JP2012188786A - Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof - Google Patents

Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof Download PDF

Info

Publication number
JP2012188786A
JP2012188786A JP2011054424A JP2011054424A JP2012188786A JP 2012188786 A JP2012188786 A JP 2012188786A JP 2011054424 A JP2011054424 A JP 2011054424A JP 2011054424 A JP2011054424 A JP 2011054424A JP 2012188786 A JP2012188786 A JP 2012188786A
Authority
JP
Japan
Prior art keywords
fiber
yarns
woven fabric
weft
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011054424A
Other languages
Japanese (ja)
Inventor
Juichi Takeda
重一 武田
Toshiyuki Ito
稔之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011054424A priority Critical patent/JP2012188786A/en
Publication of JP2012188786A publication Critical patent/JP2012188786A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a woven fabric in which crimps of carbon fiber yarns arranged as warp yarns are reduced as compared to a conventional unidirectional carbon fiber woven fabric, and the straightness of the carbon fiber yarns is retained.SOLUTION: A woven fabric F is formed such that weft yarns have a fineness of 110-660 dtex and a weft yarn density is 1.2-3.9 yarns/cm. Both surfaces of the woven fabric F are heated at a temperature equal to or higher than the melting point of the weft yarns, and are compression-bonded so that the warp yarns are thermally fusion-bonded to each other. The compression bonding of both surfaces is performed by a pair of heating rollers 21 and 22 so as to provide an adhesive strength between the warp and weft yarns of 1.5 N or greater.

Description

本発明は経糸に炭素繊維糸条を用いた一方向性織物及びその製造方法、一方向性織物を基材として用いた繊維強化プラスチック成形品とその成形方法に関する。   The present invention relates to a unidirectional fabric using carbon fiber yarns for warp and a method for producing the same, a fiber reinforced plastic molded product using the unidirectional fabric as a base material, and a method for forming the same.

従来から、橋やトンネル、建物などの各種コンクリート構造体の補強、補修を目的として目止めされた繊維シートを補強材として使用するのは周知であるが、その殆どが経糸に強化繊維を用いて製織された一方向性織物であり、例えば、特許第3279256号公報(特許文献1)や特開平10−317247号公報(特許文献2)などは炭素繊維を一方向に配列した織物が繊維シート状の代表的なものである。これらの織物構造を見ると緯糸としてガラス繊維などの補助糸を用いている。特許文献2では、その補助糸に熱融着繊維を配列し、熱融着繊維の熱融着により経糸相互を緯糸により接着させる手法を採っている。しかしながら、これらの織物が、経糸及び緯糸に偏平糸条を用いたとしても、経糸と緯糸との交錯点においてクリンプの発生が余儀なくされ、引張強度、圧縮強度などの機械物性が炭素繊維を一方向に配列して樹脂を含浸させたプリプレグと比べ大きく低下し、産業用途の例えば自動車、風車材料などの圧縮強度などの機械物性が要求される分野への進出が妨げられている。   Conventionally, it has been well known to use fiber sheets that have been sealed for the purpose of reinforcing and repairing various concrete structures such as bridges, tunnels, and buildings, but most of them use reinforcing fibers for warps. A woven unidirectional woven fabric. For example, in Japanese Patent No. 3279256 (Patent Document 1) and Japanese Patent Laid-Open No. 10-317247 (Patent Document 2), a woven fabric in which carbon fibers are arranged in one direction is a fiber sheet. It is a representative one. Looking at these woven structures, auxiliary yarns such as glass fibers are used as wefts. In Patent Document 2, a method is adopted in which heat-bonding fibers are arranged on the auxiliary yarn, and the warp yarns are bonded to each other by weft by heat-bonding the heat-bonding fibers. However, even if these fabrics use flat yarns for the warp and the weft, crimps are forced to occur at the intersection of the warp and the weft, and the mechanical properties such as tensile strength and compressive strength make the carbon fiber unidirectional. Compared with the prepregs that are arranged in the resin and impregnated with the resin, it is difficult to enter the field where mechanical properties such as compressive strength such as automobiles and windmill materials are required for industrial use.

また、例えば特開平09−067943号公報(特許文献3)には、経糸として炭素繊維やガラス繊維、アラミド繊維などを使い、緯糸にはポリアミド系繊維や、ポリエチレン繊維、ポリエステル繊維などの熱可塑性樹脂繊維が使われ、該熱可塑性樹脂繊維をもって経糸相互を熱融着して接合させることが開示されている。当該織物も、前述の特許文献1にて開示された一方向性織物と同様に、コンクリート構造体の形状に合わせてカットしても端部がほぐれたりせず、織物の取り扱いにも支障をきたさないとしている。しかして、上記熱可塑性樹脂繊維の融着時に経糸間にフィルムを形成されないため、加熱融着時に格別加圧することなく緯糸を経糸に融着させている。熱可塑性樹脂繊維の使用量とその融着温度の調整に多くの手間がかかる。   Further, for example, in Japanese Patent Application Laid-Open No. 09-067943 (Patent Document 3), carbon fiber, glass fiber, aramid fiber or the like is used as the warp, and a thermoplastic resin such as polyamide fiber, polyethylene fiber or polyester fiber is used for the weft. It is disclosed that fibers are used and the warp yarns are bonded together by thermal fusion with the thermoplastic resin fibers. Similarly to the unidirectional woven fabric disclosed in Patent Document 1, the woven fabric does not come loose even if it is cut in accordance with the shape of the concrete structure, and the handling of the woven fabric is hindered. It is not. Therefore, since a film is not formed between the warp yarns when the thermoplastic resin fibers are fused, the weft yarns are fused to the warp yarns without any special pressurization during heat fusion. It takes a lot of work to adjust the amount of thermoplastic resin fiber used and its fusing temperature.

特許第3279256号公報Japanese Patent No. 3279256 特開平10−317247号公報Japanese Patent Laid-Open No. 10-317247 特開平09−067943号公報JP 09-067943 A

一方向性織物を強化繊維基材として採用することにより、上述のごとき幾つかの利点はあるものの、特許文献1により開示された補強用基材は一方向性織物と言えども、織物の構造上、緯糸に剛直なガラス繊維が配列されている場合には、経糸と緯糸とを交錯させることにより織物を形成する。このとき、経糸に配列された炭素繊維は緯糸との交錯時にクリンプが発生する。そのため、該クリンプにより、応力が集中して強化繊維織物としての強度物性、なかでも特に引張強度、圧縮強度の低下が生じることがすでに広く知られている。   Although the use of the unidirectional fabric as the reinforcing fiber substrate has several advantages as described above, the reinforcing substrate disclosed in Patent Document 1 is a unidirectional fabric, but the structure of the fabric. In the case where rigid glass fibers are arranged on the weft, a woven fabric is formed by crossing the warp and the weft. At this time, the carbon fibers arranged in the warp are crimped at the time of crossing with the weft. For this reason, it is already widely known that the crimp causes stress to concentrate, resulting in a decrease in strength properties as a reinforced fiber fabric, particularly a decrease in tensile strength and compression strength.

