいは木材を原料とす
るセルロースおよびセルロース銹導体であるビスコ−ス
レー廖ヨンやアセテート繊維を10ミクロン以下にフィ
ブリル化した繊維が用いられる。さらにポリアミド繊維
、ポリビニルアルコール繊維ポリ塩化ビニリデン繊維、
ポリ塩化ビニル系繊維、ポリアクリロニトリル系繊維、
ポリエステル系繊維、ポリエチレン系繊維、ポリプロピ
レン系繊維、ポリウレタン系繊維。
Note that the fiber diameter of the inorganic fibers must be 100 μm or less, and the fiber length must be 2 to 500 times the fiber diameter. 100
If it is larger than μm, the inorganic paper will lack flexibility, if it is less than 2 times the reinforcing property of the inorganic paper will be lost, and if it is more than 500 times the fibers will become entangled and cannot be uniformly dispersed. For example, single fibers of natural fibers such as cotton, flax, wool, and silk that have been defibrated to a fiber diameter of several microns or less after removing impurities, or cellulose made from wood and viscosleek which is a cellulose rust conductor. Fibers made by fibrillating or acetate fibers to a size of 10 microns or less are used.Furthermore, polyamide fibers, polyvinyl alcohol fibers, polyvinylidene chloride fibers,
Polyvinyl chloride fiber, polyacrylonitrile fiber,
Polyester fiber, polyethylene fiber, polypropylene fiber, polyurethane fiber.

ポリシアン化ビニリデン系繊維、ポリフルオロエチレン
系繊維などを極限近(まで延伸処理した後。
After stretching polycyanide vinylidene fibers, polyfluoroethylene fibers, etc. to a near limit.

強力なせん断力によってフィブリル化した合成繊維を結
合剤として用いることができる。さらに全芳香族ポリア
ミド繊維やフェノール−ホルムアルデヒド繊維などの耐
熱有機繊維をフィブリル化したものも用いることができ
る。
Synthetic fibers fibrillated by strong shear forces can be used as binders. Furthermore, fibrillated heat-resistant organic fibers such as wholly aromatic polyamide fibers and phenol-formaldehyde fibers can also be used.

又、上記以外の繊維でも単繊維径が10ミクロン以下に
フィブリル化された繊維であればいずれも用いることが
できる。
Further, any fiber other than those mentioned above can be used as long as it is fibrillated to have a single fiber diameter of 10 microns or less.

なお、結合剤の繊維径1l−1:10μm以下でなけれ
ばならず、10μm以上では結合剤の効果が無(なる。
Note that the fiber diameter of the binder must be 1 l-1:10 μm or less, and if it is 10 μm or more, the binder has no effect.

又、結合剤の繊維長は繊維長分布を持つ無機繊維の最大
繊維長よシ長いものを使用するのが好ましいが特に限定
されるものではない。無機繊維の繊維径に対し、結合剤
として使用する有機繊維の繊維径が小さい程、少量の添
加で結合効果が高められる。また、結合剤を繊維状に限
定しているのは、無機繊維間の空@を減少させずに無機
繊維同士を結合するためこの発明による無機ペーパーの
含浸特性を低下させないからである。
Further, the fiber length of the binder is preferably longer than the maximum fiber length of the inorganic fibers having a fiber length distribution, but is not particularly limited. The smaller the fiber diameter of the organic fiber used as a binder is compared to the fiber diameter of the inorganic fiber, the more the binding effect can be enhanced by adding a small amount. Further, the reason why the binder is limited to fibrous is that the inorganic fibers are bound together without reducing the voids between the inorganic fibers, so that the impregnating properties of the inorganic paper according to the present invention are not deteriorated.

さらにこの発明の一実施例において、製造した無機ペー
パーの耐水性、耐溶剤性を間めるため湿潤紙力増強剤を
添加することもできる。湿潤紙力増強剤として例えば尿
素−ホルムアルデヒド樹脂。
Furthermore, in one embodiment of the present invention, a wet paper strength agent may be added to improve the water resistance and solvent resistance of the produced inorganic paper. Examples of wet strength agents include urea-formaldehyde resins.

