WO2013133437A1 - High-basis-weight carbon fiber sheet for rtm process, and rtm process - Google Patents

High-basis-weight carbon fiber sheet for rtm process, and rtm process Download PDF

Info

Publication number
WO2013133437A1
WO2013133437A1 PCT/JP2013/056553 JP2013056553W WO2013133437A1 WO 2013133437 A1 WO2013133437 A1 WO 2013133437A1 JP 2013056553 W JP2013056553 W JP 2013056553W WO 2013133437 A1 WO2013133437 A1 WO 2013133437A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber
sheet
resin
twisted
Prior art date
Application number
PCT/JP2013/056553
Other languages
French (fr)
Japanese (ja)
Inventor
宮尾 巻治
小林 朗
正棋 荒添
Original Assignee
新日鉄住金マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金マテリアルズ株式会社 filed Critical 新日鉄住金マテリアルズ株式会社
Priority to JP2013528417A priority Critical patent/JP6138045B2/en
Publication of WO2013133437A1 publication Critical patent/WO2013133437A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/547Measures for feeding or distributing the matrix material in the reinforcing structure using channels or porous distribution layers incorporated in or associated with the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3644Vacuum bags; Details thereof, e.g. fixing or clamping

Definitions

  • a large FRP material used for wind turbine blades, vehicles, ships, etc.
  • an RTM method or a VaRTM method (hereinafter referred to as an RTM method) It is related to the high-weight carbon fiber sheet used in the production of the “RTM method” including the VaRTM method, and also relates to the RTM method using such a high-weight carbon fiber sheet. is there.
  • the RTM method is characterized by the use of dry (non-impregnated) reinforcing fiber sheets that do not contain resin, and the direction required by laminating, sewing, or fusing in accordance with the shape of the product.
  • This is a method of making a product (preform) so that the required strength is obtained, placing it in a mold, injecting resin, and curing (heating if necessary) to make a product. Vacuuming is also performed at the time of resin injection, and it is particularly called the VaRTM method.
  • a large FRP material fiber reinforced plastic material used for, for example, a windmill blade, a vehicle, a ship, and the like is produced by the RTM method.
  • such a large molded product often uses a glass mat or a non-woven fabric as the reinforcing fiber sheet.
  • a large FRP material is produced by the RTM method
  • a carbon fiber sheet produced by simply aligning carbon fibers in one direction is used, the orientation of carbon fibers tends to be disturbed during resin injection.
  • Woven or knitted carbon fiber sheets, or unidirectional carbon fiber sheets that are stitched into a sheet shape are used, and carbon fiber sheets that have carbon fibers arranged in only one direction are completely not being used. That is, the carbon fiber sheet currently used is only used by laminating a plurality of woven fabrics having a basis weight of the sheet of 200 to 400 g / m 2 so as to obtain a predetermined fiber basis weight.
  • each carbon fiber bundle (carbon fiber strand) constituted by converging tens of thousands of carbon fibers (filaments), and arranged the carbon fiber strands in one direction to form a carbon fiber sheet.
  • the strength did not decrease by specifying the number of twists applied to the carbon fiber bundle (carbon fiber strand), and a predetermined number of twists were applied.
  • a carbon fiber sheet made of a fiber bundle composed of a large number of carbon fiber filaments was proposed.
  • the carbon fiber sheet described in Patent Document 1 has excellent resin impregnation properties, but the fiber basis weight of the carbon fiber sheet is 50 to 800 g / m 2 . Further, as described in Patent Document 1, the carbon fiber sheet having such a structure is attached with an adhesive impregnated for reinforcing a structure such as a bridge or an elevated road, When a fiber reinforced plastic product is produced by applying and impregnating a resin by up-up or the like, if the fiber basis weight exceeds 800 g / m 2 , particularly if it exceeds 1000 g / m 2 , the resin impregnation property deteriorates and becomes impractical. .
  • the inventor conducted further research and experiments based on the technique described in the above-mentioned Patent Document 1, and a fiber bundle in which the twisted resin is not impregnated, for example, 50K (the number of carbon fiber filaments is 50,000). ) And a high-weight carbon fiber sheet having a fiber basis weight exceeding 800 g / m 2 , and using this carbon fiber sheet, a large molded product, for example, An attempt was made to produce a large FRP material (fiber reinforced plastic material) for use in windmill blades, vehicles, ships, and the like.
  • FRP material fiber reinforced plastic material
  • RTM resin An extremely low viscosity resin (RTM resin) can be used in the RTM method. That is, conventionally, the viscosity of a construction resin for civil engineering and construction using a unidirectional carbon fiber sheet is about 3000 to 10000 mPa ⁇ s / 23 ° C.
  • the viscosity of the resin for RTM is about 30 to 300 mPa ⁇ s at the time of resin injection (temperature 25 ° C. as an example), and the fiber basis weight using a large-diameter carbon fiber strand is 800 g / m. 2, greater even at high basis weight carbon fiber sheet exceeding even 1000 g / m 2 is impregnated very efficiently.
  • the object of the present invention is to use a carbon fiber sheet using thick carbon fiber strands, so that the carbon fiber Vf (carbon fiber per unit cross-sectional area) is compared with molding by stacking a plurality of thin carbon fiber strand sheets.
  • An object of the present invention is to provide a high-weight carbon fiber sheet for an RTM method and an RTM method that can increase the cross-sectional area ratio) and improve the performance of the FRP material.
  • Another object of the present invention is a twist that can be used when a large FRP material having a fiber basis weight exceeding 800 g / m 2 , for example, used for a windmill blade, a vehicle, a ship, etc., is produced by the RTM method. It is to provide a high-weight carbon fiber sheet for an RTM method and an RTM method using a carbon fiber strand having a large diameter of, for example, 50K, which is impregnated with resin.
  • the first aspect of the present invention is a single twisted fiber bundle produced by twisting 5 to 50 times per meter to a carbon fiber strand in which 50,000 to 60000 carbon fiber monofilaments are converged, or A plurality of carbon fiber strands in which 50,000 to 60,000 carbon fiber monofilaments are converged are combined and a twisted fiber bundle produced by twisting 5 to 50 times per meter is arranged in one direction so as not to overlap.
  • Each of the single twisted fiber bundles or each of the twisted fiber bundles is fixed to each other with a fixing fiber material, and has a fiber basis weight of more than 800 g / m 2 and 6000 g / m 2 or less. This is a high-weight carbon fiber sheet for construction methods.
  • a gap (g) of 0 to 2 mm is formed between each single twisted fiber bundle or each twisted fiber bundle.
  • the twisted fiber bundle is formed by twisting 2 to 5 single fiber bundles.
  • the fixing fiber material includes the single twisted fiber bundle or the single twisted fiber bundle in the direction perpendicular to the longitudinal direction of the single twisted fiber bundle or the twisted fiber bundle.
  • the weft is a yarn made of glass fiber or organic fiber.
  • the fixing fiber material is disposed on one side or both sides of each single twisted fiber bundle or each twisted fiber bundle arranged in one direction, and is bonded or melted. This is a worn mesh-like support sheet.
  • the mesh-like support sheet is formed by orienting yarns made of glass fibers uniaxially, biaxially, or triaxially and coated on the surface of the yarn. Is bonded or fused to each single twisted fiber bundle or each single twisted fiber bundle.
  • the carbon fiber sheet is a high-weight carbon fiber sheet for any RTM construction method configured as described above
  • the resin is an RTM method characterized by a viscosity at the time of resin injection of 30 to 300 mPa ⁇ s.
  • the resin is an epoxy resin, a polyester resin, a vinyl ester resin, an MMA resin, an unsaturated polyester resin, or a phenol resin.
  • the carbon fiber Vf carbon fiber per unit cross-sectional area
  • the cross-sectional area ratio can be increased, and the performance of the FRP material can be improved. Therefore, according to the present invention, the fiber basis weight exceeds 800 g / m 2 , for example, a large FRP material used for wind turbine blades, vehicles, ships, etc., by the RTM method, the resin impregnation time is shortened, and Good products such as tensile and bending strength can be produced.
  • FIG. 1 is a perspective view showing an embodiment of a carbon fiber sheet according to the present invention.
  • Fig.2 (a) is the perspective view which expanded a part of carbon fiber sheet according to this invention
  • FIG.2 (b) is a perspective view which shows a part of twisted fiber bundle.
  • FIG. 3 is a perspective view showing another embodiment of the carbon fiber sheet according to the present invention.
  • FIG. 4 is a schematic configuration diagram of an experimental apparatus for carrying out the RTM method.
  • FIG. 5 is a graph showing the relationship between the number of twists of carbon fiber strands and strength.
  • the carbon fiber sheet 10 which uses carbon fiber as a reinforced fiber of this invention is demonstrated.
  • FIG. 1 one Example of the carbon fiber sheet 10 of this invention is shown.
  • the carbon fiber sheet 10 is formed by aligning twisted carbon fiber strands (in this specification, twisted carbon fiber strands are referred to as “single twist fiber bundles”) 11 in one direction.
  • the single twist fiber bundles 11 are fixed to each other by a fixing fiber material 13 and formed into a sheet shape.
  • the carbon fiber strand F is formed by converging a large number of carbon fiber filaments f.
  • a gap g is formed between the single twisted fiber bundles 11. More specifically, according to the present embodiment, as shown in FIGS.
  • the carbon fiber of the carbon fiber sheet 10 is a twisted carbon fiber strand F, that is, a single twisted fiber bundle 11.
  • the sizing agent of the carbon fiber strand F was 0.2% in the present Example.
  • the amount of the sizing agent of the carbon fiber strand F is not limited to this. In other words, according to this example, carbon fiber strands F in which 50000 to 60000 carbon fiber monofilaments f having an average diameter of 7 ⁇ m are converged as carbon fibers are used, and the carbon fiber strands F are 5 to 50 times per meter. Twist times are applied to form a single twist fiber bundle 11.
  • the force for converging the carbon fiber strands F is weak, and the strands F are not easily thinned. Moreover, if it exceeds 50 times, the carbon fiber strand F will become hard by winding, and the impregnation property of resin will worsen. Further, the linearity of the fiber is deteriorated, and the performance of FRP is lowered.
  • the inventors of the present invention have no problem in terms of physical properties such as twist workability and strength even when a thick carbon fiber strand F in which 50,000 to 60000 carbon fiber monofilaments f converge is twisted, and such carbon fibers
  • An experiment was conducted to confirm that the fiber sheet produced with the strand can be suitably used in an RTM method using a low-viscosity RTM resin. That means (1) Even if a predetermined number of twists are added to the large-diameter carbon fiber strand F, the strength does not decrease.
  • the fiber convergence force is weak, and it cannot be made as thin as expected.
  • the carbon fiber strand has a suitable fiber twist frequency in the range of 5 to 50 times / m, and 10 to 20 times / m is the best.
  • the matrix resin is a single twist fiber bundle 11, 11 Easy to pass between. Further, by increasing the contact area between the reinforcing fiber and the matrix resin, and further converging the fibers, the capillarity between the carbon fiber filaments f in each fiber bundle 11 causes the inside of the fiber bundle 11 to enter. The resin impregnation property can be improved.
  • the fiber basis weight is greater than 800 g / m 2, in particular exceed 1000g / m 2, 6000g / m 2 or less, preferably, is a 2400 g / m 2 or less.
  • the fibers are fixed by the fixing fiber material 13 so as to be separated from each other.
  • the length (L) and width (W) of the carbon fiber sheet 10 formed in this manner are determined as appropriate according to the size and shape of the structure to be reinforced, but generally, due to handling problems,
  • the total width (W) is 100 to 500 mm.
  • length (L) can manufacture a thing of 100 m or more, in use, it cuts suitably and is used.
  • each single twisted fiber bundle 11 with the fixing fiber material 13 as shown in FIG. 1, for example, wefts are used as the fixing fiber material 13, and a plurality of fibers arranged in one direction are used.
  • the single twisted fiber bundle 11 may be driven at a constant interval (P) perpendicular to the single twisted fiber bundle 11 and knitted.
  • the driving interval (P) of the weft yarn 13 is not particularly limited, but is usually selected in the range of 1 to 15 mm in consideration of the handleability of the produced fiber reinforced sheet 10.
  • the weft 13 is a yarn obtained by bundling a plurality of glass fibers or organic fibers having a diameter of 2 to 50 ⁇ m, for example.
  • a mesh-like support sheet can be used as the fixing fiber material 13 as shown in FIG. That is, a mesh-like support made of, for example, glass fiber or organic fiber having a diameter of 2 to 50 ⁇ m on one side or both sides of a plurality of single twisted fiber bundles 11 in the form of a sheet aligned in one direction. A configuration supported by the sheet 13 may also be adopted.
  • the surface of the warp yarn 14 and the weft yarn 15 constituting the mesh-like support sheet 13 having a biaxial configuration is impregnated with a low melting point type thermoplastic resin in advance, and the mesh-like support sheet 13 Are laminated on one or both sides of each single twisted fiber bundle 11 and heated and pressurized, and the warp yarn 14 and weft yarn 15 portions of the mesh-like support sheet 13 are fused to a plurality of single twist fiber bundles 11 in sheet form.
  • the mesh-shaped support sheet 13 is formed by orienting glass fibers in three axes, or only the wefts 15 that are orthogonal to the single twist fiber bundle 11 are disposed.
  • the carbon fiber sheet 10 is made by twisting the carbon fiber strands F, that is, the single twisted fiber bundles 11 in one direction, but in another method, as shown in FIG. A plurality of carbon fiber strands (single fiber bundles) F that are not twisted, for example, 2 to 5 are combined, and in FIG.
  • the “twisted fiber bundle”) 12 can be used in place of the single twisted fiber bundle 11. That is, in this case as well, as described above, carbon fiber strands in which 50000 to 60000 carbon fiber monofilaments having an average diameter of 7 ⁇ m are converged, that is, a single fiber bundle F, are used. Combine 5 pieces and apply 5 to 50 twists per meter. If the number of twists is less than 5, the force for converging the carbon fiber strands F is weak, and the strands F are not easily thinned. Moreover, if it exceeds 50 times, the carbon fiber strand F will become hard by winding and it will become difficult to do the impregnation property of resin.
  • the linearity of the fiber is deteriorated, and the FRP performance is lowered.
  • the number of twists is 10 to 20 times / m.
  • the twisted fiber bundle 12 has a substantially circular or elliptical cross-sectional shape with a width (w) of 2.0 to 2.3 mm.
  • the carbon fiber sheet 10 replaces the single twisted fiber bundle 11 shown in FIG. 1 with the above twisted fiber bundle 12 aligned in one direction, and the respective twisted fiber bundles 12 are fixed to each other. 3 is fixed in a sheet shape.
  • the gap (g) 0 to ⁇ 2 mm, preferably 0.2 to 1 mm, was formed, and there was no fiber overlap. Accordingly, when the resin for RTM is impregnated, it is easy for the matrix resin to pass between the twisted fiber bundles 12 and 12, and the contact area between the reinforcing fiber and the matrix resin is increased, so that the resin inside the reinforcing fiber bundle can be obtained. Impregnation can be improved. Performance test example 1 According to the present invention, a carbon fiber sheet 10 shown in FIG. 3 was produced.
  • the strand F was twisted 15 times per meter to obtain a single-stranded fiber bundle 11.
  • the sizing agent of the carbon fiber strand F was 0.2%.
  • the single twist fiber bundles 11 were aligned so as to have a fiber basis weight of 1200 g / m 2 and arranged in a sheet shape.
  • a mesh-like support sheet 13 was bonded to one side of the single fiber bundle 11 having a sheet shape.
  • the carbon fiber sheet 10 thus produced had a width (W) of 200 mm and a length (L) of 100 m.
  • the gap (g) between the single twisted fiber bundles 11 was 0 to 0.2 mm.
  • a carbon fiber sheet having the following configuration was produced. Comparative Example 1
  • the comparative example 1 is different only in that a strand (single fiber bundle) F that does not twist the carbon fiber is used as a comparative example 1, and the carbon shown in the above specific example 1 according to the present invention is of the same material, configuration, and dimensions.
  • a carbon fiber sheet similar to the fiber sheet 10 was produced.
  • Comparative Example 2 As Comparative Example 2, PAN-based carbon fiber strands (single fiber bundles) F in which single fibers (carbon fiber monofilaments) f having an average diameter of 7 ⁇ m were converged as 24,000 converging numbers were used as carbon fibers. The strand F was twisted 15 times per meter to obtain a single-stranded fiber bundle 11. The sizing agent of the carbon fiber strand F was 0.2%. In the carbon fiber sheet 10, the single twisted fiber bundles 11 were aligned so as to have a fiber basis weight of 400 g / m 2 and arranged in a sheet shape. A mesh-like support sheet 13 was bonded to one side of the single fiber bundle 11 having a sheet shape.
  • the carbon fiber sheet 10 thus produced had a width (W) of 200 mm and a length (L) of 100 m.
  • the gap (g) between the single twisted fiber bundles 11 was 0 to 0.2 mm.
  • the carbon fiber sheet 10 of the specific example 1 and the carbon fiber sheets of the comparative examples 1 and 2 are used in the specific example 1 and the comparative example 1, one sheet in the comparative example 2, and three sheets are used in the RTM method.
  • a flat plate having a width of 200 mm, a length of 2 m, and a thickness of 1.3 mm was produced using the experimental apparatus 100 shown in FIG. Referring to FIG. 4, the molding apparatus 100 used in this experiment is an apparatus that performs the VaRTM method.
  • the carbon fiber sheet 10 is placed in a mold (mold) 101, and a resin distribution medium 102 and a vacuum are placed thereon. Bag 103 is set. Resin R is injected between the resin distribution medium 102 and the mold 101 from the resin injection device 104 disposed adjacent to the mold 101. In addition, the vacuum bag 103 is evacuated, whereby the carbon fiber sheet 10 is impregnated with the resin R. The carbon fiber sheet 10 impregnated with the resin R is heated together with the mold 101 with a heating device, for example, a heating plate or an oven, and the resin R is cured. Thereafter, the resin-impregnated and cured carbon fiber sheet 10 is removed from the molding die 101 to obtain a product (carbon fiber reinforced plastic material).
  • a heating device for example, a heating plate or an oven
  • Resin R used in Specific Example 1 and Comparative Examples 1 and 2 is a low-viscosity RTM resin and is an epoxy resin for composite materials manufactured by Nagase ChemteX Corporation (general-purpose type “XNR / H6809” (trade name)). It was used.
  • the viscosity of the resin was 260 mPa ⁇ s / 25 ° C. and 80 mPa ⁇ s / 40 ° C.
  • the viscosity at the time of pouring into the mold, that is, the resin viscosity at a temperature of 25 ° C. was 260 mPa ⁇ s.
  • RTM resin in addition to an epoxy resin, a polyester resin, a vinyl ester resin, an MMA resin, an unsaturated polyester resin having a viscosity of 30 to 300 mPa ⁇ s at the time of resin injection (temperature 25 ° C. as an example) Phenolic resins can be used.
  • the carbon fiber sheet 10 of the specific example 1 was used in this experiment, the resin impregnation operation was completed in about 0.5 hours (total molding operation time 2.5 hours), and the orientation of the carbon fiber sheet 1 was disturbed. And a good product could be obtained.
  • a product similar to that of Example 1 was produced using the carbon fiber sheet of Comparative Example 1, but it took 1 hour for resin-containing work (total molding work time 3.5 hours).
  • the product was disturbed in carbon fiber orientation.
  • a product similar to that of Example 1 was prepared using three carbon fiber sheets of Comparative Example 2, but the carbon fiber orientation disorder was not found in the product, but the resin impregnation work was performed for 1.2 hours (total Molding work time of 4 hours) was required.
  • the carbon fiber sheet of the present invention uses a carbon fiber sheet using thick carbon fiber strands, so that the carbon fiber Vf (unit breakage) can be compared with molding of a large number of thin carbon fiber strand sheets.
  • the cross-sectional area ratio of the carbon fibers per area) can be increased, the molding time can be significantly reduced including preparations such as laminating work, and the disturbance of fibers at the time of laminating can be further reduced.
  • the fiber basis weight exceeds 800 g / m 2 , particularly exceeds 1000 g / m 2 , for example, a large FRP material used for wind turbine blades, vehicles, ships, etc.
  • the resin impregnation time can be shortened and a product having good tensile and bending strength can be produced.
  • a resin impregnation work was attempted using a construction resin for civil engineering and construction (viscosity at the time of resin injection (23 ° C.) 8000 mPa ⁇ s). It took time and had a big problem in terms of work efficiency.