一方、同じ一方向性織物であっても、上記特許文献2に開示された織物は、緯糸として熱可塑性樹脂繊維のみからなる糸を用いている。そのため、緯糸の剛直性を回避すること
は可能であるが、上述のとおり融着時に熱可塑性樹脂がフィルム化しやすいため、以降のマトリックス樹脂の含浸にあたって繊維織物の全体にわたり均等に樹脂を行き渡らせることは難しい。しかも、同特許文献2によれば、緯糸の融着時において加熱の他は格別な対策がとられていないため、確実に経糸にクリンプが形成されないという保証はない。
On the other hand, even in the same unidirectional woven fabric, the woven fabric disclosed in Patent Document 2 uses a yarn made of only thermoplastic resin fibers as a weft. Therefore, it is possible to avoid the stiffness of the weft, but as described above, the thermoplastic resin is easily formed into a film at the time of fusion, so that the resin can be evenly distributed throughout the fiber woven fabric in the subsequent impregnation of the matrix resin. Is difficult. Moreover, according to Patent Document 2, since no special measures are taken except for heating at the time of fusion of the weft yarns, there is no guarantee that crimps are not reliably formed on the warp yarns.

いずれにしても、上記特許文献1及び2に開示された一方向性織物は、いずれもがコンクリート構造体の補強材料として使われるための織物であって、これらの炭素繊維織物は圧縮強度などが大幅に低下することから、複合材料としての圧縮強度を要求される産業用途には強度発現不足に起因して、他の用途開発の実現に至っていないのが現状である。   In any case, the unidirectional fabrics disclosed in Patent Documents 1 and 2 are all fabrics for use as a reinforcing material for concrete structures, and these carbon fiber fabrics have compressive strength and the like. Since it is greatly reduced, the present situation is that the development of other applications has not been realized due to insufficient strength in industrial applications that require compressive strength as a composite material.

本発明は、かかる課題に対し、従来の一方向性炭素繊維織物よりも経糸に配列した炭素繊維糸条のクリンプを低減させ、且つ、炭素繊維糸条の真直性を保持させた織物を形成することをその目的としている。   The present invention provides a woven fabric in which crimping of carbon fiber yarns arranged in warp is reduced and the straightness of carbon fiber yarns is maintained, compared to conventional unidirectional carbon fiber fabrics. That is the purpose.

上記目的は、本発明の第1の基本構成である、複数の炭素繊維糸条を経方向に配列し、該経糸に直交する緯糸に熱可塑性樹脂繊維糸を用いて製織する織物の製造方法であって、該緯糸が繊度110〜660dtex、緯糸密度1.2〜3.9本/cmで構成した該織物の両面を、該緯糸の融点以上の温度で加熱し面圧着させ経糸相互を熱融着させる一方向性織物の製造方法と、当該製造方法により得られる一方向性織物により達成される。このときの一方向性織物における経糸と緯糸との接着強力は1.5N以上であることが必要である。   The above object is a first basic configuration of the present invention, which is a method for manufacturing a woven fabric in which a plurality of carbon fiber yarns are arranged in the warp direction, and a weft yarn orthogonal to the warp yarns is woven using thermoplastic resin fiber yarns. The both sides of the woven fabric composed of the wefts having a fineness of 110 to 660 dtex and a weft density of 1.2 to 3.9 yarns / cm are heated at a temperature equal to or higher than the melting point of the wefts to heat-bond the warp yarns. This is achieved by a method for producing a unidirectional fabric to be worn and a unidirectional fabric obtained by the production method. At this time, the adhesive strength between the warp and the weft in the unidirectional woven fabric needs to be 1.5 N or more.

また上記目的は、本発明の第2の基本構成である、経糸に炭素繊維糸条を配列し、緯糸に熱可塑性樹脂繊維糸を用いて製織された織物を、別工程において該織物の両面を前記緯糸の融点以上の温度の加熱ロールで両面圧着させて該織物を一体保持させる一方向性織物の製造方法によっても達成させることができる。   The above object is a second basic configuration of the present invention, in which a woven fabric in which carbon fiber yarns are arranged in the warp and a thermoplastic resin fiber yarn is used in the weft is woven on both sides of the fabric in a separate step. It can also be achieved by a method for producing a unidirectional woven fabric in which the woven fabric is integrally held by pressing both sides with a heating roll having a temperature equal to or higher than the melting point of the weft.

上記一方向性織物を使った繊維強化プラスチック成形品は、前記一方向性織物の少なくとも1 層以上の積層体を繊維基材として用いることが望ましく、その成形方法は前記一方向性織物を、繊維基材として成形型に少なくとも1層以上積層し、繊維基材全体をバッグフィルムで覆い、つぎにバッグフィルムで覆われた内部を真空状態とし、積層された繊維基材の繊維軸に対して垂直方向の片面から常温硬化型樹脂を注入拡散させ、繊維基材に常温硬化型樹脂を含浸させる成形方法を採用することが好ましい。   The fiber-reinforced plastic molded article using the unidirectional fabric preferably uses a laminate of at least one layer of the unidirectional fabric as a fiber base material, and the molding method uses the unidirectional fabric as a fiber. Laminate at least one layer as a base material on a mold, cover the entire fiber base material with a bag film, then place the inside covered with the bag film in a vacuum state, and perpendicular to the fiber axis of the laminated fiber base material It is preferable to employ a molding method in which a room temperature curable resin is injected and diffused from one side of the direction, and the fiber base material is impregnated with the room temperature curable resin.

本発明の製造方法により製造される一方向性織物は、緯糸を熱融着樹脂繊維糸のみで構成させ、更に面圧着による接着を施すことで、経糸である炭素繊維糸条のクリンプの形成が低減され、その加工物である成形品のコンポジット物性が大幅に向上し、多様な産業分野への展開を可能にする。特に、前記圧着を一対の加熱ロールにより行うと、圧着面を連続して均一に加熱圧着することが可能となるばかりでなく、多数のフィラメントにより構成される経糸及び緯糸が、特にその交錯部において面圧着されるため、緯糸の繊度を110〜660dtexに設定し、緯糸密度を1.2〜3.9本/cmで構成することと相まって、構成繊維が糸条幅方向に広がりやすく、クリンプ高さを低減させると同時にその交錯部における応力を分散させ、コンポジット物性を更に向上させる。   In the unidirectional woven fabric manufactured by the manufacturing method of the present invention, the weft yarn is composed of only the heat-sealing resin fiber yarn, and further, the crimping of the carbon fiber yarn which is the warp yarn is formed by applying adhesion by surface pressure bonding. This reduces the composite physical properties of the molded product, which is a processed product, and enables development in various industrial fields. In particular, when the crimping is performed with a pair of heating rolls, not only the crimping surface can be continuously and uniformly heat-bonded, but warps and wefts composed of a large number of filaments, particularly at the crossing portion. Since the surface is pressure-bonded, the fineness of the weft is set to 110 to 660 dtex, and the density of the weft is set to 1.2 to 3.9 yarns / cm. At the same time, the stress at the intersection is dispersed to further improve the physical properties of the composite.

本発明の一方向性織物の平面を示す撮像である。It is an imaging which shows the plane of the unidirectional textile fabric of this invention. 従来の一方向性織物の平面を示す撮像である。It is an imaging which shows the plane of the conventional unidirectional fabric. 本発明織物の製織工程の概要を示す工程説明図である。It is process explanatory drawing which shows the outline | summary of the weaving process of this invention fabric. 本発明織物の加熱面圧着方法の概略を示す工程説明図である。It is process explanatory drawing which shows the outline of the heating surface pressure bonding method of this invention textile fabric. 真空含浸成形法(VaRTM)の概略構成図を示す側面図である。It is a side view which shows the schematic block diagram of a vacuum impregnation molding method (VaRTM).

