JP3972542B2 - Method for producing fiber reinforced thermoplastic resin molding material using continuous fiber nonwoven fabric - Google Patents

Method for producing fiber reinforced thermoplastic resin molding material using continuous fiber nonwoven fabric Download PDF

Info

Publication number
JP3972542B2
JP3972542B2 JP32914499A JP32914499A JP3972542B2 JP 3972542 B2 JP3972542 B2 JP 3972542B2 JP 32914499 A JP32914499 A JP 32914499A JP 32914499 A JP32914499 A JP 32914499A JP 3972542 B2 JP3972542 B2 JP 3972542B2
Authority
JP
Japan
Prior art keywords
continuous fiber
nonwoven fabric
fiber
yarn
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32914499A
Other languages
Japanese (ja)
Other versions
JP2001146669A (en
Inventor
和志 小笛
新 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP32914499A priority Critical patent/JP3972542B2/en
Publication of JP2001146669A publication Critical patent/JP2001146669A/en
Application granted granted Critical
Publication of JP3972542B2 publication Critical patent/JP3972542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化熱可塑性樹脂成形材に供される連続繊維不織布、および該連続繊維不織布を用いた繊維強化熱可塑性樹脂成形材の製造方法に関するものである。
【0002】
【従来の技術】
強化繊維と熱可塑性樹脂および充填剤からなるシート状の成形材はスタンパブルシートとして知られ、スタンピング成形が可能である。スタンピング成形は、成形材を予め加熱し柔らかくした後、加熱された金型内に供給し、加圧して賦形する成形方法で、短い成形時間・少ない設備投資・成形品の軽量化などの利点があり、熱可塑性樹脂の特徴を活かした成形方法である。
従来、スタンパブルシートとしては、ニードルパンチ加工した連続繊維マットやチョップドストランドマットに熱可塑性樹脂を含浸した成形材が知られている。しかし、一般に熱可塑性樹脂は溶融粘度が高いため、強化繊維への樹脂含浸性が悪く、強化繊維の含有率をあげると益々樹脂含浸性が低下してしまう。そのため、これらの成形材を用いた繊維強化熱可塑性樹脂成形品は、機械的強度の方向性が小さい特徴があるが、強化繊維の含有率を上げることができず、成形品を肉厚にしなければ満足できる機械的特性を得ることができないことがある。
【0003】
そこで、強化繊維糸織布と熱可塑性樹脂フィルムとを積層したシートや、強化繊維糸に熱可塑性樹脂を被覆処理した樹脂被覆強化繊維糸からなる織布を積層したシートを成形材とすることも行われている。これらの成形材は、強化繊維の含有率を上げることができるが、製織工程が必要であり、強化繊維と熱可塑性樹脂の含浸性を高めるには限界があり、また織布の織り方向に対し斜め方向に対する十分な機械的強度が得られない問題がある。
【0004】
一方、連続繊維糸からなる連続繊維不織布に関し、特開昭63−66362号には、強化繊維糸に熱融着糸を撚り合わせた合わせ糸からなり、この合わせ糸の配設方向が互いに直交または斜交する経糸方向と緯糸方向からなる不織布が開示されている。しかし、この不織布においては、熱融着糸は不織布の形態保持のためにあり、マトリックス樹脂の含浸性が低下しない程度の量を限界に強化繊維に巻き付かせているにすぎず、機械的強度の方向性を小さくすることに関しては織布のそれ以上の効果は期待できない。
【0005】
また、特開平8−325914号には、強化繊維としてのガラス長繊維と熱可塑性樹脂長繊維とを、異なる供給装置より不織布上に吹き出す成形用基材の製造方法が開示されている。しかし、これは台紙としての不織布、およびガラス長繊維と熱可塑性樹脂長繊維の専用の供給装置を必要とする。
【0006】
さらに、特開平11−20059号には強化繊維糸を熱可塑性樹脂で被覆処理した樹脂被覆強化繊維糸を経材、緯材および互いに逆方向に交差する2方向の斜交材の4軸方向に配設し、各材の交点において各材が融着した連続繊維不織布、およびこの連続繊維不織布を用いた繊維強化熱可塑性樹脂成形材が開示されている。この連続繊維不織布は優れた特性を有するが、強化繊維糸への樹脂被覆処理工程を必要とし、また樹脂被覆強化繊維糸は剛性が強く、連続繊維不織布の坪量を高めるには限界があり、さらなる作業効率の向上・機械的特性の向上が望まれている。
【0007】
【発明が解決しようとする課題】
本発明は、機械的強度が高く、しかもその方向性が小さい優れた機械的特性を有する繊維強化熱可塑性樹脂成形材すなわちスタンパブルシートを得るための連続繊維不織布を用いた成形材の製造方法を提供するものである。
【0008】
【課題を解決するための手段】
上記課題を達成するため、本発明において、繊維強化熱可塑性樹脂成形材に供される不織布は、連続繊維糸からなる連続繊維不織布であり、前記連続繊維糸は強化繊維と熱可塑性樹脂繊維との複合繊維糸からなり、前記強化繊維の体積比率が40〜60%であることを特徴とする。
【0009】
さらに、本発明における連続繊維不織布は、機械的特性を高めるために、連続繊維糸が複数並列されている第1の連続繊維糸群からなる第1の繊維糸層と、前記第1の連続繊維糸群に斜交する連続繊維糸が複数並列されている第2の連続繊維糸群からなる第2の繊維糸層と、前記第2の連続繊維糸群と反対方向から前記第1の連続繊維糸群に斜交する連続繊維糸が複数並列されている第3の連続繊維糸群からなる第3の繊維糸層と、を備えた、いわゆる3軸組布の形態をなす連続繊維不織布である
【0010】