Abstract

A high-basis-weight carbon fiber sheet for an RTM process and an RTM process are provided. This high-basis weight carbon fiber sheet is produced using thick carbon fiber strands, so that the fiber sheet can attain a higher carbon fiber content Vf (the sectional area of carbon fiber per unit sectional area) than that attained by molding a stack of multiple sheets made of thin carbon fiber and thus can improve the performance of an FRP material. In a high-basis-weight carbon fiber sheet (10) for an RTM process, multiple singly twisted fiber bundles (11) or multiple unitedly twisted fiber bundles (12) are arranged in one direction in such a state that the fiber bundles (11) or (12) do not overlap each other, while the fiber bundles (11) or (12) are fixed to each other with a fixing fibrous material. The singly twisted fiber bundles (11) are each produced by: bundling 50000 to 60000 carbon fiber monofilaments (f) to form a carbon fiber strand (F); and twisting the carbon fiber strand (F) by 5 to 50 turns per meter. The unitedly twisted fiber bundles (12) are each produced by: assembling multiple carbon fiber strands (F) which are each obtained by bundling 50000 to 60000 carbon fiber monofilaments (f); and twisting the resulting assembly by 5 to 50 turns per meter. The high-basis-weight carbon fiber sheet (10) has a fiber basis weight of more than 800 to 6000g/m2.

