JP5707734B2 - Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate - Google Patents

Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate Download PDF

Info

Publication number
JP5707734B2
JP5707734B2 JP2010118693A JP2010118693A JP5707734B2 JP 5707734 B2 JP5707734 B2 JP 5707734B2 JP 2010118693 A JP2010118693 A JP 2010118693A JP 2010118693 A JP2010118693 A JP 2010118693A JP 5707734 B2 JP5707734 B2 JP 5707734B2
Authority
JP
Japan
Prior art keywords
fiber
yarn
reinforcing fiber
woven
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010118693A
Other languages
Japanese (ja)
Other versions
JP2011246827A (en
Inventor
武田 重一
重一 武田
誠 市橋
誠 市橋
伊藤 稔之
稔之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2010118693A priority Critical patent/JP5707734B2/en
Publication of JP2011246827A publication Critical patent/JP2011246827A/en
Application granted granted Critical
Publication of JP5707734B2 publication Critical patent/JP5707734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は繊維強化プラスチック用一方向性の強化繊維織編物及びその繊維基材と、同繊維基材の製造方法及び同繊維基材を使った繊維強化プラスチックの成形方法に関し、さらに詳しくは繊維方向に不規則に並んだ撚り部を有する太い強化繊維糸条を用いた繊維強化プラスチック用一方向性の強化繊維織編物と、それらの強化繊維織編物を含む繊維強化プラスチックの繊維基材及びその製造方法と、同繊維基材を用いた繊維強化プラスチックの成形方法に関する。   TECHNICAL FIELD The present invention relates to a unidirectional reinforced fiber knitted fabric for fiber reinforced plastic and its fiber base material, a method for producing the fiber base material, and a method for molding fiber reinforced plastic using the fiber base material. Unidirectional reinforced fiber knitted fabrics for fiber reinforced plastics using thick reinforcing fiber yarns having irregularly arranged twisted parts, fiber reinforced plastic fiber base materials including these reinforced fiber woven knitted fabrics, and production thereof The present invention relates to a method and a method for molding a fiber reinforced plastic using the fiber substrate.

従来の繊維強化プラスチックを代表する炭素繊維強化プラスチック(CFRP)が、例えば特開平10−317247号公報(特許文献1)や特許第3019004号公報(特許文献2)などに開示されている。具体的には、3000〜12000フィラメントの細い炭素繊維糸条を、たて糸とよこ糸に配列した、炭素繊維織物の目付が200〜400g/m2 の薄い二方向性織物に、予め樹脂を含浸して得られるプリプレグを多数枚積層してオートクレープ成形することにより製造している。これらの成形品は性能において優れているが、たて糸本数が多く製造コストが高くなってしまい、その用途は航空機関連の構造材やスポーツ用具などの特定分野に限定され、多様な産業分野への展開を困難にしていた。 Carbon fiber reinforced plastic (CFRP), which represents a conventional fiber reinforced plastic, is disclosed in, for example, Japanese Patent Application Laid-Open No. 10-317247 (Patent Document 1) and Japanese Patent No. 3019004 (Patent Document 2). Specifically, a thin bi-directional woven fabric in which carbon fiber woven fabrics having a basis weight of 200 to 400 g / m 2 in which fine carbon fiber yarns of 3000 to 12000 filaments are arranged in a warp and weft are impregnated with a resin in advance. It is manufactured by laminating a large number of the obtained prepregs and performing autoclave molding. These molded products are superior in performance, but the number of warp yarns is high and the manufacturing cost is high, and their use is limited to specific fields such as aircraft-related structural materials and sports equipment, and they are deployed in various industrial fields. Made it difficult.

その主な理由は、前述のとおり細い炭素繊維糸条が使われるため製造コストが高くなり、また、織物の主流が比較的薄目付織物であるため、CFRP製造工程において所定の炭素繊維量を積層するには、積層枚数が多くなり、積層するための手間も大きくなることにあった。また、プリプレグの製作工程も増加するため、プリプレグの加工コストも加わる。更に、オートクレープ成形が必要となり、大きな設備投資と労働コストが要求される。   The main reason for this is that, as mentioned above, thin carbon fiber yarns are used, resulting in high manufacturing costs, and the mainstream of the fabric is a relatively thin fabric, so that a predetermined amount of carbon fiber is laminated in the CFRP manufacturing process. Therefore, the number of stacked layers increases, and the labor for stacking increases. Moreover, since the manufacturing process of a prepreg also increases, the processing cost of a prepreg is also added. Furthermore, autoclave molding is required, and large capital investment and labor costs are required.

こうした事情を踏まえて、コストダウンを図るためには、比較的太い炭素繊維糸条を用いた炭素繊維目付が600〜1000g/m2 の炭素繊維織物を基材に用いて成形することが考えられる。また成形法としては、成形型の中に前記炭素繊維織物を積層し、熱硬化型の樹脂を加圧しながら注入するRTM成形や、前記炭素繊維織物を型の上に積層してバッグフィルムで覆い、その中を真空状態となし、熱硬化型の樹脂を注入する真空バッグ成形法がある。これらの成形法を採用すれば、コストがかなり削減される。 In view of these circumstances, in order to reduce the cost, it is conceivable to form a carbon fiber woven fabric having a carbon fiber basis weight of 600 to 1000 g / m 2 using a relatively thick carbon fiber yarn as a base material. . As the molding method, the carbon fiber woven fabric is laminated in a molding die, and RTM molding in which a thermosetting resin is injected while pressing, or the carbon fiber woven fabric is laminated on the die and covered with a bag film. There is a vacuum bag molding method in which a vacuum state is formed and a thermosetting resin is injected. If these molding methods are adopted, the cost is considerably reduced.

しかし、比較的太い炭素繊維糸条を用い、たて糸本数を少なくして従来と同様の炭素繊維目付が600〜1000g/m2 である織物を多様な産業用途へと展開しようとする場合にも、上記特定分野と同様にCFRPの物性が重要視される。ところで、比較的太い炭素繊維糸条をたて糸とよこ糸に配列して2方向織物を得ようとすれば、炭素繊維目付の大きな織物とすることができるが、たて糸とよこ糸の交錯によって織糸に大きな屈曲(クリンプ)が生じることになり、その交錯部分の応力集中により強度及び弾性率が低下する。 However, even when using relatively thick carbon fiber yarns and reducing the number of warp yarns to develop a woven fabric having a carbon fiber basis weight of 600 to 1000 g / m 2 similar to the conventional ones to various industrial uses, The physical properties of CFRP are regarded as important as in the above specific field. By the way, if a relatively thick carbon fiber yarn is arranged in a warp and a weft to obtain a two-way woven fabric, a woven fabric having a large carbon fiber basis weight can be obtained. Bending (crimping) occurs, and the strength and elastic modulus decrease due to the stress concentration at the intersection.

