JP6642141B2 - Method and apparatus for manufacturing reinforced fiber fabric - Google Patents

Method and apparatus for manufacturing reinforced fiber fabric Download PDF

Info

Publication number
JP6642141B2
JP6642141B2 JP2016048047A JP2016048047A JP6642141B2 JP 6642141 B2 JP6642141 B2 JP 6642141B2 JP 2016048047 A JP2016048047 A JP 2016048047A JP 2016048047 A JP2016048047 A JP 2016048047A JP 6642141 B2 JP6642141 B2 JP 6642141B2
Authority
JP
Japan
Prior art keywords
weft
woven fabric
fiber
fibers
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016048047A
Other languages
Japanese (ja)
Other versions
JP2017160571A (en
Inventor
堀部 郁夫
郁夫 堀部
由輝 長門
由輝 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016048047A priority Critical patent/JP6642141B2/en
Publication of JP2017160571A publication Critical patent/JP2017160571A/en
Application granted granted Critical
Publication of JP6642141B2 publication Critical patent/JP6642141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強化繊維織物の製造方法およびその製造装置に関するものである。より詳しくは、本発明は、繊度の異なる2本のよこ糸を同時挿入し、前記よこ糸がたて糸の方向に交互に並ぶとともに、よこ糸の把持ミスが生じないようにすることが可能な織物の製造方法である。なかでも、よこ糸の一方の繊維が熱溶融繊維を含む場合においては、強化繊維織物に熱処理を行う際に、強化繊維織物の組織崩れ(織糸の目曲がり)を抑え、織組織の形態保持に有効な熱処理(目どめ処理)を施すことが可能な強化繊維織物の製造方法に関するものである。   The present invention relates to a method for producing a reinforcing fiber fabric and an apparatus for producing the same. More specifically, the present invention provides a method of manufacturing a woven fabric capable of simultaneously inserting two weft yarns having different finenesses, alternately arranging the weft yarns in the direction of the warp yarns, and preventing occurrence of a weft yarn holding error. It is. In particular, when one of the weft yarns contains a hot-melt fiber, when heat-treating the reinforcing fiber woven fabric, it suppresses the collapse of the structure of the reinforcing fiber woven fabric (bending of the yarn) and maintains the shape of the woven structure. The present invention relates to a method for producing a reinforced fiber woven fabric that can be subjected to an effective heat treatment (eye-stop treatment).

従来から、炭素繊維などの強化繊維は、比強度と比弾性率が高いことから、繊維強化プラスチック(以下、FRPという。)材料として軽量化効果の大きいスポーツ・レジャー用品をはじめ、航空機用途や一般産業用に多く使われている。   Conventionally, reinforcing fibers such as carbon fibers have a high specific strength and a specific elastic modulus, so that they are used as fiber reinforced plastic (hereinafter, referred to as FRP) materials, such as sports and leisure goods, which have a large weight-reducing effect, aircraft applications, and general use. It is widely used for industrial purposes.

かかるFRPの成形方法としては、ハンドレイアップ成形をはじめとしてオートクレーブ成形やRTM成形など種々の方法があり、その成形方法は、成形品の形状、個数、要求される特性、あるいは製品許容価格などにより適宜決められている。   There are various methods of molding such FRP, such as hand lay-up molding, autoclave molding, RTM molding, and the like. The molding method depends on the shape and number of molded products, required characteristics, product allowable price, etc. It is determined as appropriate.

これら種々の成形方法において、FRPの製造過程で強化繊維を一旦、中間基材の形態にすることが一般的であり、その中間基材として強化繊維を織物の形態にしたものが多用されている。しかしながら、かかる強化繊維織物には、織物を取り扱う際に変形したり織糸がずれて目ズレする問題や、織物を裁断した際に織糸が解れ易いという問題があった。   In these various molding methods, it is general that the reinforcing fibers are once in the form of an intermediate substrate during the production process of the FRP, and the reinforcing fibers in the form of a woven fabric are often used as the intermediate substrate. . However, such a reinforcing fiber woven fabric has a problem that the woven fabric is deformed or misaligned when the woven yarn is displaced when handling the woven fabric, and a problem that the woven yarn is easily unraveled when the woven fabric is cut.

かかる問題に対し、強化繊維と熱可塑性繊維とを同時に製織した後に熱処理(加熱)して、熱可塑性繊維を軟化または溶融させて、たて糸とよこ糸との交錯点を目どめすることにより、強化繊維のたて糸またはよこ糸の解れ防止機能と形態安定機能を与え、取扱性の優れた強化繊維織物を得る提案がなされている。   To cope with such a problem, the reinforcing fiber and the thermoplastic fiber are simultaneously woven and then heat-treated (heated) to soften or melt the thermoplastic fiber, and the crossing point between the warp and the weft is reinforced, thereby strengthening the reinforcing fiber. Proposals have been made to obtain a reinforced fiber woven fabric which has a function of preventing the warp or weft of fibers from unraveling and a function of stabilizing the shape, and has excellent handleability.

例えば、特許文献1には、よこ糸に熱溶融繊維を巻回させて挿入する方法が提案されている。かかる提案では、簡易な設備でよこ入れ挿入できる。また特許文献2には、よこ糸の中央部に熱溶融繊維を配置させる方法が提案されている(特許文献2)。この方法であればよこ糸の挿入位置が安定することから期待した目どめ効果が得られる可能性がある。   For example, Patent Document 1 proposes a method in which a hot melt fiber is wound around a weft and inserted. In such a proposal, it is possible to insert and insert with a simple facility. Further, Patent Literature 2 proposes a method of arranging a hot-melt fiber in a central portion of a weft (Patent Literature 2). With this method, there is a possibility that the expected sighting effect can be obtained because the insertion position of the weft yarn is stabilized.

特開昭63−152637号公報JP-A-63-152637 特開2012−172281号公報JP 2012-172281 A

しかし前述の特許文献1に記載の方法では、熱溶融繊維をよこ糸に巻回させていることから挿入位置が安定せず、目どめ処理後に目どめ処理されている部分とされていない部分が生じる問題がある。   However, in the method described in Patent Document 1 described above, since the hot-melt fiber is wound around the weft, the insertion position is not stable, and the portion that is not treated as the portion that has been subjected to the rounding process after the rounding process. There is a problem that occurs.

また特許文献2に記載の方法では、繊度の異なるよこ糸と熱溶融繊維を安定してレピアで把持して挿入するのが困難であり、熱溶融繊維の挿入ミスが生じやすいとの問題があった。   In addition, the method described in Patent Document 2 has a problem that it is difficult to stably grip and insert the weft and the hot-melt fiber having different fineness with a rapier and easily insert a hot-melt fiber. .