Description

RTM工法用高目付炭素繊維シート及びRTM工法High-weight carbon fiber sheet for RTM method and RTM method
 本発明は、例えば、風車用ブレード、車両、船舶等に使用する大型のFRP材(繊維強化プラスチック材)をRTM工法、或いは、真空引きを伴うVaRTM工法(以下、本明細書では、RTM工法及びVaRTM工法を含めて単に「RTM工法」という。)にて作製する際に使用する高目付の炭素繊維シートに関するものであり、また、斯かる高目付の炭素繊維シートを使用したRTM工法に関するものである。 In the present invention, for example, a large FRP material (fiber reinforced plastic material) used for wind turbine blades, vehicles, ships, etc. is an RTM method or a VaRTM method (hereinafter referred to as an RTM method) It is related to the high-weight carbon fiber sheet used in the production of the “RTM method” including the VaRTM method, and also relates to the RTM method using such a high-weight carbon fiber sheet. is there.
 RTM工法は、樹脂を含んでいないドライ(樹脂未含浸)の強化繊維シートを用いるのが特徴で、製品の形状に合わせて予め積層したり、縫製したり、融着などをして必要な方向に必要な強度が出るように形を作り(プリフォーム)、型枠に入れ込み、樹脂を注入して、(必要により加熱して)硬化し、製品とする工法である。樹脂注入に際して真空引きすることも行われており、特に、VaRTM工法と呼ばれている。
 現在、RTM工法により、例えば、風車用ブレード、車両、船舶等に使用する大型のFRP材(繊維強化プラスチック材)を作製することが行われている。しかし、このような大型の成型物は、強化繊維シートとしてはガラスマットや不織布を使用することが多い。
 つまり、RTM工法により大型のFRP材を作製する場合に、単に一方向に炭素繊維を引き揃えて作製される炭素繊維シートを使用した場合には、樹脂注入時に炭素繊維の配向が乱れ易いために、織り物か、編み物とされた炭素繊維シート、又は、一方向炭素繊維シートにステッチングを施したシート形状のものが使用されており、炭素繊維を一方向に並べただけの炭素繊維シートは全く使用されていない。即ち、現在、使用されている炭素繊維シートは、シートの目付量が200~400g/mとされる織り物を所定繊維目付量となるように複数枚積層して使用されているに過ぎない。
 しかしながら、織り物、編み物の炭素繊維シート、或いは、ステッチング炭素繊維シート等を使用することは、一方向炭素繊維シートの製造速度が10m/分程度とされるのに対して、シート自体の製造速度が1m/分以下程度とされ、生産性が悪く、コストアップとなっている。
 特に、断面積の大きな成型品、例えば、風車用ブレード、車両、船舶等に使用する大型のFRP材(繊維強化プラスチック材)を作製する場合には、積層枚数が多くなり、作業効率が悪い。また、積層数が多い場合、織り糸や編み糸が多量に入ることになり、このために、強度低下を起こし、また、炭素繊維の含有量(Vf:単位断面積当たりの炭素繊維の断面積比率)を下げる要因となっている。
 そこで、本発明者らは、数万本の炭素繊維(フィラメント)を収束して構成される各炭素繊維束(炭素繊維ストランド)に撚りを入れ、この炭素繊維ストランドを一方向に並べて炭素繊維シートを作製することを考え、特許文献1に記載するように、炭素繊維束(炭素繊維ストランド)にかける撚りの回数を特定することにより、強度低下しないことを確認し、所定回数の撚りをかけた多数本の炭素繊維フィラメントから成る繊維束にて作製される炭素繊維シートを提案した。
The RTM method is characterized by the use of dry (non-impregnated) reinforcing fiber sheets that do not contain resin, and the direction required by laminating, sewing, or fusing in accordance with the shape of the product. This is a method of making a product (preform) so that the required strength is obtained, placing it in a mold, injecting resin, and curing (heating if necessary) to make a product. Vacuuming is also performed at the time of resin injection, and it is particularly called the VaRTM method.
Currently, a large FRP material (fiber reinforced plastic material) used for, for example, a windmill blade, a vehicle, a ship, and the like is produced by the RTM method. However, such a large molded product often uses a glass mat or a non-woven fabric as the reinforcing fiber sheet.
In other words, when a large FRP material is produced by the RTM method, if a carbon fiber sheet produced by simply aligning carbon fibers in one direction is used, the orientation of carbon fibers tends to be disturbed during resin injection. Woven or knitted carbon fiber sheets, or unidirectional carbon fiber sheets that are stitched into a sheet shape are used, and carbon fiber sheets that have carbon fibers arranged in only one direction are completely not being used. That is, the carbon fiber sheet currently used is only used by laminating a plurality of woven fabrics having a basis weight of the sheet of 200 to 400 g / m 2 so as to obtain a predetermined fiber basis weight.
However, the use of a woven or knitted carbon fiber sheet or a stitched carbon fiber sheet, etc., makes the production rate of the unidirectional carbon fiber sheet about 10 m / min, whereas the production rate of the sheet itself. Is about 1 m / min or less, the productivity is poor, and the cost is increased.
In particular, when a large-sized FRP material (fiber reinforced plastic material) used for a molded article having a large cross-sectional area, for example, a blade for a windmill, a vehicle, a ship, or the like, is produced, the number of laminated layers is increased, resulting in poor working efficiency. Further, when the number of laminated layers is large, a large amount of knitting yarns and knitting yarns enter, resulting in a decrease in strength, and the content of carbon fibers (Vf: the cross-sectional area ratio of carbon fibers per unit cross-sectional area) ).
Accordingly, the present inventors twisted each carbon fiber bundle (carbon fiber strand) constituted by converging tens of thousands of carbon fibers (filaments), and arranged the carbon fiber strands in one direction to form a carbon fiber sheet. As described in Patent Document 1, it was confirmed that the strength did not decrease by specifying the number of twists applied to the carbon fiber bundle (carbon fiber strand), and a predetermined number of twists were applied. A carbon fiber sheet made of a fiber bundle composed of a large number of carbon fiber filaments was proposed.
特許第4667069号公報Japanese Patent No. 4667069
 上記特許文献1に記載する炭素繊維シートは、樹脂含浸性にも優れたものであるが、炭素繊維シートの繊維目付量は、50~800g/mとされている。また、特許文献1に記載するように、斯かる構成の炭素繊維シートを例えば、橋梁や高架道路のような構造物の補強のために接着剤を含浸させて貼着したり、或いは、ハンドレイアップ等により樹脂を塗布含浸させて繊維強化プラスチック製品を作製する場合には、繊維目付が800g/mを超えると、特に1000g/mを超えると樹脂含浸性が悪くなり、実用的でなくなる。
 本発明者は、上記特許文献1に記載される技術を基にして、更に研究実験を行い、撚りの入った樹脂未含浸の、例えば50K(炭素繊維フィラメントの数が50000本とされる繊維束)といった大径の炭素繊維ストランドを使用して、繊維目付が800g/mを超える高目付の炭素繊維シートを作製し、この炭素繊維シートを使用してRTM工法により、大きな成型品、例えば、風車用ブレード、車両、船舶等に使用する大型のFRP材(繊維強化プラスチック材)を作製することを試みた。その結果、このような大径の炭素繊維ストランドを使用した繊維目付が800g/mを超える高目付の炭素繊維シートが、例え1000g/mを超える高目付の炭素繊維シートであってもRTM工法にて大きな成型品を極めて効率よく製造し得ることを見出した。
 その理由は、
(1)RTM工法は、極めて低粘度の樹脂(RTM用樹脂)を用いることが可能である。
 つまり、従来、一方向炭素繊維シートを使用した土木建築用施工樹脂の粘度は3000~10000mPa・s/23℃程度とされる。従って、このような土木建築用施工樹脂を繊維目付800g/mを超える、特に1000g/mを超える高目付の炭素繊維シートに含浸させるのは極めて困難である。これに対して、RTM用樹脂の粘度は、樹脂注入時(一例として、温度25℃)の粘度が30~300mPa・s程度とされ、大径の炭素繊維ストランドを使用した繊維目付が800g/mを超え、例え1000g/mを超える高目付の炭素繊維シートであっても極めて効率よく含浸される。一方、このような、低粘度のRTM用樹脂は、天井面や壁面への施工においては樹脂が流れたり、垂れたりするため土木建築用施工樹脂としては使用できない。
(2)繊維に撚り掛けしているため、RTM工法にて樹脂をインジェクションしたときに繊維が流され難い。
(3)RTM工法は、成型厚みの厚い成型が多いため、高目付炭素繊維シートは積層枚数を減らすことができる。
からである。
 本発明は、斯かる本発明者の新規な知見に基づくものである。
 本発明の目的は、太い炭素繊維ストランドを用いた炭素繊維シートを使用することで、細い炭素繊維ストランドのシートを複数枚重ねての成型に比べ炭素繊維のVf(単位断面積当たりの炭素繊維の断面積比率)を高くすることができ、FRP材の性能を上げることのできるRTM工法用高目付炭素繊維シート及びRTM工法を提供することである。
 本発明の他の目的は、繊維目付800g/mを超える、例えば、風車用ブレード、車両、船舶等に使用する大型のFRP材をRTM工法にて作製する際に使用することのできる、撚りの入った樹脂未含浸の、例えば50Kといった大径の炭素繊維ストランドを使用したRTM工法用高目付炭素繊維シート及びRTM工法を提供することである。
The carbon fiber sheet described in Patent Document 1 has excellent resin impregnation properties, but the fiber basis weight of the carbon fiber sheet is 50 to 800 g / m 2 . Further, as described in Patent Document 1, the carbon fiber sheet having such a structure is attached with an adhesive impregnated for reinforcing a structure such as a bridge or an elevated road, When a fiber reinforced plastic product is produced by applying and impregnating a resin by up-up or the like, if the fiber basis weight exceeds 800 g / m 2 , particularly if it exceeds 1000 g / m 2 , the resin impregnation property deteriorates and becomes impractical. .
The inventor conducted further research and experiments based on the technique described in the above-mentioned Patent Document 1, and a fiber bundle in which the twisted resin is not impregnated, for example, 50K (the number of carbon fiber filaments is 50,000). ) And a high-weight carbon fiber sheet having a fiber basis weight exceeding 800 g / m 2 , and using this carbon fiber sheet, a large molded product, for example, An attempt was made to produce a large FRP material (fiber reinforced plastic material) for use in windmill blades, vehicles, ships, and the like. As a result, even if the high-weight carbon fiber sheet using such large-diameter carbon fiber strands has a high basis weight exceeding 800 g / m 2 , even if it is a high-weight carbon fiber sheet exceeding 1000 g / m 2 , RTM It has been found that a large molded product can be produced very efficiently by the construction method.
The reason is,
(1) An extremely low viscosity resin (RTM resin) can be used in the RTM method.
That is, conventionally, the viscosity of a construction resin for civil engineering and construction using a unidirectional carbon fiber sheet is about 3000 to 10000 mPa · s / 23 ° C. Accordingly, it is extremely difficult to impregnate such a construction resin for civil engineering and construction into a carbon fiber sheet having a high basis weight exceeding 800 g / m 2 , particularly exceeding 1000 g / m 2 . On the other hand, the viscosity of the resin for RTM is about 30 to 300 mPa · s at the time of resin injection (temperature 25 ° C. as an example), and the fiber basis weight using a large-diameter carbon fiber strand is 800 g / m. 2, greater even at high basis weight carbon fiber sheet exceeding even 1000 g / m 2 is impregnated very efficiently. On the other hand, such a low viscosity RTM resin cannot be used as a construction resin for civil engineering and construction because the resin flows or droops when applied to a ceiling surface or a wall surface.
(2) Since the fiber is twisted, it is difficult for the fiber to flow when the resin is injected by the RTM method.
(3) Since there are many moldings with a thick molding thickness in the RTM method, a high-weight carbon fiber sheet can reduce the number of laminated sheets.
Because.
The present invention is based on the novel knowledge of the present inventors.
The object of the present invention is to use a carbon fiber sheet using thick carbon fiber strands, so that the carbon fiber Vf (carbon fiber per unit cross-sectional area) is compared with molding by stacking a plurality of thin carbon fiber strand sheets. An object of the present invention is to provide a high-weight carbon fiber sheet for an RTM method and an RTM method that can increase the cross-sectional area ratio) and improve the performance of the FRP material.
Another object of the present invention is a twist that can be used when a large FRP material having a fiber basis weight exceeding 800 g / m 2 , for example, used for a windmill blade, a vehicle, a ship, etc., is produced by the RTM method. It is to provide a high-weight carbon fiber sheet for an RTM method and an RTM method using a carbon fiber strand having a large diameter of, for example, 50K, which is impregnated with resin.