さらに、機械的強度の方向性をより小さくするために、上述の3軸組布の形態をなす連続繊維不織布において、さらに第1の連続繊維糸群に直交する連続繊維糸が複数並列されている第4の連続繊維糸群からなる第4の繊維糸層を備えた、いわゆる4軸組布の形態をなす連続繊維不織布が好ましい。
【0011】
本発明の繊維強化熱可塑性樹脂成形材すなわちスタンパブルシートの製造方法は、上述の連続繊維不織布を1枚または複数枚重ね、加熱加圧成形することを特徴とする製造方法であり、成形時にシート状や粉末状などの熱可塑性樹脂を添加することなく、連続繊維不織布を加熱加圧するだけで成形することができる。
【0012】
また、本発明の連続繊維不織布において、複合繊維糸を配設した後、不織布の形態保持のため、熱可塑性樹脂を溶融し複合繊維糸同士を仮接着させたり、またはニードルパンチ加工により複合繊維糸同士を絡ませることが望ましい。ニードルパンチ加工によって得た連続繊維不織布は、熱による熱可塑性樹脂の酸化などの悪影響を抑えることができる。
【0013】
本発明における複合繊維糸は、上述の連続繊維不織布の形態保持ができればよく、下に示す(a)〜(c)のいずれの形態から適宜選定すればよい。
(a)強化繊維と熱可塑性樹脂繊維を繊維の状態でコーミングルした混繊糸。
(b)強化繊維糸と熱可塑性樹脂繊維糸を撚り合わせた合撚糸。
(c)強化繊維糸に熱可塑性樹脂繊維糸を単に合わせただけ、または巻き付けた合わせ糸。
【0014】
本発明における連続繊維糸は、不織布の内部において実質的に切断されていない繊維糸であり、強化繊維の繊維長が長い。また、複合繊維糸からなり、熱可塑性樹脂が繊維の形態で比較的均一に強化繊維の周囲に存する。そのため、本発明の連続繊維不織布は、強化繊維の含有率が高いにもかかわらず、樹脂含浸性に優れ、これを用いて成形した成形材の機械的強度を高めることができる。
【0015】
また、複合繊維糸からなる連続繊維不織布は、強化繊維糸の周囲に樹脂が被覆されている樹脂被覆強化繊維糸からなる連続繊維不織布に比べ、成形材を得るための成形工程において、強化繊維糸内部の空気が抜けやすいため、連続繊維不織布の樹脂含浸性を高めることができ、優れた機械的特性を有する成形材を得ることができる。
【0016】
なお、本発明における強化繊維の体積比率は、次式(1)であらわすことができる。
=(W/ρ)/(W/ρ+W/ρ)×100 式(1)
ただし、V;強化繊維の体積比率(%)
;強化繊維の重量(g)
ρ;強化繊維の真比重
;熱可塑性樹脂繊維の重量(g)
ρ;熱可塑性樹脂繊維の真比重
強化繊維の体積比率が40%未満の場合は強化繊維の含有量が低下し、60%を超える場合は強化繊維への熱可塑性樹脂の含浸性が低下し、双方の場合とも満足する成形材の機械的強度が得られないことがある。
【0017】
【発明の実施の形態】
本発明の連続繊維不織布における強化繊維は長繊維の形態であり、強化繊維としては、ガラス繊維を挙げることができる。強化繊維の番手は特に限定するものではなく、連続繊維不織布の用途などにより選定すればよい。
【0018】
本発明の連続繊維不織布における熱可塑性樹脂繊維を構成する熱可塑性樹脂として、ナイロン6・ナイロン12・ナイロン66・芳香族ナイロンなどのポリアミド樹脂、ポリエチレンテレフタレート・ポリブチレンテレフタレートなどのポリエステル樹脂、ポリエチレン・ポリプロピレンなどのオレフィン系樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂などを挙げることができる。なお、前記熱可塑性樹脂繊維に着色剤、充填剤、安定剤、難燃剤、帯電防止剤、結晶化剤などを適宜添加してもよい。
【0019】
以下、本発明の一形態である4軸組布の形態をなす連続繊維不織布に関し、その製造装置および製造方法について、図1および図2により説明する。
【0020】
(1)4軸組布の製造装置
連続繊維不織布の製造装置は、主として、進行方向に循環するコンベア3と、コンベア3の進行方向に対し角度−αの傾きをもってコンベア3の上に架設された2本1組のトラバースガイド4、4’、およびコンベア3の進行方向に対し角度αの傾きをもってコンベア3の上に架設された2本1組のトラバースガイド9、9’と、コンベアの進行方向に平行な状態を保ちながら、トラバースガイド4、4’に沿って、往復運動するトラバース具5、およびトラバースガイド9、9’に沿って、往復運動するトラバース具10、から構成されている。
【0021】
コンベア3は、進行方向に対する両端には糸掛け用ピン1、1’を一定のピッチで立設したピン配列2、2’を有する。
さらに、トラバース具5には斜交糸および緯糸とされる複合繊維糸7が挿通される複数のガイド管6があり、トラバース具10には斜交糸および緯糸とされる複合繊維糸12が挿通される複数のガイド管11があり、ガイド管6および12はコンベア3に立設されたピン配列2、2’と等ピッチで配列されている。
【0022】
また、図2に示すように、コンベア3の図中左方には、コンベア3に供給するための経糸用の複合繊維糸14、および15が各々巻回された経糸用ローラが配置されている。また、ガイド9、9’の図中右方には、熱ローラ16および加圧ローラ17が設けられている。
【0023】
(2)連続繊維不織布の製造方法
図1、図2に示す連続繊維不織布製造装置により、連続繊維不織布を製造するには、経糸14をコンベア3上に供給しながら、コンベア3を進行方向に循環させる。複合繊維糸7、12をトラバース具5、10に設けられたガイド管6、11に挿通して、トラバース具5、10を往復運動させる。トラバース具5、10が方向転換する際に、各複合繊維糸を糸掛け用ピン1、1’に引っ掛ける。この際、コンベア3の循環速度、トラバース具5、19の往復運動速度、およびコンベア3に対するトラバースガイド4、4’および9、9’の角度を調製することにより、斜交糸の角度を±45°または90°に調整でき、経糸の上に経糸に斜交する斜交糸および経糸に直交する緯糸を配設した連続繊維糸集合体13を形成することができる。さらに、連続繊維糸集合体13上に経糸15を供給し、熱ローラ16に密着して、糸掛け用ピン1、1’から外し、熱ローラ16によって所定の温度に加熱し、複合繊維糸に含む熱可塑性樹脂を溶融する。その後、加圧ローラ17によって押さえつけられ、複合繊維糸同士が圧着され、4軸組布である連続繊維不織布が形成される。
【0024】
また、3軸組布の形態をなす連続繊維不織布は、上述の連続繊維不織布製造装置のトラバースガイド4、4’の角度−α、および9、9’の角度αを調整することで形成することができる。また、トラバースガイド4、4’または9、9’のいずれか一方のみを使用し、その角度を90°にしても、形成することができる。
【0025】
【実施例】
(1)4軸組布の作成
[実施例1]