すなわち、特許文献1や特許文献2に記載の方法では、織組織の目どめが不十分であることから、強化繊維織物の組織崩れ(織糸の目曲がり)を完全に抑えた織物は得られていなかった。かかる従来の技術により得られた強化繊維織物は、強化繊維が真直に配向されていないので、FRPに成形した場合、高い力学的特性が発揮できないばかりか、表面平滑性に優れた成形品を得ることができないという課題があった。   That is, in the methods described in Patent Literature 1 and Patent Literature 2, since the woven structure is not sufficiently controlled, a woven fabric in which the collapse of the structure of the reinforcing fiber woven fabric (bending of the woven yarn) is completely suppressed can be obtained. Had not been. The reinforcing fiber woven fabric obtained by such a conventional technique has not only a high mechanical property but also a molded article excellent in surface smoothness when molded into FRP because the reinforcing fibers are not oriented straight. There was a problem that it was not possible.

そこで本発明の目的は、上記従来技術の問題点を解決し、強化繊維織物の組織崩れ(織糸の目曲がり)を抑え、織組織の形態保持に有効な熱溶融繊維の挿入方法を施す強化繊維織物の製造方法およびその装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, to suppress the collapse of the structure of the reinforcing fiber woven fabric (bending of the yarn), and to perform a reinforcing method for inserting a hot-melt fiber effective for maintaining the form of the woven structure. An object of the present invention is to provide a method for producing a fiber fabric and an apparatus therefor.

上記目的を達成するために、本発明は以下の構成を採用する。   In order to achieve the above object, the present invention employs the following configuration.

つまり本発明の強化繊維織物の製造方法は、以下である。   That is, the manufacturing method of the reinforcing fiber woven fabric of the present invention is as follows.

少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物をレピア織機にて製織する強化繊維織物の製造方法であって、
レピア織機にはよこ糸把持部が2箇所あり、それぞれの把持部で前記2本の繊維を把持しながら一回のよこ入れ挿入においてよこ糸を同時挿入することにより、前記よこ糸がたて糸の方向に交互に並ぶように製織することを特徴とする強化繊維織物の製造方法。
At least, a warp yarn is composed of reinforcing fibers, and a weft yarn is a method of manufacturing a reinforcing fiber woven fabric in which a reinforcing fiber woven fabric composed of two fibers having different fineness is woven by a rapier loom,
The rapier loom has two weft holding portions, and the weft is alternately inserted in the direction of the warp by simultaneously inserting the weft in one weft insertion while holding the two fibers in each holding portion. A method for producing a reinforced fiber woven fabric, characterized by weaving side by side.

また、本発明の強化繊維織物の製造装置は、以下である。   Further, an apparatus for producing a reinforcing fiber woven fabric of the present invention is as follows.

少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物を製織する強化繊維織物の製造装置であって、
一回のよこ入れ挿入においてよこ糸を同時挿入でき、かつ前記よこ糸がたて糸の方向に交互に並ぶように製織できるよこ糸の把持部を2箇所有することを特徴とする、強化繊維織物の製造装置。
At least, a warp yarn is composed of reinforcing fibers, and a weft yarn is a reinforcing fiber woven fabric manufacturing apparatus for weaving a reinforcing fiber woven fabric composed of two fibers having different finenesses,
An apparatus for manufacturing a reinforced fiber fabric, characterized by having two weft thread gripping portions capable of simultaneously inserting a weft thread in a single weft insertion and weaving the weft thread so as to be alternately arranged in the warp direction.

本発明によれば、繊度の異なる2本の繊維から構成されるよこ糸を一回のよこ入れ挿入において同時挿入することで、繊度の異なる2本の繊維から構成されるよこ糸がたて糸の方向に交互に並ぶように製織することができる。特に、よこ糸が炭素繊維と熱溶融繊維の場合においては、よこ糸と熱溶融繊維をレピア織機で別々に把持して挿入することから把持ミスの発生がなくなり、かつ、炭素繊維と熱溶融繊維の挿入位置も安定することから、熱溶融繊維を溶融させた後の目どめ織物は、強化繊維織物の組織崩れ(織糸の目曲がり)を抑え、織組織の形態保持が安定する。   According to the present invention, a weft composed of two fibers having different finenesses is simultaneously inserted in one weft insertion, so that a weft composed of two fibers having different fineness alternates in the warp direction. Can be woven to line up. In particular, when the weft is a carbon fiber and a hot-melt fiber, since the weft and the hot-melt fiber are separately gripped and inserted by a rapier loom, no gripping error occurs, and the insertion of the carbon fiber and the hot-melt fiber Since the position is also stable, the staple fabric after melting the hot-melt fibers suppresses the collapse of the structure of the reinforcing fiber woven fabric (bending of the yarn), and the shape retention of the woven structure is stabilized.

本発明の製造方法で得られた強化繊維織物は、強化繊維が真直に配向されているので、FRPに成形した場合、高い強度および弾性率などの力学的特性を発現するだけでなく、優れた外観品位を達成できる強化繊維織物を提供することができる。かかる効果は、二方向性織物において最大限に発揮される。   The reinforcing fiber woven fabric obtained by the production method of the present invention, because the reinforcing fibers are oriented straight, when formed into FRP, not only exhibit mechanical properties such as high strength and elastic modulus, but also excellent. It is possible to provide a reinforcing fiber woven fabric that can achieve appearance quality. Such effects are maximized in bidirectional fabrics.

本発明に係る強化繊維織物を製造する装置の一例を示す概略側面図である。It is an outline side view showing an example of an apparatus which manufactures a reinforced fiber textile concerning the present invention. 従来の強化繊維織物を製造する装置(レピア部分)の拡大図である。It is an enlarged view of the apparatus (a rapier part) which manufactures the conventional reinforcing fiber fabric. 従来の強化繊維織物を製造する装置(レピア部分)の拡大図である。It is an enlarged view of the apparatus (a rapier part) which manufactures the conventional reinforcing fiber fabric. 本発明にかかる強化繊維織物を製造する装置(レピア部分)の拡大図である。FIG. 2 is an enlarged view of an apparatus (a rapier portion) for producing a reinforcing fiber fabric according to the present invention. 本発明に係る実施例1により製造された強化繊維織物を示す概略平面図である。1 is a schematic plan view illustrating a reinforced fiber fabric manufactured according to Example 1 of the present invention. 本発明の範囲外である比較例1により製造された強化繊維織物を示す概略平面図である。1 is a schematic plan view showing a reinforcing fiber fabric manufactured according to Comparative Example 1 which is out of the scope of the present invention.