メラミン−ホルムアルデヒド樹脂、ポリアミド−ポリア
ミン−エピクロールヒドリン樹脂の水溶性物質を使用す
ることができる。
Water-soluble substances such as melamine-formaldehyde resin, polyamide-polyamine-epichlorohydrin resin can be used.

この発明の一実施例による無機ペーパーは上記のような
もので構成され1例えば以下に示す製造方法により得ら
れる。即ち上記方法により繊維長分布を持たせた無機繊
維と上記結合剤の所定if水及び有機浴剤等の分散媒の
中で均一に分散させ分散液を得、結合剤を無機繊維の表
面に均一にからめた後、無機繊維が通過しない程度の金
網(メツシュ)を使用して通常の抄紙機により抄紙を行
なう。メツシュ上に残った繊維及び結合剤の混合物をメ
ツシュからはがし、結合剤の融着温度付近で圧力をかけ
乾燥させることによシこの発明の一実施例による無機ペ
ーパーが得られる。以下、この発明を実施例により具体
的に説ゆJするがこの発明はこれら実施例のみに限定さ
れるものではない。
The inorganic paper according to one embodiment of the present invention is composed of the above-mentioned material and can be obtained, for example, by the manufacturing method shown below. That is, by the above method, the inorganic fibers having a fiber length distribution and the binder are uniformly dispersed in a dispersion medium such as water and an organic bath agent to obtain a dispersion liquid, and the binder is uniformly distributed on the surface of the inorganic fibers. After the mixture is mixed, paper is made using a normal paper machine using a wire mesh that does not allow inorganic fibers to pass through. An inorganic paper according to an embodiment of the present invention is obtained by peeling the mixture of fibers and binder remaining on the mesh from the mesh and drying under pressure near the fusion temperature of the binder. Hereinafter, this invention will be explained in detail with reference to Examples, but the invention is not limited to these Examples.

実施例1 単繊維径9μmのガラスロービング材(セントラル硝子
社製)全繊維長3 mIn+  11rm + 0.5
’Inmの長さにそれぞれ切断し、3關を30 g+ 
1 mm 60 g +0.5mm80.!i’を30
1の容器に計量しさらに平均繊維長0.122mmのミ
ルドファイバー(セントラル硝子社製) 30 g’に
加えた。この容器に水20Aを加え、さらに結合剤とし
て、ミクロフィブリル化されたセルロース繊維(MFO
■、繊維含有量2%の水溶液、ダイセル化学社製)ss
s、p2加えて攪拌機で約10分間混合する。次いで、
この分散液をパルパー(熊谷埋機社製)に移しガラス繊
維が均一に分散するまで攪拌する。ガラス繊維の分散の
確認法は、5QOeeのメスシリンダーに分散液の少量
を取シ、大量の水を加え十分混合して、繊維の分散状態
を目視で確認する。ガラス繊維の凝集がなくなっていれ
ばパルパーの攪拌ヲ止めて、この分散液を抄紙原液とす
る。
Example 1 Glass roving material with a single fiber diameter of 9 μm (manufactured by Central Glass Co., Ltd.) Total fiber length 3 mIn + 11 rm + 0.5
Cut each piece into lengths of 'Inm and weigh 30 g+ of 3 pieces.
1 mm 60 g +0.5 mm80. ! i' to 30
The mixture was weighed into a container and added to 30 g' of milled fiber (manufactured by Central Glass Co., Ltd.) having an average fiber length of 0.122 mm. Add 20A of water to this container, and add microfibrillated cellulose fiber (MFO) as a binder.
■, aqueous solution with fiber content of 2%, manufactured by Daicel Chemical Co., Ltd.) ss
Add s and p2 and mix with a stirrer for about 10 minutes. Then,
This dispersion liquid is transferred to a pulper (manufactured by Kumagai Uki Co., Ltd.) and stirred until the glass fibers are uniformly dispersed. To confirm the dispersion of the glass fibers, take a small amount of the dispersion liquid into a 5QOee measuring cylinder, add a large amount of water, mix thoroughly, and visually confirm the dispersion state of the fibers. If the glass fibers are no longer aggregated, the stirring of the pulper is stopped and this dispersion is used as a stock solution for papermaking.