 上記目的は本発明に係るRTM工法用高目付炭素繊維シート及びRTM工法にて達成される。要約すれば、第一の本発明は、50000~60000本の炭素繊維モノフィラメントを収束した炭素繊維ストランドに1m当たり5回から50回の撚りをかけることにより作製された単撚繊維束か、又は、50000~60000本の炭素繊維モノフィラメントを収束した炭素繊維ストランドを複数本合わせて1m当たり5回から50回の撚りをかけることにより作製された合撚繊維束を、重ならないように一方向に配列し、前記各単撚繊維束又は前記各合撚繊維束は、互いに固定用繊維材にて固定し、繊維目付が800g/mを超え、6000g/m以下とされることを特徴とするRTM工法用高目付炭素繊維シートである。
 本発明の一実施態様によれば、前記各単撚繊維束又は前記各合撚繊維束の間には、0~2mmの空隙(g)が形成される。
 本発明の他の実施態様によれば、前記合撚繊維束は、2~5本の単繊維束を合撚して形成される。
 本発明の他の実施態様によれば、前記固定用繊維材は、前記各単撚繊維束又は前記各合撚繊維束の長手方向に対して垂直方向に前記各単撚繊維束又は前記各合撚繊維束を編み付ける横糸である。
 本発明の他の実施態様によれば、前記横糸は、ガラス繊維或いは有機繊維から成る糸条である。
 本発明の他の実施態様によれば、前記固定用繊維材は、一方向に配列した前記各単撚繊維束又は前記各合撚繊維束の片側面、又は、両面に配置され、接着又は融着されたメッシュ状支持体シートである。
 本発明の他の実施態様によれば、前記メッシュ状支持体シートは、ガラス繊維から成る糸条を1軸、2軸或いは3軸に配向して形成し、前記糸条表面に被覆された樹脂により前記各単撚繊維束又は前記各合撚繊維束に接着又は融着される。
 第二の本発明は、型枠に炭素繊維シートを入れ込み、樹脂を注入して硬化させ、繊維強化プラスチック材を成型するRTM工法において、
 前記炭素繊維シートは、上記構成とされるいずれかのRTM工法用高目付炭素繊維シートであり、
 前記樹脂は、樹脂注入時の粘度が30~300mPa・sであることを特徴とするRTM工法である。
 第二の本発明にて、前記樹脂は、エポキシ樹脂、ポリエステル樹脂、ビニールエステル樹脂、MMA樹脂、不飽和ポリエステル樹脂、又は、フェノール樹脂である。
The above object is achieved by the high-weight carbon fiber sheet for RTM method and the RTM method according to the present invention. In summary, the first aspect of the present invention is a single twisted fiber bundle produced by twisting 5 to 50 times per meter to a carbon fiber strand in which 50,000 to 60000 carbon fiber monofilaments are converged, or A plurality of carbon fiber strands in which 50,000 to 60,000 carbon fiber monofilaments are converged are combined and a twisted fiber bundle produced by twisting 5 to 50 times per meter is arranged in one direction so as not to overlap. Each of the single twisted fiber bundles or each of the twisted fiber bundles is fixed to each other with a fixing fiber material, and has a fiber basis weight of more than 800 g / m 2 and 6000 g / m 2 or less. This is a high-weight carbon fiber sheet for construction methods.
According to one embodiment of the present invention, a gap (g) of 0 to 2 mm is formed between each single twisted fiber bundle or each twisted fiber bundle.
According to another embodiment of the present invention, the twisted fiber bundle is formed by twisting 2 to 5 single fiber bundles.
According to another embodiment of the present invention, the fixing fiber material includes the single twisted fiber bundle or the single twisted fiber bundle in the direction perpendicular to the longitudinal direction of the single twisted fiber bundle or the twisted fiber bundle. A weft for knitting a twisted fiber bundle.
According to another embodiment of the present invention, the weft is a yarn made of glass fiber or organic fiber.
According to another embodiment of the present invention, the fixing fiber material is disposed on one side or both sides of each single twisted fiber bundle or each twisted fiber bundle arranged in one direction, and is bonded or melted. This is a worn mesh-like support sheet.
According to another embodiment of the present invention, the mesh-like support sheet is formed by orienting yarns made of glass fibers uniaxially, biaxially, or triaxially and coated on the surface of the yarn. Is bonded or fused to each single twisted fiber bundle or each single twisted fiber bundle.
In the RTM method of inserting the carbon fiber sheet into the mold, injecting and curing the resin, and molding the fiber reinforced plastic material,
The carbon fiber sheet is a high-weight carbon fiber sheet for any RTM construction method configured as described above,
The resin is an RTM method characterized by a viscosity at the time of resin injection of 30 to 300 mPa · s.
In the second aspect of the present invention, the resin is an epoxy resin, a polyester resin, a vinyl ester resin, an MMA resin, an unsaturated polyester resin, or a phenol resin.
 本発明によれば、太い炭素繊維ストランドを用いた炭素繊維シートを使用することで、細い炭素繊維ストランドのシートを複数枚重ねての成型に比べ炭素繊維のVf(単位断面積当たりの炭素繊維の断面積比率)を高くすることができ、FRP材の性能を上げることができる。従って、本発明によれば、繊維目付800g/mを超える、例えば、風車用ブレード、車両、船舶等に使用する大型のFRP材をRTM工法にて、樹脂含浸時間を短縮して、且つ、引張り、曲げ強度などの良好な製品を作製することができる。 According to the present invention, by using a carbon fiber sheet using thick carbon fiber strands, the carbon fiber Vf (carbon fiber per unit cross-sectional area) can be compared with molding by stacking a plurality of thin carbon fiber strand sheets. The cross-sectional area ratio) can be increased, and the performance of the FRP material can be improved. Therefore, according to the present invention, the fiber basis weight exceeds 800 g / m 2 , for example, a large FRP material used for wind turbine blades, vehicles, ships, etc., by the RTM method, the resin impregnation time is shortened, and Good products such as tensile and bending strength can be produced.
 図1は、本発明に従った炭素繊維シートの一実施例を示す斜視図である。
 図2(a)は、本発明に従った炭素繊維シートの一部を拡大した斜視図であり、図2(b)は、合撚繊維束の一部を示す斜視図である。
 図3は、本発明に従った炭素繊維シートの他の実施例を示す斜視図である。
 図4は、RTM工法を実施するための実験装置の概略構成図である。
 図5は、炭素繊維ストランドの撚り数と強度との関係を示すグラフである。
FIG. 1 is a perspective view showing an embodiment of a carbon fiber sheet according to the present invention.
Fig.2 (a) is the perspective view which expanded a part of carbon fiber sheet according to this invention, FIG.2 (b) is a perspective view which shows a part of twisted fiber bundle.
FIG. 3 is a perspective view showing another embodiment of the carbon fiber sheet according to the present invention.
FIG. 4 is a schematic configuration diagram of an experimental apparatus for carrying out the RTM method.
FIG. 5 is a graph showing the relationship between the number of twists of carbon fiber strands and strength.
 以下、本発明に係る炭素繊維シート及びRTM工法を図面に則して更に詳しく説明する。 Hereinafter, the carbon fiber sheet and the RTM method according to the present invention will be described in more detail with reference to the drawings.
 先ず、図1を参照して、本発明の強化繊維として炭素繊維を使用した炭素繊維シート10について説明する。
 図1に、本発明の炭素繊維シート10の一実施例を示す。本実施例において、炭素繊維シート10は、撚りをかけた炭素繊維ストランド(本願明細書では、撚りをかけた炭素繊維ストランドを「単撚繊維束」という。)11を一方向に引き揃え、各単撚繊維束11を互いに固定用繊維材13にて固定して、シート状に形成される。炭素繊維ストランドFは、多数本の炭素繊維フィラメントfを収束して形成される。また、各単撚繊維束11の間には、空隙gが形成されている。
 更に説明すると、本実施例によれば、図1及び図2(a)に示すように、炭素繊維シート10の炭素繊維としては、撚りをかけた炭素繊維ストランドF、即ち、単撚繊維束11が使用される。又、炭素繊維ストランドFのサイズ剤は、本実施例では、0.2%とした。しかし、本発明にて、炭素繊維ストランドFのサイズ剤の量は、これに限定されるものではない。
 つまり、本実施例によれば、炭素繊維として平均径7μmの炭素繊維モノフィラメントfを50000~60000本収束した炭素繊維ストランドFを使用し、更に、この炭素繊維ストランドFは、1m当たり5回から50回の撚りがかけられ、単撚繊維束11とされる。撚り回数が5回未満であれば、炭素繊維ストランドFを収束する力が弱く、ストランドFが細くなりにくい。また、50回を越えれば、炭素繊維ストランドFが巻き締めにより硬くなり、樹脂の含浸性が悪くなる。また、繊維の直線性が悪くなり、FRPの性能が低下する。
 本発明者らは、炭素繊維モノフィラメントfを50000~60000本収束した太い炭素繊維ストランドFに撚りを入れた場合でも撚り作業性、強度等の物性の点で問題ないこと、及び、斯かる炭素繊維ストランドにて作製した繊維シートは低粘度のRTM用樹脂を使用するRTM工法に好適に使用し得ること、を確認する実験を行った。つまり、
(1)大径の炭素繊維ストランドFに所定回数の撚りを入れても強度低下を来たすことはないこと。
(2)RTM工法に使用される極めて低粘度の、即ち、型枠への樹脂注入時(一例として温度25℃)の粘度が30~300mPa・s程度とされるRTM樹脂に対する含浸性が優れていること。
 従来、上述したように、一方向炭素繊維シートを使用した土木建築用施工樹脂の粘度は3000~10000mPa・s/23℃程度とされる。
(3)繊維に撚り掛けしていることにより、RTM樹脂をインジェクションしたときに繊維が流され難いこと。
(3)RTM工法は、成型厚みの厚い成型が多いため、高目付炭素繊維シートでは積層枚数を減らすことができること。
などを確認する実験を行った。
 本実験では、炭素繊維として平均径7μmの高強度炭素繊維モノフィラメントfを50000本収束した炭素繊維ストランドF(サイズ剤0.2%)を使用し、撚りの回数を、撚りなし、5、10、20、30、40、45、50、55、60回/mで確認した。
 その結果、下記表1及び図5に示すように、炭素繊維ストランドFの引張強度は、撚りなし~50回/mでは強度低下は見られず、55回/m以上で強度低下が見られた。
Figure JPOXMLDOC01-appb-T000001
 一方、炭素繊維ストランドFの幅(w)(図2(a)参照)は、撚りなし、及び、5回/m未満では繊維収束力が弱く、期待されたほど細くすることはできなかったが、5回以上、特に15回/m以上では収束が十分できて炭素繊維ストランドが細くまとまった状態になった。
 以上より総合すると、炭素繊維ストランドは、繊維の撚り回数は、5~50回/mの範囲が適しており、中でも、10~20回/mが最も良好であった。
 これによって、単撚繊維束11が一方向に引き揃えられたときに、繊維束が広がらないか、或いは、広がる程度がきわめて少なく、単撚繊維束11は、幅(w)が1.7~2.0mm、厚さ(t)が1.7~2.0mmの略円形或いは楕円形の断面形状を維持することができる。これにより、各炭素繊維ストランドが重なり合うのを防ぐことができる。
 従って、本実施例によれば、一方向に配列された単撚繊維束11にて形成される炭素繊維シート10は、その繊維目付が、800g/mを超えた場合、例え1000g/mを超えた場合でも、各単撚繊維束11、11の間に、図1及び図2(a)に示すように、空隙(g)=0~2mm、好ましくは0.2~1mmを形成することができる。
 従って、特に、RTM工法に使用する低粘度(即ち、注入時の温度、一例として25℃にて粘度30~300mPa・s)のRTM用樹脂の含浸時に、マトリクス樹脂が単撚繊維束11、11間を通過することを容易とする。また、強化繊維とマトリクス樹脂との接触面積を増加させることにより、更には、繊維を集束させることで、各繊維束11中の各炭素繊維フィラメントf間の毛細管現象により繊維束11の内部への樹脂含浸性を改善することができる。
 本発明によれば、炭素繊維シート10の繊維目付は、上述のように、少なくとも800g/mを超える値、特に1000g/mを超える値とされるが、繊維目付が6000g/mを越えるとシートの厚さ(t)(図2(a))が大となり過ぎ、RTM工法においても、即ち、低粘度のRTM用樹脂を使用しても樹脂含浸性が悪く、実用的でなくなる。好ましくは、繊維目付は、800g/mを超え、特に1000g/mを超え、6000g/m以下、好ましくは、2400g/m以下とされる。
 上述のように、単撚繊維束11が一方向に引き揃えられた炭素繊維シート10において、各単撚繊維束11は、互いに空隙(g)=0~2mm、好ましくは0.2~1mmだけ近接離間して、固定用繊維材13にて固定される。
 このようにして形成された炭素繊維シート10の長さ(L)及び幅(W)は、補強される構造物の寸法、形状に応じて適宜決定されるが、取り扱い上の問題から、一般には、全幅(W)は、100~500mmとされる。また、長さ(L)は、100m以上のものも製造し得るが、使用時においては、適宜切断して使用される。
 又、各単撚繊維束11を固定用繊維材13にて固定する方法としては、図1に示すように、例えば、固定用繊維材13として横糸を使用し、一方向に配列された複数本の単撚繊維束11を、単撚繊維束11に対して直交して一定の間隔(P)にて打ち込み、編み付ける方法を採用し得る。横糸13の打ち込み間隔(P)は、特に制限されないが、作製された繊維強化シート10の取り扱い性を考慮して、通常1~15mm間隔の範囲で選定される。
 このとき、横糸13は、例えば直径2~50μmのガラス繊維或いは有機繊維を複数本束ねた糸条とされる。又、有機繊維としては、ポリエステル、ナイロン、ビニロンなどが好適に使用される。
 各単撚繊維束11を一方向に引き揃えてシート状に固定する他の方法としては、図3に示すように、固定用繊維材13としてメッシュ状支持体シートを使用することができる。
 つまり、一方向に引き揃えたシート形態とされる複数本の単撚繊維束11の片側面、又は、両面を、例えば直径2~50μmのガラス繊維或いは有機繊維にて作製したメッシュ状の支持体シート13により支持した構成とすることもできる。
 この場合には、例えば、2軸構成とされるメッシュ状支持体シート13を構成する縦糸14及び横糸15の表面に低融点タイプの熱可塑性樹脂を予め含浸させておき、メッシュ状支持体シート13を各単撚繊維束11の片面或いは両面に積層して加熱加圧し、メッシュ状支持体シート13の縦糸14及び横糸15の部分をシート形態とされた複数本の単撚繊維束11に融着する。
 メッシュ状支持体シート13は、2軸構成のほかに、ガラス繊維を3軸に配向して形成したり、或いは、ガラス繊維を単撚繊維束11に対して直交する横糸15のみを配置した、所謂、1軸に配向して形成して前記シート状に引き揃えた複数本の単撚繊維束11に接着することもできる。
 又、上記固定用繊維材13の糸条としては、例えばガラス繊維を芯部に有し、低融点の熱融着性樹脂をその周囲に配したような二重構造の複合繊維も又好ましく用いられる。
 炭素繊維シート10は、撚りをかけた炭素繊維ストランドF、即ち、単撚繊維束11を一方向に引き揃えて作製するものとしたが、別法では、図2(b)に示すように、撚りをかけない状態の炭素繊維ストランド(単繊維束)Fを複数本、例えば、2~5本を合わせて、図2(b)では3本合わせた全体の繊維束に撚りをかけたもの(本明細書では、「合撚繊維束」という。)12を、上記単撚繊維束11の代わりに使用することも可能である。
 つまり、この場合にも、上述のように、炭素繊維として平均径7μmの炭素繊維モノフィラメントを50000~60000本収束した炭素繊維ストランド、即ち、単繊維束Fを使用し、この単繊維束Fを2~5本合体し、1m当たり5回から50回の撚りをかける。撚り回数が5回未満であれば、炭素繊維ストランドFを収束する力が弱く、ストランドFが細くなりにくい。また、50回を越えれば、炭素繊維ストランドFが巻き締めにより硬くなり、樹脂の含浸性がやりにくくなる。また、繊維の直線性が悪くなり、FRP性能が低下する。好ましくは、撚り数は、10~20回/mである。
 これによって、合撚繊維束12は、幅(w)が2.0~2.3mmの略円形或いは楕円形の断面形状となる。
 この実施例においても、炭素繊維シート10は、図1に示す単撚繊維束11に代えて、上記合撚繊維束12を一方向に引き揃え、各合撚繊維束12を互いに固定用繊維材3にてシート状に固定される。また、この場合にも、上述のように、合撚撚繊維束12が一方向に引き揃えられた炭素繊維シート10において、各合撚繊維束12の間には、空隙(g)=0~2mm、好ましくは0.2~1mmが形成され、繊維の重なりはなくなった。
 従って、RTM用樹脂含浸時に、マトリクス樹脂が合撚繊維束12、12間を通過することを容易とし、強化繊維とマトリクス樹脂との接触面積を増加させることにより、強化繊維束の内部への樹脂含浸性を改善することができる。
 性能試験
 具体例1
 本発明に従って、図3に示す炭素繊維シート10を作製した。