本発明の強化繊維織物の製造方法は、少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物をレピア織機にて製織する強化繊維織物の製造方法であって、レピア織機にはよこ糸把持部が2箇所あり、それぞれの把持部で前記2本の繊維を把持しながら一回のよこ入れ挿入においてよこ糸を同時挿入することにより、前記よこ糸がたて糸の方向に交互に並ぶように製織することを特徴とする。これにより、繊度の異なる2本の繊維(よこ糸)を同時挿入でき、繊度の異なる2本の繊維(よこ糸)の配列位置も安定する。特に繊度の異なる2本の繊維(よこ糸)として、炭素繊維と熱溶融繊維を用いた場合、熱溶融繊維の挿入位置が一定で、かつ、熱溶融繊維を安定挿入でき、得られた強化繊維織物を加熱処理して、よこ糸に含まれる熱溶融繊維を軟化または熱溶融させて強化繊維織物を巻き取ることで、目ずれが生じない強化繊維織物が得られる。   The method for producing a reinforced fiber woven fabric of the present invention is a method for producing a reinforced fiber woven fabric in which at least a warp yarn is composed of reinforced fibers and a weft yarn is composed of two fibers having different finenesses with a rapier loom. In the rapier loom, there are two weft holding portions, and the weft is inserted by simultaneous insertion of the weft in one weft insertion while holding the two fibers with each holding portion. It is woven so that it is alternately arranged in the direction. Thereby, two fibers (weft) having different fineness can be inserted at the same time, and the arrangement position of the two fibers (weft) having different fineness can be stabilized. In particular, when carbon fiber and hot-melt fiber are used as two fibers (weft) having different fineness, the insertion position of the hot-melt fiber is constant, and the hot-melt fiber can be stably inserted, and the obtained reinforced fiber woven fabric Is heated to soften or hot-melt the hot-melt fibers contained in the weft yarn to wind up the reinforcing fiber woven fabric, thereby obtaining a reinforcing fiber woven fabric without misalignment.

以下、少なくともたて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物をレピア織機にて製織する本発明の強化繊維織物の製造方法およびその製造装置について、(A)織成工程、(B)加熱工程、(C)巻取工程に分けて各工程について、それぞれ図1を参照しながら詳細に説明する。なお、よこ糸として熱溶融繊維を用いない場合においては、(B)加熱工程は不要である。   Hereinafter, a method and an apparatus for producing a reinforced fiber woven fabric of the present invention, in which at least a warp yarn is composed of reinforced fibers and a weft yarn is woven by a rapier loom, and a weft yarn is composed of two fibers having different fineness, Each step is divided into A) weaving step, (B) heating step, and (C) winding step, and each step will be described in detail with reference to FIG. In the case where the hot melt fiber is not used as the weft, the heating step (B) is unnecessary.

(A)織成工程
織成工程においては、まず、ボビン1から引き出されたシート状をなす、複数本の強化繊維からなるたて糸2(2a、2b)は、バックローラ3、4を経て、たて糸のそれぞれが綜絖5(5a、5b)に通され、その上下運動にて開閉口される。たて糸2a、2bが開口されたときに、杼口にレピア9によって、よこ糸ボビン6(6a、6b)から解舒された繊度の異なる2本の繊維(よこ糸7(7a、7b))が、一回のよこ入れ挿入において同時挿入される。
(A) Weaving Step In the weaving step, first, a warp yarn 2 (2a, 2b) formed of a plurality of reinforcing fibers and formed into a sheet drawn from a bobbin 1 passes through back rollers 3, 4, and then becomes a warp yarn. Are passed through the heald 5 (5a, 5b), and are opened / closed by the vertical movement. When the warp yarns 2a, 2b are opened, two fibers (weft yarns 7 (7a, 7b)) of different fineness unwound from the weft bobbins 6 (6a, 6b) by the rapier 9 into the shed are reduced to one. It is inserted at the same time in the horizontal insertion.

ここでレピア9の拡大図を図2〜4に示す。   Here, an enlarged view of the rapier 9 is shown in FIGS.

図2は従来のレピアの概略図であり、このレピアで2本のよこ糸を把持した状態を図6に示す。この図2のレピアによって、2本のよこ糸を同時に把持しようとすると把持位置が安定せず、把持したとしても双方の糸の挿入位置が安定しなかった。また、よこ糸2本のうち1本の把持ミスが生じやすく、特に2本のよこ糸の繊度差が大きい場合にはこの現象が顕著に発生していた。   FIG. 2 is a schematic view of a conventional rapier, and FIG. 6 shows a state in which two wefts are gripped by the rapier. With the rapier of FIG. 2, when two weft yarns were to be gripped at the same time, the gripping positions were not stable, and even if gripped, the insertion positions of both yarns were not stable. In addition, one of the two weft yarns is likely to cause a grip error, and this phenomenon has been particularly noticeable when the difference in fineness between the two weft yarns is large.

本発明の製造方法または製造装置は、レピア織機がよこ糸把持部を2か所有する。具体的には、図4に示すレピアを有するレピア織機を用いることにより、レピアにはよこ糸把持部が2箇所あることから、それぞれの把持部で2本の繊維(よこ糸)を把持しながら、一回のよこ入れ挿入において2本のよこ糸を同時挿入することができ、よこ糸として繊度の異なる2本の繊維を用いたとしても同時挿入時でき、2本の繊維の配列位置も安定する。なかでも2本のよこ糸の繊度差が大きいほど、同時挿入での把持ミスが生じやすいことから、図4に示すレピアを用いる効果がいっそう発揮できる。   In the manufacturing method or the manufacturing apparatus according to the present invention, the rapier loom has two weft holding portions. Specifically, by using a rapier loom having a rapier shown in FIG. 4, since the rapier has two weft holding portions, each holding portion holds two fibers (weft) while holding one fiber. Two wefts can be inserted at the same time in the weft insertion, and even if two fibers having different fineness are used as the wefts, they can be inserted at the same time, and the arrangement position of the two fibers is stabilized. Above all, the greater the difference in the fineness between the two weft yarns, the more likely it is for a grip error during simultaneous insertion to occur, so that the effect of using the rapier shown in FIG. 4 can be further exhibited.

本発明においては、よこ糸は繊度の異なる2本の繊維から構成される。よこ糸の2本の繊維は、繊度が異なりさえすれば特に限定されないが、1回のよこ入れ挿入においてよこ糸を同時挿入する工程が安定化することから、よこ糸である繊度の異なる2本の繊維の繊度比は5倍以上であることが好ましく、10倍以上であることがさらに好ましい。また、よこ糸である繊度の異なる2本の繊維の繊度比について、上限は特に限定されないものの、現実的には200倍以下程度であることが好ましい。   In the present invention, the weft is composed of two fibers having different finenesses. The two fibers of the weft yarn are not particularly limited as long as they have different finenesses. However, since the process of simultaneously inserting the weft yarns in a single weft insertion is stabilized, the two fibers of the weft yarns having different finenesses are formed. The fineness ratio is preferably 5 times or more, and more preferably 10 times or more. The upper limit of the fineness ratio of two fibers having different finenesses, which is the weft, is not particularly limited, but is practically preferably about 200 times or less.

なお、ここでいう繊度は、繊維重量を長さで割り返した単位長さあたりの繊維重量のことを意味する。   In addition, the fineness here means the fiber weight per unit length obtained by dividing the fiber weight by the length.