強化繊維として570texのガラス繊維ロービング(日東紡績(株)製商品名;RS57PR481)に、熱可塑性樹脂繊維として280texのナイロン6繊維(フィラメント径48μm、フィラメント本数123本)を単に合わせた合わせ糸を複合繊維糸とし、この複合繊維糸を経糸、緯糸および斜交糸として図1、図2に示す装置により、一本おきに上下に配設した経糸の間に緯糸、斜交糸を挟み込み、熱ローラと加圧ローラの間を通すことにより、熱可塑性樹脂繊維を熱融着させ、経糸、緯糸および斜交糸の各糸が仮接着した4軸組布を作成し、実施例1の連続繊維不織布を得た。
得られた連続繊維不織布において、各糸の配列本数は、縦糸方向が30本/10cm、緯糸方向が29本/10cm、2方向の斜交糸方向が各々22本/10cmであり、坪量は703g/mであった。
【0026】
[比較例1]
強化繊維として570texのガラス繊維ロービング(日東紡績(株)製商品名;RS57PR481)に、熱可塑性樹脂としてナイロン6を被覆処理し、840texの樹脂被覆強化繊維糸を得た。
この樹脂被覆強化繊維糸を経糸、緯糸および斜交糸として図1、図2に示す装置により、一本おきに上下に配設した経糸の間に緯糸、斜交糸を挟み込み、熱ローラと加圧ローラの間を通すことにより、熱可塑性樹脂を熱融着させ、経糸、緯糸および斜交糸の各糸が仮接着した4軸組布を作成し、比較例1の連続繊維不織布を得た。
得られた連続繊維不織布において、各糸の配列本数は、縦糸方向が20本/10cm、緯糸方向が19本/10cm、2方向の斜交糸方向が各々14本/10cmであり、坪量は563g/mであった。
【0027】
(2)積層板の作成
実施例1の連続繊維不織布を3枚重ね、また比較例1の連続繊維不織布を4枚重ね、各々を温度270℃、圧力10kg/cmで、10分間加熱加圧成形し、実施例1および比較例1の積層板を得た。
実施例1の積層板の厚さは1.2mmであり、比較例1の積層板の厚さは1.3mmであった。
なお、比較例1の連続繊維不織布において、樹脂被覆繊維糸の剛性が強すぎるため、4軸組布の坪量を実施例1の連続繊維不織布と同程度にすることはできなかった。そのため、積層板における単位面積当たりの強化繊維の含有量を実施例1と比較例1をほぼ等しくするために、実施例1の積層板は連続繊維不織布を3枚積層して作成し、比較例1の積層板は連続繊維不織布を4枚積層して作成した。
【0028】
(3)積層板の機械的特性の評価
実施例1および比較例1の積層板を、経糸方向(0゜方向)・緯糸方向(90゜方向)・斜交糸方向(±45゜方向)について、JIS K7055に基づき、曲げ強さおよび曲げ弾性率について測定した。
測定結果を表1に示す。
【0029】
【表1】

Figure 0003972542
【0030】
【発明の効果】
本発明における複合繊維糸は樹脂被覆強化繊維糸に比べ、剛性が弱いため、連続繊維糸からなる不織布を作成した際、容易に強化繊維の坪量を高くすることができる。また、本発明の連続繊維不織布において、熱可塑性樹脂は強化繊維糸を被覆しているのではなく、繊維として強化繊維と複合繊維糸をなすため、ニードルパンチ加工が容易に行うことができる。そのため、この複合繊維糸からなる連続繊維不織布を用いた繊維強化熱可塑性樹脂成形材は、優れた機械的特性を得ることができ、かつ成形工程でマトリックス樹脂を添加する必要がないため、成形工程を簡素化することができる。
【図面の簡単な説明】
【図1】本発明に係る連続繊維不織布の製造装置の平面図
【図2】本発明に係る連続繊維不織布の製造装置の側面図
【符号の説明】
1、1’ 糸掛け用ピン
2、2’ ピン配列
3 コンベア
4、9 トラバースガイド
5、10 トラバース具
6、11 ガイド管
7、12 緯糸および斜交糸用の複合繊維糸
8、13 連続繊維糸集合体
14、15 経糸用の複合繊維糸
16 熱ローラ
17 加圧ローラ
18 4軸組布の形態をなす連続繊維不織布[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous fiber nonwoven fabric used for a fiber reinforced thermoplastic resin molding material, and a method for producing a fiber reinforced thermoplastic resin molding material using the continuous fiber nonwoven fabric.
[0002]
[Prior art]
A sheet-like molding material composed of reinforcing fibers, a thermoplastic resin, and a filler is known as a stampable sheet and can be stamped. Stamping molding is a molding method in which the molding material is preheated and softened, then supplied into a heated mold, and pressurized to form, with advantages such as short molding time, small capital investment, and reduced weight of the molded product. This is a molding method that takes advantage of the characteristics of thermoplastic resins.
Conventionally, as a stampable sheet, a molding material in which a continuous fiber mat or a chopped strand mat subjected to needle punching is impregnated with a thermoplastic resin is known. However, since a thermoplastic resin generally has a high melt viscosity, the resin impregnation property into the reinforcing fibers is poor, and the resin impregnation property decreases more and more when the reinforcing fiber content is increased. For this reason, fiber reinforced thermoplastic resin molded products using these molding materials are characterized by a low direction of mechanical strength, but the content of reinforcing fibers cannot be increased and the molded product must be thick. If this is not the case, satisfactory mechanical properties may not be obtained.