 炭素繊維として平均径7μmの単繊維(炭素繊維モノフィラメント)fを、収束本数50000本収束したPAN系炭素繊維ストランド(単繊維束)Fを用いた。このストランドFは、1m当たり15回撚りをかけて、単撚繊維束11とした。炭素繊維ストランドFのサイズ剤は、0.2%であった。
 炭素繊維シート10にて、単撚繊維束11を繊維目付が1200g/mとなるように引き揃えてシート状に配列した。このシート状とされる単繊維束11の片面に、メッシュ状支持体シート13を接着した。
 このようにして作製した炭素繊維シート10は、幅(W)が200mm、長さ(L)が100mであった。各単撚繊維束11間の間隙(g)は、0~0.2mmであった。
 比較例として以下の構成の炭素繊維シートを作製した。
 比較例1
 比較例1として、炭素繊維に撚りをかけないストランド(単繊維束)Fを使用した点でのみ異なり、他は全く同じ材料、構成、寸法の、本発明に従った上記具体例1に示す炭素繊維シート10と同様の炭素繊維シートを作製した。
 比較例2
 比較例2として、炭素繊維として平均径7μmの単繊維(炭素繊維モノフィラメント)fを、収束本数24000本収束したPAN系炭素繊維ストランド(単繊維束)Fを用いた。このストランドFは、1m当たり15回撚りをかけて、単撚繊維束11とした。炭素繊維ストランドFのサイズ剤は、0.2%であった。
 炭素繊維シート10にて、単撚繊維束11を繊維目付が400g/mとなるように引き揃えてシート状に配列した。このシート状とされる単繊維束11の片面に、メッシュ状支持体シート13を接着した。
 このようにして作製した炭素繊維シート10は、幅(W)が200mm、長さ(L)が100mであった。各単撚繊維束11間の間隙(g)は、0~0.2mmであった。
 次に、上記具体例1の炭素繊維シート10、及び、比較例1、2の炭素繊維シートを、具体例1及び比較例1では1枚、比較例2では3枚使用してRTM工法により、幅200mm×長さ2m×厚み1.3mmの平板を、図4に示す実験装置100を使用して作製した。
 図4を参照すると、本実験にて使用した成型装置100は、VaRTM工法を実施する装置とされ、型枠(成形型)101に炭素繊維シート10を入れ込み、その上に樹脂流通媒体102及びバキュームバッグ103がセットされる。成形型101に隣接して配置された樹脂注入装置104から、樹脂流通媒体102と成形型101との間に樹脂Rが注入される。また、バキュームバッグ103が真空引きされ、これにより、炭素繊維シート10に樹脂Rが含浸される。樹脂Rが含浸された炭素繊維シート10は、成形型101と共に加熱装置、例えば、加熱板或いはオーブンにて加熱され、樹脂Rが硬化される。その後、樹脂含浸硬化された炭素繊維シート10は、成形型101から脱型されて製品(炭素繊維強化プラスチック材)とされる。
 具体例1、比較例1、2で使用した樹脂Rは、低粘度のRTM用樹脂であり、ナガセケムテックス株式会社製の複合材料用エポキシ樹脂(汎用タイプ「XNR/H6809」(商品名))を使用した。該樹脂の粘度は、260mPa・s/25℃、80mPa・s/40℃、であった。また、型枠に注入時の粘度は、即ち、温度25℃における樹脂粘度は、260mPa・sであった。
 勿論、RTM用樹脂としては、エポキシ樹脂の他、樹脂注入時(一例として温度25℃)の粘度が30~300mPa・sとされる、ポリエステル樹脂、ビニールエステル樹脂、MMA樹脂、不飽和ポリエステル樹脂、フェノール樹脂などを使用することができる。
 本実験にて上記具体例1の炭素繊維シート10を使用した場合には、樹脂含浸作業が約0.5時間(総成型作業時間2.5時間)で終了し、炭素繊維シート1の配向乱れもなく、良好な製品を得ることができた。
 比較例1の炭素繊維シートを使用して、具体例1と同様の製品を作製したが、樹脂含性作業に1時間(総成型作業時間3.5時間)を要した。また、製品には炭素繊維配向乱れが見られた。
 比較例2の炭素繊維シートを3枚使用して、具体例1と同様の製品を作製したが、製品に炭素繊維配向乱れは見られなかったものの、樹脂含性作業に1.2時間(総成型作業時間4時間)を要した。
 このように、本発明の炭素繊維シートは、太い炭素繊維ストランドを用いた炭素繊維シートを使用することで、細い炭素繊維ストランドのシートを多数枚重ねての成型に比べ炭素繊維のVf(単位断面積当たりの炭素繊維の断面積比率)を高くすることができ、積層作業など準備を含めて成型時間を大幅に短縮でき、積層時の繊維の乱れなどをより少なくすることができる。それにより、FRP材の性能を上げることができ、且つ、コスト高となるのを回避できる。
 従って、本発明の炭素繊維シートによれば、繊維目付800g/mを超える、特に1000g/mを超える、例えば、風車用ブレード、車両、船舶等に使用する大型のFRP材をRTM工法にて、樹脂含浸時間を短縮して、且つ、引張り、曲げ強度の良好な製品を作製することができる。
 尚、本実施例の繊維シートを使用して、土木建築用施工樹脂(樹脂注入時(23℃)の粘度8000mPa・s)を用いて樹脂含浸作業を試みたが、樹脂含浸作業等に多くの時間を必要とし、作業効率の点で大きな問題を有していた。
First, with reference to FIG. 1, the carbon fiber sheet 10 which uses carbon fiber as a reinforced fiber of this invention is demonstrated.
In FIG. 1, one Example of the carbon fiber sheet 10 of this invention is shown. In the present embodiment, the carbon fiber sheet 10 is formed by aligning twisted carbon fiber strands (in this specification, twisted carbon fiber strands are referred to as “single twist fiber bundles”) 11 in one direction. The single twist fiber bundles 11 are fixed to each other by a fixing fiber material 13 and formed into a sheet shape. The carbon fiber strand F is formed by converging a large number of carbon fiber filaments f. A gap g is formed between the single twisted fiber bundles 11.
More specifically, according to the present embodiment, as shown in FIGS. 1 and 2A, the carbon fiber of the carbon fiber sheet 10 is a twisted carbon fiber strand F, that is, a single twisted fiber bundle 11. Is used. Moreover, the sizing agent of the carbon fiber strand F was 0.2% in the present Example. However, in the present invention, the amount of the sizing agent of the carbon fiber strand F is not limited to this.
In other words, according to this example, carbon fiber strands F in which 50000 to 60000 carbon fiber monofilaments f having an average diameter of 7 μm are converged as carbon fibers are used, and the carbon fiber strands F are 5 to 50 times per meter. Twist times are applied to form a single twist fiber bundle 11. If the number of twists is less than 5, the force for converging the carbon fiber strands F is weak, and the strands F are not easily thinned. Moreover, if it exceeds 50 times, the carbon fiber strand F will become hard by winding, and the impregnation property of resin will worsen. Further, the linearity of the fiber is deteriorated, and the performance of FRP is lowered.
The inventors of the present invention have no problem in terms of physical properties such as twist workability and strength even when a thick carbon fiber strand F in which 50,000 to 60000 carbon fiber monofilaments f converge is twisted, and such carbon fibers An experiment was conducted to confirm that the fiber sheet produced with the strand can be suitably used in an RTM method using a low-viscosity RTM resin. That means
(1) Even if a predetermined number of twists are added to the large-diameter carbon fiber strand F, the strength does not decrease.
(2) Extremely low viscosity used in the RTM method, that is, excellent in impregnation with RTM resin having a viscosity of about 30 to 300 mPa · s when the resin is poured into the mold (for example, temperature 25 ° C.) Being.
Conventionally, as described above, the viscosity of a construction resin for civil engineering and construction using a unidirectional carbon fiber sheet is about 3000 to 10,000 mPa · s / 23 ° C.
(3) By twisting the fiber, it is difficult for the fiber to flow when the RTM resin is injected.
(3) Since there are many moldings with a thick molding thickness in the RTM method, the number of laminated sheets can be reduced in the high-weight carbon fiber sheet.
An experiment was conducted to confirm the above.
In this experiment, carbon fiber strand F (size agent 0.2%) in which 50000 high-strength carbon fiber monofilaments f having an average diameter of 7 μm were converged as carbon fibers was used, and the number of twists was set to no twist, 5, 10, It was confirmed at 20, 30, 40, 45, 50, 55, 60 times / m.
As a result, as shown in the following Table 1 and FIG. 5, the tensile strength of the carbon fiber strand F was not observed when the twist was not twisted to 50 times / m, and the strength was decreased at 55 times / m or more. .
Figure JPOXMLDOC01-appb-T000001
On the other hand, the width (w) of the carbon fiber strand F (see FIG. 2 (a)) is not twisted and is less than 5 times / m, the fiber convergence force is weak, and it cannot be made as thin as expected. When it was 5 times or more, particularly 15 times / m or more, the convergence was sufficient and the carbon fiber strands were in a thin and tight state.
From the above, the carbon fiber strand has a suitable fiber twist frequency in the range of 5 to 50 times / m, and 10 to 20 times / m is the best.
Thereby, when the single twist fiber bundle 11 is aligned in one direction, the fiber bundle does not spread or spreads very little, and the single twist fiber bundle 11 has a width (w) of 1.7 to ~. A substantially circular or elliptical cross-sectional shape of 2.0 mm and a thickness (t) of 1.7 to 2.0 mm can be maintained. Thereby, it can prevent that each carbon fiber strand overlaps.
Therefore, according to the present example, when the fiber basis weight of the carbon fiber sheet 10 formed by the single twisted fiber bundles 11 arranged in one direction exceeds 800 g / m 2 , for example, 1000 g / m 2. Even in the case of exceeding, the gap (g) = 0 to 2 mm, preferably 0.2 to 1 mm is formed between the single twisted fiber bundles 11 and 11 as shown in FIG. 1 and FIG. be able to.
Therefore, in particular, when impregnating the RTM resin having a low viscosity (that is, a temperature at the time of injection, for example, a viscosity of 30 to 300 mPa · s at 25 ° C.) used in the RTM method, the matrix resin is a single twist fiber bundle 11, 11 Easy to pass between. Further, by increasing the contact area between the reinforcing fiber and the matrix resin, and further converging the fibers, the capillarity between the carbon fiber filaments f in each fiber bundle 11 causes the inside of the fiber bundle 11 to enter. The resin impregnation property can be improved.
According to the present invention, the fiber basis weight of the carbon fiber sheet 10, as described above, a value exceeding at least 800 g / m 2, especially is a value greater than 1000 g / m 2, fiber weight per unit area of 6000 g / m 2 If it exceeds, the sheet thickness (t) (FIG. 2 (a)) becomes too large, and even in the RTM method, that is, even if a low-viscosity RTM resin is used, the resin impregnation property is poor and impractical. Preferably, the fiber basis weight is greater than 800 g / m 2, in particular exceed 1000g / m 2, 6000g / m 2 or less, preferably, is a 2400 g / m 2 or less.
As described above, in the carbon fiber sheet 10 in which the single twisted fiber bundles 11 are aligned in one direction, each single twisted fiber bundle 11 has a gap (g) = 0 to 2 mm, preferably 0.2 to 1 mm. The fibers are fixed by the fixing fiber material 13 so as to be separated from each other.
The length (L) and width (W) of the carbon fiber sheet 10 formed in this manner are determined as appropriate according to the size and shape of the structure to be reinforced, but generally, due to handling problems, The total width (W) is 100 to 500 mm. Moreover, although length (L) can manufacture a thing of 100 m or more, in use, it cuts suitably and is used.
Moreover, as a method of fixing each single twisted fiber bundle 11 with the fixing fiber material 13, as shown in FIG. 1, for example, wefts are used as the fixing fiber material 13, and a plurality of fibers arranged in one direction are used. The single twisted fiber bundle 11 may be driven at a constant interval (P) perpendicular to the single twisted fiber bundle 11 and knitted. The driving interval (P) of the weft yarn 13 is not particularly limited, but is usually selected in the range of 1 to 15 mm in consideration of the handleability of the produced fiber reinforced sheet 10.
At this time, the weft 13 is a yarn obtained by bundling a plurality of glass fibers or organic fibers having a diameter of 2 to 50 μm, for example. As the organic fiber, polyester, nylon, vinylon, or the like is preferably used.
As another method of aligning the single twisted fiber bundles 11 in one direction and fixing them in a sheet shape, a mesh-like support sheet can be used as the fixing fiber material 13 as shown in FIG.
