JP2017160571A - Manufacturing method of reinforcing fiber woven fabric and manufacturing apparatus thereof - Google Patents

Manufacturing method of reinforcing fiber woven fabric and manufacturing apparatus thereof Download PDF

Info

Publication number
JP2017160571A
JP2017160571A JP2016048047A JP2016048047A JP2017160571A JP 2017160571 A JP2017160571 A JP 2017160571A JP 2016048047 A JP2016048047 A JP 2016048047A JP 2016048047 A JP2016048047 A JP 2016048047A JP 2017160571 A JP2017160571 A JP 2017160571A
Authority
JP
Japan
Prior art keywords
weft
fibers
fabric
fiber
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016048047A
Other languages
Japanese (ja)
Other versions
JP6642141B2 (en
Inventor
堀部 郁夫
Ikuo Horibe
郁夫 堀部
由輝 長門
Yoshiteru Nagato
由輝 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016048047A priority Critical patent/JP6642141B2/en
Publication of JP2017160571A publication Critical patent/JP2017160571A/en
Application granted granted Critical
Publication of JP6642141B2 publication Critical patent/JP6642141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a reinforcing fiber woven fabric in which, when carrying out a heat treatment of reinforcing fiber woven fabric, deformation (bending of weaving yarn) of a structure of a reinforcing fiber woven fabric is suppressed and a heat treatment (filling treatment) effective for a shape retention of a woven structure is applied.SOLUTION: There is provided a manufacturing method of a reinforcing fiber woven fabric. When weaving a reinforcing fiber woven fabric in which at least warp is composed of a reinforcing fiber and weft is composed of two fibers having different finenesses with a rapier loom, the two fibers are held at two weft yarn holding parts which a rapier has, respectively, and the weft yarns are simultaneously inserted in one time weft insertion so that the weft yarns are aligned alternately in a warp direction.SELECTED DRAWING: Figure 1

Description

本発明は、強化繊維織物の製造方法およびその製造装置に関するものである。より詳しくは、本発明は、繊度の異なる2本のよこ糸を同時挿入し、前記よこ糸がたて糸の方向に交互に並ぶとともに、よこ糸の把持ミスが生じないようにすることが可能な織物の製造方法である。なかでも、よこ糸の一方の繊維が熱溶融繊維を含む場合においては、強化繊維織物に熱処理を行う際に、強化繊維織物の組織崩れ(織糸の目曲がり)を抑え、織組織の形態保持に有効な熱処理(目どめ処理)を施すことが可能な強化繊維織物の製造方法に関するものである。   The present invention relates to a method for manufacturing a reinforced fiber fabric and an apparatus for manufacturing the same. More specifically, the present invention relates to a method for manufacturing a woven fabric in which two weft yarns having different finenesses are simultaneously inserted so that the weft yarns are alternately arranged in the direction of the warp yarns, and the weft yarn is not mishandled. It is. In particular, when one of the fibers of the weft contains heat-melting fibers, when heat-treating the reinforcing fiber fabric, it suppresses the collapse of the reinforcing fiber fabric (bending of the weaving yarn) and maintains the shape of the weaving tissue. The present invention relates to a method for producing a reinforced fiber fabric capable of performing an effective heat treatment (crushing treatment).

従来から、炭素繊維などの強化繊維は、比強度と比弾性率が高いことから、繊維強化プラスチック(以下、FRPという。)材料として軽量化効果の大きいスポーツ・レジャー用品をはじめ、航空機用途や一般産業用に多く使われている。   Conventionally, reinforced fibers such as carbon fibers have a high specific strength and specific elastic modulus. Therefore, sports / leisure products that have a large weight reduction effect as a fiber reinforced plastic (hereinafter referred to as FRP) material, aircraft use and general It is often used for industrial purposes.

かかるFRPの成形方法としては、ハンドレイアップ成形をはじめとしてオートクレーブ成形やRTM成形など種々の方法があり、その成形方法は、成形品の形状、個数、要求される特性、あるいは製品許容価格などにより適宜決められている。   Such FRP molding methods include various methods such as hand lay-up molding, autoclave molding, and RTM molding. The molding method depends on the shape and number of molded products, required characteristics, or allowable product price. It is decided as appropriate.

これら種々の成形方法において、FRPの製造過程で強化繊維を一旦、中間基材の形態にすることが一般的であり、その中間基材として強化繊維を織物の形態にしたものが多用されている。しかしながら、かかる強化繊維織物には、織物を取り扱う際に変形したり織糸がずれて目ズレする問題や、織物を裁断した際に織糸が解れ易いという問題があった。   In these various molding methods, it is common that the reinforcing fiber is once made into an intermediate base material in the process of producing FRP, and the intermediate base material is often used in the form of a woven fabric as the intermediate base material. . However, such a reinforced fiber fabric has a problem that the fabric is deformed when the fabric is handled or the weaving yarn is shifted and misaligned, and that the weaving yarn is easily unraveled when the fabric is cut.

かかる問題に対し、強化繊維と熱可塑性繊維とを同時に製織した後に熱処理(加熱)して、熱可塑性繊維を軟化または溶融させて、たて糸とよこ糸との交錯点を目どめすることにより、強化繊維のたて糸またはよこ糸の解れ防止機能と形態安定機能を与え、取扱性の優れた強化繊維織物を得る提案がなされている。   To solve this problem, weaving reinforced fibers and thermoplastic fibers simultaneously and then heat-treating them (heated) to soften or melt the thermoplastic fibers, thereby reinforce the intersection between the warp and weft. Proposals have been made to obtain a reinforced fiber woven fabric that has a function of preventing the warp or weft of fibers and a form stabilizing function and is excellent in handleability.

例えば、特許文献1には、よこ糸に熱溶融繊維を巻回させて挿入する方法が提案されている。かかる提案では、簡易な設備でよこ入れ挿入できる。また特許文献2には、よこ糸の中央部に熱溶融繊維を配置させる方法が提案されている(特許文献2)。この方法であればよこ糸の挿入位置が安定することから期待した目どめ効果が得られる可能性がある。   For example, Patent Document 1 proposes a method in which a hot melt fiber is wound around a weft thread and inserted. With such a proposal, we can insert it with simple equipment. Patent Document 2 proposes a method in which a hot-melt fiber is arranged at the center of the weft yarn (Patent Document 2). With this method, the wetting effect expected may be obtained because the weft insertion position is stabilized.

特開昭63−152637号公報JP-A 63-152537 特開2012−172281号公報JP 2012-172281 A

しかし前述の特許文献1に記載の方法では、熱溶融繊維をよこ糸に巻回させていることから挿入位置が安定せず、目どめ処理後に目どめ処理されている部分とされていない部分が生じる問題がある。   However, in the method described in Patent Document 1, since the hot melt fiber is wound around the weft yarn, the insertion position is not stable, and the portion not subjected to the squeezing process after the squeezing process There is a problem that occurs.