[0003]
Therefore, a sheet obtained by laminating a reinforced fiber yarn woven fabric and a thermoplastic resin film, or a sheet obtained by laminating a woven fabric made of a resin-coated reinforced fiber yarn coated with a thermoplastic resin on the reinforced fiber yarn may be used as a molding material. Has been done. These molding materials can increase the content of reinforcing fibers, but they require a weaving process, and there are limits to improving the impregnation of reinforcing fibers and thermoplastic resin. There is a problem that sufficient mechanical strength in an oblique direction cannot be obtained.
[0004]
On the other hand, regarding continuous fiber non-woven fabric composed of continuous fiber yarns, JP-A-63-66362 comprises a bonded yarn obtained by twisting a heat-bonding yarn to a reinforcing fiber yarn, and the arrangement directions of the bonded yarns are orthogonal to each other. A non-woven fabric having a warp direction and a weft direction that are obliquely crossed is disclosed. However, in this non-woven fabric, the heat-sealing yarn is for maintaining the shape of the non-woven fabric, and is merely wound around the reinforcing fiber to the extent that the impregnation property of the matrix resin does not decrease, and the mechanical strength No further effect of the woven fabric can be expected for reducing the directionality of the fabric.
[0005]
Japanese Patent Application Laid-Open No. 8-325914 discloses a method for producing a molding base material in which glass long fibers and thermoplastic resin long fibers as reinforcing fibers are blown onto a nonwoven fabric from different supply devices. However, this requires a non-woven fabric as a mount and a dedicated supply device for long glass fibers and long thermoplastic resin fibers.
[0006]
Further, Japanese Patent Application Laid-Open No. 11-20059 discloses a resin-coated reinforcing fiber yarn obtained by coating a reinforcing fiber yarn with a thermoplastic resin in four directions of warp material, weft material, and two-way oblique material intersecting in opposite directions. Disclosed is a continuous fiber nonwoven fabric in which each material is fused at the intersection of each material, and a fiber reinforced thermoplastic resin molding material using this continuous fiber nonwoven fabric. Although this continuous fiber nonwoven fabric has excellent characteristics, it requires a resin coating treatment step on the reinforcing fiber yarn, and the resin-coated reinforcing fiber yarn has high rigidity, and there is a limit to increase the basis weight of the continuous fiber nonwoven fabric, Further improvements in work efficiency and mechanical properties are desired.