ついで筬8によって筬打されて、綜絖5a、5bが再び、上下運動して閉口し、織物9が織成される。このように織成された強化繊維織物9は、少なくとも、たて糸2が強化繊維から構成され、よこ糸7aと7bが繊度の異なる2本の繊維から構成され、さらによこ糸がたて糸の方向に交互に並ぶように配列した構成となる。   Subsequently, the healds 5a and 5b are moved up and down again to be closed, and the fabric 9 is woven. In the reinforced fiber woven fabric 9 woven in this manner, at least the warp yarn 2 is composed of reinforcing fibers, the weft yarns 7a and 7b are composed of two fibers having different densities, and the weft yarns are alternately arranged in the warp direction. The arrangement is as follows.

本発明は、優れた力学的特性を発揮し、成形加工時の取り扱い性に優れ、組織崩れ(織糸の目曲がり)を抑えることが可能な強化繊維織物の製造方法を提供することにあり、そのため本発明においては、少なくともたて糸に強化繊維を用いる。たて糸として適用可能な強化繊維は特に限定されないが、たて糸として好適な強化繊維としては、例えば、炭素繊維、ガラス繊維およびアラミド繊維などである。かかる強化繊維としては、比強度・比弾性率に優れる炭素繊維が好ましく、なかでも、繊維直径が5〜10μのポリアクリルニトリル系で、引張強度が3〜7GPaで、引張弾性率が200〜500GPaのマルチフィラメントとすることにより、より高い力学的特性を発揮するFRPが得られる。   An object of the present invention is to provide a method for producing a reinforced fiber woven fabric that exhibits excellent mechanical properties, is excellent in handleability during molding processing, and can suppress tissue collapse (bending of a woven yarn). Therefore, in the present invention, a reinforcing fiber is used at least for the warp yarn. The reinforcing fibers applicable as the warp yarn are not particularly limited, but the reinforcing fibers suitable as the warp yarn include, for example, carbon fiber, glass fiber, and aramid fiber. As such a reinforcing fiber, a carbon fiber excellent in specific strength and specific elastic modulus is preferable, and among them, a polyacrylonitrile-based fiber having a fiber diameter of 5 to 10 μ, a tensile strength of 3 to 7 GPa, and a tensile elastic modulus of 200 to 500 GPa By using the multifilament, FRP exhibiting higher mechanical properties can be obtained.

たて糸として用いられる強化繊維の総繊度は、100〜3,000テックスの範囲の太い糸が好ましい。たて糸として上記範囲の総繊度の強化繊維を用いると、よこ糸として熱溶融繊維を用いた場合に、熱溶融繊維による目どめにより発現する本発明の効果が十分に発揮されるために好ましい。また、強化繊維が炭素繊維の場合は、一般に繊度が大きくなるほど製造コストが安価とできるため、低コストの織物基材を提供できる利点もある。   The total fineness of the reinforcing fibers used as warp yarns is preferably a thick yarn in the range of 100 to 3,000 tex. It is preferable to use a reinforcing fiber having a total fineness in the above range as the warp yarn, because when the hot melt fiber is used as the weft, the effect of the present invention, which is manifested by eye-opening by the hot melt fiber, can be sufficiently exhibited. In addition, when the reinforcing fibers are carbon fibers, generally, the higher the fineness, the lower the manufacturing cost, and thus there is an advantage that a low-cost woven fabric substrate can be provided.

強化繊維の総繊度が100テックスより小さいと、たて糸とよこ糸の交錯点数が多くなるので、織物形態が安定しており、目どめする必要もなく、本発明の熱処理を施すことなくそのままの形で用いることが可能となり、本発明の意義が希薄となる。一方、強化繊維の総繊度が3,000テックスを超えると、糸幅を均一に拡げない限り繊維分散が均一な強化繊維織物が得られないことがあり、力学的特性を十分に発揮させる強化繊維織物を得ることが容易でないことがある。   If the total fineness of the reinforcing fiber is less than 100 tex, the number of intersection points between the warp and the weft is increased, so that the woven fabric is stable, and it is not necessary to stop the woven fabric. And the significance of the present invention is diminished. On the other hand, if the total fineness of the reinforcing fiber exceeds 3,000 tex, a reinforcing fiber woven fabric having a uniform fiber dispersion may not be obtained unless the yarn width is evenly expanded, and the reinforcing fiber which exerts sufficient mechanical properties may be obtained. It may not be easy to obtain a fabric.

前述のとおり、本発明においては、よこ糸は繊度の異なる2本の繊維から構成されるが、そのうち1本は、熱溶融繊維を用いることが好ましい。   As described above, in the present invention, the weft is composed of two fibers having different finenesses, and it is preferable that one of the fibers is a hot-melt fiber.

さらに本発明で製造される強化繊維織物のより好ましい態様は、少なくとも、たて糸が炭素繊維から構成され、よこ糸が少なくとも炭素繊維と熱溶融繊維(繊維状の目どめ糸)から構成され、かつ、熱溶融繊維が溶融してたて糸とよこ糸との交錯点を接着しているものであれば、成形過程で織物が目ずれすることがないことから、比強度、比弾性率が優れる炭素繊維の特徴を最大限発揮させることができ、軽量で、かつ、力学的特性が優れた複合材料を得ることができる。   Further, a more preferred embodiment of the reinforcing fiber woven fabric produced by the present invention is that at least the warp yarn is composed of carbon fiber, the weft yarn is composed of at least carbon fiber and hot melt fiber (fibrous staple yarn), and As long as the hot-melt fiber is bonded at the intersection of the warp and weft, the woven fabric will not be misaligned during the molding process. , And a composite material that is lightweight and has excellent mechanical properties can be obtained.

よこ糸として好適な熱溶融繊維としては、溶融する性質を有する繊維でありさえすれば特に限定されない。なお、溶融する性質を有するとは、繊維を加熱した場合に融点が観測されることを意味する。そして熱溶融繊維は、繊維状に加工しやすい点で熱可塑性樹脂の繊維が好ましい。熱可塑性樹脂としては、例えば、ポリアミド、ポリエステル、ポリプロピレン、ポリフェニレンサルファイド、ポリビニルアルコールなどや、それらの共重合樹脂、ポリマーアロイ樹脂およびポリマーブレンド樹脂などを例として挙げることができる。中でも、比較的低温で軟化・溶融することから共重合樹脂が好ましく、特に、複合材料のマトリックス樹脂として多用されているエポキシ樹脂との接着性が良好な共重合ポリアミドが好ましい。   The hot melt fiber suitable as the weft is not particularly limited as long as it is a fiber having a melting property. In addition, having the property of melting means that the melting point is observed when the fiber is heated. The hot-melt fiber is preferably a thermoplastic resin fiber because it can be easily processed into a fibrous shape. Examples of the thermoplastic resin include polyamide, polyester, polypropylene, polyphenylene sulfide, polyvinyl alcohol, and the like, and copolymer resins, polymer alloy resins, and polymer blend resins thereof. Among them, copolymer resins are preferable because they are softened and melted at a relatively low temperature, and particularly, copolymer polyamides having good adhesion to an epoxy resin which is frequently used as a matrix resin of a composite material are preferable.