また特許文献2に記載の方法では、繊度の異なるよこ糸と熱溶融繊維を安定してレピアで把持して挿入するのが困難であり、熱溶融繊維の挿入ミスが生じやすいとの問題があった。   Further, the method described in Patent Document 2 has a problem that it is difficult to stably hold and insert a weft yarn and a hot melt fiber having different finenesses with a rapier, and an error in inserting the hot melt fiber is likely to occur. .

すなわち、特許文献1や特許文献2に記載の方法では、織組織の目どめが不十分であることから、強化繊維織物の組織崩れ(織糸の目曲がり)を完全に抑えた織物は得られていなかった。かかる従来の技術により得られた強化繊維織物は、強化繊維が真直に配向されていないので、FRPに成形した場合、高い力学的特性が発揮できないばかりか、表面平滑性に優れた成形品を得ることができないという課題があった。   That is, in the methods described in Patent Document 1 and Patent Document 2, since the weaving of the woven structure is insufficient, a woven fabric in which the structural collapse of the reinforcing fiber woven fabric (weaving of the woven yarn) is completely suppressed can be obtained. It was not done. The reinforcing fiber woven fabric obtained by such a conventional technique does not exhibit the high mechanical properties when molded into FRP because the reinforcing fibers are not straightly oriented, and obtains a molded product with excellent surface smoothness. There was a problem that it was not possible.

そこで本発明の目的は、上記従来技術の問題点を解決し、強化繊維織物の組織崩れ(織糸の目曲がり)を抑え、織組織の形態保持に有効な熱溶融繊維の挿入方法を施す強化繊維織物の製造方法およびその装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, suppress the structural collapse of the reinforcing fiber fabric (the bending of the weaving yarn), and provide a method for inserting a hot-melt fiber effective for maintaining the shape of the weaving structure. It is providing the manufacturing method and apparatus of a textile fabric.

上記目的を達成するために、本発明は以下の構成を採用する。   In order to achieve the above object, the present invention adopts the following configuration.

つまり本発明の強化繊維織物の製造方法は、以下である。   That is, the manufacturing method of the reinforced fiber fabric of the present invention is as follows.

少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物をレピア織機にて製織する強化繊維織物の製造方法であって、
レピア織機にはよこ糸把持部が2箇所あり、それぞれの把持部で前記2本の繊維を把持しながら一回のよこ入れ挿入においてよこ糸を同時挿入することにより、前記よこ糸がたて糸の方向に交互に並ぶように製織することを特徴とする強化繊維織物の製造方法。
At least a method for producing a reinforcing fiber fabric in which a warp yarn is composed of reinforcing fibers and a weft yarn is woven with a rapier loom comprising two fibers having different finenesses.
The rapier loom has two weft thread gripping sections. By alternately inserting the weft threads in one weft insertion while gripping the two fibers with each gripping section, the weft threads alternately in the warp direction. A method for producing a reinforced fiber fabric, characterized by weaving in a line.

また、本発明の強化繊維織物の製造装置は、以下である。   Moreover, the manufacturing apparatus of the reinforced fiber fabric of this invention is the following.

少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物を製織する強化繊維織物の製造装置であって、
一回のよこ入れ挿入においてよこ糸を同時挿入でき、かつ前記よこ糸がたて糸の方向に交互に並ぶように製織できるよこ糸の把持部を2箇所有することを特徴とする、強化繊維織物の製造装置。
At least a reinforcing fiber fabric manufacturing apparatus for weaving a reinforcing fiber fabric in which warp yarns are composed of reinforcing fibers and weft yarns are composed of two fibers having different finenesses,
An apparatus for producing a reinforcing fiber fabric, comprising two weft yarn gripping portions capable of simultaneously inserting weft yarns in one weft insertion and capable of weaving so that the weft yarns are alternately arranged in the warp yarn direction.

本発明によれば、繊度の異なる2本の繊維から構成されるよこ糸を一回のよこ入れ挿入において同時挿入することで、繊度の異なる2本の繊維から構成されるよこ糸がたて糸の方向に交互に並ぶように製織することができる。特に、よこ糸が炭素繊維と熱溶融繊維の場合においては、よこ糸と熱溶融繊維をレピア織機で別々に把持して挿入することから把持ミスの発生がなくなり、かつ、炭素繊維と熱溶融繊維の挿入位置も安定することから、熱溶融繊維を溶融させた後の目どめ織物は、強化繊維織物の組織崩れ(織糸の目曲がり)を抑え、織組織の形態保持が安定する。   According to the present invention, weft yarns composed of two fibers having different finenesses are alternately inserted in the direction of the warp yarn by simultaneously inserting the weft yarns composed of two fibers having different finenesses in one weft insertion. Can be woven to line up. In particular, in the case where the weft yarn is carbon fiber and hot melt fiber, since the weft yarn and hot melt fiber are separately gripped and inserted by a rapier loom, the occurrence of gripping errors is eliminated, and the insertion of carbon fiber and hot melt fiber is eliminated. Since the position is also stable, the mesh fabric after melting the hot-melt fiber suppresses the collapse of the reinforcing fiber fabric (the bending of the weaving yarn) and stabilizes the shape of the woven structure.

本発明の製造方法で得られた強化繊維織物は、強化繊維が真直に配向されているので、FRPに成形した場合、高い強度および弾性率などの力学的特性を発現するだけでなく、優れた外観品位を達成できる強化繊維織物を提供することができる。かかる効果は、二方向性織物において最大限に発揮される。   The reinforcing fiber woven fabric obtained by the production method of the present invention is not only exhibiting mechanical properties such as high strength and elastic modulus when molded into FRP, but also excellent because the reinforcing fibers are straightly oriented. It is possible to provide a reinforcing fiber fabric that can achieve the appearance quality. Such an effect is maximally exerted in the bi-directional fabric.

本発明に係る強化繊維織物を製造する装置の一例を示す概略側面図である。It is a schematic side view which shows an example of the apparatus which manufactures the reinforced fiber fabric which concerns on this invention. 従来の強化繊維織物を製造する装置(レピア部分)の拡大図である。It is an enlarged view of the apparatus (rapier part) which manufactures the conventional reinforced fiber fabric. 従来の強化繊維織物を製造する装置(レピア部分)の拡大図である。It is an enlarged view of the apparatus (rapier part) which manufactures the conventional reinforced fiber fabric. 本発明にかかる強化繊維織物を製造する装置(レピア部分)の拡大図である。It is an enlarged view of the apparatus (rapier part) which manufactures the reinforced fiber fabric concerning this invention. 本発明に係る実施例1により製造された強化繊維織物を示す概略平面図である。It is a schematic plan view which shows the reinforced fiber fabric manufactured by Example 1 which concerns on this invention. 本発明の範囲外である比較例1により製造された強化繊維織物を示す概略平面図である。It is a schematic plan view which shows the reinforced fiber fabric manufactured by the comparative example 1 which is outside the scope of the present invention.