[0007]
[Problems to be solved by the invention]
The present invention relates to a method for producing a molding material using a continuous fiber nonwoven fabric for obtaining a fiber-reinforced thermoplastic resin molding material, that is, a stampable sheet, having excellent mechanical properties with high mechanical strength and low directionality. It is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, the nonwoven fabric provided for the fiber-reinforced thermoplastic resin molding material is a continuous fiber nonwoven fabric composed of continuous fiber yarns, and the continuous fiber yarns are composed of reinforcing fibers and thermoplastic resin fibers. It consists of a composite fiber yarn, The volume ratio of the said reinforced fiber is 40 to 60%, It is characterized by the above-mentioned.
[0009]
Furthermore, the continuous fiber nonwoven fabric according to the present invention includes a first fiber yarn layer composed of a first continuous fiber yarn group in which a plurality of continuous fiber yarns are arranged in parallel, and the first continuous fiber yarn group in order to enhance mechanical properties. A second fiber yarn layer composed of a second continuous fiber yarn group in which a plurality of continuous fiber yarns obliquely intersecting with each other, and obliquely intersecting the first continuous fiber yarn group from a direction opposite to the second continuous fiber yarn group continuous fiber yarns are provided with a third yarn layer comprising a third continuous fiber yarn groups being more parallel, and a continuous fiber nonwoven fabric in the form of a so-called three framing cloth.
[0010]
Furthermore, in order to further reduce the direction of mechanical strength, in the continuous fiber nonwoven fabric in the form of the above-described triaxial assembly fabric, a plurality of continuous fiber yarns orthogonal to the first continuous fiber yarn group are arranged in parallel. A continuous fiber non-woven fabric in the form of a so-called four-axis assemblage comprising a fourth fiber yarn layer consisting of four continuous fiber yarn groups is preferred.
[0011]
A method for producing a fiber-reinforced thermoplastic resin molding material, ie, a stampable sheet , according to the present invention is a production method characterized in that one or a plurality of the above-mentioned continuous fiber nonwoven fabrics are stacked and heated and pressed to form a sheet at the time of molding. The continuous fiber nonwoven fabric can be molded simply by heating and pressing without adding a thermoplastic resin such as a powder or powder.
[0012]
In the continuous fiber nonwoven fabric of the present invention, after the composite fiber yarn is disposed, the thermoplastic fiber is melted and the composite fiber yarns are temporarily bonded to each other to maintain the shape of the nonwoven fabric, or the composite fiber yarn is formed by needle punching. It is desirable to entangle each other . The continuous fiber nonwoven fabric obtained by needle punching can suppress adverse effects such as oxidation of the thermoplastic resin due to heat.
[0013]
The composite fiber yarn in the present invention only needs to be able to maintain the form of the above-mentioned continuous fiber nonwoven fabric, and may be appropriately selected from any of the forms (a) to (c) shown below.
(A) A mixed yarn obtained by combing reinforced fibers and thermoplastic resin fibers in a fiber state.
(B) A twisted yarn obtained by twisting a reinforcing fiber yarn and a thermoplastic resin fiber yarn.
(C) A combined yarn obtained by simply combining or winding a thermoplastic resin fiber yarn with a reinforcing fiber yarn.
[0014]
The continuous fiber yarn in the present invention is a fiber yarn that is not substantially cut inside the nonwoven fabric, and the fiber length of the reinforcing fiber is long. Moreover, it consists of composite fiber yarns, and the thermoplastic resin is present in the form of fibers relatively uniformly around the reinforcing fibers. Therefore, the continuous fiber nonwoven fabric of the present invention is excellent in resin impregnation even though the reinforcing fiber content is high, and can increase the mechanical strength of a molded material molded using the same.
[0015]
In addition, the continuous fiber nonwoven fabric made of composite fiber yarn is a reinforcing fiber yarn in a molding process for obtaining a molding material, compared to a continuous fiber nonwoven fabric made of resin-coated reinforcing fiber yarn in which a resin is coated around the reinforcing fiber yarn. Since the air inside easily escapes, the resin impregnation property of the continuous fiber nonwoven fabric can be improved, and a molding material having excellent mechanical properties can be obtained.
[0016]
In addition, the volume ratio of the reinforced fiber in this invention can be represented by following Formula (1).
V 1 = (W 1 / ρ 1 ) / (W 1 / ρ 1 + W 2 / ρ 2 ) × 100 Formula (1)
V 1 ; volume ratio of reinforcing fiber (%)
W 1 : Weight of reinforcing fiber (g)
ρ 1 ; True specific gravity of reinforcing fiber W 2 ; Weight of thermoplastic resin fiber (g)
ρ 2 ; When the volume ratio of the true specific gravity reinforcing fiber of the thermoplastic resin fiber is less than 40%, the content of the reinforcing fiber is lowered, and when it exceeds 60%, the impregnation property of the thermoplastic resin into the reinforcing fiber is lowered. In both cases, satisfactory mechanical strength of the molding material may not be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The reinforcing fibers in the continuous fiber nonwoven fabric of the present invention are in the form of long fibers, and examples of the reinforcing fibers include glass fibers . The count of the reinforcing fiber is not particularly limited, and may be selected depending on the use of the continuous fiber nonwoven fabric .