一方、炭素繊維糸条をたて方向に配列し、よこ方向にたて方向の糸よりも細い補助糸を使った一方向性の炭素繊維織物は、図2に示すように、たて糸11’として実質的に無撚りのマルチフィラメントが使われ、よこ糸12’にたて糸11’よりも細い補助糸が使われるのが一般的であるため、クリンプによる強度低下は少ないが、炭素繊維糸条が一方向のみに配列されるため、高目付とするほど繊維密度も大きくなり、隣接繊維糸条間の繊維空隙がなくなる。それにより、RTM成形や真空バッグ成形などの成形方法では樹脂の流れが悪くなり、樹脂含浸時に時間がかかり、炭素繊維織物13’への樹脂の含浸性が悪化
する。
On the other hand, a unidirectional carbon fiber fabric in which carbon fiber yarns are arranged in the warp direction and auxiliary yarns that are thinner than the warp direction yarn are used, as shown in FIG. Since non-twisted multifilaments are used and auxiliary yarns thinner than the warp yarn 11 'are generally used for the weft yarn 12', there is little reduction in strength due to crimping, but the carbon fiber yarn is unidirectional. Therefore, the higher the basis weight, the greater the fiber density, and the fiber gap between adjacent fiber yarns disappears. Thereby, in the molding method such as RTM molding and vacuum bag molding, the flow of the resin is deteriorated, it takes time when impregnating the resin, and the impregnation property of the resin into the carbon fiber fabric 13 ′ is deteriorated.

特開平10−317247号公報Japanese Patent Laid-Open No. 10-317247 特許第3019004号公報Japanese Patent No. 3019004

本発明の目的は、上述のような問題点に着目し、繊維強化プラスチックの繊維基材として太い強化繊維糸条を用いた高目付の織編物であっても、樹脂の含浸性に優れており、成形されたときの機械的特性に優れ、安価に製造できる繊維強化プラスチック用一方向性の強化繊維織編物及びそれらの織編物を含む繊維基材と、その基材及び同基材を用いた強化繊維プラスチックの製造方法とを提供することにある。   The object of the present invention is to pay attention to the above-mentioned problems, and is excellent in resin impregnation even in a high-weight woven or knitted fabric using a thick reinforcing fiber yarn as a fiber base material of fiber reinforced plastic. , Unidirectional reinforced fiber knitted fabrics for fiber reinforced plastics that have excellent mechanical properties when molded and can be manufactured at low cost, and fiber base materials including those woven or knitted fabrics. It is to provide a method for producing a reinforced fiber plastic.

本発明の第1の基本構成は、繊維強化プラスチック用一方向性の強化繊維織編物であって、縦取りの解舒撚りによる不均一な長さや形態の撚り部をもつ強化繊維糸条を、その少なくとも一部に含んでなり、前記強化繊維糸条のフィラメント数が50000〜100000本であるか、又は強化繊維糸条の繊度が32670〜65340dtexであることを特徴としている。
また第2の基本構成は、一方向性の強化繊維織編物からなり、強化繊維糸条のフィラメント数が50000〜100000本であるか、強化繊維糸条の繊度が32670〜65340dtexであって、各強化繊維糸条が縦取りの解舒撚りによる不均一な長さや形態の撚り部をもつ、一方向性の強化繊維織編物を少なくとも1層以上含んでなる繊維基材を成形型に配し、その上面に樹脂を面方向に拡散するための媒体を載置後、繊維基材及び媒体の全体をバッグフィルムで覆い、次いでバッグフィルムで覆われた内部を真空状態とし、前記媒体を介して繊維基材の片面に熱硬化型樹脂を拡散させ、繊維基材に含浸させて硬化させる、ことを特徴とする繊維強化プラスチックの成形方法にある。
A first basic configuration of the present invention is a unidirectional reinforcing fiber woven or knitted fabric for fiber reinforced plastic, and includes a reinforcing fiber yarn having a twisted portion having a non-uniform length and shape due to longitudinal unwinding and twisting , It is contained in at least a part thereof, and the number of filaments of the reinforcing fiber yarn is 50,000 to 100,000, or the fineness of the reinforcing fiber yarn is 32670 to 65340 dtex.
The second basic configuration consists first direction of the reinforcing fiber woven or knitted fabric, a filament number of each reinforcing fiber yarns is either a present 50000-100000, fineness of strengthening fiber yarns A 32670~65340dtex Each of the reinforcing fiber yarns is provided with a fiber base material comprising at least one layer of unidirectional reinforcing fiber woven or knitted fabric having a twisted portion having a non-uniform length or shape by vertical unwinding and twisting. Then, after placing the medium for diffusing the resin in the surface direction on the upper surface, cover the whole of the fiber base material and the medium with a bag film, and then the inside covered with the bag film is in a vacuum state, Then, a thermosetting resin is diffused on one side of the fiber base material, and the fiber base material is impregnated and cured to cure the fiber reinforced plastic.

好ましい態様によれば、不均一な撚り部を有する前記炭素繊維糸条は、その長手方向に沿って1回/m以上の撚り部を有しており、一方向性の前記強化繊維織編物は、たて糸又はよこ糸に前記強化繊維糸条が使われ、よこ糸又はたて糸に補助糸が使われた一方向の強化繊維織編物であって、そのたて糸とよこ糸との交点が低融点ポリマーを介して接着されていることが好ましい。   According to a preferred embodiment, the carbon fiber yarn having a non-uniform twist portion has a twist portion of 1 turn / m or more along the longitudinal direction, and the unidirectional reinforcing fiber woven fabric is A unidirectional reinforcing fiber woven or knitted fabric in which the reinforcing fiber yarn is used for the warp or the weft and the auxiliary yarn is used for the weft or the warp, and the intersection of the warp and the weft is bonded through a low melting point polymer. It is preferable that

第3の基本構成は、複数のボビンに巻かれた実質的に無撚りの強化繊維糸条をたて糸用クリールに掛けボビン軸方向に縦取りして引き出して織成する前記繊維基材の製造方法にある。   A third basic configuration is a method for producing the fiber base material, wherein a substantially untwisted reinforcing fiber yarn wound around a plurality of bobbins is hung on a warp yarn creel and vertically pulled in a bobbin axial direction and woven. It is in.

更に第4の基本構成は、一方向性の強化繊維織編物からなり、各強化繊維糸条のフィラメント数が50000〜100000本であるか、強化繊維糸条の繊度が32670〜65340dtexであって、各強化繊維糸条が縦取りの解舒撚りによる不均一な長さや形態の撚り部をもつ、一方向性の強化繊維織編物を少なくとも1層以上含んでなる繊維基材を成形型に配し、その上面に樹脂を面方向に拡散するための媒体を載置後、繊維基材及び媒体の全体をバッグフィルムで覆い、次いでバッグフィルムで覆われた内部を真空状態とし、前記媒体を介して繊維基材の片面に熱硬化型樹脂を拡散させ、繊維基材に含浸させて硬化させる、繊維強化プラスチックの成形方法にある。 Further, the fourth basic configuration consists of a unidirectional reinforcing fiber knitted fabric, the number of filaments of each reinforcing fiber yarn is 50,000 to 100,000, or the fineness of the reinforcing fiber yarn is 32670 to 65340 dtex, A fiber base material comprising at least one layer of unidirectional reinforcing fiber knitted fabric, in which each reinforcing fiber yarn has a twisted portion having a non-uniform length and shape due to longitudinal unwinding twisting is disposed in a mold. Then, after placing the medium for diffusing the resin in the surface direction on the upper surface, cover the whole of the fiber base material and the medium with a bag film, and then the inside covered with the bag film is in a vacuum state, through the medium There is a method for molding fiber reinforced plastic, in which a thermosetting resin is diffused on one side of a fiber base material, and the fiber base material is impregnated and cured.