以下、本発明を代表的な実施形態に基づき、図面を参照しながら詳細に説明する。
従来の一般的な一方向性織物は、特許文献2にもあるように、緯糸としてガラス繊維やアラミド繊維を芯糸として用い、芯糸に添加する低融点の添加糸を溶融して、経糸に熱融着させている。そのため、緯糸と経糸のクリンプによって応力が交錯部に集中して圧縮強度などの強度低下が生じることは、概に述べたとおり広く知られているところである。そこで本発明者らは緯糸と経糸との交錯部におけるクリンプにより応力が集中して強度低下をきたさないように、上記特許文献3と同様、ガラス繊維を使用せず、しかも製織後に面圧着させる一方向性織物の製造方法を提案するものであり、これを図に従って具体的に説明する。
Hereinafter, the present invention will be described in detail based on representative embodiments with reference to the drawings.
As in Patent Document 2, a conventional general unidirectional fabric uses glass fibers or aramid fibers as the weft yarn as the core yarn, melts the low melting point added yarn added to the core yarn, It is heat-sealed. For this reason, it has been widely known that stress is concentrated at the crossing portion due to crimping of the weft and the warp to cause a decrease in strength such as compressive strength. Therefore, the present inventors do not use glass fibers and do surface bonding after weaving, as in the case of Patent Document 3, so that stress is not concentrated due to crimping at the intersection of the weft and warp. A method for producing a directional fabric is proposed, which will be described in detail with reference to the drawings.

図2に示す従来の一方向性織物は耐震補強などの土建用途に用いられることが多く、現場作業において直接、織物とマトリックス樹脂とを用いてコンクリートの補修施工がなされる。そのため、特に、経糸Waと緯糸Weの交錯部に目止めが施されていて炭素繊維糸条間のばらけにくい取扱い性の良い織物が得られる。ここで強度保持するため、一般的には補助繊維として、上述のとおり緯糸Weにガラス繊維などが用いられ、経糸Waとの接着は該経糸Waに熱融着繊維を添設して熱融着させる。ここで言う熱融着繊維とは本発明で言う熱可塑性樹脂繊維糸のことであり、ポリエステル、ナイロン、ポリプロピレンなどの低融点繊維であれば何ら限定するものではない。   The conventional unidirectional woven fabric shown in FIG. 2 is often used for earthwork applications such as seismic reinforcement, and concrete is repaired directly using the woven fabric and matrix resin in the field work. For this reason, in particular, a fabric with good handleability is obtained in which the intersections between the warp yarn Wa and the weft yarn We are provided and the carbon fiber yarns are not easily scattered. In order to maintain the strength here, glass fibers or the like are generally used as auxiliary fibers as the weft yarns, as described above, and adhesion to the warp yarns Wa is performed by attaching the heat fusion fibers to the warp yarns Wa. Let The heat-bonding fiber referred to here is a thermoplastic resin fiber yarn referred to in the present invention, and is not limited as long as it is a low-melting fiber such as polyester, nylon, or polypropylene.

土建用途としての機械物性のうち重要なファクターは引張強度であり、JIS規格に準拠した測定法でスペックが決められているが、その値は炭素繊維糸条の性能によって殆ど決定される。しかしながら、上述の一方向性織物の圧縮強度は大幅に低下するのが実情であり、緯糸を介在させずに炭素繊維糸条を一方向に配列して樹脂で含浸したプリプレグの圧縮強度に比べると強度発現が非常に低く、風力発電機の風車などの強力な機械物性が要求される産業用途には強度不足で利用が困難とされている。そこで、こうした問題を解決するために、まず経糸として配列した炭素繊維糸条のクリンプを如何に減少させるかを検討した結果が、一般的な従来の一方向性織物のように、緯糸にガラス繊維などの補助繊維を使うとともに、熱可塑性樹脂繊維糸を添設して、熱可塑性樹脂繊維糸を経糸に接着させていた。当然ながら、ガラス繊維などは剛直性があるため、平織りで織組織された織物の経糸Waとして配列された炭素繊維糸には必然的にクリンプが発生し、更に、緯糸Weとの交錯により経に配列された炭素繊維糸条は該交錯部で経及び緯方向にふくらみが生じ、真直性が損なわれていた。   An important factor among mechanical properties for civil engineering is tensile strength, and its specifications are determined by a measurement method based on JIS standards, but the value is almost determined by the performance of the carbon fiber yarn. However, in reality, the compressive strength of the unidirectional fabric described above is significantly reduced, compared to the compressive strength of a prepreg impregnated with a resin in which carbon fiber yarns are arranged in one direction without interposing a weft. The strength expression is very low, and it is considered difficult to use due to insufficient strength for industrial applications that require strong mechanical properties such as wind turbines of wind power generators. In order to solve these problems, we first examined how to reduce the crimp of carbon fiber yarns arranged as warps. Auxiliary fibers such as these were used, and thermoplastic resin fiber yarns were added to bond the thermoplastic resin fiber yarns to the warp yarns. Naturally, since glass fibers and the like are rigid, the carbon fiber yarns arranged as warps Wa of the fabric woven in plain weave are inevitably crimped and further warped by the crossing with the wefts We. The aligned carbon fiber yarns were bulged in the warp and weft directions at the intersection, and the straightness was impaired.

このクリンプの発生要因であるガラス繊維を用いず、該樹脂繊維糸のみで緯糸を構成させ、従来の一方向性織物と同様の製法をもって織機上で熱ロールにて樹脂繊維糸を融着させるだけでは、経糸との接着が不十分で、その後の取扱い性に困難をきたしていた。何故ならば、熱ロールに直接接触する織物面の前記樹脂繊維糸が該熱ロールに転写されてしまい、熱ロールとの非接触面だけが経糸と接着されるため、織物としての拘束力を無くしてしまい、織物の形態保持をなし得なくするためである。また、前記熱ロールに直接接触していない面側の該樹脂繊維糸も、前記熱ロールの温度変化により融着度合いの変動が大きいため、特に高温時の熱ロールに接触したときは緯糸方向に沿って該樹脂繊維糸の存在しない箇所が発生する。これは前記樹脂繊維糸の熱収縮によるものである。一方で、単に熱ロールを接触させるこの方法による熱融着では温度コントロールが困難であって、生産性に欠ける。   Without using the glass fiber that is the cause of the crimp, the weft is composed only of the resin fiber yarn, and the resin fiber yarn is simply fused with a hot roll on a loom using the same manufacturing method as a conventional unidirectional fabric. However, the adhesion with the warp was insufficient, and the subsequent handling was difficult. This is because the resin fiber yarn on the fabric surface that is in direct contact with the heat roll is transferred to the heat roll, and only the non-contact surface with the heat roll is bonded to the warp. This is to make it impossible to maintain the shape of the fabric. In addition, the resin fiber yarn on the surface side not in direct contact with the heat roll also has a large variation in the degree of fusion due to the temperature change of the heat roll, so when contacting the heat roll at a high temperature, in the weft direction. A portion where the resin fiber yarn does not exist is generated along the line. This is due to heat shrinkage of the resin fiber yarn. On the other hand, it is difficult to control the temperature by heat fusion by this method in which a hot roll is simply brought into contact, and productivity is lacking.