本発明の強化繊維織物の製造方法は、少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物をレピア織機にて製織する強化繊維織物の製造方法であって、レピア織機にはよこ糸把持部が2箇所あり、それぞれの把持部で前記2本の繊維を把持しながら一回のよこ入れ挿入においてよこ糸を同時挿入することにより、前記よこ糸がたて糸の方向に交互に並ぶように製織することを特徴とする。これにより、繊度の異なる2本の繊維(よこ糸)を同時挿入でき、繊度の異なる2本の繊維(よこ糸)の配列位置も安定する。特に繊度の異なる2本の繊維(よこ糸)として、炭素繊維と熱溶融繊維を用いた場合、熱溶融繊維の挿入位置が一定で、かつ、熱溶融繊維を安定挿入でき、得られた強化繊維織物を加熱処理して、よこ糸に含まれる熱溶融繊維を軟化または熱溶融させて強化繊維織物を巻き取ることで、目ずれが生じない強化繊維織物が得られる。   The method for producing a reinforced fiber fabric of the present invention is a method for producing a reinforced fiber fabric in which at least a warp yarn is composed of reinforcing fibers and a weft yarn is composed of two fibers having different finenesses, and the rapier loom is used to weave the reinforcing fiber fabric. The rapier loom has two weft yarn gripping portions, and the weft yarns are inserted into the warp yarns by simultaneously inserting the weft yarns in one weft insertion while holding the two fibers with each gripping portion. It is characterized by weaving so as to be arranged alternately in the direction. Thereby, two fibers (weft yarns) having different finenesses can be simultaneously inserted, and the arrangement position of the two fibers (weft yarns) having different finenesses can be stabilized. In particular, when carbon fibers and hot melt fibers are used as two fibers (wefts) having different finenesses, the insertion position of the hot melt fibers is constant, and the hot melt fibers can be stably inserted. Is heated to soften or heat melt the hot-melt fiber contained in the weft yarn to wind up the reinforcing fiber fabric, thereby obtaining a reinforcing fiber fabric free from misalignment.

以下、少なくともたて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物をレピア織機にて製織する本発明の強化繊維織物の製造方法およびその製造装置について、(A)織成工程、(B)加熱工程、(C)巻取工程に分けて各工程について、それぞれ図1を参照しながら詳細に説明する。なお、よこ糸として熱溶融繊維を用いない場合においては、(B)加熱工程は不要である。   Hereinafter, the manufacturing method and the manufacturing apparatus of the reinforcing fiber fabric of the present invention, in which at least the warp yarn is composed of reinforcing fibers and the weft yarn is composed of two fibers having different finenesses are woven with a rapier loom. Each step will be described in detail with reference to FIG. 1 by dividing it into A) weaving step, (B) heating step, and (C) winding step. In addition, when not using a hot melt fiber as a weft, (B) heating process is unnecessary.

(A)織成工程
織成工程においては、まず、ボビン1から引き出されたシート状をなす、複数本の強化繊維からなるたて糸2(2a、2b)は、バックローラ3、4を経て、たて糸のそれぞれが綜絖5(5a、5b)に通され、その上下運動にて開閉口される。たて糸2a、2bが開口されたときに、杼口にレピア9によって、よこ糸ボビン6(6a、6b)から解舒された繊度の異なる2本の繊維(よこ糸7(7a、7b))が、一回のよこ入れ挿入において同時挿入される。
(A) Weaving process In the weaving process, first, the warp yarns 2 (2a, 2b) made of a plurality of reinforcing fibers in the form of a sheet drawn from the bobbin 1 are warped through the back rollers 3, 4. Each of these is passed through the cage 5 (5a, 5b) and opened and closed by its vertical movement. When the warp yarns 2a and 2b are opened, two fibers (weft yarns 7 (7a and 7b)) having different fineness unwound from the weft bobbins 6 (6a and 6b) by the rapier 9 at the shed It is inserted at the same time in the horizontal insertion.

ここでレピア9の拡大図を図2〜4に示す。   Here, enlarged views of the rapier 9 are shown in FIGS.

図2は従来のレピアの概略図であり、このレピアで2本のよこ糸を把持した状態を図6に示す。この図2のレピアによって、2本のよこ糸を同時に把持しようとすると把持位置が安定せず、把持したとしても双方の糸の挿入位置が安定しなかった。また、よこ糸2本のうち1本の把持ミスが生じやすく、特に2本のよこ糸の繊度差が大きい場合にはこの現象が顕著に発生していた。   FIG. 2 is a schematic view of a conventional rapier, and FIG. 6 shows a state in which two wefts are gripped by this rapier. When trying to grip two weft yarns at the same time with the rapier of FIG. 2, the gripping position is not stable, and even if it is gripped, the insertion position of both yarns is not stable. In addition, one of the two weft yarns is likely to be mishandled, and this phenomenon is particularly noticeable when the difference in fineness between the two weft yarns is large.

本発明の製造方法または製造装置は、レピア織機がよこ糸把持部を2か所有する。具体的には、図4に示すレピアを有するレピア織機を用いることにより、レピアにはよこ糸把持部が2箇所あることから、それぞれの把持部で2本の繊維(よこ糸)を把持しながら、一回のよこ入れ挿入において2本のよこ糸を同時挿入することができ、よこ糸として繊度の異なる2本の繊維を用いたとしても同時挿入時でき、2本の繊維の配列位置も安定する。なかでも2本のよこ糸の繊度差が大きいほど、同時挿入での把持ミスが生じやすいことから、図4に示すレピアを用いる効果がいっそう発揮できる。   In the manufacturing method or the manufacturing apparatus of the present invention, the rapier loom has two weft holding portions. Specifically, by using a rapier loom having a rapier shown in FIG. 4, there are two weft thread gripping portions on the rapier. Therefore, while gripping two fibers (weft yarn) with each gripping portion, Two weft yarns can be inserted simultaneously in the weft insertion, and even when two fibers having different fineness are used as the weft yarn, simultaneous insertion can be performed, and the arrangement position of the two fibers is also stabilized. In particular, the greater the difference in the fineness of the two weft yarns, the more likely to be a gripping error during simultaneous insertion, so that the effect of using the rapier shown in FIG. 4 can be further exerted.

本発明においては、よこ糸は繊度の異なる2本の繊維から構成される。よこ糸の2本の繊維は、繊度が異なりさえすれば特に限定されないが、1回のよこ入れ挿入においてよこ糸を同時挿入する工程が安定化することから、よこ糸である繊度の異なる2本の繊維の繊度比は5倍以上であることが好ましく、10倍以上であることがさらに好ましい。また、よこ糸である繊度の異なる2本の繊維の繊度比について、上限は特に限定されないものの、現実的には200倍以下程度であることが好ましい。   In the present invention, the weft is composed of two fibers having different fineness. The two fibers of the weft yarn are not particularly limited as long as the fineness is different. However, since the process of simultaneously inserting the weft yarn in one weft insertion is stabilized, the weft yarn of the two fibers having different finenesses is used. The fineness ratio is preferably 5 times or more, and more preferably 10 times or more. Moreover, although the upper limit is not specifically limited about the fineness ratio of two fibers with different fineness which is a weft, it is preferable that it is about 200 times or less practically.