好ましくは、一方向性の強化繊維織編物は、たて糸又はよこ糸のフィラメント数が50000〜100000本であるか、又は強化繊維糸条の繊度が32670〜65340dtexである強化繊維糸条を用い、よこ糸又はたて糸に補助糸条を用い、前記強化繊維糸条に不均一な撚り部を付与すると良い。   Preferably, the unidirectional reinforcing fiber woven or knitted fabric uses reinforcing fiber yarns in which the number of filaments of the warp yarn or weft yarn is 50000 to 100,000, or the fineness of the reinforcing fiber yarn is 32670 to 65340 dtex, and the weft yarn or It is preferable to use an auxiliary yarn for the warp and to give a non-uniform twisted portion to the reinforcing fiber yarn.

本発明を代表する一方向性炭素繊維織物の概略構成図である。It is a schematic block diagram of the unidirectional carbon fiber fabric representing this invention. 従来の一方向性炭素繊維織物の概略構成図である。It is a schematic block diagram of the conventional unidirectional carbon fiber fabric. 本発明に使われる炭素繊維糸条を概略で示す側面図である。It is a side view which shows roughly the carbon fiber yarn used for this invention. 本発明の一方向性炭素繊維織物の製造工程を示す工程説明図である。It is process explanatory drawing which shows the manufacturing process of the unidirectional carbon fiber fabric of this invention. 本発明の成形方法の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the shaping | molding method of this invention.

以下、本発明の代表的な実施形態を図面を参照しながら詳細に説明する。
なお、以下の説明では基材として一方向性の炭素繊維織物について述べるが、本発明は一方向性の炭素繊維織物に限らず、一方向経編物をも含むものである。本発明における一方向炭素繊維織物とは、たて糸又はよこ糸に太い炭素繊維糸条が使われ、よこ糸又はたて糸に細い炭素繊維糸条を含む補助糸を使った織物をいう。補助糸には、ガラス繊維、アラミド繊維、黒鉛繊維、シリカ繊維など高強度、高弾性繊維からなる前記炭素繊維糸条よりも細いマルチフィラメントが使われる。また、以下の説明では、強化繊維として炭素繊維を例に挙げて説明するが、強化繊維としては他にも、例えば前記補助糸に使われる材料を使うこともできる。
Hereinafter, representative embodiments of the present invention will be described in detail with reference to the drawings.
In the following description, a unidirectional carbon fiber woven fabric is described as the base material. However, the present invention is not limited to the unidirectional carbon fiber woven fabric, but also includes a unidirectional warp knitted fabric. The unidirectional carbon fiber fabric in the present invention refers to a fabric using a thick carbon fiber yarn for the warp or weft and using an auxiliary yarn including a thin carbon fiber yarn for the weft or warp. As the auxiliary yarn, a multifilament that is thinner than the carbon fiber yarn made of high-strength, high-elasticity fiber such as glass fiber, aramid fiber, graphite fiber, or silica fiber is used. Further, in the following description, carbon fibers will be described as an example of the reinforcing fibers, but other materials used for the auxiliary yarn can be used as the reinforcing fibers, for example.

一般的に炭素繊維糸条を用いて織物を織成する際、炭素繊維糸条を直接供給する場合と、複数本の炭素繊維糸条を部分整経して必要本数分をたて糸用供給ビームに巻き返して供給する場合の2つの供給方法が用いられているが、その殆どはボビンから炭素繊維糸条を直接供給する方法が採用されている。その大きな理由として部分整経工程が不要になることと、織物の長尺化が可能であることがある。また、炭素繊維糸条をボビンから直接供給する方法として、炭素繊維糸条が巻かれたボビンからボビン軸方向に対して垂直方向に糸条を引き出す横取り方法が一般的である。何故ならば、縦取りにより解舒する方法は、ボビンから1巻き引き出すごとにたて糸に1回の撚りが掛かってしまうため、この撚りが掛かった部分が捩れて部分的に収束することから、たて糸の糸幅が均一な織物が得られないという問題がある。   Generally, when weaving a woven fabric using carbon fiber yarns, when supplying carbon fiber yarns directly, or by partially warping a plurality of carbon fiber yarns, the necessary number of yarns are used as a yarn supply beam. Two supply methods are used in the case of rewinding and supplying, and most of them use a method of supplying carbon fiber yarn directly from a bobbin. The main reasons for this are that the partial warping process is not necessary and the length of the fabric can be increased. Further, as a method of directly supplying carbon fiber yarns from a bobbin, a horizontal cutting method is generally used in which the yarn is pulled out in a direction perpendicular to the bobbin axial direction from the bobbin around which the carbon fiber yarn is wound. This is because in the method of unwinding by vertical take-up, every time one winding is pulled out from the bobbin, the warp yarn is twisted once, so the twisted portion is twisted and partially converges. There is a problem that a woven fabric having a uniform yarn width cannot be obtained.

この現象は、用いる炭素繊維糸条が太いほど顕著に現れるため、前述の問題を解消するためには横取り供給が多く採用されている。しかし、本発明のようにフィラメント数50000本以上の太い糸条を用いて高目付の一方向性織物や編物を得る場合、たて糸の引き出し方法を通常の横取りにより供給しようとすると、無撚りに近い状態で供給され、その供給工程を通過する際にガイド類などと擦過して糸条が開繊される。そのため、高目付織物を得ようとした場合、たて糸の隣接糸条間の隙間は殆どなくなり、RTM成形などで樹脂を含浸しようとすると含浸に長時間を要するという問題があった。   This phenomenon appears more conspicuously as the carbon fiber yarn used is thicker. Therefore, in order to solve the above-mentioned problem, pre-feeding is often used. However, when a unidirectional woven fabric or knitted fabric having a high basis weight is obtained using a thick yarn having a filament number of 50000 or more as in the present invention, it is almost untwisted when an attempt is made to supply the warp yarn drawing method by a normal side cut. It is supplied in a state, and when passing through the supply process, the yarn is opened by rubbing with guides and the like. For this reason, when trying to obtain a fabric with a high basis weight, there is almost no gap between adjacent yarns of the warp yarn, and there is a problem that it takes a long time to impregnate when trying to impregnate the resin by RTM molding or the like.

そこで本発明者らは鋭意検討を重ねた結果、たて糸の引き出し方法として従来の横取りではなく縦取りを採用し、意図的に解舒撚りを施しながら糸条を引き出し、糸条の長手方向に撚り部を形成して織物を得ても、糸条間に局部的に隙間をもつ織物が得られることを発見した。該織物を使ってRTM成形などで成形すれば樹脂は隙間を流れやすくなり、含浸時間が大幅に短縮される。   Therefore, as a result of intensive investigations, the present inventors have adopted vertical take-up instead of conventional horizontal take-off as a method for drawing out warp yarn, draw out the yarn while intentionally unwinding and twisting, and twist it in the longitudinal direction of the yarn. It was discovered that even when a woven fabric is formed by forming a portion, a woven fabric having gaps locally between yarns can be obtained. If the fabric is molded by RTM molding or the like, the resin can easily flow through the gap, and the impregnation time is greatly shortened.