そこで本発明者らは更に検討を続けたところ、他の融着方法として、少なくとも所定温
度に加熱した加熱金属ローラーを織物の一表面から圧着して経糸と緯糸の交錯部に圧着加工を施せば、温度コントロールが容易な上に熱融着が確実になされることを知った。更に一対の金属加熱ローラーによって織物の両面から圧着加工すると、多数のフィラメントからなる緯糸を経糸との交錯部においても、経糸と緯糸との多数の構成繊維が幅方向に広がり、図1に示すように、前記交錯部が偏平化しつつクリンプの高さが低減するばかりでなく、その周辺部分も偏平化が進み、同時に交錯部における応力が分散されるため、以降のコンポジット強度が確保されることが判明した。
Therefore, the present inventors have continued further studies. As another fusing method, at least a heated metal roller heated to a predetermined temperature is pressure-bonded from one surface of the woven fabric and subjected to pressure-bonding processing at the intersection of the warp and the weft. I found out that the temperature control is easy and the heat fusion is surely performed. Furthermore, when a pair of metal heating rollers are pressed from both sides of the fabric, a large number of constituent fibers of the warp and the weft are spread in the width direction even at the intersection of the weft consisting of a large number of filaments with the warp, as shown in FIG. In addition, not only the height of the crimp is reduced while the crossing portion is flattened, but also the peripheral portion thereof is flattened, and at the same time, stress in the crossing portion is dispersed, so that subsequent composite strength can be secured. found.

図1に示すような一方向性織物を得られることを知った。織物の構成は、経糸1として炭素繊維糸条を配列し、緯糸2に熱可塑性樹脂繊維糸を平織り組織の織構造を形成させることが好ましい。該織物を両面圧着させながら経糸1と緯糸2とを一対の金属熱ローラーにて接合させる。織物の両面を圧着させることで緯糸2は扁平化し、同時に経糸1の炭素繊維糸条間の隙間に緯糸を融着含浸されることができ、更には経糸1として配列した炭素繊維糸条との交錯部で発生するクリンプが、図2に示す従来一方向性織物より遥かに低減していることがわかる。また同時に、経糸1に配列された炭素繊維糸条は長手方向への真直性が向上している。   It has been found that a unidirectional fabric as shown in FIG. 1 can be obtained. The woven fabric is preferably formed by arranging carbon fiber yarns as warp yarns 1 and forming weft structures of weft yarns with thermoplastic resin fiber yarns in a plain weave structure. The warp 1 and the weft 2 are joined by a pair of metal heat rollers while the fabric is pressed on both sides. By pressing both sides of the woven fabric, the weft 2 can be flattened, and at the same time, the weft can be fused and impregnated in the gaps between the carbon fiber yarns of the warp 1. It can be seen that the crimp generated at the intersection is much lower than that of the conventional unidirectional fabric shown in FIG. At the same time, the straightness in the longitudinal direction of the carbon fiber yarn arranged in the warp 1 is improved.

従来の一方向性織物は一般的に緯糸に剛性の大きいガラス繊維を用い、該ガラス繊維に熱可塑性樹脂繊維糸を添設させて熱接着させるため、既述し図2に示すように、経糸1と緯糸2との交錯部にクリンプが発生する。ガラス繊維は織物の取扱い時に形態崩れを防止するための、保持強力を目的として使用している。また、経糸1に配列した炭素繊維糸条と緯糸2のガラス繊維糸とを接着するために、ガラス繊維糸に熱可塑性樹脂繊維糸を添設しているが、織物の拘束力は炭素繊維糸条とガラス繊維とをもって保持するために、前記樹脂繊維糸の繊度は、通常55dtex程度の細い繊維が使用されており、かかる細い繊維であっても接着するには十分な添設量となる。   Conventional unidirectional fabrics generally use glass fibers having high rigidity for the wefts, and thermoplastic resin fiber yarns are attached to the glass fibers for thermal bonding. Therefore, as described above and shown in FIG. Crimping occurs at the intersection of 1 and weft 2. Glass fiber is used for the purpose of holding strength in order to prevent the collapse of the shape when handling the fabric. Further, in order to bond the carbon fiber yarns arranged in the warp yarn 1 and the glass fiber yarns of the weft yarn 2, a thermoplastic resin fiber yarn is attached to the glass fiber yarn. In order to hold the fiber and the glass fiber, the fine fiber of the resin fiber yarn is usually a thin fiber of about 55 dtex, and even such a thin fiber is a sufficient amount for bonding.

しかし、本発明の一方向性織物は熱可塑性樹脂繊維糸のみを緯糸2として配列するため、織物形態を保持するには、ある程度、前記樹脂繊維糸の強力が必要となり、使用する繊度としては大きいほど取扱い性も向上する。また、該樹脂繊維糸と炭素繊維糸との接着力は1.5N以上あれば取扱い性が可能であることから、一般的な取扱い性を考慮すれば熱可塑性樹脂繊維糸は110dtex以上、より好ましくは165〜330dtexとすることが望ましい。110dtex以下では製織後に経方向に蛇行しやすく外観品位も損なう。また炭素繊維糸条の繊度によっては330dtex以上の樹脂繊維糸を用いることもある。なお、熱可塑性樹脂繊維糸はナイロン、ポリエステル、ポリプロピレンなどに限定するものではなく、他の熱可塑性樹脂繊維糸条を使っても何ら差し支えない。   However, since the unidirectional fabric of the present invention arranges only the thermoplastic resin fiber yarns as the weft yarns 2, in order to maintain the fabric form, the resin fiber yarns need some strength and the fineness to be used is large. The handling is also improved. Further, since the handleability is possible if the adhesive strength between the resin fiber yarn and the carbon fiber yarn is 1.5 N or more, the thermoplastic resin fiber yarn is more preferably 110 dtex or more in consideration of general handleability. Is preferably 165 to 330 dtex. If it is less than 110 dtex, it tends to meander in the warp direction after weaving, and the appearance quality is also impaired. Depending on the fineness of the carbon fiber yarn, a resin fiber yarn of 330 dtex or more may be used. The thermoplastic resin fiber yarn is not limited to nylon, polyester, polypropylene, or the like, and other thermoplastic resin fiber yarns may be used.

更に、緯糸の織密度によっても織物の形態保持力が左右され、取扱い性の良好な織物とするには、織密度を高くすることが好ましい。。何故ならば、もともと熱可塑性樹脂繊維糸は収縮が大きく、且つ、織密度が高いと収縮作用がより大きく働き、経に配列した炭素繊維糸条の隙間が小さくなるためである。一方、このように織密度を高くすると、逆に織物が硬くなる傾向があるため、緯糸密度は3〜10本/吋(1.2〜3.9本/cm)とするのが望ましい。また、VaRTM成形や真空バッグ成形の繊維基材として本発明織物を使用する場合、該織物の織密度によって、樹脂の含浸性が影響され、織密度の多い織物は経糸と緯糸との交錯点が多くなり、この交錯点から樹脂移動が多くなると推測され樹脂の含浸性は早くなる。   Further, the weaving density of the wefts also affects the shape holding power of the fabric, and it is preferable to increase the weave density in order to obtain a fabric with good handleability. . This is because the thermoplastic resin fiber yarn originally has a large shrinkage, and when the weave density is high, the shrinkage action works more greatly, and the gap between the carbon fiber yarns arranged in the warp becomes smaller. On the other hand, when the woven density is increased in this manner, the woven fabric tends to become harder. Therefore, the weft density is preferably 3 to 10 yarns / cm (1.2 to 3.9 yarns / cm). Further, when the woven fabric of the present invention is used as a fiber base material for VaRTM molding or vacuum bag molding, the impregnation property of the resin is affected by the woven density of the woven fabric, and the woven fabric having a high woven density has a crossing point of warp and weft. From this intersection point, the resin movement is estimated to increase, and the impregnation property of the resin is accelerated.