なお、ここでいう繊度は、繊維重量を長さで割り返した単位長さあたりの繊維重量のことを意味する。   In addition, the fineness here means the fiber weight per unit length obtained by dividing the fiber weight by the length.

ついで筬8によって筬打されて、綜絖5a、5bが再び、上下運動して閉口し、織物9が織成される。このように織成された強化繊維織物9は、少なくとも、たて糸2が強化繊維から構成され、よこ糸7aと7bが繊度の異なる2本の繊維から構成され、さらによこ糸がたて糸の方向に交互に並ぶように配列した構成となる。   Then, it is beaten by the scissors 8, and the scissors 5a and 5b are moved up and down again to close, and the fabric 9 is woven. In the reinforcing fiber fabric 9 woven in this way, at least the warp yarn 2 is composed of reinforcing fibers, the weft yarns 7a and 7b are composed of two fibers having different finenesses, and the weft yarns are alternately arranged in the warp yarn direction. The arrangement is as follows.

本発明は、優れた力学的特性を発揮し、成形加工時の取り扱い性に優れ、組織崩れ(織糸の目曲がり)を抑えることが可能な強化繊維織物の製造方法を提供することにあり、そのため本発明においては、少なくともたて糸に強化繊維を用いる。たて糸として適用可能な強化繊維は特に限定されないが、たて糸として好適な強化繊維としては、例えば、炭素繊維、ガラス繊維およびアラミド繊維などである。かかる強化繊維としては、比強度・比弾性率に優れる炭素繊維が好ましく、なかでも、繊維直径が5〜10μのポリアクリルニトリル系で、引張強度が3〜7GPaで、引張弾性率が200〜500GPaのマルチフィラメントとすることにより、より高い力学的特性を発揮するFRPが得られる。   The present invention is to provide a method for producing a reinforced fiber woven fabric that exhibits excellent mechanical properties, is excellent in handleability during molding, and can suppress the collapse of the structure (the bending of the weaving yarn). Therefore, in the present invention, reinforcing fibers are used for at least the warp yarns. The reinforcing fiber applicable as the warp is not particularly limited, and examples of the reinforcing fiber suitable as the warp include carbon fiber, glass fiber, and aramid fiber. As such a reinforcing fiber, a carbon fiber excellent in specific strength and specific elastic modulus is preferable. Among them, a polyacrylonitrile type having a fiber diameter of 5 to 10 μm, a tensile strength of 3 to 7 GPa, and a tensile elastic modulus of 200 to 500 GPa. By using the multifilament, it is possible to obtain FRP exhibiting higher mechanical properties.

たて糸として用いられる強化繊維の総繊度は、100〜3,000テックスの範囲の太い糸が好ましい。たて糸として上記範囲の総繊度の強化繊維を用いると、よこ糸として熱溶融繊維を用いた場合に、熱溶融繊維による目どめにより発現する本発明の効果が十分に発揮されるために好ましい。また、強化繊維が炭素繊維の場合は、一般に繊度が大きくなるほど製造コストが安価とできるため、低コストの織物基材を提供できる利点もある。   The total fineness of the reinforcing fiber used as the warp is preferably a thick yarn in the range of 100 to 3,000 tex. It is preferable to use reinforcing fibers having a total fineness in the above range as warp yarns, because when the hot-melt fibers are used as the weft yarns, the effects of the present invention that are manifested by the squeezing by the hot-melt fibers are sufficiently exhibited. In addition, when the reinforcing fiber is a carbon fiber, the manufacturing cost can generally be reduced as the fineness increases, and thus there is an advantage that a low-cost textile substrate can be provided.

強化繊維の総繊度が100テックスより小さいと、たて糸とよこ糸の交錯点数が多くなるので、織物形態が安定しており、目どめする必要もなく、本発明の熱処理を施すことなくそのままの形で用いることが可能となり、本発明の意義が希薄となる。一方、強化繊維の総繊度が3,000テックスを超えると、糸幅を均一に拡げない限り繊維分散が均一な強化繊維織物が得られないことがあり、力学的特性を十分に発揮させる強化繊維織物を得ることが容易でないことがある。   If the total fineness of the reinforcing fibers is less than 100 tex, the number of crossing points of the warp and weft will increase, so that the woven form is stable, there is no need to awaken, and the shape as it is without performing the heat treatment of the present invention. The significance of the present invention is diminished. On the other hand, if the total fineness of the reinforcing fibers exceeds 3,000 tex, a reinforcing fiber fabric with uniform fiber dispersion may not be obtained unless the yarn width is expanded uniformly, and the reinforcing fibers exhibit sufficient mechanical properties. It may not be easy to obtain a woven fabric.

前述のとおり、本発明においては、よこ糸は繊度の異なる2本の繊維から構成されるが、そのうち1本は、熱溶融繊維を用いることが好ましい。   As described above, in the present invention, the weft yarn is composed of two fibers having different finenesses, and one of them is preferably a hot-melt fiber.

さらに本発明で製造される強化繊維織物のより好ましい態様は、少なくとも、たて糸が炭素繊維から構成され、よこ糸が少なくとも炭素繊維と熱溶融繊維(繊維状の目どめ糸)から構成され、かつ、熱溶融繊維が溶融してたて糸とよこ糸との交錯点を接着しているものであれば、成形過程で織物が目ずれすることがないことから、比強度、比弾性率が優れる炭素繊維の特徴を最大限発揮させることができ、軽量で、かつ、力学的特性が優れた複合材料を得ることができる。   Furthermore, in a more preferred embodiment of the reinforced fiber fabric produced in the present invention, at least the warp yarn is composed of carbon fiber, the weft yarn is composed of at least carbon fiber and hot-melt fiber (fibrous mesh yarn), and Carbon fiber with excellent specific strength and specific modulus of elasticity because the fabric will not be misaligned in the molding process, as long as the hot melt fiber is melted and bonded at the intersection of the warp and weft. It is possible to obtain a composite material that is lightweight and has excellent mechanical properties.

よこ糸として好適な熱溶融繊維としては、溶融する性質を有する繊維でありさえすれば特に限定されない。なお、溶融する性質を有するとは、繊維を加熱した場合に融点が観測されることを意味する。そして熱溶融繊維は、繊維状に加工しやすい点で熱可塑性樹脂の繊維が好ましい。熱可塑性樹脂としては、例えば、ポリアミド、ポリエステル、ポリプロピレン、ポリフェニレンサルファイド、ポリビニルアルコールなどや、それらの共重合樹脂、ポリマーアロイ樹脂およびポリマーブレンド樹脂などを例として挙げることができる。中でも、比較的低温で軟化・溶融することから共重合樹脂が好ましく、特に、複合材料のマトリックス樹脂として多用されているエポキシ樹脂との接着性が良好な共重合ポリアミドが好ましい。   The hot-melt fiber suitable as the weft is not particularly limited as long as it is a fiber having a melting property. Note that having the property of melting means that the melting point is observed when the fiber is heated. The hot-melt fiber is preferably a thermoplastic resin fiber because it can be easily processed into a fibrous form. Examples of the thermoplastic resin include polyamide, polyester, polypropylene, polyphenylene sulfide, polyvinyl alcohol, copolymer resins, polymer alloy resins, and polymer blend resins. Among them, a copolymer resin is preferable because it softens and melts at a relatively low temperature, and particularly, a copolymer polyamide having good adhesiveness with an epoxy resin that is frequently used as a matrix resin of a composite material is preferable.