[0018]
Examples of the thermoplastic resin constituting the thermoplastic resin fiber in the continuous fiber nonwoven fabric of the present invention include polyamide resins such as nylon 6, nylon 12, nylon 66, and aromatic nylon, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, and polyethylene and polypropylene. Examples thereof include olefin resins such as polyether ether ketone resins, polyether imide resins, polyether sulfone resins, polyphenylene sulfide resins, and polycarbonate resins. In addition, you may add a coloring agent, a filler, a stabilizer, a flame retardant, an antistatic agent, a crystallization agent, etc. to the said thermoplastic resin fiber suitably.
[0019]
Hereinafter, a manufacturing apparatus and a manufacturing method for a continuous fiber nonwoven fabric in the form of a four-axis assemblage which is an embodiment of the present invention will be described with reference to FIGS.
[0020]
(1) Manufacturing apparatus for 4-axis assemblage The manufacturing apparatus for continuous fiber nonwoven fabric is mainly constructed on the conveyor 3 with an inclination of an angle α relative to the traveling direction of the conveyor 3 and the traveling direction of the conveyor 3. A set of two traverse guides 4, 4 ′ and a pair of traverse guides 9, 9 ′ laid on the conveyor 3 with an inclination α relative to the direction of travel of the conveyor 3, and the direction of travel of the conveyor The traverse tool 5 that reciprocates along the traverse guides 4 and 4 ′ and the traverse tool 10 that reciprocates along the traverse guides 9 and 9 ′ are maintained.
[0021]
The conveyor 3 has pin arrangements 2 and 2 'in which threading pins 1 and 1' are erected at a constant pitch at both ends in the traveling direction.
Further, the traverse tool 5 has a plurality of guide tubes 6 through which the composite fiber yarns 7 serving as oblique and weft threads are inserted, and the composite fiber yarn 12 serving as the oblique and weft threads is inserted into the traverse tool 10. There are a plurality of guide tubes 11, and the guide tubes 6 and 12 are arranged at the same pitch as the pin arrangements 2, 2 ′ standing on the conveyor 3.
[0022]
Further, as shown in FIG. 2, on the left side of the conveyer 3 in the figure, warp yarn rollers each wound with a composite yarn 14 and 15 for warp to be supplied to the conveyer 3 are arranged. . A heat roller 16 and a pressure roller 17 are provided on the right side of the guides 9 and 9 'in the drawing.
[0023]
(2) Manufacturing method of continuous fiber nonwoven fabric In order to manufacture a continuous fiber nonwoven fabric by the continuous fiber nonwoven fabric manufacturing apparatus shown in FIGS. 1 and 2, the conveyor 3 is circulated in the traveling direction while supplying the warp 14 onto the conveyor 3. Let The composite fiber yarns 7 and 12 are inserted into the guide tubes 6 and 11 provided in the traverse tools 5 and 10, and the traverse tools 5 and 10 are reciprocated. When the traverse tools 5 and 10 change direction, each composite fiber yarn is hooked on the yarn hooking pins 1 and 1 '. At this time, by adjusting the circulation speed of the conveyor 3, the reciprocating speed of the traverse tools 5 and 19, and the angles of the traverse guides 4, 4 ′ and 9, 9 ′ with respect to the conveyor 3, the angle of the oblique yarn is ± 45. The continuous fiber yarn assembly 13 can be formed by arranging an oblique yarn that is oblique to the warp and a weft perpendicular to the warp on the warp. Further, the warp yarn 15 is supplied onto the continuous fiber yarn assembly 13, closely contacted with the heat roller 16, removed from the yarn hooking pins 1, 1 ′, heated to a predetermined temperature by the heat roller 16, and turned into a composite fiber yarn. Melt the containing thermoplastic resin. Then, it is pressed down by the pressure roller 17, and the composite fiber yarns are pressure-bonded to form a continuous fiber nonwoven fabric that is a four-axis assembly fabric.
[0024]
In addition, the continuous fiber nonwoven fabric in the form of a triaxial assembly fabric is formed by adjusting the angle -α of the traverse guides 4, 4 ′ and the angle α of 9, 9 ′ of the above-described continuous fiber nonwoven fabric manufacturing apparatus. Can do. Further, the traverse guides 4, 4 ′ or 9, 9 ′ can be used only when the angle is 90 °.
[0025]
【Example】
(1) Creation of 4-axis assembly [Example 1]
A composite yarn consisting of 570 tex glass fiber roving (product name: RS57PR481 manufactured by Nitto Boseki Co., Ltd.) as the reinforcing fiber and 280 tex nylon 6 fiber (filament diameter: 48 μm, number of filaments: 123) as the thermoplastic fiber is combined. 1 and 2 as a warp, a weft and an oblique yarn, and the weft and the oblique yarn are sandwiched between every other upper and lower warps by a device shown in FIG. And a pressure roller are used to heat-seal the thermoplastic resin fibers to produce a four-axis assembly fabric in which warp yarns, weft yarns and oblique yarns are temporarily bonded to each other. Got.
In the obtained continuous fiber nonwoven fabric, the number of yarns arranged was 30 / 10cm in the warp direction, 29 / 10cm in the weft direction, and 22 / 10cm in the two oblique yarn directions, and the basis weight was It was 703 g / m 2 .