That is, a mesh-like support made of, for example, glass fiber or organic fiber having a diameter of 2 to 50 μm on one side or both sides of a plurality of single twisted fiber bundles 11 in the form of a sheet aligned in one direction. A configuration supported by the sheet 13 may also be adopted.
In this case, for example, the surface of the warp yarn 14 and the weft yarn 15 constituting the mesh-like support sheet 13 having a biaxial configuration is impregnated with a low melting point type thermoplastic resin in advance, and the mesh-like support sheet 13 Are laminated on one or both sides of each single twisted fiber bundle 11 and heated and pressurized, and the warp yarn 14 and weft yarn 15 portions of the mesh-like support sheet 13 are fused to a plurality of single twist fiber bundles 11 in sheet form. To do.
In addition to the biaxial configuration, the mesh-shaped support sheet 13 is formed by orienting glass fibers in three axes, or only the wefts 15 that are orthogonal to the single twist fiber bundle 11 are disposed. It can also be bonded to a plurality of single twisted fiber bundles 11 formed so as to be oriented in one axis and aligned in the form of a sheet.
Further, as the yarn of the fixing fiber material 13, for example, a double-structured composite fiber having a glass fiber in the core and a low melting point heat-fusible resin arranged around it is also preferably used. It is done.
The carbon fiber sheet 10 is made by twisting the carbon fiber strands F, that is, the single twisted fiber bundles 11 in one direction, but in another method, as shown in FIG. A plurality of carbon fiber strands (single fiber bundles) F that are not twisted, for example, 2 to 5 are combined, and in FIG. In the present specification, the “twisted fiber bundle”) 12) can be used in place of the single twisted fiber bundle 11.
That is, in this case as well, as described above, carbon fiber strands in which 50000 to 60000 carbon fiber monofilaments having an average diameter of 7 μm are converged, that is, a single fiber bundle F, are used. Combine 5 pieces and apply 5 to 50 twists per meter. If the number of twists is less than 5, the force for converging the carbon fiber strands F is weak, and the strands F are not easily thinned. Moreover, if it exceeds 50 times, the carbon fiber strand F will become hard by winding and it will become difficult to do the impregnation property of resin. Further, the linearity of the fiber is deteriorated, and the FRP performance is lowered. Preferably, the number of twists is 10 to 20 times / m.
Thus, the twisted fiber bundle 12 has a substantially circular or elliptical cross-sectional shape with a width (w) of 2.0 to 2.3 mm.
Also in this embodiment, the carbon fiber sheet 10 replaces the single twisted fiber bundle 11 shown in FIG. 1 with the above twisted fiber bundle 12 aligned in one direction, and the respective twisted fiber bundles 12 are fixed to each other. 3 is fixed in a sheet shape. Also in this case, as described above, in the carbon fiber sheet 10 in which the twisted and twisted fiber bundles 12 are aligned in one direction, the gap (g) = 0 to ~ 2 mm, preferably 0.2 to 1 mm, was formed, and there was no fiber overlap.
Accordingly, when the resin for RTM is impregnated, it is easy for the matrix resin to pass between the twisted fiber bundles 12 and 12, and the contact area between the reinforcing fiber and the matrix resin is increased, so that the resin inside the reinforcing fiber bundle can be obtained. Impregnation can be improved.
Performance test example 1
According to the present invention, a carbon fiber sheet 10 shown in FIG. 3 was produced.
A PAN-based carbon fiber strand (single fiber bundle) F in which a single fiber (carbon fiber monofilament) f having an average diameter of 7 μm and a converged number of 50,000 were used was used as the carbon fiber. The strand F was twisted 15 times per meter to obtain a single-stranded fiber bundle 11. The sizing agent of the carbon fiber strand F was 0.2%.
In the carbon fiber sheet 10, the single twist fiber bundles 11 were aligned so as to have a fiber basis weight of 1200 g / m 2 and arranged in a sheet shape. A mesh-like support sheet 13 was bonded to one side of the single fiber bundle 11 having a sheet shape.
The carbon fiber sheet 10 thus produced had a width (W) of 200 mm and a length (L) of 100 m. The gap (g) between the single twisted fiber bundles 11 was 0 to 0.2 mm.
As a comparative example, a carbon fiber sheet having the following configuration was produced.
Comparative Example 1
The comparative example 1 is different only in that a strand (single fiber bundle) F that does not twist the carbon fiber is used as a comparative example 1, and the carbon shown in the above specific example 1 according to the present invention is of the same material, configuration, and dimensions. A carbon fiber sheet similar to the fiber sheet 10 was produced.
Comparative Example 2
As Comparative Example 2, PAN-based carbon fiber strands (single fiber bundles) F in which single fibers (carbon fiber monofilaments) f having an average diameter of 7 μm were converged as 24,000 converging numbers were used as carbon fibers. The strand F was twisted 15 times per meter to obtain a single-stranded fiber bundle 11. The sizing agent of the carbon fiber strand F was 0.2%.
In the carbon fiber sheet 10, the single twisted fiber bundles 11 were aligned so as to have a fiber basis weight of 400 g / m 2 and arranged in a sheet shape. A mesh-like support sheet 13 was bonded to one side of the single fiber bundle 11 having a sheet shape.
The carbon fiber sheet 10 thus produced had a width (W) of 200 mm and a length (L) of 100 m. The gap (g) between the single twisted fiber bundles 11 was 0 to 0.2 mm.
Next, the carbon fiber sheet 10 of the specific example 1 and the carbon fiber sheets of the comparative examples 1 and 2 are used in the specific example 1 and the comparative example 1, one sheet in the comparative example 2, and three sheets are used in the RTM method. A flat plate having a width of 200 mm, a length of 2 m, and a thickness of 1.3 mm was produced using the experimental apparatus 100 shown in FIG.
Referring to FIG. 4, the molding apparatus 100 used in this experiment is an apparatus that performs the VaRTM method. The carbon fiber sheet 10 is placed in a mold (mold) 101, and a resin distribution medium 102 and a vacuum are placed thereon. Bag 103 is set. Resin R is injected between the resin distribution medium 102 and the mold 101 from the resin injection device 104 disposed adjacent to the mold 101. In addition, the vacuum bag 103 is evacuated, whereby the carbon fiber sheet 10 is impregnated with the resin R. The carbon fiber sheet 10 impregnated with the resin R is heated together with the mold 101 with a heating device, for example, a heating plate or an oven, and the resin R is cured. Thereafter, the resin-impregnated and cured carbon fiber sheet 10 is removed from the molding die 101 to obtain a product (carbon fiber reinforced plastic material).
Resin R used in Specific Example 1 and Comparative Examples 1 and 2 is a low-viscosity RTM resin and is an epoxy resin for composite materials manufactured by Nagase ChemteX Corporation (general-purpose type “XNR / H6809” (trade name)). It was used. The viscosity of the resin was 260 mPa · s / 25 ° C. and 80 mPa · s / 40 ° C. The viscosity at the time of pouring into the mold, that is, the resin viscosity at a temperature of 25 ° C. was 260 mPa · s.
Of course, as an RTM resin, in addition to an epoxy resin, a polyester resin, a vinyl ester resin, an MMA resin, an unsaturated polyester resin having a viscosity of 30 to 300 mPa · s at the time of resin injection (temperature 25 ° C. as an example) Phenolic resins can be used.
When the carbon fiber sheet 10 of the specific example 1 was used in this experiment, the resin impregnation operation was completed in about 0.5 hours (total molding operation time 2.5 hours), and the orientation of the carbon fiber sheet 1 was disturbed. And a good product could be obtained.
A product similar to that of Example 1 was produced using the carbon fiber sheet of Comparative Example 1, but it took 1 hour for resin-containing work (total molding work time 3.5 hours). In addition, the product was disturbed in carbon fiber orientation.
A product similar to that of Example 1 was prepared using three carbon fiber sheets of Comparative Example 2, but the carbon fiber orientation disorder was not found in the product, but the resin impregnation work was performed for 1.2 hours (total Molding work time of 4 hours) was required.
As described above, the carbon fiber sheet of the present invention uses a carbon fiber sheet using thick carbon fiber strands, so that the carbon fiber Vf (unit breakage) can be compared with molding of a large number of thin carbon fiber strand sheets. The cross-sectional area ratio of the carbon fibers per area) can be increased, the molding time can be significantly reduced including preparations such as laminating work, and the disturbance of fibers at the time of laminating can be further reduced. Thereby, it is possible to improve the performance of the FRP material and avoid an increase in cost.
Therefore, according to the carbon fiber sheet of the present invention, the fiber basis weight exceeds 800 g / m 2 , particularly exceeds 1000 g / m 2 , for example, a large FRP material used for wind turbine blades, vehicles, ships, etc. Thus, the resin impregnation time can be shortened and a product having good tensile and bending strength can be produced.
In addition, although the fiber sheet of the present example was used, a resin impregnation work was attempted using a construction resin for civil engineering and construction (viscosity at the time of resin injection (23 ° C.) 8000 mPa · s). It took time and had a big problem in terms of work efficiency.
 10             炭素繊維シート
 11             単撚繊維束
 12             合撚繊維束
 13             固定用繊維材
DESCRIPTION OF SYMBOLS 10 Carbon fiber sheet 11 Single twist fiber bundle 12 Twisted fiber bundle 13 Fixing fiber material