繊維に融点が観測されるか否かは、以下により測定して判断する。つまり、JIS L 1013:2010 化学繊維フィラメント糸試験方法の8.19項に記載の融点の測定方法に従って測定する。   Whether or not the melting point is observed in the fiber is determined by measuring as follows. That is, the measurement is performed according to the melting point measurement method described in Section 8.19 of the JIS L 1013: 2010 chemical fiber filament yarn test method.

更に、熱溶融繊維においては、熱可塑性樹脂と熱硬化性樹脂とを併用することもできる。この場合は、両者が相溶した単一の樹脂組成物であっても、相溶していない相分離した樹脂組成物であってもよく、更にはそれぞれを独立した樹脂として併用してもよい。特に、FRPとしての力学特性(特に、強化繊維織物を積層したときの層間剥離・層間剪断強度)を向上させるためには、高靭性の熱可塑性樹脂と、熱溶融性に優れる熱硬化性樹脂とを相溶させた樹脂組成物として用いることがとりわけ好ましい態様である。この場合、高靭性の熱可塑性樹脂は、単独では加熱温度の問題を有し、熱溶融性に優れる熱硬化性樹脂は、単独では取扱性の問題を有しており、適用が困難である場合でも、両者を相溶させることにより、前記問題が解消され両者の利点を最大限に発揮することができる。   Furthermore, in the hot melt fiber, a thermoplastic resin and a thermosetting resin can be used in combination. In this case, it may be a single resin composition in which both are compatible, or may be a phase-separated resin composition that is incompatible, or may be used in combination as independent resins. . In particular, in order to improve the mechanical properties as FRP (particularly, delamination and interlaminar shear strength when reinforcing fiber fabrics are laminated), a high toughness thermoplastic resin and a thermosetting resin excellent in heat meltability It is an especially preferable aspect to use it as a resin composition in which is compatible. In this case, a high-toughness thermoplastic resin alone has a problem of heating temperature, and a thermosetting resin excellent in heat melting property has a problem of handleability alone and is difficult to apply. However, by compatibilizing them, the above problems can be solved and the advantages of both can be maximized.

熱溶融繊維に含まれる熱可塑性樹脂や熱硬化性樹脂は、目的により適宜選択されるものであるが、目どめ効果を発現させる観点から、好ましくは、熱可塑性樹脂である。熱溶融繊維が熱可塑性樹脂を含む場合、熱可塑性樹脂の融点は80〜200℃が好ましい。   The thermoplastic resin and thermosetting resin contained in the hot-melt fiber are appropriately selected depending on the purpose, but are preferably a thermoplastic resin from the viewpoint of achieving a concealing effect. When the hot melt fiber contains a thermoplastic resin, the melting point of the thermoplastic resin is preferably 80 to 200 ° C.

熱溶融繊維が含む熱可塑性樹脂の融点が80℃未満またはガラス転移温度が50℃未満であると、織物の製織時に要する加熱温度が低く、作業性は優れるものの複合材料にした場合の耐熱性が大きく低下するだけでなく、原材料を保管したり、織物を搬送したりする時に溶解して、逆に取扱性に劣る場合がある。一方、熱溶融繊維が含む熱可塑性樹脂の融点が200℃を超えるか、またはガラス転移温度が170℃を超えると、複合材料にした場合の耐熱性は向上するものの、織物の製織時の加熱温度が高過ぎ、極端に作業性が低下してしまうことがある。   When the melting point of the thermoplastic resin contained in the hot-melt fiber is less than 80 ° C. or the glass transition temperature is less than 50 ° C., the heating temperature required for weaving the fabric is low and the workability is excellent, but the heat resistance in the case of a composite material is excellent. In addition to being greatly reduced, it may dissolve when the raw material is stored or the fabric is transported, and may be inferior in handleability. On the other hand, when the melting point of the thermoplastic resin contained in the hot melt fiber exceeds 200 ° C. or the glass transition temperature exceeds 170 ° C., the heat resistance when the composite material is made is improved, but the heating temperature during weaving of the woven fabric is improved. Is too high, and workability may be extremely reduced.

なお、本発明において融点またはガラス転移温度は、測定する対象物を絶乾状態としてから、DSC(示差走査熱量計)にて20℃/分の昇温速度で測定される融点またはガラス転移温度を指す。   In the present invention, the melting point or glass transition temperature is the melting point or glass transition temperature measured at a heating rate of 20 ° C./min with a DSC (Differential Scanning Calorimeter) after the object to be measured is completely dry. Point to.

本発明で用いられる織物の組織は特に限定されないが、少なくとも強化繊維糸をたて糸とした平織、綾織、朱子織、あるいはノンクリンプ組織(強化繊維糸が真っ直ぐに配向し、たて糸と補助糸であるよこ糸が互いに交錯して一体化された組織)などが好ましく用いられる。   The structure of the woven fabric used in the present invention is not particularly limited, but at least a plain weave, twill weave, satin weave, or non-crimp structure using reinforcing fiber yarns (weft yarns that are warp yarns and auxiliary yarns are oriented in a straight line) A tissue or the like that is crossed and integrated with each other is preferably used.

(B)加熱工程
加熱工程においては、織成された強化繊維織物9が、加熱源16からの輻射により非接触で加熱処理されて、熱溶融繊維に含まれる熱可塑性樹脂および/または熱硬化性樹脂を軟化または熱溶融する。
(B) Heating step In the heating step, the woven reinforcing fiber fabric 9 is heat-treated in a non-contact manner by radiation from the heating source 16, and the thermoplastic resin and / or thermosetting contained in the hot-melt fiber. Soften or heat melt the resin.

加熱源は、遠赤外線、中赤外線および近赤外線などの赤外線ヒーターによる輻射で加熱することが好ましい。かかる加熱源を使用すると、強化繊維織物9とは非接触で効率的に強化繊維織物9を加熱することができる。また、設備を小さくすることができて織成の邪魔になることもなく、織機を停機した時に織物への加熱源を遮断して、過加熱を抑制することができる。   The heating source is preferably heated by radiation from an infrared heater such as far infrared rays, middle infrared rays, and near infrared rays. When such a heat source is used, the reinforcing fiber fabric 9 can be efficiently heated without contact with the reinforcing fiber fabric 9. In addition, the equipment can be reduced in size without interfering with weaving, and when the loom is stopped, the heating source for the fabric can be shut off to suppress overheating.

