JPH038857A - Inorganic fiber nonwoven fabric - Google Patents

Inorganic fiber nonwoven fabric

Info

Publication number
JPH038857A
JPH038857A JP1139333A JP13933389A JPH038857A JP H038857 A JPH038857 A JP H038857A JP 1139333 A JP1139333 A JP 1139333A JP 13933389 A JP13933389 A JP 13933389A JP H038857 A JPH038857 A JP H038857A
Authority
JP
Japan
Prior art keywords
fibers
fiber
nonwoven fabric
inorganic
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1139333A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kimura
康之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP1139333A priority Critical patent/JPH038857A/en
Publication of JPH038857A publication Critical patent/JPH038857A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain the subject nonwoven fabric, composed of a specifically arranged filament inorganic fiber layer and short inorganic fiber layer, excellent in heat resistance, mechanical strength, etc., and used for producing FRP reinforcing materials improved in dimensional stability, etc. CONSTITUTION:The objective nonwoven fabric obtained by arranging at least one layer of fiber group obtained by opening a fiber assembly composed of plural filament inorganic fibers (e.g. glass fiber) oriented parallel in the longitudinal direction according to a chemical method, etc., and short inorganic fibers prepared by cutting the aforementioned filaments to 20-30mm length so as to provide at least one layer of the short inorganic fibers in the direction nearly perpendicular to the above-mentioned filaments (at preferably <=0.7 ratio of the longitudinal to the transverse directions when the filaments are arranged in the longitudinal direction and the short fibers are arranged in the transverse direction) and preferably bonding the arranged layers with a silane compound composition.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は繊維強化プラスチック(以下FRP)の成形の
際に補強材として使用される無機繊維不織布に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inorganic fiber nonwoven fabric used as a reinforcing material during molding of fiber reinforced plastics (hereinafter referred to as FRP).

〔従来の技術] 従来、無機繊維は耐熱性、機械的強度、化学安定性、電
気絶縁性等において優れた特性を有することから広範囲
に利用され、中でもガラス繊維不織布は、主として電気
絶縁板、プリント配線基板(以下PCB)などの各種の
FRP補強材として使用されている。特に最近、打ち抜
き加工性、ドリル加工性に優れた安価なPCBの補強用
繊維基材としての利用が進んでいる。PCB補強用ガラ
ス繊維不織布に要求される特性としては、PCBの製造
過程で破断することがない熱間強度を有すること、PC
Bにした場合に優れた寸法安定性、と耐熱特性を与える
ことができること等の他に、最近ではPCBの薄板化に
ともない曲げ強度の強いPCBの製造に寄与できるもの
であることである。
[Prior Art] Conventionally, inorganic fibers have been widely used because they have excellent properties such as heat resistance, mechanical strength, chemical stability, and electrical insulation. Among them, glass fiber nonwoven fabrics have been used mainly for electrical insulation boards, printed materials, etc. It is used as a reinforcing material for various FRPs such as wiring boards (hereinafter referred to as PCBs). Particularly recently, inexpensive PCBs with excellent punching workability and drilling workability have been increasingly used as reinforcing fiber base materials. The characteristics required of glass fiber nonwoven fabric for reinforcing PCBs include having hot strength that will not break during the manufacturing process of PCBs, and
In addition to being able to provide excellent dimensional stability and heat resistance when using B, it can also contribute to the production of PCBs with strong bending strength as PCBs have recently become thinner.

従来、FRP補強用無機繊維不織布としては、カットさ
れた無機繊維をランダムに堆積して単にバインダーによ
って接着固定したものが知られている。又カットされた
ガラス繊維を水中に攪はん分散し、抄紙機にて抄造する
湿式法で製造されるものが知られており、PCB補強用
ガラス繊維不織布としては主に後者の不織布が用いられ
ている。
Conventionally, as an inorganic fiber nonwoven fabric for reinforcing FRP, one in which cut inorganic fibers are randomly piled up and simply adhesively fixed with a binder is known. It is also known to be manufactured by a wet method in which cut glass fibers are stirred and dispersed in water and then made into paper using a paper machine, and the latter type of nonwoven fabric is mainly used as glass fiber nonwoven fabric for PCB reinforcement. ing.

湿式法の場合、ガラス繊維を均一に分散させるために繊
維長が短いものに限定され、さらに水溶性の分散剤が添
加される。また繊維の配向はほとんど制御できず、さら
にガラス繊維はお互いに絡み合う性質がなく、熱融着さ
せることが困難であるためにバインダーによりガラス繊
維不織布の強度を発現させている。
In the case of the wet method, the fiber length is limited to short in order to uniformly disperse the glass fibers, and a water-soluble dispersant is further added. Furthermore, the orientation of the fibers can hardly be controlled, and glass fibers do not have the property of intertwining with each other, making it difficult to heat-seal them, so a binder is used to develop the strength of the glass fiber nonwoven fabric.