この分散液250 CCを用いて角形シートマシン(熊
谷埋機社製)によシ抄紙した。抄紙した後。
Using 250 cc of this dispersion, paper was made using a square sheet machine (manufactured by Kumagaya Uki Co., Ltd.). After paper making.

回転ドライヤーを用いて140℃で乾燥することによシ
厚み0.26閣、250X250mmのこの発明の一実
施例によるガラスペーパーを得た。該ガラスペーパーの
性質を表1に示した。
A glass paper according to an embodiment of the present invention having a thickness of 0.26 mm and a size of 250×250 mm was obtained by drying at 140° C. using a rotary dryer. The properties of the glass paper are shown in Table 1.

実施例2 繊維径12.5μm平均繊維長3.0 mmのカーボン
短繊維(フレ・・カーボン■、呉羽化学社製)SOgと
繊維径12.5μm、平均繊維長0.3 tnmのミル
ドカーボン繊維(クレハカーボン■、呉羽化学社製)2
5L さらに繊維径12.5μmで平均繊維長0.2v
anのミルドカーボン繊維(クレハカーボJ呉羽化学社
製)25yを307!容器にと9.これに水1011f
加え、さらにカーボン短繊維の結合剤として、ミクロフ
ィブリル化されたセルロース繊維(MFO■、繊維含有
量2%の水溶液、ダイセル化学社製)350.9に加え
て実施例1と同様の方法で抄紙原液を調製し、同様の方
法で抄紙してこの発明の他の実施例によるカーボンペー
パーを得た。該カーボンペーパーの性質を表1に示した
Example 2 Short carbon fibers (Fure Carbon ■, manufactured by Kureha Chemical Co., Ltd.) with a fiber diameter of 12.5 μm and an average fiber length of 3.0 mm and milled carbon fibers with a fiber diameter of 12.5 μm and an average fiber length of 0.3 tnm. (Kureha Carbon ■, manufactured by Kureha Chemical Co., Ltd.) 2
5L Furthermore, the fiber diameter is 12.5μm and the average fiber length is 0.2V.
An's milled carbon fiber (Kureha Carbo J Kureha Chemical Co., Ltd.) 25y is 307! 9. In the container. This and water 1011f
In addition, microfibrillated cellulose fiber (MFO■, aqueous solution with fiber content of 2%, manufactured by Daicel Chemical Co., Ltd.) 350.9 was added as a binder for short carbon fibers, and paper was made in the same manner as in Example 1. A stock solution was prepared and paper was made in the same manner to obtain carbon paper according to another example of the present invention. The properties of the carbon paper are shown in Table 1.

実施例3 30IIの容器に繊維径3μmで繊維長が50〜100
、、程度のアルミナ繊維(サフィル■、工C工社製、1
200pを正確に秤量し、ついで水207を加え、コー
レス形高速攪拌機(高崎製作所製)によυ回転速度40
GOr、p、mに設定し5分間攪拌を行なった。
Example 3 A 30II container with a fiber diameter of 3 μm and a fiber length of 50 to 100
,, alumina fiber (Safil ■, manufactured by Kou C Kosha, 1
Weigh 200p accurately, then add 207ml of water, and mix with a Coles type high-speed stirrer (manufactured by Takasaki Seisakusho) at a rotational speed of 40mm.
The mixture was set to GOr, p, and m and stirred for 5 minutes.