また、フィラメント数が3000本や12000本程度のコスト高となる細い炭素繊維糸条では200〜400g/cm2 程度の織物目付が主流となるが、このように織物目付が小さいと、もともと糸条間に隙間が存在する。既に隙間が存在している織物にあって、たて糸を更に縦取りで供給すると、糸条が解舒撚りによる収束のため、糸条間の隙間が更に大きくなり、織物の外観品位が低下し好ましくない。これに反して、フィラメント数が50000本以上で糸条繊度が32670〜65340dtexの太い繊維糸条を用いて高目付の織物を製造すると、本発明の縦取り供給法が非常に有効で且つ経済的な手段となることが判明した。 Although the mainstream 200 to 400 g / cm 2 about fabric basis weight is fine carbon fiber yarns number of filaments is 3000 and 12000 of about cost, in this way the fabric basis weight is small, between originally yarns There is a gap. If the warp yarn is already supplied in the longitudinal direction in a woven fabric that already has a gap, the yarn will be converged by unwinding and twisting, so that the gap between the yarns will become larger and the appearance quality of the woven fabric will deteriorate. Absent. On the other hand, when a fabric having a high basis weight is produced using a thick fiber yarn having 50,000 filaments or more and a yarn fineness of 32670 to 65340 dtex, the longitudinal feeding method of the present invention is very effective and economical. Turned out to be a good tool.

一般的に、縦取りではボビンから糸条を1巻き引き出す毎に1回の解舒撚りが施されることは周知である。この解舒撚りは繊維糸条が太いほど長手方向に沿って撚り部が外見上に顕著に現れる。ただし、数10回/m以上の撚りを積極的に付与する施燃工程を通せば、繊維糸条の長手方向にほぼ均一に撚り部が形成されるが、本発明のような解舒撚りでは繊維糸条の長手方向に均一に撚りが形成されることは殆どない。織物や編物の製造のように織成速度及び編成速度が比較的遅く、ガイド類による擦過或いは張力などの影響を受けやすい場合、撚り部の形成状態は、図1及び図3に示すように、むしろ、撚り部14のある部位と撚りのない部位(非撚り部)15とが糸条長手方向にランダムに発生しやすくなるばかりでなく、撚り部14、非撚り部15の長さや、撚り部14の収束状態も不均一になる。このような繊維糸条形態で織物が形成されるため、撚り部14の繊維糸条幅は非撚り部15より狭くなり、図1に示すように、織成された織物において隣接する糸条間に隙間が形成される。 In general, it is well known that in the longitudinal take-up, one unwinding and twisting is performed every time one yarn is pulled out from the bobbin. In this unwinding twist, the thicker the fiber yarn, the more noticeably the twisted portion appears along the longitudinal direction. However, if passed actively applied to施燃step twist of more than several 10 times / m, although twisting section substantially uniform in the longitudinal direction of the fiber yarn is formed, the solution舒撚Ride as in the present invention A twist is hardly formed uniformly in the longitudinal direction of the fiber yarn. When the weaving speed and knitting speed are relatively slow as in the production of woven fabrics and knitted fabrics, and are easily affected by rubbing or tension by guides, the formation state of the twisted portion is as shown in FIGS. Rather, not only the part with the twisted part 14 and the part with no twist (non-twisted part) 15 are likely to occur randomly in the longitudinal direction of the yarn, but also the length of the twisted part 14 and the untwisted part 15 and the twisted part. The convergence state of 14 is also non-uniform. Since the woven fabric is formed in such a fiber yarn form, the fiber yarn width of the twisted portion 14 is narrower than that of the non-twisted portion 15, and, as shown in FIG. 1, between the adjacent yarns in the woven fabric. A gap is formed.

なお、たて糸11を引き出す方向は時計回り、或いは反時計回りどちらでも差し支えないが、時計回りで引き出すとZ撚りが付与され、反時計回りで引き出すとS撚りが付与される。よって、引き出し時のトラブルを避けるためにどちらか一方に統一して引き出した方が好ましい。従来から、このような撚り部の有無が織物の成形時の樹脂含浸性に影響を与えることは広く知られている。特に、フィルムに樹脂を塗布した樹脂フィルムを織物にあてがい樹脂を含浸させるホットメルト法では、前記撚り部の有無によって含浸性に大きな影響を受けるが、ウェット法やRTM成形などのように比較的粘度の低い樹脂を使用する成形法では、撚り部の有無よりも織物における糸条間の隙間の有無によって樹脂の含浸性が左右される。   Note that the direction in which the warp yarn 11 is pulled out may be either clockwise or counterclockwise, but if it is pulled out clockwise, Z twist is applied, and if it is pulled counterclockwise, S twist is applied. Therefore, in order to avoid trouble when pulling out, it is preferable to pull it out in either one. Conventionally, it is widely known that the presence or absence of such a twisted part affects the resin impregnation property at the time of forming a woven fabric. In particular, in the hot melt method in which a resin film coated with a resin is applied to a woven fabric and impregnated with the resin, the impregnation property is greatly affected by the presence or absence of the twisted portion, but the viscosity is relatively high as in the wet method or RTM molding. In a molding method using a low-resin resin, the impregnation property of the resin depends on the presence or absence of gaps between yarns in the woven fabric rather than the presence or absence of twisted portions.

次に一方向性の強化繊維織物の製造方法について、図4に基づいて、簡単に説明する。炭素繊維糸条が巻かれたボビン1を織物13のたて糸11に必要な本数を縦取りで同一方向に引き出せるようにクリール2に掛ける。該繊維糸条の引き出しを縦取りとするため、クリール2をボビン1が回転しないように固定する。ボビン軸方向に引き出される該繊維糸条はガイド類3、コーム4などを経て、シート状に配列された後、たて糸11を送り出すニップロール装置5へと供給される。このたて糸11がボビン1から引き出されるとき、ボビン1から1巻き引き出されるごとにたて糸には1回の撚りがかかる。   Next, a method for producing a unidirectional reinforcing fiber fabric will be briefly described with reference to FIG. The bobbin 1 wound with the carbon fiber yarn is hung on the creel 2 so that the necessary number of warp yarns 11 of the fabric 13 can be pulled out in the same direction. The creel 2 is fixed so that the bobbin 1 does not rotate so that the fiber yarn can be pulled out vertically. The fiber yarns drawn out in the bobbin axial direction are supplied to a nip roll device 5 that feeds the warp yarn 11 after being arranged in a sheet shape through guides 3 and combs 4. When the warp yarn 11 is pulled out from the bobbin 1, the warp yarn is twisted once each time one bobbin 1 is pulled out.

引き続いて、たて糸11を上下に開口するヘルド6及び目付を規制する筬7へと順次引き込む。次いで、よこ糸12となる補助糸がたて糸11の開口8内に挿入され、筬7により打込まれてたて糸11とよこ糸12である補助糸は交錯して織物13が形成された後、加熱装置10により加熱され、よこ糸12である補助糸とたて糸11の交点で低融点ポリマーを介して接着され、巻取ロールに巻き取られる。なお、よこ糸12である補助糸は、既述したとおり、たて糸より細い糸条でガラス繊維、アラミド繊維など特に限定されない。   Subsequently, the warp yarn 11 is sequentially drawn into the heald 6 that opens up and down and the heel 7 that regulates the basis weight. Next, an auxiliary yarn that becomes the weft yarn 12 is inserted into the opening 8 of the warp yarn 11, and the warp yarn 11 and the auxiliary yarn that is the weft yarn 12 are interlaced to form the woven fabric 13, and then the heating device 10. And is bonded via a low-melting polymer at the intersection of the auxiliary yarn as the weft yarn 12 and the warp yarn 11 and wound around a take-up roll. In addition, the auxiliary yarn which is the weft yarn 12 is not particularly limited as described above, such as a glass fiber and an aramid fiber, which are thinner than the warp yarn.