[0026]
[Comparative Example 1]
A glass fiber roving of 570 tex as a reinforcing fiber (trade name: RS57PR481 manufactured by Nitto Boseki Co., Ltd.) was coated with nylon 6 as a thermoplastic resin to obtain a 840 tex resin-coated reinforced fiber yarn.
The resin-coated reinforcing fiber yarn is used as warps, wefts and skew yarns by the apparatus shown in FIGS. 1 and 2, and the weft yarns and the oblique yarns are sandwiched between every other warp yarns, and heated with the heat roller. By passing between the pressure rollers, the thermoplastic resin was thermally fused, and a four-axis assembly fabric in which warp yarns, weft yarns and oblique yarns were temporarily bonded to each other was produced, and a continuous fiber nonwoven fabric of Comparative Example 1 was obtained. .
In the obtained continuous fiber nonwoven fabric, the number of yarns arranged is 20 / 10cm in the warp direction, 19 / 10cm in the weft direction, and 14 / 10cm in the two oblique yarn directions, and the basis weight is It was 563 g / m 2 .
[0027]
(2) Preparation of laminated plate Three continuous fiber nonwoven fabrics of Example 1 were stacked, and four continuous fiber nonwoven fabrics of Comparative Example 1 were stacked, each being heated and pressed at a temperature of 270 ° C. and a pressure of 10 kg / cm 2 for 10 minutes. The laminated board of Example 1 and Comparative Example 1 was obtained by molding.
The thickness of the laminated board of Example 1 was 1.2 mm, and the thickness of the laminated board of Comparative Example 1 was 1.3 mm.
In addition, in the continuous fiber nonwoven fabric of the comparative example 1, since the rigidity of the resin-coated fiber yarn was too strong, the basis weight of the four-axis assembly fabric could not be made the same as that of the continuous fiber nonwoven fabric of Example 1. Therefore, in order to make the content of reinforcing fibers per unit area in the laminated board substantially equal between Example 1 and Comparative Example 1, the laminated board of Example 1 was prepared by laminating three continuous fiber nonwoven fabrics, and Comparative Example The laminate 1 was prepared by laminating four continuous fiber nonwoven fabrics.
[0028]
(3) Evaluation of mechanical properties of laminates The laminates of Example 1 and Comparative Example 1 were subjected to warp direction (0 ° direction), weft direction (90 ° direction), and oblique yarn direction (± 45 ° direction). Based on JIS K7055, bending strength and bending elastic modulus were measured.
The measurement results are shown in Table 1.
[0029]
[Table 1]
Figure 0003972542
[0030]
【The invention's effect】
Since the composite fiber yarn in the present invention has a lower rigidity than the resin-coated reinforcing fiber yarn, the basis weight of the reinforcing fiber can be easily increased when a nonwoven fabric made of continuous fiber yarn is prepared. Further, in the continuous fiber nonwoven fabric of the present invention, the thermoplastic resin does not cover the reinforcing fiber yarn but forms the reinforcing fiber and the composite fiber yarn as the fiber, so that the needle punching can be easily performed. Therefore, the fiber reinforced thermoplastic resin molding material using the continuous fiber nonwoven fabric composed of this composite fiber yarn can obtain excellent mechanical properties, and it is not necessary to add a matrix resin in the molding process. Can be simplified.
[Brief description of the drawings]
FIG. 1 is a plan view of a continuous fiber nonwoven fabric manufacturing apparatus according to the present invention. FIG. 2 is a side view of a continuous fiber nonwoven fabric manufacturing apparatus according to the present invention.
DESCRIPTION OF SYMBOLS 1, 1 'Thread pin 2, 2' Pin arrangement 3 Conveyor 4, 9 Traverse guide 5, 10 Traverse tool 6, 11 Guide pipe 7, 12 Composite fiber yarn for weft and diagonal yarn 8, 13 Continuous fiber yarn Aggregate 14, 15 Composite fiber yarn 16 for warp Heat roller 17 Pressure roller 18 Continuous fiber nonwoven fabric in the form of a 4-axis assembly

Claims (3)

ガラス繊維の体積比率が40〜60%の該ガラス繊維と熱可塑性樹脂繊維との複合繊維糸からなる連続繊維糸を配設して、前記連続繊維糸が複数並列されている第1の連続繊維糸群からなる第1の繊維糸層と、前記第1の連続繊維糸群に斜交する前記連続繊維糸が複数並列されている第2の連続繊維糸群からなる第2の繊維糸層と、前記第2の連続繊維糸群と反対方向から前記第1の連続繊維糸群に斜交する前記連続繊維糸が複数並列されている第3の連続繊維糸群からなる第3の繊維糸層とを備える連続繊不織布を得て、A first continuous fiber in which a plurality of continuous fiber yarns are arranged in parallel by disposing continuous fiber yarns composed of composite fiber yarns of glass fibers and thermoplastic resin fibers whose volume ratio of glass fibers is 40 to 60%. A first fiber yarn layer comprising a yarn group; a second fiber yarn layer comprising a second continuous fiber yarn group in which a plurality of the continuous fiber yarns obliquely intersecting the first continuous fiber yarn group; A continuous fiber nonwoven fabric comprising a third fiber yarn layer comprising a third continuous fiber yarn group in which a plurality of the continuous fiber yarns obliquely intersecting the first continuous fiber yarn group from the opposite direction to the second continuous fiber yarn group. Get
次いで、前記連続繊維不織布を1枚または複数枚重ね、加熱加圧成形するシート状のスタンパブルシートの製造方法。Next, a method for producing a sheet-like stampable sheet, in which one or a plurality of the continuous fiber nonwoven fabrics are stacked and heated and pressed.