(C)巻取工程
巻取工程においては、引取ローラ12と引取ガイドローラ15を経て、巻芯13に巻き取って巻物17を得る。図1においては、織機の巻取装置を用いる例を示したが、巻取装置を織機とは別に後方に巻取装置を設けてスペースを確保し、巻取装置までの間に加熱装置を設けることにより加熱を行うこともできる。
(C) Winding process In the winding process, the wound roll 17 is wound up on the winding core 13 through the take-up roller 12 and the take-up guide roller 15. FIG. 1 shows an example in which a winding device of a loom is used. However, a winding device is provided behind the weaving device to secure a space, and a heating device is provided between the winding device and the winding device. Heating can also be performed.

(実施例1)
たて糸として、引張強度が3,530MPa、引張弾性率が230GPa、フィラメント数が3,000本のポリアクリロニトリル(PAN)系炭素繊維糸条(総繊度:198テックス)を用い、よこ糸として、たて糸と同じ炭素繊維とアラミド繊維糸条(総繊度:21.5テックス)を用い、図1に示した装置を用いて、以下の手順により、二方向性織物Aを製造した。
Example 1
A polyacrylonitrile (PAN) carbon fiber yarn (total fineness: 198 tex) having a tensile strength of 3,530 MPa, a tensile modulus of 230 GPa, and a filament number of 3,000 is used as the warp yarn, and the same as the warp yarn as the weft yarn A bi-directional fabric A was produced by the following procedure using carbon fiber and aramid fiber yarn (total fineness: 21.5 tex) using the apparatus shown in FIG.

織成工程においては、まず、ボビン1から引き出した複数本のたて糸2を密度が5本/cmになるように配列した後、バックローラ3、4を経て、各たて糸2を2枚の綜絖5a、5bに分けて交互に通した。そして、2枚の綜絖5a、5bに通したたて糸2a、2bが開口されたとき、杼口にレピアにて密度が5本/cmになるようによこ糸7(7aと7b)を打ち込み、筬打ちを行った。その後、ガイドローラを経て巻芯13に向けて送り出し、巻取工程において、巻芯13に巻き取って巻物17を得た。   In the weaving step, first, a plurality of warp yarns 2 drawn out from the bobbin 1 are arranged so as to have a density of 5 yarns / cm, and then passed through the back rollers 3 and 4, and each warp yarn 2 is put into two ridges 5a. 5b was passed alternately. When the warp yarns 2a and 2b passed through the two reeds 5a and 5b are opened, the weft yarn 7 (7a and 7b) is driven into the reed so that the density becomes 5 / cm by rapier. Went. Then, it sent out toward the core 13 through the guide roller, and wound up on the core 13 in the winding process to obtain a roll 17.

得られた二方向性織物Aは、織物目付が209g/m平組織の織物であり、織物のよこ糸挿入時には、よこ糸把持部が2カ所あるレピアを用いたことから、よこ糸の挿入ミスもなく、よこ糸の炭素繊維とアラミド繊維が交互に配列しており、よこ糸の蛇行(組織崩れ)が全く観察されなかった。かかる二方向性織物Aの概略平面図を図5に示す。 The obtained bi-directional fabric A is a fabric having a fabric weight of 209 g / m 2 and a plain fabric, and when inserting the weft of the fabric, a rapier having two weft gripping portions was used, so there was no mistake in inserting the weft. The weft carbon fibers and the aramid fibers were alternately arranged, and no weaving (texture collapse) of the weft was observed. A schematic plan view of the bidirectional fabric A is shown in FIG.

(実施例2)
たて糸として、引張強度が3,530MPa、引張弾性率が230GPa、フィラメント数が3,000本のポリアクリロニトリル(PAN)系炭素繊維糸条(総繊度:198テックス)を用い、よこ糸として、たて糸と同じ炭素繊維と融点が110℃の共重合ポリアミド繊維糸条(総繊度:33.5テックス)の熱溶融繊維を用い、
図1に示した装置を用いて、以下の手順により、二方向性織物Bを製造した。
(Example 2)
A polyacrylonitrile (PAN) carbon fiber yarn (total fineness: 198 tex) having a tensile strength of 3,530 MPa, a tensile elastic modulus of 230 GPa, and a filament number of 3,000 is used as the warp yarn, and the weft yarn is the same as the warp yarn. Using hot melt fiber of carbon fiber and copolymer polyamide fiber yarn (total fineness: 33.5 tex) having a melting point of 110 ° C,
Using the apparatus shown in FIG. 1, a bidirectional fabric B was produced by the following procedure.

(A)織成工程においては、まず、ボビン1から引き出した複数本のたて糸2を密度が5本/cmになるように配列した後、バックローラ3、4を経て、各たて糸2を2枚の綜絖5a、5bに分けて交互に通した。そして、2枚の綜絖5a、5bに通したたて糸2a、2bが開口されたとき、杼口にレピアにて密度が2.5本/cmになるようによこ糸7を打ち込み、筬打ちを行った。   (A) In the weaving step, first, a plurality of warp yarns 2 pulled out from the bobbin 1 are arranged so as to have a density of 5 / cm, and then two warp yarns 2 are passed through the back rollers 3 and 4. The bottles 5a and 5b were passed alternately. Then, when the warp yarns 2a and 2b passed through the two reeds 5a and 5b were opened, the weft yarn 7 was driven into the reed port at a rapier density of 2.5 / cm, and the reed was performed. .

(B)加熱工程においては、織成した織物を、織物表面から加熱源10として遠赤外線ヒーターのみを用いて非接触で加熱処理して、よこ糸に含まれる熱溶融繊維を熱により溶融した。ここで、ヒーター温度は織物の表面で120℃の温度になるように調整した。その後、巻芯13に向けて送り出した。   (B) In the heating step, the woven fabric was heat-treated from the surface of the fabric in a non-contact manner using only a far-infrared heater as the heating source 10, and the hot-melt fiber contained in the weft was melted by heat. Here, the heater temperature was adjusted to 120 ° C. on the surface of the fabric. Then, it sent out toward the core 13.

(C)巻取工程において、巻芯13に巻き取って巻物17を得た。   (C) In the winding process, the roll 17 was wound around the core 13.

得られた二方向性織物Bは、織物目付が215g/m平組織の織物であり、織物のよこ糸挿入時によこ糸把持部が2カ所あるレピアを用いたことから、よこ糸の炭素繊維と熱溶融繊維を安定把持して挿入できるとともに熱溶融繊維の挿入位置が安定し、たて糸とよこ糸との交錯点を接着させたことから、巻取り後の強化繊維織物において、よこ糸の蛇行(組織崩れ)が全く観察されなかった。 The obtained bi-directional fabric B is a fabric having a fabric basis weight of 215 g / m 2 and a rapier having two weft gripping portions when inserting the weft of the fabric. Since the fiber can be gripped and inserted stably, the insertion position of the hot melt fiber is stable, and the crossing point of the warp and weft is bonded, so that weaving (texture collapse) of the weft in the reinforced fiber fabric after winding It was not observed at all.

(実施例3)
総繊度が5.6テックスの共重合ポリアミド繊維糸条を用いたほかは、実施例1と同じようにして二方向性織物Cを製造した。
(Example 3)
A bi-directional fabric C was produced in the same manner as in Example 1 except that a copolyamide fiber yarn having a total fineness of 5.6 tex was used.