このとき、前記補助糸に低融点ポリマーからなる熱融着繊維(図示を省略)を引き揃え、或いは樹脂接着、合燃、カバリングなどにより複合糸とし、これをよこ糸12とする。複合糸の複合の仕方は格別制限されない。また、加熱装置10による加熱方法としては熱ロールによる圧着或いは非接触式の遠赤外線ヒーターなど限定するものではない。以上のように製織された織物13はたて糸11に用いた炭素繊維糸条が長手方向に沿って撚り部14と非撚り部15とが不均一なピッチで形成される。このとき、撚り部14は図3に示すように非撚り部15よりも収束した状態となり、糸幅が細いため、図1に示すような、隣接する糸条間に隙間をもつ織物が得られる。ここで、熱融着繊維を構成する低融点ポリマーとしては、ポリアミド(ナイロン)、ポリエチレン、ポリウレタンなどの熱可塑性樹脂を挙げることができるが、これらに限定されない。   At this time, a heat-bonding fiber (not shown) made of a low-melting polymer is aligned with the auxiliary yarn, or a composite yarn is formed by resin bonding, combusting, covering, or the like. There are no particular restrictions on how the composite yarns are combined. Further, the heating method by the heating device 10 is not limited to a pressure bonding with a heat roll or a non-contact far infrared heater. In the woven fabric 13 woven as described above, the carbon fiber yarn used for the warp yarn 11 is formed with a non-uniform pitch between the twisted portion 14 and the non-twisted portion 15 along the longitudinal direction. At this time, the twisted portion 14 is converged more than the non-twisted portion 15 as shown in FIG. 3, and the yarn width is narrow, so that a woven fabric having a gap between adjacent yarns as shown in FIG. 1 is obtained. . Here, examples of the low-melting-point polymer constituting the heat-sealing fiber include thermoplastic resins such as polyamide (nylon), polyethylene, and polyurethane, but are not limited thereto.

次に、本発明のCFRP(炭素繊維強化プラスチック)の成形法を説明する。図5は本発明のCFRPの成形法を説明する断面図である。同図において、成形型9に離型剤を塗布し、その成形型9の上に繊維基材となる本実施形態に係る炭素繊維織物13が所定の方向に所定の枚数が積層され、その上に樹脂が硬化した後に引き剥がして除去されるシート、いわゆるピールプライ16を積層し、更にその上に繊維基材である炭素繊維織物13の全面に樹脂を拡散させるための媒体17を置く。また、炭素繊維織物13の炭素繊維軸方向の両端に樹脂を繊維基材に堆積させるスパイラルチューブ21を配置し、そのスパイラルチューブ21の一端に真空ポンプの吸引口23を取り付け、それら全体をバッグフィルム18で覆い、空気が漏れないようにシール材20でバッグフィルム18の周囲を成形型9に接着する。樹脂タンクから注入される樹脂の導入口25をスパイラルチューブ21の他端に連結させる。   Next, a method for molding CFRP (carbon fiber reinforced plastic) of the present invention will be described. FIG. 5 is a cross-sectional view for explaining the CFRP molding method of the present invention. In the figure, a mold release agent is applied to the mold 9, and a predetermined number of carbon fiber fabrics 13 according to this embodiment serving as a fiber base material are laminated on the mold 9 in a predetermined direction. A sheet 17 that is peeled off after the resin is cured, that is, a so-called peel ply 16, is laminated, and a medium 17 for diffusing the resin is placed on the entire surface of the carbon fiber fabric 13 that is a fiber base material. Moreover, the spiral tube 21 which deposits resin on a fiber base material is arrange | positioned at the both ends of the carbon fiber axial direction of the carbon fiber fabric 13, and the suction port 23 of a vacuum pump is attached to the end of the spiral tube 21, and those whole are bag films 18, and the periphery of the bag film 18 is bonded to the mold 9 with a sealing material 20 so that air does not leak. The resin inlet 25 injected from the resin tank is connected to the other end of the spiral tube 21.

樹脂タンクには、RTM成形に適した低粘度の樹脂(例えば、硬化剤を所定量添加した常温でシロップ状の熱硬化型の熱硬化性樹脂など)を入れておく。真空ポンプを作動して、バッグフィルム18で覆われた繊維基材を構成する炭素繊維織物13を、真空圧力が70〜76cmHg程度の真空状態にした後、バルブ26を開放して樹脂を注入する。バッグフィルム18で覆われた中が真空状態であり、炭素繊維織物13の繊維軸方向より媒体17の面方向が樹脂の流通抵抗が小さいため、まず樹脂は媒体の全面に拡散されたのち、次いで繊維基材である炭素繊維織物13の厚さ方向へと含浸が進行する。しかし、この含浸度合いは繊維基材として用いる炭素繊維織物13の形態にかなり影響される。当然ながら糸条間に隙間をもつ該織物ほど厚さ方向への樹脂の含浸は速く完了する。   In the resin tank, a low-viscosity resin suitable for RTM molding (for example, a thermosetting resin in a syrup-like thermosetting type with a predetermined amount of a curing agent added) is placed. After operating the vacuum pump to bring the carbon fiber fabric 13 constituting the fiber base material covered with the bag film 18 into a vacuum state with a vacuum pressure of about 70 to 76 cmHg, the valve 26 is opened to inject the resin. . Since the inside covered with the bag film 18 is in a vacuum state, and the flow resistance of the resin in the surface direction of the medium 17 is smaller than the fiber axis direction of the carbon fiber fabric 13, the resin is first diffused over the entire surface of the medium, and then Impregnation proceeds in the thickness direction of the carbon fiber fabric 13 as a fiber base material. However, the degree of impregnation is considerably influenced by the form of the carbon fiber fabric 13 used as the fiber base material. Of course, the impregnation of the resin in the thickness direction is completed faster as the woven fabric has gaps between the yarns.

ここで、媒体17としては繊維径0.2〜0.5mm程度のポリエチレンやポリプロピレンなどのモノフィラメントを用いたメッシュ調シートや、ラッセル編で形成されたシートなどを使用するが、何ら限定するものではない。また、真空ポンプは少なくとも樹脂の含浸が完了するまで運転し、バッグフィルム18の中を真空状態に保つことが好ましい。樹脂の含浸が完了した後、ピールプライ16を剥いで、媒体17やバッグフィルム18などを除去し、成形型9から脱型することによってCFRP成形品が得られる。   Here, as the medium 17, a mesh-like sheet using a monofilament such as polyethylene or polypropylene having a fiber diameter of about 0.2 to 0.5 mm, a sheet formed by Russell knitting, or the like is used. Absent. The vacuum pump is preferably operated until at least the impregnation of the resin is completed, and the bag film 18 is preferably kept in a vacuum state. After the resin impregnation is completed, the peel ply 16 is peeled off, the medium 17 and the bag film 18 are removed, and the mold is removed from the mold 9 to obtain a CFRP molded product.