繊維に融点が観測されるか否かは、以下により測定して判断する。つまり、JIS L 1013:2010 化学繊維フィラメント糸試験方法の8.19項に記載の融点の測定方法に従って測定する。   Whether or not a melting point is observed in the fiber is determined by measuring as follows. That is, it is measured in accordance with the measuring method of the melting point described in Section 8.19 of JIS L 1013: 2010 Test method for synthetic fiber filament yarn.

更に、熱溶融繊維においては、熱可塑性樹脂と熱硬化性樹脂とを併用することもできる。この場合は、両者が相溶した単一の樹脂組成物であっても、相溶していない相分離した樹脂組成物であってもよく、更にはそれぞれを独立した樹脂として併用してもよい。特に、FRPとしての力学特性(特に、強化繊維織物を積層したときの層間剥離・層間剪断強度)を向上させるためには、高靭性の熱可塑性樹脂と、熱溶融性に優れる熱硬化性樹脂とを相溶させた樹脂組成物として用いることがとりわけ好ましい態様である。この場合、高靭性の熱可塑性樹脂は、単独では加熱温度の問題を有し、熱溶融性に優れる熱硬化性樹脂は、単独では取扱性の問題を有しており、適用が困難である場合でも、両者を相溶させることにより、前記問題が解消され両者の利点を最大限に発揮することができる。   Further, in the case of the hot melt fiber, a thermoplastic resin and a thermosetting resin can be used in combination. In this case, the two may be a single resin composition in which both are compatible, or may be a phase-separated resin composition in which they are not compatible, or may be used in combination as an independent resin. . In particular, in order to improve the mechanical properties of FRP (particularly, delamination / interlaminar shear strength when reinforced fiber fabrics are laminated), a thermoplastic resin having high toughness and a thermosetting resin having excellent heat melting property are required. It is a particularly preferred embodiment to use as a resin composition in which is compatible. In this case, a high toughness thermoplastic resin alone has a problem of heating temperature, and a thermosetting resin having excellent heat melting property alone has a problem of handling property, and it is difficult to apply. However, by making them compatible with each other, the above-mentioned problem can be solved and the advantages of both can be maximized.

熱溶融繊維に含まれる熱可塑性樹脂や熱硬化性樹脂は、目的により適宜選択されるものであるが、目どめ効果を発現させる観点から、好ましくは、熱可塑性樹脂である。熱溶融繊維が熱可塑性樹脂を含む場合、熱可塑性樹脂の融点は80〜200℃が好ましい。   The thermoplastic resin or thermosetting resin contained in the hot-melt fiber is appropriately selected depending on the purpose, but is preferably a thermoplastic resin from the viewpoint of exhibiting an eye-opening effect. When the hot-melt fiber contains a thermoplastic resin, the melting point of the thermoplastic resin is preferably from 80 to 200C.

熱溶融繊維が含む熱可塑性樹脂の融点が80℃未満またはガラス転移温度が50℃未満であると、織物の製織時に要する加熱温度が低く、作業性は優れるものの複合材料にした場合の耐熱性が大きく低下するだけでなく、原材料を保管したり、織物を搬送したりする時に溶解して、逆に取扱性に劣る場合がある。一方、熱溶融繊維が含む熱可塑性樹脂の融点が200℃を超えるか、またはガラス転移温度が170℃を超えると、複合材料にした場合の耐熱性は向上するものの、織物の製織時の加熱温度が高過ぎ、極端に作業性が低下してしまうことがある。   When the melting point of the thermoplastic resin contained in the hot-melt fiber is less than 80 ° C. or the glass transition temperature is less than 50 ° C., the heating temperature required for weaving the fabric is low, and the workability is excellent, but the heat resistance of the composite material is low. Not only does it significantly decrease, but also dissolves when the raw materials are stored or when the woven fabric is transported. On the other hand, when the melting point of the thermoplastic resin contained in the hot-melt fiber exceeds 200 ° C. or the glass transition temperature exceeds 170 ° C., the heat resistance of the composite material is improved, but the heating temperature during weaving of the woven fabric is improved. Is too high, and the workability may be extremely reduced.

なお、本発明において融点またはガラス転移温度は、測定する対象物を絶乾状態としてから、DSC(示差走査熱量計)にて20℃/分の昇温速度で測定される融点またはガラス転移温度を指す。   In the present invention, the melting point or glass transition temperature is defined as the melting point or glass transition temperature measured by a DSC (differential scanning calorimeter) at a heating rate of 20 ° C./min after the object to be measured is in a completely dried state. Point.

本発明で用いられる織物の組織は特に限定されないが、少なくとも強化繊維糸をたて糸とした平織、綾織、朱子織、あるいはノンクリンプ組織(強化繊維糸が真っ直ぐに配向し、たて糸と補助糸であるよこ糸が互いに交錯して一体化された組織)などが好ましく用いられる。   The structure of the woven fabric used in the present invention is not particularly limited, but plain weave, twill weave, satin weave, or non-crimped design in which at least the reinforcing fiber yarn is a warp (the reinforcing fiber yarn is oriented straight, and the warp and the auxiliary yarn are wefts. A cross-linked and integrated structure) is preferably used.

(B)加熱工程
加熱工程においては、織成された強化繊維織物9が、加熱源16からの輻射により非接触で加熱処理されて、熱溶融繊維に含まれる熱可塑性樹脂および/または熱硬化性樹脂を軟化または熱溶融する。
(B) Heating Step In the heating step, the woven reinforced fiber fabric 9 is heat-treated in a non-contact manner by radiation from the heating source 16 to obtain a thermoplastic resin and / or thermosetting resin contained in the hot-melt fiber. Softens or heat melts the resin.

加熱源は、遠赤外線、中赤外線および近赤外線などの赤外線ヒーターによる輻射で加熱することが好ましい。かかる加熱源を使用すると、強化繊維織物9とは非接触で効率的に強化繊維織物9を加熱することができる。また、設備を小さくすることができて織成の邪魔になることもなく、織機を停機した時に織物への加熱源を遮断して、過加熱を抑制することができる。   The heating source is preferably heated by radiation from infrared heaters such as far infrared rays, mid infrared rays, and near infrared rays. When such a heating source is used, the reinforcing fiber fabric 9 can be efficiently heated without contacting the reinforcing fiber fabric 9. Further, the equipment can be reduced in size and does not hinder weaving, and the heating source for the fabric can be cut off when the loom is stopped, thereby suppressing overheating.

(C)巻取工程
巻取工程においては、引取ローラ12と引取ガイドローラ15を経て、巻芯13に巻き取って巻物17を得る。図1においては、織機の巻取装置を用いる例を示したが、巻取装置を織機とは別に後方に巻取装置を設けてスペースを確保し、巻取装置までの間に加熱装置を設けることにより加熱を行うこともできる。
(C) Winding Step In the winding step, the roll 17 is wound around the winding core 13 via the pulling roller 12 and the pulling guide roller 15. FIG. 1 shows an example in which a winding device of a loom is used. However, a winding device is provided behind the winding device separately from the loom to secure a space, and a heating device is provided between the winding device and the winding device. In this way, heating can be performed.