得られた二方向性織物Cは、織物目付が201g/m平組織の織物であり、織物のよこ糸挿入時によこ糸把持部が2カ所あるレピアを用いたことから、よこ糸の炭素繊維と熱溶融繊維を安定把持して挿入できるとともに熱溶融繊維の挿入位置が安定し、たて糸とよこ糸との交錯点を接着させたことから、巻取り後の織物において、よこ糸の蛇行(組織崩れ)が全く観察されなかった。 The obtained bi-directional woven fabric C is a woven fabric having a fabric basis weight of 201 g / m 2 and a rapier having two weft gripping portions when inserting the weft of the fabric. Since the fiber can be gripped and inserted stably, the insertion position of the hot melt fiber is stable, and the crossing point of the warp and weft yarns is adhered, so that weaving (texture collapse) of the weft yarn is completely observed in the wound fabric Was not.

(実施例4)
たて糸として、引張強度が4,500MPa、引張弾性率が230GPa、フィラメント数が12,000本のポリアクリロニトリル(PAN)系炭素繊維糸条(総繊度:800テックス)を用い、よこ糸として、たて糸と同じ炭素繊維と融点が110℃の共重合ポリアミド繊維糸条(総繊度:5.6テックス)を用い、ボビン1から引き出した複数本のたて糸2の密度とよこ糸の密度が1.25本/cmになるように配列したほかは実施例2と同じようにして二方向性織物Dを製造した。
Example 4
A polyacrylonitrile (PAN) carbon fiber yarn (total fineness: 800 tex) having a tensile strength of 4,500 MPa, a tensile modulus of 230 GPa, and a filament number of 12,000 is used as the warp yarn, and the same as the warp yarn as the weft yarn Using carbon fiber and a copolymerized polyamide fiber yarn having a melting point of 110 ° C. (total fineness: 5.6 tex), the density of the plurality of warps 2 drawn from the bobbin 1 and the density of the weft yarn are 1.25 yarns / cm. A bi-directional fabric D was produced in the same manner as in Example 2 except that it was arranged as described above.

得られた二方向性織物Dは、織物目付が201g/m平組織の織物であり、織物のよこ糸挿入時によこ糸把持部が2カ所あるレピアを用いたことから、よこ糸の炭素繊維と熱溶融繊維を安定把持して挿入できるとともに熱溶融繊維の挿入位置が安定し、たて糸とよこ糸との交錯点を接着させたことから、巻取り後の織物において、よこ糸の蛇行(組織崩れ)が全く観察されなかった。 The obtained bi-directional woven fabric D is a woven fabric having a fabric basis weight of 201 g / m 2 and a rapier having two weft gripping portions when inserting the weft of the fabric. Since the fiber can be gripped and inserted stably, the insertion position of the hot melt fiber is stable, and the crossing point of the warp and weft yarns is adhered, so that weaving (texture collapse) of the weft yarn is completely observed in the wound fabric Was not.

(比較例1)
図1に示す装置において、よこ糸把持部が一カ所のレピアを用いて製織した他は、実施例1と同じようにして二方向性織物Eを製造した。
(Comparative Example 1)
In the apparatus shown in FIG. 1, a bi-directional fabric E was produced in the same manner as in Example 1 except that weaving was performed using a rapier having a single weft gripping portion.

得られた二方向性織物Eは、織物目付が209g/m平組織の織物であり、レピアの把持部が一カ所であり、繊度の異なる2本のよこ糸を同時挿入しようとすると、アラミド繊維の把持位置が安定せず、アラミド繊維の把持ミスが生じ、部分的にアラミド繊維が挿入されていない織物となった。かかる一方向性織物Eの概略平面図を図6に示す。 The obtained bi-directional woven fabric E is a woven fabric having a fabric basis weight of 209 g / m 2 plain structure, a rapier gripping portion at one place, and when trying to insert two weft yarns having different finenesses simultaneously, an aramid fiber The gripping position of the aramid fibers was not stable, and a gripping error of the aramid fibers occurred, resulting in a woven fabric in which aramid fibers were not partially inserted. A schematic plan view of the unidirectional fabric E is shown in FIG.

(比較例2)
図1に示す装置において、よこ糸把持部が一カ所のレピアを用いて製織した他は、実施例3と同じようにして二方向性織物Fを製造した。
(Comparative Example 2)
In the apparatus shown in FIG. 1, a bidirectional fabric F was produced in the same manner as in Example 3 except that weaving was performed using a rapier having a single weft gripping portion.

得られた二方向性織物Fは、織物目付が201g/m平組織の織物であり、比較例1と同様によこ糸挿入時に熱溶融繊維の把持ミスが生じ、部分的に熱溶融繊維が挿入されていない織物となった。 上記の実施例および比較例の結果を、表1に示す。 The obtained bi-directional woven fabric F is a woven fabric having a fabric weight of 201 g / m 2 in a plain structure, and as in Comparative Example 1, a mishandling of the hot melt fiber occurs when inserting the weft yarn, and the hot melt fiber is partially inserted. The fabric was not made. The results of the above examples and comparative examples are shown in Table 1.

Figure 2017160571
Figure 2017160571

本発明の強化繊維織物の製造方法によると、繊度の異なる2本のよこ糸を一回のよこ入れ挿入において同時挿入することで、繊度の異なる2本の繊維をたて糸の方向に交互に並ぶように製織することができる。特によこ糸が炭素繊維と熱溶融繊維の場合においては、炭素繊維と熱溶融繊維をレピアで別々に把持して挿入することから把持ミスの発生がなくなり、かつ、炭素繊維と熱溶融繊維の挿入位置も安定することから、熱溶融繊維を溶融させた後の目どめされた強化繊維織物は、組織崩れ(織糸の目曲がり)を抑え、織組織の形態保持が安定している。   According to the method for manufacturing a reinforced fiber fabric of the present invention, two fibers having different fineness are inserted simultaneously in one weft insertion so that the two fibers having different fineness are alternately arranged in the warp yarn direction. Can be woven. In particular, when the weft yarn is carbon fiber and heat-melt fiber, the carbon fiber and heat-melt fiber are gripped and inserted separately by the rapier, so there is no occurrence of grip errors, and the insertion position of the carbon fiber and heat-melt fiber Therefore, the reinforced fiber woven fabric that has been agitated after melting the hot-melt fiber suppresses the collapse of the structure (the bending of the weaving yarn), and the woven structure maintains its shape stably.