なお、本発明に用いるピールプライ16は樹脂を通過させることが必要であり、ナイロン繊維織物やポリエステル繊維織物、ガラス繊維織物などを用いることができる。該織物の織密度の少ないものほど隙間が大きいため、樹脂の通過は容易である反面、樹脂が硬化して最後に剥がした時に繊維基材の表面に凹凸が発生する。そのため、できるだけ樹脂の通過が良く、表面に凹凸の発生しにくいものを選択することが好ましい。また、バッグフィルム18は気密性であることが必要であり、ナイロンフィルム、ポリエステルフィルムなどを用いることができる。   Note that the peel ply 16 used in the present invention needs to allow the resin to pass therethrough, and a nylon fiber fabric, a polyester fiber fabric, a glass fiber fabric, or the like can be used. The smaller the weaving density of the woven fabric, the larger the gap, so that the resin can pass easily. On the other hand, when the resin is cured and finally peeled, irregularities are generated on the surface of the fiber substrate. Therefore, it is preferable to select a resin that can pass through the resin as much as possible and is less likely to have unevenness on the surface. The bag film 18 needs to be airtight, and a nylon film, a polyester film, or the like can be used.

次に本発明の繊維強化プラスチックに関する実施例を以下に説明する。
(実施例1、「本発明織物」)
フィラメント数50000本、糸条繊度32670dtexのマルチフィラメントの炭素繊維糸条をたて糸とし、解舒方向を反時計回りに縦取りして引き出せるようにクリール上にボビンを掛け、222dtexのガラス繊維に東レ(株)製の熱融着繊維(ナイロン)を複合させた補助糸をよこ糸として、たて糸密度5.5本/2.54cm、よこ糸密度を5本/2.54cmで平組織となるよう織成し、引き続き加熱装置で加熱し、炭素繊維織物目付720g/m2 の一方向炭素繊維織物を作製した。なお、加熱は融着繊維を複合させたよこ糸を挿入後、織機上に取り付けた加熱ロールで前記よこ糸の融着繊維を溶融し、炭素繊維糸条とガラス繊維とを熱融着繊維を介して接着する方法で実施した。得られた織物は、解舒撚りにより炭素繊維糸条の長手方向に任意の部位に撚り部と非撚り部が形成され、これらの形態を有する糸条が配列されることで隣接する糸条間に、図1に示すような隙間が形成された。
Next, examples relating to the fiber-reinforced plastic of the present invention will be described below.
(Example 1, "invention fabric")
A multifilament carbon fiber yarn with 50000 filaments and a yarn fineness of 32,670 dtex is used as a warp, and a bobbin is hung on the creel so that the unwinding direction can be taken up in a counterclockwise direction, and the glass fiber of 222 dtex is coated with Toray ( Weaving to make a flat structure with a weft yarn density of 5.5 / 2.54 cm and a weft yarn density of 5 / 2.54 cm, with an auxiliary yarn combined with heat-bonded fiber (nylon) made by Co., Ltd. It heated with the heating apparatus and produced the unidirectional carbon fiber fabric per unit area of 720 g / m < 2 > of carbon fiber fabrics. In addition, heating inserts the weft yarn combined with the fusion fiber, melts the fusion fiber of the weft yarn with a heating roll attached on the loom, and the carbon fiber yarn and the glass fiber are passed through the heat fusion fiber. It carried out by the method to adhere | attach. The obtained woven fabric has twisted portions and non-twisted portions formed at arbitrary positions in the longitudinal direction of the carbon fiber yarns by unwinding and twisting, and the yarns having these forms are arranged so that adjacent yarns are arranged. In addition, a gap as shown in FIG. 1 was formed.

(比較例1、「比較織物」)
本発明と同様にフィラメント数50000本、糸条繊度32670dtexのマルチフィラメントの炭素繊維糸条をたて糸とし、該たて糸に解舒撚りが入らないように横取りにて引き出せるようにクリールに掛け、222dtexのガラス繊維に東レ(株)製の熱融着繊維(ナイロン)を複合させた補助糸をよこ糸として、たて糸密度5.5本/2.54cm、よこ糸密度を5本/2.54cmで平組織となるよう織成し、引き続き加熱装置で加熱し、炭素繊維織物目付720g/m2 の一方向炭素繊維織物を作製した。なお、加熱は熱融着繊維を複合させたよこ糸を挿入後、織機上に取り付けた120℃の加熱ロールで該よこ糸の熱融着繊維を溶融し、炭素繊維糸条とガラス繊維を熱融着繊維を介して接着する方法で実施した。得られた織物は、図2に示すように炭素繊維糸条の撚り部や糸条間の隙間が殆どない織物であった。
(Comparative Example 1, “Comparative Fabric”)
The present invention as well as number of filaments 50,000 present, the warp carbon fiber yarns of the multifilament yarn fineness 32670Dtex, subjected to creel as draw at intercept as unwinding twist the warp does not turn, 222Dtex Glass Using weft yarn made of a composite of heat-bonded fiber (nylon) manufactured by Toray Industries, Inc. as a weft yarn, we have a plain structure with a warp yarn density of 5.5 / 2.54 cm and a weft yarn density of 5 / 2.54 cm. The woven fabric was woven and then heated with a heating device to prepare a unidirectional carbon fiber fabric having a carbon fiber fabric basis weight of 720 g / m 2 . In addition, after inserting the weft yarn combined with the heat fusion fiber, the heat fusion fiber of the weft yarn is melted with a 120 ° C. heating roll attached on the loom, and the carbon fiber yarn and the glass fiber are heat fusion. It carried out by the method of adhere | attaching through a fiber. The obtained woven fabric was a woven fabric having almost no gap between the twisted portions of the carbon fiber yarn and the yarn as shown in FIG.