Claims (9)

  1.  50000~60000本の炭素繊維モノフィラメントを収束した炭素繊維ストランドに1m当たり5回から50回の撚りをかけることにより作製された単撚繊維束か、又は、50000~60000本の炭素繊維モノフィラメントを収束した炭素繊維ストランドを複数本合わせて1m当たり5回から50回の撚りをかけることにより作製された合撚繊維束を、重ならないように一方向に配列し、前記各単撚繊維束又は前記各合撚繊維束は、互いに固定用繊維材にて固定し、繊維目付が800g/mを超え、6000g/m以下とされることを特徴とするRTM工法用高目付炭素繊維シート。 A single-stranded fiber bundle prepared by applying 5 to 50 twists per meter to a carbon fiber strand in which 50000 to 60000 carbon fiber monofilaments are converged, or 50000 to 60000 carbon fiber monofilaments are converged. A plurality of carbon fiber strands are combined and a twisted fiber bundle produced by twisting 5 to 50 times per meter is arranged in one direction so as not to overlap, and each of the single twisted fiber bundles or the respective twisted fibers is arranged. fiber bundle twisted is fixed at a fixing fiber material to each other, the fiber basis weight exceeds 800g / m 2, 6000g / m 2 or less and the RTM method for the high basis weight carbon fiber sheet, characterized in that it is.
  2.  前記各単撚繊維束又は前記各合撚繊維束の間には、0~2mmの空隙(g)が形成されることを特徴とする請求項1のRTM工法用高目付炭素繊維シート。 The high-weight carbon fiber sheet for an RTM method according to claim 1, wherein a gap (g) of 0 to 2 mm is formed between each single twisted fiber bundle or each twisted fiber bundle.
  3.  前記合撚繊維束は、2~5本の単繊維束を合撚して形成されることを特徴とする請求項1又は2のRTM工法用高目付炭素繊維シート。 The high-weight carbon fiber sheet for an RTM method according to claim 1 or 2, wherein the twisted fiber bundle is formed by twisting 2 to 5 single fiber bundles.
  4.  前記固定用繊維材は、前記各単撚繊維束又は前記各合撚繊維束の長手方向に対して垂直方向に前記各単撚繊維束又は前記各合撚繊維束を編み付ける横糸であることを特徴とする請求項1、2又は3のRTM工法用高目付炭素繊維シート。 The fixing fiber material is a weft for knitting each single twist fiber bundle or each twist fiber bundle in a direction perpendicular to the longitudinal direction of each single twist fiber bundle or each twist fiber bundle. The high-weight carbon fiber sheet for an RTM method according to claim 1, 2, or 3, characterized by the above.
  5.  前記横糸は、ガラス繊維或いは有機繊維から成る糸条であることを特徴とする請求項4のRTM工法用高目付炭素繊維シート。 The high-weight carbon fiber sheet for an RTM method according to claim 4, wherein the weft is a yarn made of glass fiber or organic fiber.
  6.  前記固定用繊維材は、一方向に配列した前記各単撚繊維束又は前記各合撚繊維束の片側面、又は、両面に配置され、接着又は融着されたメッシュ状支持体シートであることを特徴とする請求項1~5のいずれかの項に記載のRTM工法用高目付炭素繊維シート。 The fixing fiber material is a mesh-like support sheet that is disposed on one side or both sides of each single twisted fiber bundle or each twisted fiber bundle arranged in one direction, and is bonded or fused. The high-weight carbon fiber sheet for an RTM method according to any one of claims 1 to 5, wherein:
  7.  前記メッシュ状支持体シートは、ガラス繊維から成る糸条を1軸、2軸或いは3軸に配向して形成し、前記糸条表面に被覆された樹脂により前記各単撚繊維束又は前記各合撚繊維束に接着又は融着されることを特徴とする請求項6のRTM工法用高目付炭素繊維シート。 The mesh-like support sheet is formed by orienting uniaxial, biaxial or triaxial yarns made of glass fibers, and the single twisted fiber bundles or the synthetic fibers are made of resin coated on the yarn surface. The high-weight carbon fiber sheet for an RTM method according to claim 6, which is adhered or fused to a twisted fiber bundle.
  8.  型枠に炭素繊維シートを入れ込み、樹脂を注入して硬化させ、繊維強化プラスチック材を成型するRTM工法において、
     前記炭素繊維シートは、請求項1~7のいずれかの項に記載のRTM工法用高目付炭素繊維シートであり、
     前記樹脂は、樹脂注入時の粘度が30~300mPa・sであることを特徴とするRTM工法。
    In the RTM method of inserting a carbon fiber sheet into a mold, injecting and curing a resin, and molding a fiber reinforced plastic material,
    The carbon fiber sheet is a high-weight carbon fiber sheet for an RTM method according to any one of claims 1 to 7,
    The RTM method, wherein the resin has a viscosity at the time of resin injection of 30 to 300 mPa · s.
  9.  前記樹脂は、エポキシ樹脂、ポリエステル樹脂、ビニールエステル樹脂、MMA樹脂、不飽和ポリエステル樹脂、又は、フェノール樹脂であることを特徴とする請求項8に記載のRTM工法。 The RTM method according to claim 8, wherein the resin is an epoxy resin, a polyester resin, a vinyl ester resin, an MMA resin, an unsaturated polyester resin, or a phenol resin.
PCT/JP2013/056553 2012-03-06 2013-03-05 High-basis-weight carbon fiber sheet for rtm process, and rtm process WO2013133437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013528417A JP6138045B2 (en) 2012-03-06 2013-03-05 Method for producing high-weight carbon fiber sheet for RTM method and RTM method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-049831 2012-03-06
JP2012049831 2012-03-06