次いで、本発明の製造方法について、簡単に説明する。
通常のシャトル式織機、レピア織機の製織工程において、図3に示すように、クリール11に掛けた経糸1を横取りしながら引き出し、各ガイド12、コーム13類を経て経糸供給装置を通過後、ヘルド14、筬15へと導かれる。経糸1の供給方法は経糸1に撚り
や捩れをできるだけ生じさせないようクリール11からの横取りが好ましいが、部分整経による経糸準備を経由させても差し支えない。織組織は平織、綾織、朱子織のいずれでも差し支えないが、好ましくは拘束力のある平織が好ましい。
Next, the production method of the present invention will be briefly described.
In the weaving process of a normal shuttle loom or rapier loom, as shown in FIG. 3, the warp 1 hung on the creel 11 is pulled out while passing through the guides 12 and combs 13 and passed through the warp supply device. 14 and led to 筬 15. As a method for supplying the warp 1, it is preferable that the warp 1 be cut off from the creel 11 so as to prevent twisting and twisting as much as possible. However, warp preparation by partial warping may be used. The weave structure may be any of plain weave, twill weave, and satin weave, but a plain weave having a binding force is preferable.

平織組織に従うヘルド14の昇降動作により開口された経糸1の開口に、例えばレピアで緯糸2を縦取りして挿入する。或いは、緯糸2を一度木管に巻き返し、シャトル内へ該木管を収めた後、シャトルを往復運動させて緯糸2を挿入する。挿入された緯糸2は筬15により、筬打ちされて織物が形成される。経糸1に対する緯糸の接合工程は、図4に示すように、製織された織物Fはガイドロールを経て水平に引き出され、別途供給される上下一対の剥離紙17,18を、上下のガイドロール19,20にて前記織物Fの上下から挟むようにして合流させ、織物Fの上下両面に添設させた後、緯糸2の融点以上に加熱された1対の金属ローラー21,22の間へと導入される。経糸1に対する緯糸2の接着力は、使用している熱融着樹脂繊維糸により殆ど決定される。   For example, the weft 2 is taken up and inserted into the opening of the warp 1 opened by the elevating operation of the heald 14 according to the plain weave structure, for example, with a rapier. Alternatively, the weft 2 is once wound around the wooden pipe, and after the wooden pipe is stored in the shuttle, the shuttle is reciprocated to insert the weft 2. The inserted weft yarn 2 is beaten by a reed 15 to form a woven fabric. As shown in FIG. 4, the joining process of the weft to the warp 1 is carried out by drawing the woven fabric F horizontally through a guide roll and supplying a pair of upper and lower release papers 17 and 18 separately supplied to an upper and lower guide roll 19. , 20 so as to be sandwiched from above and below the fabric F, and attached to both the top and bottom surfaces of the fabric F, and then introduced between a pair of metal rollers 21 and 22 heated above the melting point of the weft 2. The The adhesive force of the weft 2 to the warp 1 is almost determined by the heat-sealing resin fiber yarn used.

更に前記接着力は、前記金属ローラー21,22の圧力にも多少影響されるが、そのときのローラー圧力はむしろ前記織物の品位により影響されし、前記ローラー21,22の大きさ、重量にもよるため、接着対象となる織物に合わせて、クリアランスをとったり、圧力を調整したりして、織物Fの外観状態を見て適宜設定すればよい。しかし、圧力が高すぎると緯糸2が蛇行しやすく、また、織物Fに毛羽が発生する。こうした点に配慮したとき、使用する金属ローラー径を300mmφ以上とすればクリアランスがなしで、圧力を0kg/cm2 として、所謂金属ローラー21の自重による圧力だけで十分に接合が可能となる。 Further, the adhesive force is somewhat affected by the pressure of the metal rollers 21 and 22, but the roller pressure at that time is rather influenced by the quality of the fabric, and the size and weight of the rollers 21 and 22 are also affected. Therefore, the clearance may be adjusted or the pressure may be adjusted according to the fabric to be bonded, and the appearance of the fabric F may be set as appropriate. However, if the pressure is too high, the weft 2 tends to meander, and fluff is generated in the fabric F. Considering these points, if the diameter of the metal roller to be used is 300 mmφ or more, there is no clearance, and the pressure can be set to 0 kg / cm 2 , and sufficient bonding can be achieved only by the pressure of the so-called weight of the metal roller 21.

次いで、加熱金属ローラー21,22によって100℃以上の比較的高温で圧着された前記織物Fは金属プレート23の上面に接触させられる。該金属プレート23は前記織物Fを冷却して温度を下げた後に剥離紙17,18を剥がしやすくするためである。その冷却方法は、例えば図示せぬファンなどで強制的に冷却する方法でも、自然冷却でも適宜選定すればよい。冷却された前記織物Fの上下両面に添設した剥離紙17,18は金属プレート23の下流側に配されたガイドロール24によって上下に剥離され、それぞれの剥離紙巻取りロール25,26に巻き取られる。この後、両面圧着により該織物Fの緯糸2である熱融着樹脂繊維糸が溶融されて経糸1である炭素繊維糸条の相互を融着接合した該織物Fはワインダー27によって巻き取られる。   Next, the fabric F pressed by the heated metal rollers 21 and 22 at a relatively high temperature of 100 ° C. or higher is brought into contact with the upper surface of the metal plate 23. The metal plate 23 is for making it easy to peel off the release papers 17 and 18 after cooling the fabric F and lowering the temperature. As the cooling method, for example, a method of forcibly cooling with a fan (not shown) or a natural cooling may be selected as appropriate. The release papers 17 and 18 attached to the upper and lower surfaces of the cooled fabric F are peeled up and down by guide rolls 24 arranged on the downstream side of the metal plate 23, and taken up by the release paper take-up rolls 25 and 26, respectively. It is done. Then, the fabric F obtained by melting the heat-sealing resin fiber yarns, which are the weft yarns 2 of the fabric F, and the carbon fiber yarns, which are the warp yarns 1, is wound by the winder 27.

上述の接着強力の測定方法は、次のようにして行う。まず、一方向性織物を150mm幅に経糸1に対して平行に切断して試験片を作成する。この試験片を、机などの平面上にテープで固定する。次に、その試験片の経糸の中央部にバネ秤りのフックを引っ掛け、該織物を平面と平行かつ引っ掛けた経糸に垂直な方向に引っ張っていき、経糸と緯糸との融着が剥がれる直前にバネ秤りが示す目盛りの最大値を測定する。これをそれぞれの試験片について30回繰り返して測定し、それぞれの平均値を前記一方向性織物の経糸の接着強力とする。   The method for measuring the adhesive strength is performed as follows. First, a unidirectional fabric is cut into a width of 150 mm in parallel to the warp 1 to prepare a test piece. The test piece is fixed with a tape on a flat surface such as a desk. Next, hook the hook of a spring scale on the center of the warp of the test piece, pull the fabric in a direction parallel to the plane and perpendicular to the hooked warp, and immediately before the fusion between the warp and the weft is peeled off Measure the maximum scale indicated by the spring scale. This is repeated 30 times for each test piece, and the average value of each is taken as the adhesive strength of the warp yarn of the unidirectional fabric.