(発明が解決しようとする課題〕 プリプレグ、引き抜き成型法等によるFRP加工時には
、補強用繊維基材の引張強度がその加工性に太き(影響
を与え、前述のように主としてバインダーに強度発現を
依存している従来公知の無機繊維不織布は熱及び溶剤に
よる引張強度の低下が著しく FRP加工時に制限を受
は製造効率を悪くしている。そのために無機繊維不織布
の強度発現に供せられるバインダーについて種々の改良
はなされているものの、その改良には自ずから限界があ
る。また、FRP加工時の補強用繊維基材の引張強度を
上げるために、たとえばガラス繊維不織布の走行方向(
以下タテ方向)に糸状ガラス繊維、連続のガラスロービ
ングもしくはガラスストランド等を貼付ける試みもなさ
れている(特開昭50−36771、特開昭59−26
563)  シかしながら、この場合FRP加工時の補
強用繊維基材の引張強度は改善されるものの、集束した
ロービング、スI・ランドを使用することによるガラス
繊維不織布への樹脂含浸性の悪化を招くばかりでなく、
ガラス繊維不織布中のガラス繊維分布が不均一になり、
FRPの寸法安定性を損なうという欠点を生じる。
(Problem to be Solved by the Invention) When processing FRP using prepreg, pultrusion molding, etc., the tensile strength of the reinforcing fiber base material has a large effect on its processability, and as mentioned above, it mainly affects the binder to develop strength. The conventionally known inorganic fiber nonwoven fabrics that rely on them suffer from a significant drop in tensile strength due to heat and solvents, which limits production efficiency during FRP processing.Therefore, regarding the binder used to develop the strength of inorganic fiber nonwoven fabrics, Although various improvements have been made, there are limits to these improvements.Furthermore, in order to increase the tensile strength of the reinforcing fiber base material during FRP processing, for example, the running direction (
Attempts have also been made to attach filamentous glass fibers, continuous glass rovings, glass strands, etc.
563) However, in this case, although the tensile strength of the reinforcing fiber base material during FRP processing is improved, the resin impregnation of the glass fiber nonwoven fabric is deteriorated due to the use of focused rovings and strands. In addition to inviting
The glass fiber distribution in the glass fiber nonwoven fabric becomes uneven,
This has the disadvantage of impairing the dimensional stability of FRP.

また特にPCBにおいては基板の寸法安定性は必須の条
件であり、ガラス繊維分布の不均一さ、ガラス繊維の無
秩序な配列のために良好な寸法安定性が得られず、大き
な欠点の一つとなる。さらに、PCBの曲げ強度につい
ては、従来の湿式法によるガラス繊維不織布は、繊維長
が短く無秩序な配列のために補強効果が小さく、また繊
維充填密度が上がらず、薄板プリント基板へのガラス繊
維不織布の利用に制限を加えるものであった。また湿式
不繊布製造法に不可欠な水溶性分散剤の添加によるPC
Bの耐熱性の低下は湿式不織布の有する大きな欠点の一
つとなっている。
In addition, especially for PCBs, dimensional stability of the substrate is an essential condition, and good dimensional stability cannot be obtained due to uneven distribution of glass fibers and disordered arrangement of glass fibers, which is one of the major drawbacks. . Furthermore, regarding the bending strength of PCBs, glass fiber nonwoven fabrics made using conventional wet methods have a small reinforcing effect due to short fiber lengths and disordered arrangement, and the fiber packing density does not increase. It placed restrictions on the use of. In addition, PC by adding water-soluble dispersant, which is essential for wet nonwoven fabric manufacturing method.
The decrease in heat resistance of B is one of the major drawbacks of wet-laid nonwoven fabrics.

本発明は、FRPの製造条件に何の制限も加える必要の
ない程の高い不織布強度を有し、優れた寸法安定性と耐
熱性を有し、特に薄板での曲げ強度に優れたFRPの製
造に寄与できる無機繊維不織布を提供することを目的と
する。
The present invention aims to produce FRP that has such high nonwoven strength that there is no need to impose any restrictions on the manufacturing conditions of FRP, has excellent dimensional stability and heat resistance, and has excellent bending strength especially in thin sheets. The purpose is to provide an inorganic fiber nonwoven fabric that can contribute to

[課題を解決するための手段] 本発明の目的は実質的に平行に配列した複数の長繊維無
機繊維から成る少くとも一層の繊維群と、液長繊維無機
繊維群上にはヌ゛直交して配置した複数の短繊維無機繊
維から成る少くとも一層の繊維群を含んで成る無機繊維
不織布によって達成される。
[Means for Solving the Problems] The object of the present invention is to have at least one fiber group consisting of a plurality of long fiber inorganic fibers arranged substantially in parallel, and a layer of liquid long fiber inorganic fibers arranged at right angles to each other. This is achieved by an inorganic fiber nonwoven fabric comprising at least one layer of fibers consisting of a plurality of short inorganic fibers arranged in a manner similar to that of the present invention.

ここにいう実質的に平行に配列した複数の長繊維無機繊
維とは複数の長繊維無機繊維が好ましくは個別のモノフ
ィラメント単位に分散されて実質的に平行に配置されて
いることを意味し、一方はり直交して配置とは実際には
短繊維が長繊維無機繊維の配列方向に直交、すなわち直
角方向を中心としである程度の角度範囲でバラツキを有
して配置しているが、短繊維全体としては直角方向に配
置している状態を意味する。
As used herein, a plurality of long fiber inorganic fibers arranged substantially in parallel means that a plurality of long fiber inorganic fibers are preferably distributed in individual monofilament units and arranged substantially in parallel; Arranging perpendicularly means that the short fibers are arranged orthogonally to the arrangement direction of the long inorganic fibers, that is, the short fibers are arranged with variation within a certain angle range centered on the perpendicular direction, but the short fibers as a whole means that they are arranged at right angles.

前記短繊維の長繊維無機繊維に対するは一゛直交して配
置されている状態はマイクロ波配向計(神崎製紙■製)
により測定できる。すなわち長繊維無機繊維の配列方向
をタテ方向として短繊維の配列状態をマイクロ波で測定
した時に、そのタテ/ヨコ強度比が1未満の場合に短繊
維はは\直交して配置されているとみなす。好ましくは
タテ/ヨコ強度比が0.7以下であるとよい。
When the short fibers are arranged perpendicularly to the long fiber inorganic fibers, a microwave orientation meter (manufactured by Kanzaki Paper Corporation) is used.
It can be measured by In other words, when the alignment direction of the short fibers is measured using microwaves with the alignment direction of the long inorganic fibers being the vertical direction, if the length/width strength ratio is less than 1, the short fibers are arranged orthogonally. I reckon. Preferably, the vertical/horizontal strength ratio is 0.7 or less.