(実施例1)
たて糸として、引張強度が3,530MPa、引張弾性率が230GPa、フィラメント数が3,000本のポリアクリロニトリル(PAN)系炭素繊維糸条(総繊度:198テックス)を用い、よこ糸として、たて糸と同じ炭素繊維とアラミド繊維糸条(総繊度:21.5テックス)を用い、図1に示した装置を用いて、以下の手順により、二方向性織物Aを製造した。
(Example 1)
As the warp yarn, a polyacrylonitrile (PAN) -based carbon fiber yarn (total fineness: 198 tex) having a tensile strength of 3,530 MPa, a tensile modulus of 230 GPa, and a number of filaments of 3,000 is used. Using carbon fiber and aramid fiber yarn (total fineness: 21.5 tex) and using the apparatus shown in FIG. 1, a bidirectional woven fabric A was produced by the following procedure.

織成工程においては、まず、ボビン1から引き出した複数本のたて糸2を密度が5本/cmになるように配列した後、バックローラ3、4を経て、各たて糸2を2枚の綜絖5a、5bに分けて交互に通した。そして、2枚の綜絖5a、5bに通したたて糸2a、2bが開口されたとき、杼口にレピアにて密度が5本/cmになるようによこ糸7(7aと7b)を打ち込み、筬打ちを行った。その後、ガイドローラを経て巻芯13に向けて送り出し、巻取工程において、巻芯13に巻き取って巻物17を得た。   In the weaving process, first, after arranging a plurality of warp yarns 2 drawn from the bobbin 1 so as to have a density of 5 yarns / cm, each of the warp yarns 2 is passed through back rollers 3 and 4 into two healds 5a. , 5b. When the warp yarns 2a and 2b passed through the two healds 5a and 5b are opened, weft yarns 7 (7a and 7b) are driven into the shed so that the density becomes 5 yarns / cm with a rapier. Was done. After that, it was sent out toward the winding core 13 via a guide roller, and was wound around the winding core 13 in a winding step to obtain a scroll 17.

得られた二方向性織物Aは、織物目付が209g/m平組織の織物であり、織物のよこ糸挿入時には、よこ糸把持部が2カ所あるレピアを用いたことから、よこ糸の挿入ミスもなく、よこ糸の炭素繊維とアラミド繊維が交互に配列しており、よこ糸の蛇行(組織崩れ)が全く観察されなかった。かかる二方向性織物Aの概略平面図を図5に示す。 The obtained bidirectional woven fabric A is a woven fabric having a woven fabric weight of 209 g / m 2 and a weft of the woven fabric. When a weft is inserted into the woven fabric, a rapier having two weft holding portions is used. The carbon fibers and the aramid fibers of the weft were alternately arranged, and no meandering (tissue collapse) of the weft was observed. FIG. 5 shows a schematic plan view of such a bidirectional woven fabric A.

(実施例2)
たて糸として、引張強度が3,530MPa、引張弾性率が230GPa、フィラメント数が3,000本のポリアクリロニトリル(PAN)系炭素繊維糸条(総繊度:198テックス)を用い、よこ糸として、たて糸と同じ炭素繊維と融点が110℃の共重合ポリアミド繊維糸条(総繊度:33.5テックス)の熱溶融繊維を用い、
図1に示した装置を用いて、以下の手順により、二方向性織物Bを製造した。
(Example 2)
As the warp yarn, a polyacrylonitrile (PAN) -based carbon fiber yarn (total fineness: 198 tex) having a tensile strength of 3,530 MPa, a tensile modulus of 230 GPa, and a number of filaments of 3,000 is used. Using a hot melt fiber of a copolyamide fiber yarn having a melting point of 110 ° C. (total fineness: 33.5 tex) with a carbon fiber,
Using the apparatus shown in FIG. 1, a bidirectional woven fabric B was manufactured according to the following procedure.

(A)織成工程においては、まず、ボビン1から引き出した複数本のたて糸2を密度が5本/cmになるように配列した後、バックローラ3、4を経て、各たて糸2を2枚の綜絖5a、5bに分けて交互に通した。そして、2枚の綜絖5a、5bに通したたて糸2a、2bが開口されたとき、杼口にレピアにて密度が2.5本/cmになるようによこ糸7を打ち込み、筬打ちを行った。   (A) In the weaving step, first, after arranging a plurality of warp yarns 2 drawn out from the bobbin 1 so that the density becomes 5 yarns / cm, two warp yarns 2 are passed through the back rollers 3 and 4. Healds 5a and 5b were passed alternately. When the warp yarns 2a and 2b passed through the two healds 5a and 5b were opened, the weft yarn 7 was driven into the shed with a rapier so that the density became 2.5 yarns / cm, and beating was performed. .

(B)加熱工程においては、織成した織物を、織物表面から加熱源10として遠赤外線ヒーターのみを用いて非接触で加熱処理して、よこ糸に含まれる熱溶融繊維を熱により溶融した。ここで、ヒーター温度は織物の表面で120℃の温度になるように調整した。その後、巻芯13に向けて送り出した。   (B) In the heating step, the woven fabric was heat-treated from the fabric surface in a non-contact manner using only a far-infrared heater as the heating source 10, and the hot melt fiber contained in the weft was melted by heat. Here, the heater temperature was adjusted so as to be 120 ° C. on the surface of the fabric. Then, it sent out toward the winding core 13.

(C)巻取工程において、巻芯13に巻き取って巻物17を得た。   (C) In the winding step, the roll 17 was wound around the winding core 13.

得られた二方向性織物Bは、織物目付が215g/m平組織の織物であり、織物のよこ糸挿入時によこ糸把持部が2カ所あるレピアを用いたことから、よこ糸の炭素繊維と熱溶融繊維を安定把持して挿入できるとともに熱溶融繊維の挿入位置が安定し、たて糸とよこ糸との交錯点を接着させたことから、巻取り後の強化繊維織物において、よこ糸の蛇行(組織崩れ)が全く観察されなかった。 The obtained bidirectional woven fabric B is a woven fabric having a woven fabric weight of 215 g / m 2 and a flat structure. Since a rapier having two weft grasping portions at the time of weft insertion of the woven fabric was used, it was thermally fused with the weft carbon fiber. The fiber can be stably gripped and inserted, and the insertion position of the hot-melt fiber is stable, and the intersections of the warp and weft are adhered, so that the meandering (texture collapse) of the weft in the reinforced fiber woven fabric after winding is achieved. No observations were made.