本発明の製造方法で得られた強化繊維織物は、強化繊維が真直に配向されているので、FRPに成形した場合、高い強度、弾性率などの力学的特性を発現するだけでなく、優れた外観品位を達成することができる。かかる強化繊維織物は、構造物の補修・補強、輸送機器(自動車、船舶、航空機、自転車など)、スポーツ用品およびFRP型をはじめ、その他の一般産業に用いられるFRPの強化材として好適に用いられる。   The reinforcing fiber woven fabric obtained by the production method of the present invention is not only exhibiting mechanical properties such as high strength and elastic modulus but also excellent when molded into FRP because the reinforcing fibers are oriented straight. Appearance quality can be achieved. Such a reinforced fiber fabric is suitably used as a reinforcing material for FRP used in other general industries including repair and reinforcement of structures, transportation equipment (automobiles, ships, aircraft, bicycles, etc.), sporting goods, and FRP types. .

1 : ボビン
2、2a、2b : たて糸
3、4 : バックローラ
5、5a、5b : 綜絖
6、6a、6b : よこ糸ボビン
7、7a、7b : よこ糸
8 : 筬
9 : レピア
10 : 織物
11、14、15 : 引取ガイドローラ
12 : 引取ローラ
13 : 巻芯
16 : 加熱源
17 : 巻物
21、24 : たて糸(炭素繊維)
22、25 : よこ糸(炭素繊維)
23,26 : よこ糸(熱溶融繊維)
1: Bobbin 2, 2a, 2b: Warp
3, 4: Back rollers 5, 5a, 5b: 綜 絖 6, 6a, 6b: Weft bobbins 7, 7a, 7b: Weft 8: 筬 9: Rapier 10: Weaving 11, 14, 15: Take-up guide roller 12: Take-up roller 13: Core 16: Heating source 17: Scrolls 21, 24: Warp yarn (carbon fiber)
22, 25: Weft yarn (carbon fiber)
23, 26: Weft (heat-melted fiber)

Claims (4)

少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物をレピア織機にて製織する強化繊維織物の製造方法であって、
レピア織機にはよこ糸把持部が2箇所あり、それぞれの把持部で前記2本の繊維を把持しながら一回のよこ入れ挿入においてよこ糸を同時挿入することにより、前記よこ糸がたて糸の方向に交互に並ぶように製織することを特徴とする強化繊維織物の製造方法。
At least a method for producing a reinforcing fiber fabric in which a warp yarn is composed of reinforcing fibers and a weft yarn is woven with a rapier loom comprising two fibers having different finenesses.
The rapier loom has two weft thread gripping sections. By alternately inserting the weft threads in one weft insertion while gripping the two fibers with each gripping section, the weft threads alternately in the warp direction. A method for producing a reinforced fiber fabric, characterized by weaving in a line.
前記繊度の異なる2本の繊維の繊度比が5倍以上ある、請求項1に記載の強化繊維織物の製造方法。   The method for producing a reinforced fiber fabric according to claim 1, wherein a fineness ratio of two fibers having different finenesses is 5 times or more. 前記繊度の異なる2本の繊維が、炭素繊維と熱溶融繊維である、請求項1又は2に記載の強化繊維織物の製造方法。   The method for producing a reinforced fiber fabric according to claim 1 or 2, wherein the two fibers having different finenesses are a carbon fiber and a hot-melt fiber. 少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物を製織する強化繊維織物の製造装置であって、
一回のよこ入れ挿入においてよこ糸を同時挿入でき、かつ前記よこ糸がたて糸の方向に交互に並ぶように製織できるよこ糸の把持部を2箇所有することを特徴とする、強化繊維織物の製造装置。
At least a reinforcing fiber fabric manufacturing apparatus for weaving a reinforcing fiber fabric in which warp yarns are composed of reinforcing fibers and weft yarns are composed of two fibers having different finenesses,
An apparatus for producing a reinforcing fiber fabric, comprising two weft yarn gripping portions capable of simultaneously inserting weft yarns in one weft insertion and capable of weaving so that the weft yarns are alternately arranged in the warp yarn direction.
JP2016048047A 2016-03-11 2016-03-11 Method and apparatus for manufacturing reinforced fiber fabric Active JP6642141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048047A JP6642141B2 (en) 2016-03-11 2016-03-11 Method and apparatus for manufacturing reinforced fiber fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048047A JP6642141B2 (en) 2016-03-11 2016-03-11 Method and apparatus for manufacturing reinforced fiber fabric

Publications (2)

Publication Number Publication Date
JP2017160571A true JP2017160571A (en) 2017-09-14
JP6642141B2 JP6642141B2 (en) 2020-02-05

Family

ID=59853798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048047A Active JP6642141B2 (en) 2016-03-11 2016-03-11 Method and apparatus for manufacturing reinforced fiber fabric

Country Status (1)

Country Link
JP (1) JP6642141B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074888A (en) * 2022-07-14 2022-09-20 嘉兴市牛大科技有限公司 Forming method for safety air bag mesh cloth
JP7455466B2 (en) 2020-02-21 2024-03-26 東レ・デュポン株式会社 Base material for molding fiber-reinforced resin composites and fiber-reinforced resin composites

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455466B2 (en) 2020-02-21 2024-03-26 東レ・デュポン株式会社 Base material for molding fiber-reinforced resin composites and fiber-reinforced resin composites
CN115074888A (en) * 2022-07-14 2022-09-20 嘉兴市牛大科技有限公司 Forming method for safety air bag mesh cloth
CN115074888B (en) * 2022-07-14 2024-04-30 嘉兴市牛大科技有限公司 Forming method for safety airbag mesh cloth

Also Published As

Publication number Publication date
JP6642141B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
EP0756027B1 (en) Reinforced woven material and method and apparatus for manufacturing the same
US10190239B2 (en) Textile part, composite material element with textile part, and production method for the same
JP5279121B2 (en) Fiber reinforced composite material
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
JP5810549B2 (en) Method for producing bi-directional reinforcing fiber fabric
JP5002895B2 (en) Method for producing reinforced fiber fabric
JP2002138344A (en) Unidirectional carbon fiber woven fabric, method for producing the same, and reinforced concrete structure
JP6642141B2 (en) Method and apparatus for manufacturing reinforced fiber fabric
JP2009074186A (en) Method for producing carbon fiber woven fabric
JP5049215B2 (en) Reinforcing fiber fabric and its weaving method
JP2012188786A (en) Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof
JP2005179845A (en) Unidirectional woven carbon fiber fabric and method for producing the same
JP6912044B2 (en) Heat resistant multi-axis stitch base material
KR102512971B1 (en) Carbon fiber fabric and method of manufacturing the same
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JPH08269837A (en) Reinforcing woven fabric and its production
JP5796732B2 (en) Fiber reinforced sheet, method for producing the same, and fiber reinforced composite material
JP2007023431A (en) Carbon fiber woven fabric and method for producing the same
JP4992339B2 (en) Method for producing carbon fiber fabric and fiber reinforced plastic
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
JP5690386B2 (en) Method for forming carbon fiber reinforced composite material by woven fabric
JP6915306B2 (en) Reinforced fiber woven fabric and method for manufacturing preforms using the reinforced fiber woven fabric
JP2013119679A (en) Unidirectional woven fabric and method for manufacturing the same
JP2018001475A (en) Preform for fiber-reinforced composite material, and fiber-reinforced composite material
JP2015117442A (en) Reinforcing fiber woven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6642141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151