次に、本発明による炭素繊維強化プラスチックの成形法を説明する。
図5は本発明のCFRPの成形法を説明する断面図である。同図において、成形型101に離型剤を塗布し、その上に繊維基材FBとして本発明の一方向性炭素繊維織物Fが所定の方向に所定の枚数が積層され、その上に樹脂が硬化した後に引き剥がして除去する剥離シート、いわゆるピールプライ102を積層する。このピールプライ102の上面に、繊維基材FBの全面に樹脂を拡散させるための媒体103を配置する。また、繊維基材FBの繊維軸方向の両端に樹脂を堆積させるスパイラルチューブ104を配置し、スパイラルチューブ104に図示せぬ真空ポンプの吸引口105を取り付け、それら全体をバッグフィルム106で覆い、空気が漏れないようにバッグフィルム106の周囲をシール材1
07をもって成形型101に接着する。
Next, a method for molding a carbon fiber reinforced plastic according to the present invention will be described.
FIG. 5 is a cross-sectional view for explaining the CFRP molding method of the present invention. In the figure, a mold release agent is applied to a mold 101, and a predetermined number of unidirectional carbon fiber fabrics F of the present invention are laminated in a predetermined direction as a fiber base FB, and a resin is placed thereon. A release sheet that is peeled off and removed after curing, a so-called peel ply 102 is laminated. On the upper surface of the peel ply 102, a medium 103 for diffusing the resin over the entire surface of the fiber base FB is disposed. Further, a spiral tube 104 for depositing resin is disposed on both ends of the fiber base FB in the fiber axis direction, a suction port 105 of a vacuum pump (not shown) is attached to the spiral tube 104, and the whole is covered with a bag film 106, and air Seal material 1 around the bag film 106 to prevent leakage
07 is bonded to the mold 101.

図示せぬ樹脂タンクから注入されるマトリックス樹脂の吐出口109をスパイラルチューブ104に連結させる。樹脂タンク( 図示なし) には、硬化剤を所定量加えた常温でシロップ状の常温硬化型の熱硬化性樹脂を入れておく。なお、使用する樹脂の粘度による樹脂含浸性の影響は大きい。通常のVaRTM成形や真空バッグ成形では樹脂の流動性のよい低粘度品が好ましい。樹脂注入時の樹脂粘度としては500mPa・s以下が良好であり、より好ましくは300mPa・s以下がよい。次いで、図示せぬ真空ポンプによってバッグフィルム106で覆われた繊維基材FBを、真空圧力が70〜76cmHg程度の真空状態にした後、バルブ108を開放してマトリックス樹脂を注入する。   A matrix resin discharge port 109 injected from a resin tank (not shown) is connected to the spiral tube 104. In a resin tank (not shown), a room temperature curable thermosetting resin in the form of a syrup at room temperature with a predetermined amount of curing agent added is placed. The effect of resin impregnation due to the viscosity of the resin used is large. In normal VaRTM molding and vacuum bag molding, a low-viscosity product with good resin flowability is preferred. The resin viscosity at the time of resin injection is preferably 500 mPa · s or less, more preferably 300 mPa · s or less. Next, the fiber substrate FB covered with the bag film 106 by a vacuum pump (not shown) is evacuated to a vacuum pressure of about 70 to 76 cmHg, and then the valve 108 is opened to inject the matrix resin.

このとき、バッグフィルム106で覆われた内部は真空状態となり、繊維基材FBの長さ方向(図5の左右方向)より媒体103の面方向の方が樹脂の流通抵抗が小さいことから、まず樹脂は媒体103の前面に拡散されたのち、次いで繊維基材FBの厚さ方向へと含浸が進行する。しかし、この含浸度合いは繊維基材FBとして用いる炭素繊維織物の形態にかなり影響される。当然ながら繊維糸条間に隙間をもつ織物ほど厚さ方向への樹脂の含浸は速く完了する。なお、媒体103としては繊維径0.2〜0.5mm程度のポリエチレンやポリプロピレンなどのモノフィラメントを用いたメッシュ調シートやラッセル編で形成されたシートなど、特に限定されるのではない。また、真空ポンプは少なくともマトリックス樹脂の含浸が完了するまで運転し、含浸の完了までバッグフィルム内を真空状態に保つことが好ましい。樹脂含浸の完了後、ピールプライ102を剥がして、媒体103やバッグフィルム106などを除去し、成形型101から脱型することによって炭素繊維強化プラスチック(CFRP)成形品が得られる。   At this time, the inside covered with the bag film 106 is in a vacuum state, and the flow resistance of the resin is smaller in the surface direction of the medium 103 than in the length direction of the fiber substrate FB (left and right direction in FIG. 5). After the resin is diffused on the front surface of the medium 103, the impregnation proceeds in the thickness direction of the fiber base FB. However, the degree of impregnation is considerably affected by the form of the carbon fiber fabric used as the fiber base FB. Naturally, the impregnation of the resin in the thickness direction is completed faster as the woven fabric has a gap between the fiber yarns. The medium 103 is not particularly limited, such as a mesh-like sheet using a monofilament such as polyethylene or polypropylene having a fiber diameter of about 0.2 to 0.5 mm, or a sheet formed by Russell knitting. The vacuum pump is preferably operated until at least the impregnation of the matrix resin is completed, and the bag film is preferably kept in a vacuum state until the completion of the impregnation. After the resin impregnation is completed, the peel ply 102 is peeled off, the medium 103, the bag film 106 and the like are removed, and the mold is removed from the mold 101 to obtain a carbon fiber reinforced plastic (CFRP) molded product.

なお、本発明に用いるピールプライ102は樹脂を通過させることが必要であり、ナイロン繊維織物やポリエステル繊維織物、ガラス繊維織物などを用いることができる。該織物の織密度は少ないものほど隙間が大きいため、樹脂の通過は容易である反面、樹脂が硬化して最後に剥がしたときに繊維基材の表面に凹凸が発生する。そのため、できるだけ樹脂の通過性に優れ、表面に凹凸の発生しにくいものを選択することがよい。また、バッグフィルム106は機密性があることが必要であり、ナイロンフィルム、ポリエステルフィルムなどを用いることができる。   Note that the peel ply 102 used in the present invention needs to allow the resin to pass therethrough, and a nylon fiber fabric, a polyester fiber fabric, a glass fiber fabric, or the like can be used. The smaller the woven density of the woven fabric, the larger the gap, so that the resin can pass easily. On the other hand, when the resin is cured and finally peeled, irregularities are generated on the surface of the fiber substrate. For this reason, it is preferable to select a resin that is as excellent as possible in resin passage and in which unevenness is unlikely to occur on the surface. The bag film 106 needs to have confidentiality, and a nylon film, a polyester film, or the like can be used.

なお、本発明の製造法では樹脂の含浸性を速やかにするため、樹脂を拡散するための媒体103を使用しているが、該媒体103を使用しなくても、含浸時間は多少長くなるものの、成形性には殆ど影響しないため、これらに限定するものではない。   In the production method of the present invention, the medium 103 for diffusing the resin is used in order to make the impregnation property of the resin quick. However, even if the medium 103 is not used, the impregnation time is somewhat longer. However, it is not limited to these because it hardly affects the moldability.

以下、本発明の繊維強化プラスチックに関する実施例を更に具体的に説明する。
(実施例1〜5)
表1に示すように、経糸にフィラメント数12000本の炭素繊維束糸条(三菱レイヨン株式会社製パイロフィルTR50S)を用いて津田駒製レピア織機を使って製織を実施した。緯糸に熱融着繊維(東レ株式会社社製)を用い、目付200及び300g/m2 の一方向性織物を製織した。製織後、該織物を図4に示す装置にて130℃に設定した上下の金属熱ローラーに3m/分の速度で導入し、緯糸に配した熱融着繊維糸を経糸の炭素繊維糸条に両面圧着させ、融着接合された一方向性織物に加工して、その取扱い性、接着強力の評価を実施した。その結果を表1に示した。
Examples relating to the fiber-reinforced plastic of the present invention will be described more specifically below.
(Examples 1-5)
As shown in Table 1, weaving was carried out using a Tsudakoma rapier loom using 12,000 filaments of carbon fiber (Pyrofil TR50S manufactured by Mitsubishi Rayon Co., Ltd.). A heat-bonding fiber (manufactured by Toray Industries, Inc.) was used as the weft, and a unidirectional woven fabric with a basis weight of 200 and 300 g / m 2 was woven. After weaving, the woven fabric was introduced into upper and lower metal heat rollers set at 130 ° C. with the apparatus shown in FIG. 4 at a speed of 3 m / min, and the heat-fused fiber yarn arranged on the weft was used as the warp carbon fiber yarn. Both sides were pressure-bonded and processed into a fusion-bonded unidirectional fabric, and the handleability and adhesive strength were evaluated. The results are shown in Table 1.