(実施例2及び比較例2、「成形方法」)
上記実施例1にて得られた、幅、長さが各50cmの本発明の一方向炭素繊維織物を3枚準備し、離型剤を塗布した成形型の上に、前記炭素繊維織物を繊維基材として3枚を同方向に積層した。繊維基材の上にピールプライとしてエアテック製のナイロン織物を置き、その上に媒体としてポリエチレンからなる厚み0.8mm、開口寸法が2.5mm×2.2mmのメッシュシート1枚を繊維基材の全面を覆うように置いた。繊維基材の繊維軸方向の両端にスパイラルチューブを配列し、スパイラルチューブの一端に真空ポンプの吸引口を取り付け、他端に樹脂の導入口を取り付け、それらの全体をナイロンフィルムからなるバッグフィルムで覆い、真空状態が保てるようにバッグフィルムと成形型及び樹脂導入口、吸引口の取付け口をシール剤で接着した。次に真空ポンプでバッグフィルムで覆われた内部を76cmHgの真空状態にした後、バルブを開放して樹脂粘度260mPa・sの熱硬化型エポキシ樹脂を注入し、オーブン中で40℃で24時間加熱保持した後、更に80℃で2時間加熱し、樹脂が十分硬化したのち常温まで冷却し、バッグフィルム、メッシュシート、ピールプライを剥がし成形板を得た。また比較例2として、本発明織物を比較織物に変更し、成形方法は実施例2と同様の手順にて前記比較織物を基材として成形板を成形した。
(Example 2 and Comparative Example 2, “Molding Method”)
Three unidirectional carbon fiber fabrics of the present invention having a width and a length of 50 cm each obtained in Example 1 were prepared, and the carbon fiber fabric was fiber-coated on a mold coated with a release agent. Three substrates were laminated in the same direction. A nylon woven fabric made by Airtech is placed on the fiber base material as a peel ply, and a mesh sheet of 0.8 mm thickness and 2.5 mm × 2.2 mm opening size made of polyethylene is used as the medium on the entire surface of the fiber base material. Was placed to cover. A spiral tube is arranged at both ends of the fiber base in the fiber axis direction, a suction port of a vacuum pump is attached to one end of the spiral tube, a resin inlet is attached to the other end, and the whole is a bag film made of nylon film. The bag film, the mold, the resin inlet, and the suction port attachment port were bonded with a sealing agent so as to cover and maintain a vacuum state. Next, the inside of the bag film covered with a vacuum pump is brought to a vacuum state of 76 cmHg, and then the valve is opened to inject a thermosetting epoxy resin having a resin viscosity of 260 mPa · s and heated in an oven at 40 ° C. for 24 hours. After being held, it was further heated at 80 ° C. for 2 hours. After the resin was sufficiently cured, it was cooled to room temperature, and the bag film, mesh sheet and peel ply were peeled off to obtain a molded plate. Further, as Comparative Example 2, the woven fabric of the present invention was changed to a comparative woven fabric, and the molding method was performed by using the comparative woven fabric as a base material in the same procedure as in Example 2.

成形の評価結果を表1に示したが、本発明織物を使用した成形では糸条に撚り部と非撚り部が混在しているため長手方向における糸条間に隙間が形成され、該隙間が樹脂の流路となり完全含浸するまでにかかった時間はわずかに14分であった。一方、比較織物を同様に使用した成形では長手方向での糸条間の隙間が殆どなく、表層部位の樹脂拡散は本発明織物と差異はなかったが、糸条間に殆ど隙間がないため樹脂の流れは極めて遅く、比較織物に樹脂が完全に含浸するまでに24分程を要した。   The evaluation results of the forming are shown in Table 1. However, in the forming using the woven fabric of the present invention, a twisted portion and a non-twisted portion are mixed in the yarn, so that a gap is formed between the yarns in the longitudinal direction. It took only 14 minutes to completely impregnate the resin flow path. On the other hand, in the molding using the comparative woven fabric in the same manner, there are almost no gaps between the yarns in the longitudinal direction, and the resin diffusion at the surface layer portion was not different from that of the woven fabric of the present invention. The flow of the resin was very slow, and it took about 24 minutes for the comparative fabric to be completely impregnated with the resin.

Figure 0005707734
Figure 0005707734

以上の説明からも明らかなように、本発明では撚り部と非撚り部とが不均一に混在する糸条を用いた一方向性の強化繊維織編物を繊維強化プラスチックの繊維基材とすることで、太い強化繊維糸条を使った目付が高い強化繊維織編物であっても、同織編物の強化繊維糸条間に成形時の樹脂流路となる隙間が形成され、樹脂の含浸速度を向上させることができるため、経済的に有利な上に、特にRTM成形や真空バッグ成形に適する複合材料用の繊維基材となる。   As is clear from the above explanation, in the present invention, a unidirectional reinforced fiber woven or knitted fabric using a yarn in which a twisted portion and a non-twisted portion are unevenly mixed is used as a fiber base material for fiber reinforced plastic. Even in a reinforced knitted fabric with a high basis weight using thick reinforcing fiber yarns, gaps are formed between the reinforcing fiber yarns of the woven knitted fabric to form resin flow paths during molding, and the resin impregnation speed is increased. Since it can be improved, it is economically advantageous and becomes a fiber base material for composite materials particularly suitable for RTM molding and vacuum bag molding.

1 ボビン
2 クリール
3 ガイド
4 コーム
5 ニップロール装置
6 ヘルド
7 筬
8 開口
9 成形型
10 加熱装置
11 たて糸
12 よこ糸(補助糸)
13 (一方向性の強化繊維)織物(基材)
14 撚り部
15 非撚り部
16 ピールプライ
17 媒体
18 バッグフィルム
20 シール材
21 スパイラルチューブ
23 真空ポンプの吸引口
25 樹脂の導入口
26 バルブ
1 Bobbin 2 Creel 3 Guide 4 Comb 5 Nip roll device 6 Held 7 ロ ー ル 8 Opening 9 Mold 10 Heating device 11 Warp yarn 12 Weft yarn (auxiliary yarn)
13 (Unidirectional reinforcing fiber) Woven fabric (base material)
14 Twisted portion 15 Non-twisted portion 16 Peel ply 17 Medium 18 Bag film 20 Seal material 21 Spiral tube 23 Vacuum pump suction port 25 Resin inlet port 26 Valve

Claims (7)