前記長繊維無機繊維群の層と、この層とは一゛直交して
配置された短繊維無機繊維群の層とは互いに一体に結合
されていると好ましい。この一体の結合のためには従来
の無機繊維不織布を結合させるために用いられるバイン
ダーをそのまま使用しても良いが、好ましくはFRPの
成形の際に使用される樹脂と反応性のある官能基を有す
るシラン化合物組成物であることが望ましい。また、短
繊維を解繊分離した状態で流体中に飛動させると同時に
、PEEに等の熱可塑性樹脂粉末を連続的に供給し飛動
短繊維と混合し、結合剤として用いることも可能である
Preferably, the layer of long inorganic fibers and the layer of inorganic short fibers disposed orthogonally to this layer are integrally bonded to each other. For this integral bonding, the binder used for bonding conventional inorganic fiber nonwoven fabrics may be used as is, but it is preferable to use a functional group that is reactive with the resin used when molding FRP. It is desirable that the silane compound composition has the following properties. It is also possible to fly the short fibers in a defibrated state into a fluid, and at the same time, continuously supply thermoplastic resin powder such as PEE, mix it with the flying short fibers, and use it as a binder. be.

好ましくは短繊維無機繊維群の層の両表面に長繊維無機
繊維群の層を配置すると良く、さらに重ね合された短繊
維無機繊維群の層と長繊維無機繊維群の層に高速流体、
たとえばウォータージェットを当てることにより短繊維
(ヨコ方向)と長繊維(タテ方向)をからませると、一
体化をより顕著にすることができる。
Preferably, layers of long fiber inorganic fibers are arranged on both surfaces of the layer of short fiber inorganic fibers, and a high-speed fluid,
For example, by applying a water jet to entangle short fibers (horizontal direction) and long fibers (vertical direction), the integration can be made more pronounced.

本発明でいう短繊維とは長繊維をカットしたものおよび
予め短繊維として作られた繊維をいう。
The term "short fiber" as used in the present invention refers to fibers obtained by cutting long fibers or fibers made in advance as short fibers.

短繊維の繊維長としては任意の繊維長のものを用いるこ
とができるが、FRPの曲げ強度補強のためには20m
m〜30mmの繊維長の短繊維を用いるとよい。
Any short fiber length can be used, but 20 m is recommended for reinforcing the bending strength of FRP.
It is preferable to use short fibers with a fiber length of m to 30 mm.

本発明で用いられる無機繊維は特に制限されるものでは
なく、ガラス繊維、アルミナ繊維等のセラミック繊維、
鉱物繊維等何れでもよく、目的に応じて適宜選択され、
さらに必要に応じてアラミド繊維、炭素繊維、PEEK
、  PPS等の耐熱エンジニアリングプラスチック繊
維等と混合して用いられる。用いられる長繊維および短
繊維の径は通常用いられる2〜15廂の範囲のものが用
いられるが、目的に応じて、数種類の径の繊維が混合さ
れて用いられる。
The inorganic fibers used in the present invention are not particularly limited, and include ceramic fibers such as glass fibers and alumina fibers,
Any mineral fiber etc. may be used, and it is selected as appropriate depending on the purpose.
Additionally, aramid fiber, carbon fiber, PEEK can be used as required.
It is used in combination with heat-resistant engineering plastic fibers such as PPS. The diameters of the long fibers and short fibers used are usually in the range of 2 to 15 feet, but depending on the purpose, fibers of several diameters may be mixed and used.

本発明の無機繊維不織布を製造するに際しては、先ず長
繊維無機繊維から成る繊維群を用意することが必要であ
る。そのために複数の長繊維、すなわちフィラメントか
ら成るストランドを多数本平行に配列して供給し、且つ
個々のストランド中のフィラメントを分散させる。前記
分散のためには例えば無機繊維のフィラメントを集束す
るために用いられるバインダー等を溶媒中で溶解させて
分散する方法等の化学的方法と、機械的手段によって物
理的に押し拡げる方法、さらに静電気によってフィラメ
ント同志を互いに反掲させる方法等を単独にあるいは組
合せて用いることができる。ストランド中のフィラメン
トの分散を容易にするためには、ストランドが実質的に
無撚であり、又ストランド中のフィラメントに捲縮等が
与えられていないことが望ましい。又均−な無機繊維不
織布を得るためにはストランドを平行配置するに際して
も個々のストランドを均一な間隔で配置することが好ま
しい。
When producing the inorganic fiber nonwoven fabric of the present invention, it is first necessary to prepare a fiber group consisting of long fiber inorganic fibers. For this purpose, a large number of strands consisting of a plurality of long fibers, ie, filaments, are arranged in parallel and supplied, and the filaments in the individual strands are dispersed. For the above-mentioned dispersion, for example, there are chemical methods such as dissolving and dispersing a binder used to bundle filaments of inorganic fibers in a solvent, methods of physically spreading the fibers by mechanical means, and static electricity. A method of reversing filaments to each other can be used alone or in combination. In order to facilitate the dispersion of the filaments in the strand, it is desirable that the strand be substantially untwisted and that the filaments in the strand be not crimped or the like. Furthermore, in order to obtain a uniform inorganic fiber nonwoven fabric, it is preferable to arrange the individual strands at uniform intervals even when the strands are arranged in parallel.

次に複数の短繊維無機繊維から成る繊維群を前記長繊維
無機繊維から成る繊維群の上にほぼ直交して配置するた
めには、無機繊維の短繊維を用意して分散させる工程と
、分散された短繊維を長繊維無機繊維から成る繊維群の
上には!′直交して配置させる工程とを必要とする。
Next, in order to arrange a fiber group consisting of a plurality of short fiber inorganic fibers almost perpendicularly on the fiber group consisting of long fiber inorganic fibers, a step of preparing and dispersing short inorganic fibers, and a step of dispersing On top of the fiber group consisting of long-fiber inorganic fibers are the short fibers that have been made! 'The process of orthogonally arranging is required.