実施例1では目付200g/m2 、実施例2〜5では目付を300g/m2 となるように、緯糸である熱融着糸の各織密度を、2、1.2、2、3.9、2本/cmにそれぞれ変更したところ、実施例1〜4のいずれも十分な接着性があり、取扱い性も良好であった
。特に実施例4では非常に強固な接着力があった。実施例5では熱融着樹脂繊維糸を110dtexで用いたところ、実施例1〜3並みの接着性を有していた。
In Example 1, each fabric density of the heat-sealing yarn as the weft is 2 , 1.2, 2 , 3, so that the basis weight is 200 g / m 2 and in Examples 2 to 5, the basis weight is 300 g / m 2 . When changed to 9, 2 / cm respectively, all of Examples 1 to 4 had sufficient adhesiveness and good handleability. In particular, Example 4 had a very strong adhesive force. In Example 5, when the heat-sealing resin fiber yarn was used at 110 dtex, the adhesiveness was the same as in Examples 1 to 3.

(比較例1〜3)
同じく表1に示すように、経糸に実施例1〜5と同様の炭素繊維束糸条(三菱レイヨン株式会社製パイロフィルTR50S)を用い、津田駒製レピア織機を使って製織を実施した。比較例1及び2の緯糸に実施例1〜5と同じ熱融着繊維(東レ株式会社製)を用い、目付を300g/m2 として一方向性織物を製織した。比較例1及び2の織密度は、それぞれを2、5本/cmとして製織後、実施例1〜5と同様の条件で上下の金属熱ローラーに導入し、緯糸に配した熱融着繊維糸を経糸の炭素繊維糸条に両面圧着させ、融着接合された一方向性織物に加工して、その取扱い性、接着強力の評価を実施した。その結果を表1に示した。
(Comparative Examples 1-3)
Similarly, as shown in Table 1, we used carbon fiber bundle yarns (Pyrofil TR50S manufactured by Mitsubishi Rayon Co., Ltd.) similar to those in Examples 1 to 5 as warps and weaved them using a Tsudakoma rapier loom. For the wefts of Comparative Examples 1 and 2, the same heat-fusible fibers (made by Toray Industries, Inc.) as in Examples 1 to 5 were used, and a unidirectional woven fabric was woven with a basis weight of 300 g / m 2 . The weave density of Comparative Examples 1 and 2 was set to 2, 5 / cm, respectively, and after weaving, introduced into the upper and lower metal heat rollers under the same conditions as in Examples 1 to 5, and the heat-bonded fiber yarn arranged on the weft Was bonded to both sides of a carbon fiber yarn of warp and processed into a fusion-bonded unidirectional fabric, and the handleability and adhesive strength were evaluated. The results are shown in Table 1.

また、比較例1では緯糸に55dtexの熱融着樹脂繊維糸を用いているが、接着性がかなり劣り、実用に供し得ないものであった。比較例1では緯糸に330dtexの熱融着樹脂繊維糸を用い、更に、緯糸密度を0.5本/cmとしたところ、緯糸ピッチが粗すぎて取り扱い性が非常に悪く、接着強力も劣っていた。比較例3では緯糸としてガラス繊維に熱融着樹脂繊維糸を添設させた、所謂従来の一方向性織物であり、非常に硬いものであったが、接着性は良好であった。   In Comparative Example 1, a 55 dtex heat-sealed resin fiber yarn was used for the weft, but the adhesiveness was considerably inferior and could not be put to practical use. In Comparative Example 1, a heat-sealable resin fiber yarn of 330 dtex was used as the weft, and when the weft density was 0.5 yarn / cm, the weft pitch was too coarse, the handling property was very poor, and the adhesive strength was also inferior. It was. In Comparative Example 3, a so-called conventional unidirectional woven fabric in which a heat-fusing resin fiber yarn was added to glass fiber as a weft and was very hard, but the adhesiveness was good.

(実施例6)
VaRTM成形を実施するため、実施例3で得られた織物を300×300mm角に切断したものを、6枚いずれも経糸角度を0°方向にして積層した。用いた樹脂はナガセケムテック株式会社製のインフュージョン成形用エポキシ樹脂XNR6815( 混合物樹脂粘度260mPa・s )で主剤と硬化剤を100:27の配合で注入し、成形後は30℃×24時間維持し、更に80℃×2時間でポストキュアを行い成形板を製作した。次いで、SACMA法SRM1R規格に準拠して圧縮強度を測定した。得られたコンポジットの物性は、表2に示すように、特に圧縮強度が比較例3に比べ約40%向上した。
(Example 6)
In order to carry out VaRTM molding, all of the woven fabrics obtained in Example 3 cut into 300 × 300 mm squares were laminated with the warp angle set to 0 °. The resin used was an infusion molding epoxy resin XNR6815 (mixture resin viscosity 260 mPa · s) manufactured by Nagase Chemtech Co., Ltd., and the main agent and curing agent were injected in a blending ratio of 100: 27 and maintained at 30 ° C. for 24 hours after molding. Further, post-curing was performed at 80 ° C. for 2 hours to produce a molded plate. Subsequently, the compressive strength was measured based on the SACMA method SRM1R standard. As shown in Table 2, the physical properties of the obtained composite were particularly improved by about 40% in compressive strength as compared with Comparative Example 3.

*比較例3:従来の一方向性織物で緯糸はガラス繊維に熱可塑性樹脂繊維を添設
判定基準 :◎・・・非常に良好
○・・・良好
×・・・不良
* Comparative Example 3: Conventional unidirectional woven fabric with weft added glass fiber with thermoplastic resin Criteria: ◎ ・ ・ ・ Very good
○ ・ ・ ・ Good
× ... defect

1 経糸
2 緯糸
11 クリール
12 ガイド
13 コーム
14 ヘルド
15 筬
16 ガイドロール
17,18 剥離紙
19,20 上下のガイドロール
21,22 (加熱)金属ローラー
23 金属プレート
24 ガイドロール
25,26 剥離紙巻取りロール
27 ワインダー
101 成形型
102 ピールプライ
103 媒体
104 スパイラルチューブ
105 吸引口
106 バッグフィルム
107 シール材
108 バルブ
109 吐出口
Wa 経糸
We 緯糸
F 織物
FB 繊維基材
DESCRIPTION OF SYMBOLS 1 Warp 2 Weft 11 Creel 12 Guide 13 Comb 14 Held 15 筬 16 Guide rolls 17 and 18 Release papers 19 and 20 Upper and lower guide rolls 21 and 22 (Heating) Metal roller 23 Metal plate 24 Guide rolls 25 and 26 Release paper take-up roll 27 Winder 101 Mold 102 Peel Ply 103 Medium 104 Spiral Tube 105 Suction Port 106 Bag Film 107 Sealing Material 108 Valve 109 Discharge Port Wa Warp Weft F Woven Fabric FB Fiber Base