(実施例3)
総繊度が5.6テックスの共重合ポリアミド繊維糸条を用いたほかは、実施例1と同じようにして二方向性織物Cを製造した。
(Example 3)
A bidirectional woven fabric C was produced in the same manner as in Example 1, except that a copolyamide fiber yarn having a total fineness of 5.6 tex was used.

得られた二方向性織物Cは、織物目付が201g/m平組織の織物であり、織物のよこ糸挿入時によこ糸把持部が2カ所あるレピアを用いたことから、よこ糸の炭素繊維と熱溶融繊維を安定把持して挿入できるとともに熱溶融繊維の挿入位置が安定し、たて糸とよこ糸との交錯点を接着させたことから、巻取り後の織物において、よこ糸の蛇行(組織崩れ)が全く観察されなかった。 The obtained bidirectional woven fabric C is a woven fabric having a woven fabric weight of 201 g / m 2 and a flat texture. Since a rapier having two weft gripping portions at the time of inserting the weft of the woven fabric is used, it is thermally fused with the weft carbon fiber. The fiber can be stably gripped and inserted, and the insertion position of the hot-melt fiber is stable, and the intersections of the warp and weft are adhered. Therefore, weaving of the weft (texture collapse) is completely observed in the wound fabric. Was not done.

(実施例4)
たて糸として、引張強度が4,500MPa、引張弾性率が230GPa、フィラメント数が12,000本のポリアクリロニトリル(PAN)系炭素繊維糸条(総繊度:800テックス)を用い、よこ糸として、たて糸と同じ炭素繊維と融点が110℃の共重合ポリアミド繊維糸条(総繊度:5.6テックス)を用い、ボビン1から引き出した複数本のたて糸2の密度とよこ糸の密度が1.25本/cmになるように配列したほかは実施例2と同じようにして二方向性織物Dを製造した。
(Example 4)
As the warp yarn, a polyacrylonitrile (PAN) -based carbon fiber yarn (total fineness: 800 tex) having a tensile strength of 4,500 MPa, a tensile modulus of 230 GPa, and a number of filaments of 12,000 is used. Using carbon fiber and copolyamide fiber yarn having a melting point of 110 ° C. (total fineness: 5.6 tex), the density of the plurality of warp yarns 2 and the density of the weft yarns drawn from the bobbin 1 are reduced to 1.25 / cm A bidirectional woven fabric D was manufactured in the same manner as in Example 2 except that the woven fabrics were arranged as described above.

得られた二方向性織物Dは、織物目付が201g/m平組織の織物であり、織物のよこ糸挿入時によこ糸把持部が2カ所あるレピアを用いたことから、よこ糸の炭素繊維と熱溶融繊維を安定把持して挿入できるとともに熱溶融繊維の挿入位置が安定し、たて糸とよこ糸との交錯点を接着させたことから、巻取り後の織物において、よこ糸の蛇行(組織崩れ)が全く観察されなかった。 The obtained bidirectional woven fabric D was a woven fabric having a woven fabric weight of 201 g / m 2 and a flat structure. Since a rapier having two weft gripping portions at the time of weft insertion of the woven fabric was used, it was thermally fused with the weft carbon fiber. The fiber can be stably gripped and inserted, and the insertion position of the hot-melt fiber is stable, and the intersections of the warp and weft are adhered. Therefore, weaving of the weft (texture collapse) is completely observed in the wound fabric. Was not done.

(比較例1)
図1に示す装置において、よこ糸把持部が一カ所のレピアを用いて製織した他は、実施例1と同じようにして二方向性織物Eを製造した。
(Comparative Example 1)
In the apparatus shown in FIG. 1, a bidirectional woven fabric E was manufactured in the same manner as in Example 1 except that the weft holding portion was woven using a single rapier.

得られた二方向性織物Eは、織物目付が209g/m平組織の織物であり、レピアの把持部が一カ所であり、繊度の異なる2本のよこ糸を同時挿入しようとすると、アラミド繊維の把持位置が安定せず、アラミド繊維の把持ミスが生じ、部分的にアラミド繊維が挿入されていない織物となった。かかる一方向性織物Eの概略平面図を図6に示す。 The obtained bidirectional woven fabric E is a woven fabric having a woven fabric weight of 209 g / m 2 and a flat structure. The grip portion of the rapier is located at one position. When two wefts having different finenesses are to be simultaneously inserted, the aramid fiber is used. The gripping position was not stable, a gripping error of the aramid fiber occurred, and the woven fabric did not partially have the aramid fiber inserted. FIG. 6 shows a schematic plan view of such a unidirectional woven fabric E.

(比較例2)
図1に示す装置において、よこ糸把持部が一カ所のレピアを用いて製織した他は、実施例3と同じようにして二方向性織物Fを製造した。
(Comparative Example 2)
In the apparatus shown in FIG. 1, a bidirectional woven fabric F was manufactured in the same manner as in Example 3 except that the weft holding portion was woven using a single rapier.

得られた二方向性織物Fは、織物目付が201g/m平組織の織物であり、比較例1と同様によこ糸挿入時に熱溶融繊維の把持ミスが生じ、部分的に熱溶融繊維が挿入されていない織物となった。 上記の実施例および比較例の結果を、表1に示す。 The obtained bidirectional woven fabric F is a woven fabric having a woven fabric weight of 201 g / m 2 and a flat structure. In the same manner as in Comparative Example 1, misinsertion of the hot melt fiber occurs when weft yarn is inserted, and the hot melt fiber is partially inserted. It has not been woven. Table 1 shows the results of the above Examples and Comparative Examples.

Figure 0006642141
Figure 0006642141

本発明の強化繊維織物の製造方法によると、繊度の異なる2本のよこ糸を一回のよこ入れ挿入において同時挿入することで、繊度の異なる2本の繊維をたて糸の方向に交互に並ぶように製織することができる。特によこ糸が炭素繊維と熱溶融繊維の場合においては、炭素繊維と熱溶融繊維をレピアで別々に把持して挿入することから把持ミスの発生がなくなり、かつ、炭素繊維と熱溶融繊維の挿入位置も安定することから、熱溶融繊維を溶融させた後の目どめされた強化繊維織物は、組織崩れ(織糸の目曲がり)を抑え、織組織の形態保持が安定している。   According to the method for producing a reinforcing fiber woven fabric of the present invention, two weft yarns having different finenesses are simultaneously inserted in one weft insertion, so that two fibers having different finenesses are alternately arranged in the warp direction. Can be woven. Especially when the weft is a carbon fiber and a hot-melt fiber, since the carbon fiber and the hot-melt fiber are separately gripped and inserted by the rapier, no gripping error occurs, and the insertion position of the carbon fiber and the hot-melt fiber Therefore, the reinforced fiber woven fabric obtained by melting the hot-melt fibers suppresses tissue collapse (bending of the woven yarn) and stably retains the form of the woven fabric.