短繊維を用意して分散させる工程としては、長繊維無機
繊維のストランドを所定長に切断しつつ、分繊飛動装置
によって解繊分離させる工程を用いるとよい。分繊飛動
装置としては、切断されて得た短繊維を分繊して排出す
ることのできるものであればどのような装置であっても
よく、例えば水平軸を中心として回転する公知の開繊ロ
ーラ等を用いることができる。なお長繊維無機繊維のス
トランドを用いる代りに、短繊維から成るマットを分繊
飛動装置に供給して分繊させてもよい。又前記分繊飛動
装置自体で長繊維を切断しなから分繊できるように構成
してもよい。前記短繊維を分繊させて分散させるために
は供給される製繊゛維無機繊維のストランドに繊維集束
剤が付与されておらず、又撚りや捲縮の加えられてない
ものを用いると好ましい。
As the step of preparing and dispersing the short fibers, it is preferable to use a step of cutting the strands of long inorganic fibers into predetermined lengths and defibrating and separating them using a fiber splitting flying device. The separating flying device may be any device that can separate and discharge the short fibers obtained by cutting, such as a known device that rotates around a horizontal axis. A fiber roller or the like can be used. Note that instead of using strands of long fiber inorganic fibers, a mat made of short fibers may be fed to a fiber splitting flying device to be split. Further, it may be configured such that the fiber splitting flying device itself can split the long fibers without cutting them. In order to split and disperse the short fibers, it is preferable to use strands of inorganic fibers to be supplied that are not provided with a fiber sizing agent and are not twisted or crimped. .

分散されて排出された短繊維を長繊維無機繊維から成る
繊維群の上にはヌ゛直交して配置するためには水流を用
いるとよい。そのために前記分繊飛動装置の下方にコン
ベアを走行させ、このコンベア上に前述の長繊維無機繊
維から成る繊維群を予め乗せておく。この場合コンベア
の走行方向(タテ方向)に平行に長繊維無機繊維が配列
されていることになる。前記水流は前記コンベアの走行
方向(タテ方向)に直角の方向(ヨコ方向)に拡がった
開口部を有するノズルを用いて前記コンベア上に供給さ
れ、分散された短繊維はこの水流に乗って前記コンベア
上に堆積される。その際短繊維の繊維軸の方向はヨコ方
向にぼり揃えられ、その結果タテ方向に平行に配置され
てコンベア上を走行する長繊維無機繊維から成る繊維群
の上にはり直交して短繊維が配置されることになる。な
おコンベアの下方に吸気装置を設ければ短繊維の堆積区
域を所定の範囲に規定することができる。
A water stream may be used to arrange the dispersed and discharged short fibers perpendicularly on the fiber group consisting of long fiber inorganic fibers. For this purpose, a conveyor is run below the fiber separation flying device, and a group of fibers made of the above-mentioned long fiber inorganic fibers is placed on this conveyor in advance. In this case, the long inorganic fibers are arranged parallel to the running direction (vertical direction) of the conveyor. The water stream is supplied onto the conveyor using a nozzle having an opening that widens in a direction (horizontal direction) perpendicular to the running direction (vertical direction) of the conveyor, and the dispersed short fibers ride on this water stream and deposited on the conveyor. At this time, the directions of the fiber axes of the short fibers are aligned in the horizontal direction, and as a result, the short fibers are placed perpendicularly on top of the fiber group consisting of long fiber inorganic fibers arranged parallel to the vertical direction and running on the conveyor. It will be placed. Note that if a suction device is provided below the conveyor, the short fiber accumulation area can be defined within a predetermined range.

このようにタテ方向の長繊維とヨコ方向の短繊維が重ね
られた少くとも2層から成る繊維群に必要あれば少量の
結合剤を付与した後に圧縮成形し、乾燥巻取りを行えば
ロール状の無機繊維不織布が得られる。
If necessary, a small amount of binder is applied to a fiber group consisting of at least two layers of long fibers in the vertical direction and short fibers in the horizontal direction, compression molding is performed, and drying and winding are performed to form a roll. An inorganic fiber nonwoven fabric is obtained.

前記分繊飛動装置をコンベアの走行方向に複数個、例え
ば2〜5個配置して短繊維の堆積を数回に分けて行えば
短繊維の分布をより均一にするのに役立つ。
If a plurality of the above-mentioned fiber splitting flying devices, for example 2 to 5 pieces, are arranged in the running direction of the conveyor and the short fibers are deposited several times, it is useful to make the distribution of the short fibers more uniform.

短繊維の長繊維への配置を前述のように水流を用いれば
、短繊維の集積密度をあげるのに役立つと共に、この工
程に空気流を用いる場合に比べて短繊維の空気中への飛
散を防ぐことができ、作業環境の改善に役立つ。
Using a water stream to arrange the short fibers into the long fibers as described above helps increase the density of the short fibers, and also reduces the scattering of the short fibers into the air compared to when using an air stream for this process. This can be prevented and helps improve the working environment.

なお前述の分繊飛動装置によって乾式で短繊維を分繊さ
せる方法に代えて、従来の抄紙法のように短繊維を液中
に分散させた後に、その分散液を前述のヨコ方向に拡が
った開口部を有するノズルに供給して短繊維をコンベア
上の長繊維上に配置する方法を用いることもできる。
In addition, instead of the method of separating short fibers in a dry manner using the above-mentioned fiber separation flying device, the short fibers are dispersed in a liquid as in the conventional paper making method, and then the dispersion is spread in the horizontal direction as described above. It is also possible to use a method in which the short fibers are fed to a nozzle having an opening such that the short fibers are placed on the long fibers on a conveyor.