この分散液の一部をとって、12メシュ、42メシュ、
80メシュ、150メシユの金網ヲセットしたふるいわ
け試験機(熊谷埋機社製)を通して、アルミナ繊維を分
離した結果、12メシユには20%、42メシユには5
2%、80メシユには18%、150メシユには1%の
アルミナ繊維が止まっていた。各メシュに止まっていた
アルミナ繊維f、o、 s 、pとって投影形の顕微鏡
で平均繊維長を測定した。その結果、12メシユで止ま
ったアルミナ繊維は1000μm以上の繊維であった。
Take a part of this dispersion, 12 mesh, 42 mesh,
As a result of separating the alumina fibers through a sieving tester (manufactured by Kumagai Uki Co., Ltd.) equipped with 80 mesh and 150 mesh wire mesh, the results showed that 20% of alumina fiber was used for 12 mesh and 5% for 42 mesh.
2% alumina fiber was stuck in the 80 mesh, 18% in the 80 mesh, and 1% in the 150 mesh. Alumina fibers f, o, s, and p stuck to each mesh were taken and the average fiber length was measured using a projection microscope. As a result, the alumina fibers that stopped at 12 meshes were fibers of 1000 μm or more.

42メシユは平均800μmであった。80メシユは平
均300μm、150メシユは平均150μmであった
The average size of the 42 meshes was 800 μm. The average size of 80 mesh was 300 μm, and the average size of 150 mesh was 150 μm.

次いで、上記分散液の残分101(アルミナ繊維1ωt
%含有)容器に計量し、アルミナ繊維の結合剤としてミ
クロフィブリル化されたセルロース繊維(MFO■、繊
維含有量2%の水溶液、ダイセル化学社g)200.!
i+を加え、さらに湿潤紙ユレス社製)o、 1Dを添
加し、アルミナ繊維が均質に分散するまで攪拌し、この
分散液を抄紙原液とした。
Next, the remainder 101 of the above dispersion (alumina fiber 1ωt
% containing) into a container and microfibrillated cellulose fibers (MFO■, aqueous solution with fiber content of 2%, Daicel Chemical Co. g) as a binder for alumina fibers 200. !
i+ was added, and 1D (manufactured by Wet Paper Co., Ltd.) was added, and the mixture was stirred until the alumina fibers were homogeneously dispersed, and this dispersion was used as a stock solution for papermaking.

次いで実施例1と同様の方法で抄紙して厚さ0.21m
m、  250X250zHのこの発明の他の実施例に
よるアルミナペーパーを得た。該アルミナベーパーの性
質を表1に示した。
Next, paper was made in the same manner as in Example 1 to a thickness of 0.21 m.
An alumina paper according to another embodiment of the invention of 250 x 250 zH was obtained. The properties of the alumina vapor are shown in Table 1.

実施例4 実施例3と同様にアルミナ繊維200yを容器に計量し
、水20Iji加えて、コーレス形攪拌機で4000r
・ppm、10分間攪拌を行なった。その後、実施例3
と同様の方法でアルミナ繊維の繊維長分布を測定した。
Example 4 In the same manner as in Example 3, 200 y of alumina fibers were weighed into a container, 20 Iji of water was added, and the mixture was stirred for 4000 r with a Coles type stirrer.
・ppm, stirring was performed for 10 minutes. Then, Example 3
The fiber length distribution of alumina fibers was measured using the same method.

測定結果は、12メシユで8%、42メシユで35%、
80メシユで41%。
The measurement results are 8% for 12 mesh, 35% for 42 mesh,
80 meals and 41%.

150メシユで13%であった。80メシユで止まった
アルミナ繊維の平均繊維長は270μmであった。
It was 13% for 150 mesh. The average fiber length of the alumina fibers stopped at 80 mesh was 270 μm.

次いで、実施例3と同様に上記分散液ioaを容器に取
って、MFO■−1z2QQl/、カイメン557H■
0.1.9i加えて攪拌し均質な分散液とした後、実施
例1と同様の方法で抄紙してこの発明の他の実施例によ
るアルミナペーパーを得た。
Next, in the same manner as in Example 3, the above dispersion liquid ioa was placed in a container, and MFO■-1z2QQl/, Kymen 557H■
After adding 0.1.9i and stirring to obtain a homogeneous dispersion, paper was made in the same manner as in Example 1 to obtain alumina paper according to another example of the present invention.

抄紙したアルミナペーパーの性質ヲ表1に示した。The properties of the alumina paper produced are shown in Table 1.