Claims (6)

複数の炭素繊維糸条を経方向に配列し、該経糸に直交する緯糸に熱可塑性樹脂繊維糸を用いて製織する織物の製造方法であって、該緯糸が繊度110〜660dtex、緯糸密度1.2〜3.9本/cmで構成した該織物の両面を、該緯糸の融点以上の温度で加熱し面圧着させ経糸相互を熱融着させる一方向性織物の製造方法。   A method of manufacturing a woven fabric in which a plurality of carbon fiber yarns are arranged in the warp direction and woven using thermoplastic resin fiber yarns in the wefts orthogonal to the warp yarns, wherein the weft yarns have a fineness of 110 to 660 dtex and a weft density of 1. A method for producing a unidirectional woven fabric, in which both sides of the woven fabric composed of 2 to 3.9 yarns / cm are heated at a temperature equal to or higher than the melting point of the weft yarns and subjected to surface pressure bonding so that the warp yarns are thermally fused. 請求項1記載の製造方法によって得られる一方向性織物。   A unidirectional fabric obtained by the production method according to claim 1. 経糸と緯糸との接着強力が1.5N以上である請求項2記載の一方向性織物。   The unidirectional fabric according to claim 2, wherein the adhesive strength between the warp and the weft is 1.5 N or more. 経糸に炭素繊維糸条を配列し、緯糸に熱可塑性樹脂繊維糸を用いて製織された織物を、別工程において該織物の両面を前記緯糸の融点以上の温度の加熱ロールで両面圧着させて該織物を一体保持させる一方向性織物の製造方法。   In a separate process, a woven fabric in which carbon fiber yarns are arranged as warps and thermoplastic resin fiber yarns are used as wefts, and both sides of the woven fabric are bonded on both sides with a heating roll having a temperature equal to or higher than the melting point of the wefts. A method for producing a unidirectional fabric in which the fabric is integrally held. 請求項2又は3に記載の一方向性織物の少なくとも1 層以上の積層体が繊維基材として用いられた繊維強化プラスチック成形品。   A fiber-reinforced plastic molded article in which a laminate of at least one layer of the unidirectional woven fabric according to claim 2 or 3 is used as a fiber base material. 請求項2又は3に記載の一方向性織物を、繊維基材として成形型に少なくとも1層以上積層し、繊維基材全体をバッグフィルムで覆い、つぎにバッグフィルムで覆われた内部を真空状態とし、積層された繊維基材の繊維軸に対して垂直方向の片面から常温硬化型樹脂を注入拡散させ、繊維基材に常温硬化型樹脂を含浸させる繊維強化プラスチックの成形方法。   The unidirectional woven fabric according to claim 2 or 3 is laminated as a fiber base material on at least one layer on a mold, the whole fiber base material is covered with a bag film, and then the inside covered with the bag film is in a vacuum state And forming a fiber reinforced plastic by injecting and diffusing a room temperature curable resin from one surface perpendicular to the fiber axis of the laminated fiber base material, and impregnating the fiber base material with the room temperature curable resin.
JP2011054424A 2011-03-11 2011-03-11 Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof Withdrawn JP2012188786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011054424A JP2012188786A (en) 2011-03-11 2011-03-11 Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011054424A JP2012188786A (en) 2011-03-11 2011-03-11 Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof

Publications (1)

Publication Number Publication Date
JP2012188786A true JP2012188786A (en) 2012-10-04

Family

ID=47082248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011054424A Withdrawn JP2012188786A (en) 2011-03-11 2011-03-11 Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof

Country Status (1)

Country Link
JP (1) JP2012188786A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218406A (en) * 2014-05-16 2015-12-07 コーエイセンイ株式会社 Tension member and manufacturing method therefor
JP2019014997A (en) * 2017-07-07 2019-01-31 ユニチカ株式会社 Weft for carbon fiber woven fabric and carbon fiber woven fabric using weft
CN110129984A (en) * 2019-06-12 2019-08-16 浙江恒石纤维基业有限公司 A kind of ultra high modulus uniaxially glass fabric and preparation method and application
CN114134613A (en) * 2021-11-23 2022-03-04 烟台泰普龙先进制造技术有限公司 Multi-frame woven aramid fiber unidirectional cloth, aramid fiber unidirectional cloth and processing system and method thereof
KR102459598B1 (en) * 2022-04-26 2022-10-27 주식회사 위드코 Carbon fiber sheet manufacturing method and carbon fiber sheet manufactured by the manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218406A (en) * 2014-05-16 2015-12-07 コーエイセンイ株式会社 Tension member and manufacturing method therefor
JP2019014997A (en) * 2017-07-07 2019-01-31 ユニチカ株式会社 Weft for carbon fiber woven fabric and carbon fiber woven fabric using weft
JP7033770B2 (en) 2017-07-07 2022-03-11 ユニチカ株式会社 Warp and weft for carbon fiber woven fabric and carbon fiber woven fabric using this weft
CN110129984A (en) * 2019-06-12 2019-08-16 浙江恒石纤维基业有限公司 A kind of ultra high modulus uniaxially glass fabric and preparation method and application
CN114134613A (en) * 2021-11-23 2022-03-04 烟台泰普龙先进制造技术有限公司 Multi-frame woven aramid fiber unidirectional cloth, aramid fiber unidirectional cloth and processing system and method thereof
KR102459598B1 (en) * 2022-04-26 2022-10-27 주식회사 위드코 Carbon fiber sheet manufacturing method and carbon fiber sheet manufactured by the manufacturing method

Similar Documents

Publication Publication Date Title
US10035301B2 (en) Unidirectional reinforcement, a method of producing a reinforcement and the use thereof
JP5309561B2 (en) Method for producing reinforcing fiber base laminate for preform, method for producing preform, and method for producing reinforcing fiber plastic
AU2009201820B2 (en) Reinforcing fiber substrate, composite material and method for producing the same
EP0756027B1 (en) Reinforced woven material and method and apparatus for manufacturing the same
JP4899692B2 (en) Reinforcing fiber fabric and method for producing the same
JP4626340B2 (en) Method for producing reinforcing fiber substrate and method for producing composite material using the substrate
DK2874802T3 (en) UNIFORM REINFORCEMENT AND PROCEDURE FOR MANUFACTURING UNIVERSAL REINFORCEMENT
JPS63152637A (en) Preform material for reinforcement of resin
JP2012188786A (en) Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
JP2010084372A (en) Woven fiber-reinforced sheet and method of manufacturing the same
JP2002138344A (en) Unidirectional carbon fiber woven fabric, method for producing the same, and reinforced concrete structure
JP2012172281A (en) Method for manufacturing bidirectionally reinforced fiber fabric
JP4341419B2 (en) Preform manufacturing method and composite material manufacturing method
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
JP4819340B2 (en) Reinforced fiber lamination joining device
KR102512971B1 (en) Carbon fiber fabric and method of manufacturing the same
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP2005179845A (en) Unidirectional woven carbon fiber fabric and method for producing the same
JP5796732B2 (en) Fiber reinforced sheet, method for producing the same, and fiber reinforced composite material
JP5461930B2 (en) Reinforcing fiber fabric and method for producing the same
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
US11505660B2 (en) Fiber reinforced materials with improved fatigue performance
JP2017160571A (en) Manufacturing method of reinforcing fiber woven fabric and manufacturing apparatus thereof
JP2013119679A (en) Unidirectional woven fabric and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121228

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513