次に本発明の無機繊維不織布を製造する装置の一例を示
す第1図を参照して本発明の無機繊維不織布の製造方法
を具体的に説明する。ロール1に巻取られたタテ方向に
供する長繊維無機繊維が引き揃えられた繊維集合体3を
槽2の内部に収容された水溶液5に浸漬し、化学的に解
繊するとともに槽2の内部に備えられたヨコ方向に振動
する曲面体4により物理的にさらに解繊し、引き揃えら
れた繊維集合体6を得、これを堆積コンベア15上に送
る。次に、ヨコ方向用に供する長繊維無機繊維7を切断
装置8に供給し任意の切断長に切断しつつ、分繊飛動装
置12の導入口9に供給する。
Next, the method for manufacturing the inorganic fiber nonwoven fabric of the present invention will be specifically described with reference to FIG. 1, which shows an example of an apparatus for manufacturing the inorganic fiber nonwoven fabric of the present invention. A fiber aggregate 3 in which long fiber inorganic fibers are arranged in the longitudinal direction wound around a roll 1 is immersed in an aqueous solution 5 contained in a tank 2, and is chemically defibrated. The fiber assembly 6 is physically further defibrated by a curved surface body 4 that vibrates in the horizontal direction and is provided in the fiber assembly 4, thereby obtaining an aligned fiber aggregate 6, which is sent onto a stacking conveyor 15. Next, the long fiber inorganic fibers 7 to be used in the horizontal direction are supplied to a cutting device 8, cut into an arbitrary cutting length, and then supplied to the introduction port 9 of the fiber splitting device 12.

供給された複数の短繊維は誘導ロール10により高速回
転する分繊飛動ロール11との接点まで誘導され、分繊
飛動ロール11により単繊維状に分繊開繊される。この
単繊維状に解繊分離した短繊維は、連続的に、ノズル1
3よりヨコ方向(図面の紙面に垂直方向)に広がって供
給される水流14に乗って飛動せしめられる。水流に乗
せられた短繊維はその繊維軸をヨコ方向に保ちながらタ
テ方向に引き揃えられた長繊維無機繊維から成る繊維集
合体6上に堆積せしめられる。短繊維の堆積は均一に吸
気する吸気装置10によって所定範囲内に制御される。
The supplied plurality of short fibers are guided by a guide roll 10 to a contact point with a flying splitting roll 11 rotating at high speed, and split into single fibers by the flying splitting roll 11. The short fibers separated into single fibers are continuously passed through the nozzle 1.
3, it is caused to fly by riding on the water flow 14 that is supplied and spread in the horizontal direction (perpendicular to the plane of the drawing). The short fibers carried by the water stream are deposited on a fiber aggregate 6 made of long fiber inorganic fibers aligned in the vertical direction while keeping the fiber axes in the horizontal direction. Accumulation of short fibers is controlled within a predetermined range by an air intake device 10 that uniformly draws air.

この堆積を第1図に示すように2個以上繰り返すことに
より短繊維無機繊維の分布をより均一にすることができ
る。また、第1図に示すように他の繊維集合体6を短繊
維無機繊維から成る層の上に重ね合せて配置すれば一体
性がより向上する。こうして得られた重ね合わされた無
機繊維集合体17を槽18の内部に収容された結合剤溶
液19に浸漬し、少量の結合剤を付与した後にスクイズ
ロール20で圧縮し一体的に結合し、乾燥装置21で乾
燥し、本発明の無機繊維不織布22を得る。
By repeating this deposition two or more times as shown in FIG. 1, the distribution of the short inorganic fibers can be made more uniform. Furthermore, as shown in FIG. 1, if another fiber aggregate 6 is placed on top of the layer of short inorganic fibers, the integrity is further improved. The superimposed inorganic fiber aggregate 17 obtained in this way is immersed in a binder solution 19 contained in a tank 18, and after applying a small amount of binder, it is compressed with a squeeze roll 20 to be integrally bonded, and then dried. It is dried in a device 21 to obtain an inorganic fiber nonwoven fabric 22 of the present invention.

本発明による無機繊維不織布はこれまでにないタイプの
ものであり、その特徴は■無機繊維不織布を構成してい
る繊維がタテ、ココ2方向にほぼ直交して配置されてい
ることかつ■タテ方向の繊維集合体が解繊された長繊維
から構成されていることである。
The inorganic fiber nonwoven fabric according to the present invention is of an unprecedented type, and its characteristics are: (1) the fibers making up the inorganic fiber nonwoven fabric are arranged almost orthogonally in two directions, vertical and vertical; and (2) the vertical direction. The fiber aggregate is composed of fibrillated long fibers.

すなわち、無機繊維不織布を構成している繊維がタテ、
ヨコ2方向に異方性を有してほぼ直交して配置されてい
ることにより、無機繊維不織布の繊維充填密度を上げる
ことができ、かつタテ、ヨコ2方向の補強効果を上げる
ことが可能となる。
In other words, the fibers constituting the inorganic fiber nonwoven fabric are
By having anisotropy in the two horizontal directions and arranging them almost perpendicularly, it is possible to increase the fiber packing density of the inorganic fiber nonwoven fabric and to increase the reinforcing effect in both the vertical and horizontal directions. Become.

これにより、該無機繊維不織布を用いたFRPの寸法安
定性、曲げ強度、特に薄板での曲げ強度は無機繊維不織
布と同一目付けのランダムに繊維が配列した無機繊維不
織布を用いたFRPより改良することが可能となった。
As a result, the dimensional stability and bending strength of FRP using the inorganic fiber nonwoven fabric, especially the bending strength of a thin plate, can be improved compared to FRP using an inorganic fiber nonwoven fabric in which fibers are randomly arranged and have the same basis weight as the inorganic fiber nonwoven fabric. became possible.

さらに、ヨコ方向の短繊維を供給するに際して乾式法に
よる繊維の分散方法を採用することにより、従来の抄紙
機にて抄造する湿式法で繊維の分散のために不可欠であ
った水溶性分散剤を添加する必要がなくなり、該無機繊
維不織布を用いたFRPの耐熱性、吸湿後の電気絶縁性
を大幅に向上させることが可能となった。
Furthermore, by adopting a dry method for dispersing fibers when supplying short fibers in the horizontal direction, water-soluble dispersants, which are indispensable for dispersing fibers in the wet method of making paper using conventional paper machines, can be used. It is no longer necessary to add it, and it has become possible to significantly improve the heat resistance and electrical insulation properties after moisture absorption of FRP using the inorganic fiber nonwoven fabric.