実施例5 実施例3と同様にアルミナ繊維200IIを容器に計量
し、水6.5 # ’i加えて、コーレス形攪拌機で4
000rapsm、IQ分間攪拌を行なった。
Example 5 In the same manner as in Example 3, alumina fiber 200II was weighed into a container, 6.5 #'i of water was added, and the mixture was stirred with a Coles type stirrer.
Stirring was performed at 000 rapsm for IQ minutes.

この分散液の繊維長分布ヲ調べるため実施例3と同様の
方法で測定した。その結果、12メシユで5%、42メ
シユで23%、80メシユで37%。
In order to examine the fiber length distribution of this dispersion, measurements were made in the same manner as in Example 3. As a result, 5% for 12 meshes, 23% for 42 meshes, and 37% for 80 meshes.

150メシユで35%であった。It was 35% for 150 mesh.

150メシユで止まったアルミナ繊維の平均繊維長は1
70μmであった。
The average fiber length of alumina fibers stopped at 150 mesh is 1
It was 70 μm.

次いで実施例3と同様に上記分散″/eL51に対し。Next, in the same manner as in Example 3, for the above dispersion ″/eL51.

MFO■4019.カイメン557H■0.15.9を
加えた均質なスラリーとした後、実施例1と同様に抄紙
を行ないこの発明のさらに他の実施例によるアルミナペ
ーパーを得た。該アルミナペーパーの性質を表1に示し
た。
MFO■4019. After making a homogeneous slurry by adding 0.15.9 of Kymen 557H■, papermaking was carried out in the same manner as in Example 1 to obtain alumina paper according to yet another example of the present invention. The properties of the alumina paper are shown in Table 1.

表1 実施例1〜5で得られたペーパーへの樹脂のしみこみ易
さ、即ち含浸性と成形品の性質を調べるため、下記のエ
ポキシ樹脂フェスを鯛製し、それぞれのペーパーを含浸
して160℃×10分間乾燥させてプリプレグシート(
半硬化シート)を得た。該プリプレグシートを15枚重
ねて160℃。
Table 1 In order to investigate the ease with which the resin penetrated into the papers obtained in Examples 1 to 5, that is, the impregnating properties and the properties of the molded product, the following epoxy resin faces were made from sea bream, and each paper was impregnated with 160% Dry for 10 minutes at ℃ to form a prepreg sheet (
A semi-cured sheet) was obtained. Fifteen sheets of the prepreg sheets were stacked and heated at 160°C.

成形圧力55ky/cnl、成形時間50分の条件下で
Under the conditions of a molding pressure of 55 ky/cnl and a molding time of 50 minutes.

積層成形を行ない実施例1〜5で得られたペーパーを強
化材とした積層板5拙類を得た。5釉類の積層板はいず
れも樹脂含浸が比較的短時間で完了し、成形外観に優れ
、しかも積層板中の繊維含有率が高く、繊維自体の空隙
率が小さく強化材が多量に充てんされた積層板を得るこ
と示できた。一方、比較として同じフェスを市販のガラ
スマット(monz3o、セントラル硝子社製)及びガ
ラスクロス(KRW580.セントラル硝子社製)に含
浸して上記と同様の方法で積層板を作製した。
Laminate molding was carried out to obtain laminate plate 5 using the paper obtained in Examples 1 to 5 as a reinforcing material. The resin impregnation of all five glaze laminates is completed in a relatively short period of time, and the molded appearance is excellent.Furthermore, the fiber content in the laminate is high, and the fibers themselves have a small porosity and are filled with a large amount of reinforcing material. It was possible to obtain a laminate with a high temperature. On the other hand, for comparison, a commercially available glass mat (monz3o, manufactured by Central Glass Co., Ltd.) and a glass cloth (KRW580, manufactured by Central Glass Co., Ltd.) were impregnated with the same fest, and a laminate was produced in the same manner as above.

その結果、積層板の強化材(ガラス繊維)の含有量はこ
の発明の実施例で得られた積層板よシ低いものであった
。これらの結果を表2に示した。
As a result, the content of reinforcing material (glass fiber) in the laminate was lower than that of the laminate obtained in Examples of the present invention. These results are shown in Table 2.