前記連続繊維不織布において、前記第1の連続繊維糸群に直交する前記連続繊維糸が複数並列されている第4の連続繊維糸群からなる第4の繊維糸層を備える請求項1に記載のスタンパブルシートの製造方法。 In the continuous fiber nonwoven fabric, stampable of claim 1 comprising the first fourth filament layer, wherein the continuous fiber yarns perpendicular to the continuous fiber yarn group a fourth consecutive fiber yarn groups being more parallel Sheet manufacturing method. 前記連続繊維不織布において、前記複合繊維糸同士を仮接着または絡ませて、前記連続繊維不織布の形態を保持させ、
次いで、前記連続繊維不織布を1枚または複数枚重ね、加熱加圧成形する請求項1または請求項2に記載のスタンパブルシートの製造方法
In the continuous fiber nonwoven fabric, the composite fiber yarns are temporarily bonded or entangled to maintain the form of the continuous fiber nonwoven fabric,
Then, the manufacturing method of the stampable sheet of Claim 1 or Claim 2 which heats and press-molds the said continuous fiber nonwoven fabric 1 sheet or several sheets .
JP32914499A 1999-11-19 1999-11-19 Method for producing fiber reinforced thermoplastic resin molding material using continuous fiber nonwoven fabric Expired - Fee Related JP3972542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32914499A JP3972542B2 (en) 1999-11-19 1999-11-19 Method for producing fiber reinforced thermoplastic resin molding material using continuous fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32914499A JP3972542B2 (en) 1999-11-19 1999-11-19 Method for producing fiber reinforced thermoplastic resin molding material using continuous fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2001146669A JP2001146669A (en) 2001-05-29
JP3972542B2 true JP3972542B2 (en) 2007-09-05

Family

ID=18218139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32914499A Expired - Fee Related JP3972542B2 (en) 1999-11-19 1999-11-19 Method for producing fiber reinforced thermoplastic resin molding material using continuous fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP3972542B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032044B1 (en) 2009-11-03 2011-05-02 주식회사씨앤에프 Apparatus and method for minimizing carbon fiber fabric loss by adjusting array angle of carbon fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934865B2 (en) * 2008-04-30 2012-05-23 株式会社高分子加工研究所 Yarn oblique non-woven fabric manufacturing apparatus having fine-tuning type thread hook pin
JP5489084B2 (en) * 2011-08-12 2014-05-14 Jnc株式会社 Mixed fiber non-woven fabric
JP6991766B2 (en) * 2017-07-26 2022-02-03 旭化成株式会社 Continuous fiber non-woven fabric, reinforced fiber base material for composite materials and their molded bodies and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032044B1 (en) 2009-11-03 2011-05-02 주식회사씨앤에프 Apparatus and method for minimizing carbon fiber fabric loss by adjusting array angle of carbon fiber

Also Published As

Publication number Publication date
JP2001146669A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
JP3821467B2 (en) Reinforcing fiber base material for composite materials
US10035301B2 (en) Unidirectional reinforcement, a method of producing a reinforcement and the use thereof
EP0756027B1 (en) Reinforced woven material and method and apparatus for manufacturing the same
US9249532B2 (en) Method of making a reinforcing mat for a pultruded part
US6680115B2 (en) Glass fiber mats, laminates reinforced with the same and methods for making the same
US6872273B2 (en) Method of making a pultruded part with a reinforcing mat
EP3023241B1 (en) Tape-like dry fibrous reinforcement
JPS63152637A (en) Preform material for reinforcement of resin
KR101688717B1 (en) Reinforced thermoplastic resin sheet material and process for producing the same
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
JP2009019201A (en) Molding material, preform and fiber-reinforced resin
JP3972542B2 (en) Method for producing fiber reinforced thermoplastic resin molding material using continuous fiber nonwoven fabric
US20060065352A1 (en) Stabilized fibrous structures and methods for their production
JP3837848B2 (en) Reinforcing fiber substrate for composite material and method for producing the same
CA2469650C (en) Reinforcing mat for a pultruded part
EP3837109B1 (en) Semi -finished composite materials containing natural fibers and production thereof
JP3915614B2 (en) Fiber structure and composite material having deformed portion
JP2003071958A (en) Composite molding and its manufacturing method
JP2022054847A (en) Fiber base material, carbon fiber-reinforced composite material, and fiber base material manufacturing method
JPH04316633A (en) Continuous filament-reinforced thermoplastic resin molding material
JPH02269826A (en) Precursor for blend forming and production thereof
JPS61296035A (en) Double-layer prepreg and production thereof
JPS5898465A (en) Yarn arranging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050531

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Effective date: 20070227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070604

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120622

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130622

LAPS Cancellation because of no payment of annual fees