また、タテ方向の繊維集合体を解繊された長繊維で構成
することにより、無機繊維不織布への樹脂含浸性を悪化
させることなく、かつFRPの寸法安定性を損なうこと
な(、FRPの製造条件に制限の必要のない不織布強度
を与えることが可能となった。 本発明による無機繊維
不織布はFRPO中でも特に極めて窩度な寸法安定性、
耐熱性、電気絶縁性、薄板での曲げ強度が要求されるP
CB用補強材において、その性能が特に効果的に発揮さ
れる。
In addition, by composing the fiber aggregate in the vertical direction with fibrillated long fibers, it is possible to prevent the impregnation of the inorganic fiber nonwoven fabric with resin and impair the dimensional stability of FRP. It has become possible to provide nonwoven fabric strength that does not need to be limited by conditions.The inorganic fiber nonwoven fabric according to the present invention has extremely high dimensional stability, especially among FRPO.
P that requires heat resistance, electrical insulation, and bending strength in thin plates
Its performance is particularly effectively exhibited in reinforcing materials for CB.

なお本発明の無機繊維不織布を用いてFRPを製造する
に際して用いられる樹脂は例えば、従来PCBの製造に
常用されるエポキシ樹脂、ポリイミド樹脂、フェノール
樹脂、ポリエステル樹脂、シリコーン樹脂、ポリウレタ
ン樹脂及びその混合物等の熱で硬化しうる熱硬化樹脂が
使用できるが、もとより加熱成形法による熱可塑性樹脂
が使用できることはいうまでもない。また、本発明の無
機繊維不織布を用いたFRPの各種特性値の絶対値はも
ちるん使用する樹脂の種類により異なるが、その変位の
差の程度は従来の無機繊維不織布を用いた場合と相対的
に同じ傾向を示すのであって、使用する樹脂の種類によ
って本発明により達成された特徴が損なわれることはな
い。
Note that the resins used in manufacturing FRP using the inorganic fiber nonwoven fabric of the present invention include, for example, epoxy resins, polyimide resins, phenol resins, polyester resins, silicone resins, polyurethane resins, and mixtures thereof, which are conventionally used in the manufacture of PCBs. Thermosetting resins that can be cured by heat can be used, but it goes without saying that thermoplastic resins produced by thermoforming can also be used. In addition, although the absolute values of various characteristic values of FRP using the inorganic fiber nonwoven fabric of the present invention vary depending on the type of resin used, the degree of the difference in displacement is relative to that when using the conventional inorganic fiber nonwoven fabric. The characteristics achieved by the present invention are not impaired depending on the type of resin used.

〔実施例] 以下、本発明を実施例及び比較例について具体的に説明
する。
[Examples] Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

なお、本発明の無機繊維不織布を用いたFRPを比較例
と対比して評価するに当たり、補強用繊維基材の外層の
上下各1層に無機繊維織布を使用し、内層に本発明の実
施例および比較例の無機繊維不織布を使用したサンドイ
ッチ構造のFRP、いわゆるコンポジット板を作成し、
物性の評価を行った。
In addition, in evaluating the FRP using the inorganic fiber nonwoven fabric of the present invention in comparison with a comparative example, the inorganic fiber woven fabric was used for each of the upper and lower layers of the outer layer of the reinforcing fiber base material, and the inorganic fiber woven fabric was used for the inner layer. Sandwich-structured FRP, so-called composite boards, were created using the inorganic fiber nonwoven fabrics of Examples and Comparative Examples.
Physical properties were evaluated.

ユ1」し= 第1図に例示した構成を有する製造装置を用いて短繊維
無機繊維の層の両側に長繊維無機繊維の層が配置された
ガラス繊維不織布を作成した。
A glass fiber nonwoven fabric in which layers of long inorganic fibers were arranged on both sides of a layer of short inorganic fibers was produced using a manufacturing apparatus having the configuration illustrated in FIG.

ECG−75110の無撚ストランドを4本/インチの
間隔で引き揃え巻き取ったロールをタテ方向用長繊維と
して準備した。またECG−75110の無撚ストラン
ドを10本まとめてヨコ方向用短繊維用として供し、平
均繊維長25皿になるようにカットした。
A roll in which untwisted strands of ECG-75110 were aligned and wound at an interval of 4 strands/inch was prepared as a long fiber for the vertical direction. In addition, 10 untwisted strands of ECG-75110 were used as short fibers for the horizontal direction and cut to have an average fiber length of 25 pieces.

さらにエポキシバインダーを結合剤として用い、本発明
の無機繊維不織布とした。
Furthermore, an epoxy binder was used as a binder to obtain the inorganic fiber nonwoven fabric of the present invention.

得られた無機繊維不織布のタテ方向長繊維無機繊維の配
列状態を観察すると、ガラス繊維のモノフィラメントの
大部分が個別に分散されて配置されており、2本以上の
モノフィラメントの側面同志が連続して接触している状
態は少なかった。
When observing the arrangement of the longitudinally long inorganic fibers of the obtained inorganic fiber nonwoven fabric, it was found that most of the glass fiber monofilaments were individually dispersed and arranged, and the side surfaces of two or more monofilaments were continuous. There was little contact.

一方短繊維の配列状態をマイクロ波配向計で測定すると
そのタテ/ヨコ強度比は0.5であり、短繊維が長繊維
に対しては〜゛直交て配置されていることが証明された
On the other hand, when the arrangement of the short fibers was measured using a microwave orientation meter, the vertical/horizontal strength ratio was 0.5, proving that the short fibers were arranged perpendicularly to the long fibers.

得られたガラス繊維不織布の特性を表1に示す。Table 1 shows the properties of the obtained glass fiber nonwoven fabric.

止較伝土 平均糸長1511111、平均径9pのガラス繊維を水
に均一に分散させ、抄紙し、実施例1に用いたエポキシ
バインダーを結合剤として用い、湿式法によるガラス繊
維不織布を作成した。
Glass fibers having an average yarn length of 1511111 and an average diameter of 9p were uniformly dispersed in water, paper was made, and the epoxy binder used in Example 1 was used as a binder to produce a glass fiber nonwoven fabric by a wet method.