エポキシ樹脂フェス(油化シェル社製)表2 〔発明の効果〕 この発明は以上説明したとおシ、繊維径が100μm以
下で、繊維長が繊維径の2〜500倍の範囲の無機繊維
を所望の繊維長分布に調整制御する工程、および上記調
整制御された無機繊維を主成分とし。結合剤として繊維
径が10μm以下までフィブリル化された有機繊維を混
合し2分散して抄紙する工程を施すことによシ、適度の
空隙率と優れた含浸性を有し2品質が均一で、従来と同
程度の少ない結合剤によシ形成された無機ベーノ<−の
製造法を得ることができる。
Epoxy resin face (manufactured by Yuka Shell Co., Ltd.) Table 2 [Effects of the invention] As explained above, this invention desirably uses inorganic fibers with a fiber diameter of 100 μm or less and a fiber length in the range of 2 to 500 times the fiber diameter. a step of adjusting and controlling the fiber length distribution, and using the adjusted and controlled inorganic fiber as a main component. By mixing fibrillated organic fibers with a fiber diameter of 10 μm or less as a binder and performing a paper-making process by dispersing them, the paper has a moderate porosity and excellent impregnability, and has uniform quality. It is possible to obtain a method for producing an inorganic bene formed using as little binder as the conventional method.

Claims (3)

【特許請求の範囲】[Claims] (1)繊維径が100μm以下で、繊維長が繊維径の2
〜500倍の範囲の無機繊維を所望の繊維長分布に調整
制御する工程、および上記調整制御された無機繊維を主
成分とし、結合剤として繊維径が10μm以下までフィ
ブリル化された有機繊維を混合し、分散して抄紙する工
程を施す無機ペーパーの製造法。
(1) The fiber diameter is 100 μm or less, and the fiber length is 2 times the fiber diameter.
A process of adjusting and controlling inorganic fibers in a range of ~500 times to a desired fiber length distribution, and mixing the adjusted inorganic fibers as the main component with organic fibers fibrillated to a fiber diameter of 10 μm or less as a binder. A method of manufacturing inorganic paper that involves dispersing and making paper.
(2)無機繊維を所望の繊維長分布に調整制御する工程
は、繊維長が異なる無機繊維を所望の比率で混合するも
のである特許請求の範囲第1項記載の無機ペーパーの製
造法。
(2) The method for producing inorganic paper according to claim 1, wherein the step of adjusting and controlling the inorganic fibers to have a desired fiber length distribution is a step of mixing inorganic fibers having different fiber lengths at a desired ratio.
(3)無機繊維を所望の繊維長分布に調整制御する工程
は、1〜50mmの長さの短繊維を水中に濃度を調整し
て分散し、高速回転機によつて繊維にせん断力を加える
もので、このせん断力の大小、およびせん断力を加える
時間の内の何れか一方の調整によつて所望の繊維長分布
を持たせるようにした特許請求の範囲第1項記載の無機
ペーパーの製造法。
(3) The process of adjusting and controlling inorganic fibers to a desired fiber length distribution involves dispersing short fibers with a length of 1 to 50 mm in water with an adjusted concentration, and applying shear force to the fibers using a high-speed rotary machine. The production of inorganic paper according to claim 1, wherein a desired fiber length distribution is obtained by adjusting either the magnitude of the shearing force or the time during which the shearing force is applied. Law.
JP3434686A 1986-02-19 1986-02-19 Production of inorganic paper Pending JPS62191599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3434686A JPS62191599A (en) 1986-02-19 1986-02-19 Production of inorganic paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3434686A JPS62191599A (en) 1986-02-19 1986-02-19 Production of inorganic paper

Publications (1)

Publication Number Publication Date
JPS62191599A true JPS62191599A (en) 1987-08-21

Family

ID=12411574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3434686A Pending JPS62191599A (en) 1986-02-19 1986-02-19 Production of inorganic paper

Country Status (1)