繊維強化プラスチック用一方向性の強化繊維織編物であって、
縦取りの解舒撚りによる不均一な長さや形態の撚り部をもつ強化繊維糸条を、その少なくとも一部に含んでおり、
前記強化繊維糸条のフィラメント数が50000〜100000本であるか、又は強化繊維糸条の繊度が32670〜65340dtexである強化繊維織編物。
A unidirectional reinforced fiber knitted fabric for fiber reinforced plastics,
At least a part of the reinforcing fiber yarn having a non-uniform length or form of twisted portion due to longitudinal unwinding and twisting is included ,
A reinforced fiber woven or knitted fabric , wherein the number of filaments of the reinforcing fiber yarn is 50,000 to 100,000, or the fineness of the reinforcing fiber yarn is 32670 to 65340 dtex.
繊維強化プラスチックの構成材料である繊維基材が複数枚の強化繊維織編物を積層して構成されてなり、前記強化繊維織編物の少なくとも1枚が不均一な撚り部をもつ強化繊維糸条を含む、局部的に隙間を有する一方向性の強化繊維織編物からなり、前記強化繊維糸条のフィラメント数が50000〜100000本であるか、又は強化繊維糸条の繊度が32670〜65340dtexであり、その一方向性の強化繊維織編物の目付が600〜1000g/m2 である、繊維基材。 A fiber base material, which is a constituent material of fiber reinforced plastic, is formed by laminating a plurality of reinforced fiber knitted fabrics, and at least one of the reinforced fiber woven knitted fabrics has a reinforced fiber yarn having a non-uniform twisted portion. Including a unidirectional reinforcing fiber woven or knitted fabric with gaps locally, wherein the number of filaments of the reinforcing fiber yarn is 50,000 to 100,000, or the fineness of the reinforcing fiber yarn is 32670 to 65340 dtex, The fiber base material whose fabric weight of the unidirectional reinforcing fiber woven fabric is 600 to 1000 g / m 2 . 不均一な撚り部を有する前記強化繊維糸条が長手方向に沿って1回/m以上の撚り部を有してなる、請求項2記載の繊維基材。   The fiber substrate according to claim 2, wherein the reinforcing fiber yarn having a non-uniform twisted portion has a twisted portion of 1 times / m or more along the longitudinal direction. 前記強化繊維織編物は、たて糸又はよこ糸に前記強化繊維糸条が使われ、よこ糸又はたて糸に補助糸が使われてなり、そのたて糸とよこ糸との交点が低融点ポリマーを介して接着されてなる、請求項2又は3に記載の繊維基材。   The reinforcing fiber woven or knitted fabric is formed by using the reinforcing fiber yarn for the warp or the weft, and using the auxiliary yarn for the weft or the warp, and the intersection of the warp and the weft is bonded through a low melting point polymer. The fiber substrate according to claim 2 or 3. 複数のボビンに巻かれた実質的に無撚りの強化繊維糸条をたて糸用クリールに掛けボビン軸方向に縦取りして引き出して織成する、請求項2〜4のいずれかに記載の繊維基材の製造方法。   The fiber base according to any one of claims 2 to 4, wherein a substantially untwisted reinforcing fiber yarn wound around a plurality of bobbins is hung on a warp yarn creel, vertically taken in the bobbin axial direction, and woven. A method of manufacturing the material. 一方向性の強化繊維織編物からなり、各強化繊維糸条のフィラメント数が50000〜100000本であるか、強化繊維糸条の繊度が32670〜65340dtexであって、各強化繊維糸条が縦取りの解舒撚りによる不均一な長さや形態の撚り部をもつ、一方向性の強化繊維織編物を少なくとも1層以上含んでなる繊維基材を成形型に配し、その上面に樹脂を面方向に拡散するための媒体を載置後、繊維基材及び媒体の全体をバッグフィルムで覆い、次いでバッグフィルムで覆われた内部を真空状態とし、前記媒体を介して繊維基材の片面に熱硬化型樹脂を拡散させ、繊維基材に含浸させて硬化させる、繊維強化プラスチックの成形方法。 It consists of a unidirectional reinforcing fiber knitted fabric, and the number of filaments of each reinforcing fiber yarn is 50,000 to 100,000, or the fineness of the reinforcing fiber yarn is 32670 to 65340 dtex, and each reinforcing fiber yarn is vertically taken up A fiber base material comprising at least one layer of unidirectional reinforcing fiber woven or knitted fabric with a non-uniform length or shape twisted by untwisting is arranged in a mold, and the resin is oriented in the surface direction on the upper surface. After the medium for diffusing is placed, cover the entire fiber substrate and the medium with a bag film, and then the inside covered with the bag film is evacuated and thermoset onto one side of the fiber substrate through the medium. A method for molding fiber reinforced plastic, in which a mold resin is diffused and impregnated into a fiber base material and cured. 一方向性の強化繊維織編物は、たて糸又はよこ糸のフィラメント数が50000〜100000本であるか、又は強化繊維糸条の繊度が32670〜65340dtexである強化繊維糸条を用い、よこ糸又はたて糸に補助糸条を用い、前記強化繊維糸条に不均一な撚り部を付与する、請求項6記載の繊維強化プラスチックの成形方法。   The unidirectional reinforcing fiber woven or knitted fabric uses a reinforcing fiber yarn in which the number of filaments of the warp yarn or weft yarn is 50000 to 100,000 or the fineness of the reinforcing fiber yarn is 32670 to 65340 dtex, and assists the weft yarn or warp yarn. The method for molding fiber-reinforced plastic according to claim 6, wherein a yarn is used to impart a non-uniform twisted portion to the reinforcing fiber yarn.
JP2010118693A 2010-05-24 2010-05-24 Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate Active JP5707734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118693A JP5707734B2 (en) 2010-05-24 2010-05-24 Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118693A JP5707734B2 (en) 2010-05-24 2010-05-24 Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate

Publications (2)

Publication Number Publication Date
JP2011246827A JP2011246827A (en) 2011-12-08
JP5707734B2 true JP5707734B2 (en) 2015-04-30

Family

ID=45412438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118693A Active JP5707734B2 (en) 2010-05-24 2010-05-24 Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate

Country Status (1)

Country Link
JP (1) JP5707734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682556A (en) * 2019-09-19 2020-01-14 中航复合材料有限责任公司 Molding process method for variable-width and variable-thickness composite plate spring

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2587554C2 (en) * 2012-03-01 2016-06-20 Гроц-Беккерт Кг Fabric for use in composite materials and method of producing fabric and element from composite material
WO2013133437A1 (en) * 2012-03-06 2013-09-12 新日鉄住金マテリアルズ株式会社 High-basis-weight carbon fiber sheet for rtm process, and rtm process
CN104487234B (en) * 2012-07-20 2017-07-21 阿斯特罗姆公司 Suture unidirectional or polyaxial reinforcing material and preparation method thereof
LT2874802T (en) 2012-07-20 2017-03-27 Ahlstrom Corporation A unidirectional reinforcement and a method of producing a unidirectional reinforcement
CN104157782B (en) * 2014-08-19 2017-10-20 苏州攀特电陶科技股份有限公司 Tricot machine piezoelectric jacquard element
CN110093714A (en) * 2019-06-12 2019-08-06 浙江恒石纤维基业有限公司 A kind of uniaxially glass fibre knitted fabric and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823095B2 (en) * 1989-06-06 1996-03-06 東レ株式会社 Reinforcing fiber fabric
JP2968359B2 (en) * 1991-03-04 1999-10-25 東レ株式会社 REINFORCED CARBON FIBER FABRIC AND PROCESS FOR PRODUCING THE SAME
JP3094835B2 (en) * 1994-03-08 2000-10-03 東レ株式会社 REINFORCED FABRIC, ITS MANUFACTURING METHOD AND MANUFACTURING APPARATUS
JP3834999B2 (en) * 1997-05-15 2006-10-18 東レ株式会社 Prepreg of reinforced fiber fabric and method for producing the same
JP3991440B2 (en) * 1997-08-04 2007-10-17 東レ株式会社 Fiber reinforced plastic and method for molding fiber reinforced plastic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682556A (en) * 2019-09-19 2020-01-14 中航复合材料有限责任公司 Molding process method for variable-width and variable-thickness composite plate spring
CN110682556B (en) * 2019-09-19 2022-04-19 中航复合材料有限责任公司 Molding process method for variable-width and variable-thickness composite plate spring

Also Published As

Publication number Publication date
JP2011246827A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
US10035301B2 (en) Unidirectional reinforcement, a method of producing a reinforcement and the use thereof
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
EP0756027B1 (en) Reinforced woven material and method and apparatus for manufacturing the same
US9714478B2 (en) Unidirectional reinforcement and a method of producing a unidirectional reinforcement
DK2874803T3 (en) SEED, UNIFORM OR OR MULTI-AXIAL REINFORCEMENT AND PROCEDURE FOR PRODUCING SAME
JPS63152637A (en) Preform material for reinforcement of resin
US11780206B2 (en) Stitched multi-axial reinforcement
CN110785280A (en) Materials comprising shape memory alloy wires and methods of making these materials
KR102204244B1 (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
KR102597683B1 (en) Nonwoven fabric laid in one direction and its uses
RU2777410C2 (en) Unidirectional straight fabric and its use
JP2017160571A (en) Manufacturing method of reinforcing fiber woven fabric and manufacturing apparatus thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5707734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250