比較例1のガラス繊維不織布のマイクロ波配向計による
タテ/ヨコ強度比は3.2であり、この値から比較例1
のガラス繊維不織布中の構成短繊維はタテ方向により多
く配置されていることが判った。
The vertical/horizontal strength ratio of the glass fiber nonwoven fabric of Comparative Example 1 measured by a microwave orientation meter was 3.2, and from this value, Comparative Example 1
It was found that the constituent short fibers in the glass fiber nonwoven fabric were arranged more in the longitudinal direction.

得られたガラス繊維不織布の特性を表1に示す。Table 1 shows the properties of the obtained glass fiber nonwoven fabric.

、L較L」工 比較例1で作成したガラス繊維不織布のタテ方向にEC
G−751101,OZのガラス繊維をエポキシバイン
ダーを用いて貼合わせて組合せガラス繊維不織布を作成
した。
, L Comparison
Glass fibers of G-751101 and OZ were bonded together using an epoxy binder to create a combined glass fiber nonwoven fabric.

得られたガラス繊維不織布の特性を表1に示す。Table 1 shows the properties of the obtained glass fiber nonwoven fabric.

1施■l 実施例1で作成したガラス繊維不織布に下記配合例のエ
ポキシ樹脂フェスを含浸塗布し125’Cで乾燥してプ
リプレグAを得た。次にこのプリプレグAを2枚積層し
、その上下面に無機充填剤を含有しない下記配合のエポ
キシ樹脂フェスをガラス織布(旭シュニーベル製:クロ
ススタイル7628表面仕上げ処理AS−450)に含
浸塗布し125°Cで乾燥して得られたプリプレグBを
それぞれ1枚重ね、さらにプリプレグBの上下面に厚さ
35卿の銅箔をそれぞれ1枚重ね合わせ、175°C1
30kg/cfflで圧縮成形して板厚1.0 uの銅
張積層板を得た。
1.1 Prepreg A was obtained by impregnating and coating the glass fiber nonwoven fabric prepared in Example 1 with an epoxy resin face of the following formulation example and drying at 125'C. Next, two sheets of this prepreg A are laminated, and an epoxy resin face of the following composition that does not contain an inorganic filler is applied on the top and bottom surfaces of the glass woven fabric (Cross Style 7628 surface finish treatment AS-450 manufactured by Asahi Schniebel) by impregnation. One sheet each of prepreg B obtained by drying at 125°C was layered, and one sheet each of copper foil with a thickness of 35 cm was layered on the top and bottom surfaces of prepreg B, and heated at 175°C.
Compression molding was performed at 30 kg/cffl to obtain a copper-clad laminate with a thickness of 1.0 u.

この銅張積層板の銅箔をエツチング除去した後に、積層
板についての特性の試験を行った。
After the copper foil of this copper-clad laminate was removed by etching, the characteristics of the laminate were tested.

得られたFRPの特性を表2に示す。Table 2 shows the characteristics of the obtained FRP.

エポキシ樹脂フェス配合組成 AEII−711100部 (連化成製エポキシ樹脂) ジシアンジアミド          2.5部ベンジ
ルジメチルアミン       0.2部ジメチルホル
ムアミド        12部メチルセルソルブ  
        12部メチルエチルケトン     
    25部水酸化アルミニウム         
35部止較炭主 比較例1で作成したガラス繊維不織布を用いて実施例2
と同様にして積層板を得た。
Epoxy resin face composition AEII-711 100 parts (Renkasei epoxy resin) Dicyandiamide 2.5 parts Benzyldimethylamine 0.2 parts Dimethylformamide 12 parts Methyl cellosolve
12 parts methyl ethyl ketone
25 parts aluminum hydroxide
Example 2 using the glass fiber nonwoven fabric prepared in Comparative Example 1
A laminate was obtained in the same manner as above.

得られたFRPの特性を表2に示す。Table 2 shows the characteristics of the obtained FRP.

止較王土 比較例2で作成したガラス繊維不織布を用いて実施例2
と同様にして積層板を得た。
Example 2 using the glass fiber nonwoven fabric prepared in Comparative Example 2
A laminate was obtained in the same manner as above.

得られたFRPの特性を表2に示す。Table 2 shows the characteristics of the obtained FRP.

表1及び表2から明らかなように、本発明の無機繊維不
織布は、FRPの製造条件に何の制限も加える必要のな
い不織布強度を有し、寸法安定性、耐熱性、電気絶縁性
を改良し、特に薄板での曲げ強度に優れたFRPの製造
可能とする。
As is clear from Tables 1 and 2, the inorganic fiber nonwoven fabric of the present invention has a nonwoven fabric strength that does not require any restrictions on the FRP manufacturing conditions, and has improved dimensional stability, heat resistance, and electrical insulation. This makes it possible to manufacture FRP with excellent bending strength, especially in thin sheets.