本発明の製造方法で得られた強化繊維織物は、強化繊維が真直に配向されているので、FRPに成形した場合、高い強度、弾性率などの力学的特性を発現するだけでなく、優れた外観品位を達成することができる。かかる強化繊維織物は、構造物の補修・補強、輸送機器(自動車、船舶、航空機、自転車など)、スポーツ用品およびFRP型をはじめ、その他の一般産業に用いられるFRPの強化材として好適に用いられる。   Since the reinforcing fiber woven fabric obtained by the production method of the present invention has straight fibers, when reinforced fiber is molded into FRP, it not only exhibits mechanical properties such as high strength and elastic modulus, but also has excellent properties. Appearance quality can be achieved. Such reinforced fiber woven fabric is suitably used as a reinforcing material for FRP used in repair and reinforcement of structures, transportation equipment (automobiles, ships, aircraft, bicycles, etc.), sporting goods, and other general industries such as FRP type. .

1 : ボビン
2、2a、2b : たて糸
3、4 : バックローラ
5、5a、5b : 綜絖
6、6a、6b : よこ糸ボビン
7、7a、7b : よこ糸
8 : 筬
9 : レピア
10 : 織物
11、14、15 : 引取ガイドローラ
12 : 引取ローラ
13 : 巻芯
16 : 加熱源
17 : 巻物
21、24 : たて糸(炭素繊維)
22、25 : よこ糸(炭素繊維)
23,26 : よこ糸(熱溶融繊維)
1: bobbin 2, 2a, 2b: warp
3, 4: Back rollers 5, 5a, 5b: Healds 6, 6a, 6b: Weft bobbins 7, 7a, 7b: Weft 8: Reed 9: Rapier 10: Fabrics 11, 14, 15: Take-off guide rollers 12: Take-up rollers 13: winding core 16: heating source 17: scrolls 21, 24: warp yarn (carbon fiber)
22, 25: weft (carbon fiber)
23, 26: Weft (hot melt fiber)

Claims (4)

少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物をレピア織機にて製織する強化繊維織物の製造方法であって、
レピア織機にはよこ糸把持部が2箇所あり、それぞれの把持部で前記2本の繊維を把持しながら一回のよこ入れ挿入においてよこ糸を同時挿入することにより、前記よこ糸がたて糸の方向に交互に並ぶように製織することを特徴とする強化繊維織物の製造方法。
At least, a warp yarn is composed of reinforcing fibers, and a weft yarn is a method of manufacturing a reinforcing fiber woven fabric in which a reinforcing fiber woven fabric composed of two fibers having different fineness is woven by a rapier loom,
The rapier loom has two weft holding portions, and the weft is alternately inserted in the direction of the warp by simultaneously inserting the weft in one weft insertion while holding the two fibers in each holding portion. A method for producing a reinforced fiber woven fabric, characterized by weaving side by side.
前記繊度の異なる2本の繊維の繊度比が5倍以上ある、請求項1に記載の強化繊維織物の製造方法。   The method for producing a reinforced fiber woven fabric according to claim 1, wherein the fineness ratio of the two fibers having different finenesses is 5 times or more. 前記繊度の異なる2本の繊維が、炭素繊維と熱溶融繊維である、請求項1又は2に記載の強化繊維織物の製造方法。   The method for producing a reinforcing fiber woven fabric according to claim 1 or 2, wherein the two fibers having different fineness are a carbon fiber and a hot-melt fiber. 少なくとも、たて糸が強化繊維から構成され、よこ糸が繊度の異なる2本の繊維から構成される強化繊維織物を製織する強化繊維織物の製造装置であって、
一回のよこ入れ挿入においてよこ糸を同時挿入でき、かつ前記よこ糸がたて糸の方向に交互に並ぶように製織できるよこ糸の把持部を2箇所有することを特徴とする、強化繊維織物の製造装置。
At least, a warp yarn is composed of reinforcing fibers, and a weft yarn is a reinforcing fiber woven fabric manufacturing apparatus for weaving a reinforcing fiber woven fabric composed of two fibers having different finenesses,
An apparatus for manufacturing a reinforced fiber fabric, characterized by having two weft thread gripping portions capable of simultaneously inserting a weft thread in a single weft insertion and weaving the weft thread so as to be alternately arranged in the warp direction.
JP2016048047A 2016-03-11 2016-03-11 Method and apparatus for manufacturing reinforced fiber fabric Active JP6642141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016048047A JP6642141B2 (en) 2016-03-11 2016-03-11 Method and apparatus for manufacturing reinforced fiber fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016048047A JP6642141B2 (en) 2016-03-11 2016-03-11 Method and apparatus for manufacturing reinforced fiber fabric

Publications (2)

Publication Number Publication Date
JP2017160571A JP2017160571A (en) 2017-09-14
JP6642141B2 true JP6642141B2 (en) 2020-02-05

Family

ID=59853798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016048047A Active JP6642141B2 (en) 2016-03-11 2016-03-11 Method and apparatus for manufacturing reinforced fiber fabric

Country Status (1)

Country Link
JP (1) JP6642141B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455466B2 (en) 2020-02-21 2024-03-26 東レ・デュポン株式会社 Base material for molding fiber-reinforced resin composites and fiber-reinforced resin composites

Also Published As

Publication number Publication date
JP2017160571A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
EP0756027B1 (en) Reinforced woven material and method and apparatus for manufacturing the same
US10190239B2 (en) Textile part, composite material element with textile part, and production method for the same
JP5279121B2 (en) Fiber reinforced composite material
JPH08260276A (en) Composite yarn,permanently deformable and shrinkable or shrunk fabric material prepared of this yarn and its preparation and use
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
JP5002895B2 (en) Method for producing reinforced fiber fabric
JP5810549B2 (en) Method for producing bi-directional reinforcing fiber fabric
JP6642141B2 (en) Method and apparatus for manufacturing reinforced fiber fabric
JPS62276053A (en) Fabric comprising flat tow impregnated with thermoplastic plastic melt
JP2009074186A (en) Method for producing carbon fiber woven fabric
KR102512971B1 (en) Carbon fiber fabric and method of manufacturing the same
JP2005179845A (en) Unidirectional woven carbon fiber fabric and method for producing the same
JP6912044B2 (en) Heat resistant multi-axis stitch base material
JPH08302537A (en) Carbon fiber woven fabric, its production thereof and device therefor
JPH08269837A (en) Reinforcing woven fabric and its production
JPH0280639A (en) Unidirectional preform sheet and production thereof
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JP3672043B2 (en) Thermoplastic composite continuous molding and continuous molding method
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
JP6915306B2 (en) Reinforced fiber woven fabric and method for manufacturing preforms using the reinforced fiber woven fabric
JP5690386B2 (en) Method for forming carbon fiber reinforced composite material by woven fabric
JP2018001475A (en) Preform for fiber-reinforced composite material, and fiber-reinforced composite material
JP3337089B2 (en) Composite fiber cloth
JP2004256930A (en) Method for reinforcing woven fabric
CN115584586A (en) Preparation method of thermoplastic fiber blended yarn weft yarn setting fiber cord fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6642141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151