Country Link
JP (1) JPS62191599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411091A (en) * 1990-04-26 1992-01-16 Honshu Paper Co Ltd Method for making inorganic paper and inorganic paper by the method
JP2017106130A (en) * 2015-12-08 2017-06-15 三菱製紙株式会社 Carbon short fiber unwoven fabric and composite body
JP2018012312A (en) * 2016-07-22 2018-01-25 三菱製紙株式会社 Carbon short fiber reinforcement film and method for producing carbon short fiber reinforcement structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081398A (en) * 1983-10-04 1985-05-09 三菱電機株式会社 Alumina paper
JPS6081399A (en) * 1983-10-04 1985-05-09 三菱電機株式会社 Inorganic paper
JPS6088199A (en) * 1983-10-14 1985-05-17 三菱電機株式会社 Composite paper
JPS6088198A (en) * 1983-09-12 1985-05-17 アメリカン・サイアナミド・カンパニ− Conductive fiber mat
JPS60134100A (en) * 1983-12-19 1985-07-17 ダイセル化学工業株式会社 Production of inorganic fiber sheet material
JPS60209100A (en) * 1984-03-14 1985-10-21 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Improved press board and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088198A (en) * 1983-09-12 1985-05-17 アメリカン・サイアナミド・カンパニ− Conductive fiber mat
JPS6081398A (en) * 1983-10-04 1985-05-09 三菱電機株式会社 Alumina paper
JPS6081399A (en) * 1983-10-04 1985-05-09 三菱電機株式会社 Inorganic paper
JPS6088199A (en) * 1983-10-14 1985-05-17 三菱電機株式会社 Composite paper
JPS60134100A (en) * 1983-12-19 1985-07-17 ダイセル化学工業株式会社 Production of inorganic fiber sheet material
JPS60209100A (en) * 1984-03-14 1985-10-21 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Improved press board and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411091A (en) * 1990-04-26 1992-01-16 Honshu Paper Co Ltd Method for making inorganic paper and inorganic paper by the method
JP2017106130A (en) * 2015-12-08 2017-06-15 三菱製紙株式会社 Carbon short fiber unwoven fabric and composite body
JP2018012312A (en) * 2016-07-22 2018-01-25 三菱製紙株式会社 Carbon short fiber reinforcement film and method for producing carbon short fiber reinforcement structure

Similar Documents

Publication Publication Date Title
US6042936A (en) Microsphere containing circuit board paper
US6432482B1 (en) Method of making a multiple layer nonwoven mat
JP5686688B2 (en) Aramid paper blend
US6497787B1 (en) Process of manufacturing a wet-laid veil
US2634208A (en) Building board
US2634207A (en) Building board
EP3347180B1 (en) Composite products of paper and cellulose nanofibrils and process of making
US2626864A (en) Building board of fiber and asphalt coated perlite
GB2069021A (en) Storage battery separator
CN103952947B (en) A kind of aramid paper and preparation method thereof
US4885058A (en) Inorganic paper and method for its manufacture
JP2013511629A (en) Collapsible core based on carbon fiber paper and articles made therefrom
US4220500A (en) Glass-containing sheet substrate
CZ20021003A3 (en) Printed circuit board, process of its manufacture and non-woven webbing
JPS63502361A (en) Wet-laid nonwoven fiber-reinforced composites containing stabilizing pulp and methods of manufacturing the same
JPS62191599A (en) Production of inorganic paper
FI62158C (en) FOERFARINGSSAETT FOER FRAMSTAELLNING AV EN FIBERKOMPOSITION
JPS5924107B2 (en) Manufacturing method of fiber reinforced cement composite material
US5726111A (en) Paper/clay and method of preparation
US3269889A (en) Asbestos paper containing carbon and method of making it
JP3711101B2 (en) Para aromatic polyamide paper and method for producing the same
JPS61127680A (en) Manufacture of whisker sheet
JPH08302038A (en) Composite web composed of carbon fiber and phenolic resin and its production
JPH038857A (en) Inorganic fiber nonwoven fabric
JPH0316436B2 (en)