Publications (1)

Publication Number Publication Date
WO2013133437A1 true WO2013133437A1 (en) 2013-09-12

Family

ID=49116904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056553 WO2013133437A1 (en) 2012-03-06 2013-03-05 High-basis-weight carbon fiber sheet for rtm process, and rtm process

Country Status (2)

Country Link
JP (1) JP6138045B2 (en)
WO (1) WO2013133437A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528850A (en) * 2014-07-31 2016-02-10 Vestas Wind Sys As Improvements relating to reinforcing structures for wind turbine blades
JP2016539029A (en) * 2013-11-22 2016-12-15 アールストロム コーポレイション Unidirectional reinforcement, method for producing unidirectional reinforcement, and use thereof
US20170320293A1 (en) * 2014-11-21 2017-11-09 Tape Weaving Sweden Ab Tape-like dry fibrous reinforcement
CN112481773A (en) * 2019-09-10 2021-03-12 中国航发商用航空发动机有限责任公司 Fiber bundle, three-dimensional woven structure, three-dimensional fabric composite material and process method
WO2021181050A1 (en) 2020-03-11 2021-09-16 Hexcel Reinforcements Reinforcing material comprising twisted carbon threads for the manufacture of composite parts, and corresponding methods and use
FR3108056A1 (en) * 2020-03-11 2021-09-17 Hexcel Reinforcements New high grammage reinforcement materials, suitable for the constitution of composite parts, processes and use
WO2022189744A1 (en) 2021-03-11 2022-09-15 Hexcel Reinforcements New reinforcing materials based on s- and z-twisted yarns for the manufacture of composite parts, methods and use
KR20220154939A (en) * 2021-05-14 2022-11-22 도레이첨단소재 주식회사 Carbon fiber fabric and method of manufacturing the same
JP7279272B1 (en) 2022-03-31 2023-05-22 日鉄ケミカル&マテリアル株式会社 FIBER REINFORCED SHEET AND METHOD FOR BENDING FIBER REINFORCED SHEET
WO2023188703A1 (en) * 2022-03-31 2023-10-05 日鉄ケミカル&マテリアル株式会社 Fiber-reinforced sheet and method for bending fiber-reinforced sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002989A (en) * 2001-06-19 2003-01-08 Toray Ind Inc Prepreg
JP2004197325A (en) * 2002-12-16 2004-07-15 Nippon Steel Composite Co Ltd Fiber reinforced sheet
JP2004249507A (en) * 2003-02-18 2004-09-09 Nippon Steel Composite Co Ltd Reinforcing fiber sheet
JP2008222846A (en) * 2007-03-12 2008-09-25 Nippon Steel Composite Co Ltd Round-shaped fiber-reinforcing plastic wire material and its manufacturing method, and fiber-reinforced sheet
JP4667069B2 (en) * 2005-02-18 2011-04-06 新日鉄マテリアルズ株式会社 Carbon fiber sheet
JP2011246827A (en) * 2010-05-24 2011-12-08 Mitsubishi Rayon Co Ltd Unidirectional fiber-reinforced woven or knitted fabric for fiber-reinforced plastic and fiber base material of the same, method of manufacturing the fiber base material, and method of molding fiber-reinforced plastic using the fiber base material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128166A (en) * 1982-08-24 1984-07-24 Mitsubishi Rayon Co Ltd Method of weft spool winding of carbon fiber yarn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002989A (en) * 2001-06-19 2003-01-08 Toray Ind Inc Prepreg
JP2004197325A (en) * 2002-12-16 2004-07-15 Nippon Steel Composite Co Ltd Fiber reinforced sheet
JP2004249507A (en) * 2003-02-18 2004-09-09 Nippon Steel Composite Co Ltd Reinforcing fiber sheet
JP4667069B2 (en) * 2005-02-18 2011-04-06 新日鉄マテリアルズ株式会社 Carbon fiber sheet
JP2008222846A (en) * 2007-03-12 2008-09-25 Nippon Steel Composite Co Ltd Round-shaped fiber-reinforcing plastic wire material and its manufacturing method, and fiber-reinforced sheet
JP2011246827A (en) * 2010-05-24 2011-12-08 Mitsubishi Rayon Co Ltd Unidirectional fiber-reinforced woven or knitted fabric for fiber-reinforced plastic and fiber base material of the same, method of manufacturing the fiber base material, and method of molding fiber-reinforced plastic using the fiber base material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016539029A (en) * 2013-11-22 2016-12-15 アールストロム コーポレイション Unidirectional reinforcement, method for producing unidirectional reinforcement, and use thereof
GB2528850A (en) * 2014-07-31 2016-02-10 Vestas Wind Sys As Improvements relating to reinforcing structures for wind turbine blades
US11644006B2 (en) 2014-07-31 2023-05-09 Vestas Wind Systems A/S Reinforcing structures for wind turbine blades
US11400689B2 (en) 2014-11-21 2022-08-02 Tape Weaving Sweden Ab Tape-like dry fibrous reinforcement
US20170320293A1 (en) * 2014-11-21 2017-11-09 Tape Weaving Sweden Ab Tape-like dry fibrous reinforcement
JP2018501121A (en) * 2014-11-21 2018-01-18 テープ、ウィービング、スウェーデン、アクチボラグTape Weaving Sweden Ab Tape-like dry fiber reinforcement
CN112481773A (en) * 2019-09-10 2021-03-12 中国航发商用航空发动机有限责任公司 Fiber bundle, three-dimensional woven structure, three-dimensional fabric composite material and process method
FR3108057A1 (en) * 2020-03-11 2021-09-17 Hexcel Reinforcements Reinforcing material with twisted carbon wires for the constitution of composite parts, methods and use
FR3108056A1 (en) * 2020-03-11 2021-09-17 Hexcel Reinforcements New high grammage reinforcement materials, suitable for the constitution of composite parts, processes and use
WO2021181050A1 (en) 2020-03-11 2021-09-16 Hexcel Reinforcements Reinforcing material comprising twisted carbon threads for the manufacture of composite parts, and corresponding methods and use
WO2022189744A1 (en) 2021-03-11 2022-09-15 Hexcel Reinforcements New reinforcing materials based on s- and z-twisted yarns for the manufacture of composite parts, methods and use
FR3120563A1 (en) 2021-03-11 2022-09-16 Hexcel Reinforcements New reinforcing materials based on twisted S and Z yarns, adapted to the constitution of composite parts, processes and use
KR20220154939A (en) * 2021-05-14 2022-11-22 도레이첨단소재 주식회사 Carbon fiber fabric and method of manufacturing the same
KR102512971B1 (en) 2021-05-14 2023-03-21 도레이첨단소재 주식회사 Carbon fiber fabric and method of manufacturing the same
JP7279272B1 (en) 2022-03-31 2023-05-22 日鉄ケミカル&マテリアル株式会社 FIBER REINFORCED SHEET AND METHOD FOR BENDING FIBER REINFORCED SHEET
WO2023188703A1 (en) * 2022-03-31 2023-10-05 日鉄ケミカル&マテリアル株式会社 Fiber-reinforced sheet and method for bending fiber-reinforced sheet

Also Published As

Publication number Publication date
JP6138045B2 (en) 2017-05-31
JPWO2013133437A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP6138045B2 (en) Method for producing high-weight carbon fiber sheet for RTM method and RTM method
JPWO2014030632A1 (en) Three-dimensional fiber reinforced composite material and method for producing three-dimensional fiber reinforced composite material
JP6190064B2 (en) Manufacturing method of composite molded body, composite molded body, sandwich component, rotor blade element, and wind power generator
JP7087337B2 (en) Reinforced fiber base material, reinforcing fiber laminate and fiber reinforced resin
JP2011074207A (en) Preform of fiber reinforced composite material and method for producing the same
JP6278488B2 (en) VaRTM reinforcing fiber sheet
KR102204244B1 (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
WO2020031771A1 (en) Reinforced fiber tape material and production method therefor, fiber reinforced resin molded body and reinforced fiber layered body using reinforced fiber tape material
JP5990030B2 (en) Method for molding fiber reinforced plastic structure and method for producing reinforced fiber sheet for VaRTM
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
JP6061568B2 (en) Method for producing reinforced fiber sheet for VaRTM and method for molding fiber reinforced plastic structure
JP7467840B2 (en) Reinforced fiber substrate, reinforced fiber laminate, and fiber reinforced resin
JP6196658B2 (en) Sandwich panel, unidirectional prepreg manufacturing method, and sandwich panel manufacturing method
US11505660B2 (en) Fiber reinforced materials with improved fatigue performance
JP2006138031A (en) Reinforcing fiber substrate, preform and method for producing them
JP2014163016A (en) Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
JP2012251043A (en) Thread, sheet-like reinforcing fiber base material, preform and method for manufacturing fiber reinforced composite material
JP7290107B2 (en) DRY TAPE MATERIAL FOR FIBER PLACEMENT, MANUFACTURING METHOD THEREOF, REINFORCED FIBER LAMINATE AND FIBER REINFORCED RESIN MOLDED PRODUCT USING THE SAME
JP2018066000A (en) Fiber-reinforced base material, and fiber-reinforced resin
JP7222989B2 (en) Method for producing carbon-resin composite material and composite structure for producing carbon-resin composite material
US20240059046A1 (en) Reinforcing fiber base material for resin transfer molding, method of producing same, reinforcing fiber laminate for resin transfer molding, and fiber-reinforced plastic
JP2017155391A (en) Base material for fiber-reinforced plastic, multilayered base material for fiber-reinforced plastic, preform for fiber-reinforced plastic, and method for producing the same
WO2014034606A1 (en) Three-dimensional fiber structure, prepreg using same and process for manufacturing three-dimensional fiber structure
KR101727470B1 (en) Composite stitching structure reinforced by z-directional fiber
JP2005272526A (en) Composite material and manufacturing method of the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013528417

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757540

Country of ref document: EP

Kind code of ref document: A1