表1 表2 熱間強度 =120°C雰囲気下で測定した耐溶剤強度
r MEK中に10分間浸漬後、常温で測定した 曲げ強度: JIS−に−6911により測定した耐熱
性 :120°Cプレッシャークンカーにより、1時間
吸水させた後に260°C溶融ハンダにフロートし、フ
クレの発生す るまでの時間を測定した 吸水後の電気絶縁抵抗フ沸水中で4時間吸水させた後、
JIS−C−6481により測定した寸法変化率:寸法
変化率−(初期寸法−加熱後寸法)/初期寸法X 10
0 170°C130分間加熱後の寸法変化 〔発明の効果] 本発明の無機繊維不織布は前述のように構成されている
ので、無機繊維不織布として優れた強度を有し、その結
果本発明の無機繊維不織布を用いて作られたFRPの寸
法安定性、耐熱性および曲げ強度の改善向上に役立つ。
Table 1 Table 2 Hot strength = Solvent resistance strength r measured in a 120°C atmosphere Bending strength measured at room temperature after immersed in MEK for 10 minutes: Heat resistance measured according to JIS-6911: 120°C pressure After absorbing water for 1 hour using Kunkar, it was floated on molten solder at 260°C and the time until blistering was measured.Electrical insulation resistance after absorbing water After absorbing water for 4 hours in boiling water,
Dimensional change rate measured according to JIS-C-6481: Dimensional change rate - (Initial dimension - Dimension after heating) / Initial dimension X 10
0 Dimensional change after heating at 170°C for 130 minutes [Effect of the invention] Since the inorganic fiber nonwoven fabric of the present invention is configured as described above, it has excellent strength as an inorganic fiber nonwoven fabric, and as a result, the inorganic fiber nonwoven fabric of the present invention It helps improve the dimensional stability, heat resistance, and bending strength of FRP made using nonwoven fabric.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の無機繊維不織布を製造するために用い
られる装置の一例を示す略示正面図である。 3・・・タテ方向用長繊維無機繊維集合体、7・・・ヨ
コ方向用長繊維無機繊維、 8・・・切断装置、     12・・・分繊飛動装置
、13・・・ノズル、      14・・・水流、1
5・・・堆積コンベア、   16・・・吸気装置、2
2・・・無機繊維不織布。
FIG. 1 is a schematic front view showing an example of an apparatus used for manufacturing the inorganic fiber nonwoven fabric of the present invention. 3... Long fiber inorganic fiber aggregate for vertical direction, 7... Long fiber inorganic fiber for horizontal direction, 8... Cutting device, 12... Fiber separation device, 13... Nozzle, 14 ...water flow, 1
5... Deposition conveyor, 16... Intake device, 2
2...Inorganic fiber nonwoven fabric.

Claims (1)

【特許請求の範囲】[Claims]  実質的に平行に配列した複数の長繊維無機繊維から成
る少くとも一層の繊維群と、該長繊維無機繊維群上にほ
ゞ直交して配置した複数の短繊維無機繊維から成る少く
とも一層の繊維群を含んで成る無機繊維不織布。
at least one layer of fibers consisting of a plurality of long fiber inorganic fibers arranged substantially in parallel; and at least one layer of fibers consisting of a plurality of short fiber inorganic fibers arranged substantially orthogonally on the long fiber inorganic fibers. An inorganic fiber nonwoven fabric containing a group of fibers.
JP1139333A 1989-06-02 1989-06-02 Inorganic fiber nonwoven fabric Pending JPH038857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1139333A JPH038857A (en) 1989-06-02 1989-06-02 Inorganic fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1139333A JPH038857A (en) 1989-06-02 1989-06-02 Inorganic fiber nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH038857A true JPH038857A (en) 1991-01-16

Family

ID=15242879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1139333A Pending JPH038857A (en) 1989-06-02 1989-06-02 Inorganic fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH038857A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507835A (en) * 2003-10-08 2007-03-29 ヴァリアン オーストラリア ピーティーワイ.エルティーディー. Mass spectrometry electrode
US8328986B2 (en) 2006-09-29 2012-12-11 Ibiden Co., Ltd. Laminated sheet, method of producing the sheet, exhaust gas processing device, and method of producing the device
JP2016163956A (en) * 2015-03-06 2016-09-08 王子ホールディングス株式会社 Base material for fiber-reinforced plastic molding and fiber-reinforced plastic molding
JP2019002125A (en) * 2018-09-27 2019-01-10 王子ホールディングス株式会社 Base material for fiber-reinforced plastic molding and fiber-reinforced plastic molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507835A (en) * 2003-10-08 2007-03-29 ヴァリアン オーストラリア ピーティーワイ.エルティーディー. Mass spectrometry electrode
US8328986B2 (en) 2006-09-29 2012-12-11 Ibiden Co., Ltd. Laminated sheet, method of producing the sheet, exhaust gas processing device, and method of producing the device
JP2016163956A (en) * 2015-03-06 2016-09-08 王子ホールディングス株式会社 Base material for fiber-reinforced plastic molding and fiber-reinforced plastic molding
JP2019002125A (en) * 2018-09-27 2019-01-10 王子ホールディングス株式会社 Base material for fiber-reinforced plastic molding and fiber-reinforced plastic molding

Similar Documents

Publication Publication Date Title
EP1272701B1 (en) Chopped strand non-woven mat production
KR100875353B1 (en) Sheet material especially useful for circuit boards
JP2010513064A (en) Honeycomb having a low coefficient of thermal expansion and articles made therefrom
KR20180113992A (en) Discontinuous fiber reinforced composite material
KR20180113991A (en) Discontinuous fiber reinforced composite material
WO2018143068A1 (en) Fiber-reinforced resin molding material
KR100601061B1 (en) Wholly aromatic polyamide fiber synthetic paper sheet
US20110281080A1 (en) Folded Core Based on Carbon Fiber Paper and Articles Made from Same
US6368698B1 (en) Base webs for printed circuit board production using the foam process and acrylic fibers
WO2003020511A1 (en) Solid sheet material especially useful for circuit boards
JPH038857A (en) Inorganic fiber nonwoven fabric
KR102366434B1 (en) Reinforced Fiber Composite Materials
KR102512453B1 (en) Fiber reinforced body and member using the same
TW202103899A (en) Fiber-reinforced resin molded body and method for producing carbon fiber sheet used therefor
DE68923964T2 (en) COMPOSITE SHEET FOR FIBER REINFORCED MATERIAL.
KR102311409B1 (en) Method and apparatus for impregnating resin
JPH02255735A (en) Fiber reinforced composite sheet
JP3026379B2 (en) Heat-resistant sheet and its manufacturing method
JP3972542B2 (en) Method for producing fiber reinforced thermoplastic resin molding material using continuous fiber nonwoven fabric
JP7419541B2 (en) Method for manufacturing composite materials and molded bodies
JP3475234B2 (en) Aromatic polyamide fiber paper
JP3010840B2 (en) Mixed nonwoven fabric for low dielectric constant printed circuit boards
JPH0465560A (en) Glass fiber nonwoven fabric
WO1999046781A1 (en) Process of making a printed wiring board core stock and product formed therefrom
JPH03119034A (en) Conjugate fiber roving