JP6829174B2 - Carbon fiber non-woven fabric - Google Patents

Carbon fiber non-woven fabric Download PDF

Info

Publication number
JP6829174B2
JP6829174B2 JP2017185331A JP2017185331A JP6829174B2 JP 6829174 B2 JP6829174 B2 JP 6829174B2 JP 2017185331 A JP2017185331 A JP 2017185331A JP 2017185331 A JP2017185331 A JP 2017185331A JP 6829174 B2 JP6829174 B2 JP 6829174B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
woven fabric
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185331A
Other languages
Japanese (ja)
Other versions
JP2019060043A (en
Inventor
展章 廣田
展章 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2017185331A priority Critical patent/JP6829174B2/en
Publication of JP2019060043A publication Critical patent/JP2019060043A/en
Application granted granted Critical
Publication of JP6829174B2 publication Critical patent/JP6829174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Description

本発明は、炭素繊維強化樹脂複合体等に用いられる炭素繊維不織布に関する。 The present invention relates to a carbon fiber non-woven fabric used for a carbon fiber reinforced resin composite or the like.

炭素繊維と樹脂を複合化してなる炭素繊維強化樹脂複合体は、金属材料に匹敵する強度・弾性率を有しながら、金属材料よりも比重が小さいため、部材の軽量化を図ることができ、また、発錆の問題もなく、酸やアルカリにも強いという性質を有していることから、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等で使用されている。 The carbon fiber reinforced resin composite, which is a composite of carbon fiber and resin, has strength and elastic modulus comparable to that of a metal material, but has a smaller specific gravity than that of a metal material, so that the weight of the member can be reduced. In addition, since it has no rusting problem and is resistant to acids and alkalis, it is used in electronic equipment materials, electrical equipment materials, civil engineering materials, building materials, automobile materials, aircraft materials, and various manufacturing industries. It is used in manufacturing parts such as robots and rolls.

炭素繊維強化樹脂複合体は、長繊維織布、開繊織物、一方向性ウェブ、長繊維不織布、短繊維不織布等の炭素繊維布帛と、熱硬化性樹脂、熱可塑性樹脂等の樹脂とを複合させた複合体である。最も一般的な炭素繊維強化樹脂複合体には、炭素長繊維布帛と熱硬化性樹脂とを複合させた複合体であるが、設計が難しい、均質材料ではない、成形加工時間が長い、高価等の課題があった。 The carbon fiber reinforced resin composite is a composite of a carbon fiber fabric such as a long fiber woven fabric, an open fiber woven fabric, a unidirectional web, a long fiber non-woven fabric, and a short fiber non-woven fabric, and a resin such as a thermosetting resin and a thermoplastic resin. It is a complex that has been made to. The most common carbon fiber reinforced resin composite is a composite of a long carbon fiber fabric and a thermosetting resin, but it is difficult to design, it is not a homogeneous material, the molding time is long, it is expensive, etc. There was a problem.

これらの課題を解決する方法として、炭素繊維を含有する不織布(炭素繊維不織布)と熱可塑性樹脂とを複合した炭素繊維強化熱可塑性樹脂複合体が提案されている(例えば、特許文献1〜5参照)。炭素繊維不織布と熱可塑性樹脂が使用されることによって、易設計・加工性が得られ、成形加工時間の短縮が可能となっている。 As a method for solving these problems, a carbon fiber reinforced thermoplastic resin composite in which a non-woven fabric containing carbon fibers (carbon fiber non-woven fabric) and a thermoplastic resin are composited has been proposed (see, for example, Patent Documents 1 to 5). ). By using the carbon fiber non-woven fabric and the thermoplastic resin, easy design and workability can be obtained, and the molding processing time can be shortened.

しかしながら、従来の炭素繊維不織布は、炭素繊維と熱可塑性樹脂粉末又は熱可塑性樹脂繊維とを含む炭素繊維不織布、炭素繊維のみを含む炭素繊維不織布等であるが、炭素繊維を乾式法又は湿式法で均一に分散することが難しく、得られる炭素繊維不織布の均一性は不十分であり、またこの炭素繊維不織布と熱可塑性樹脂とを複合した炭素繊維強化熱可塑性樹脂複合体の品質も満足できるものではなかった。 However, the conventional carbon fiber non-woven fabric is a carbon fiber non-woven fabric containing carbon fiber and thermoplastic resin powder or thermoplastic resin fiber, a carbon fiber non-woven fabric containing only carbon fiber, etc., but the carbon fiber is subjected to a dry method or a wet method. It is difficult to disperse uniformly, the uniformity of the obtained carbon fiber non-woven fabric is insufficient, and the quality of the carbon fiber reinforced thermoplastic resin composite obtained by combining the carbon fiber non-woven fabric and the thermoplastic resin is not satisfactory. There wasn't.

特開2013−202891号公報Japanese Unexamined Patent Publication No. 2013-20281 特開2011−21303号公報Japanese Unexamined Patent Publication No. 2011-21303 特開2004−43985号公報JP-A-2004-43985 特開2016−151081号公報Japanese Unexamined Patent Publication No. 2016-151081 特開2014−224333号公報Japanese Unexamined Patent Publication No. 2014-224333

本発明の課題は、抄造性及び均一性に優れた炭素繊維不織布を提供することである。 An object of the present invention is to provide a carbon fiber nonwoven fabric having excellent paperability and uniformity.

上記課題は、下記発明によって解決することができる。 The above problem can be solved by the following invention.

炭素繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有し、炭素繊維が水中で高速回転せん断型分散機を使って分散されたスラリーを用いて湿式抄造法により形成された炭素繊維不織布であり、フラジール通気度の変動率が8%以下である炭素繊維不織布。 A carbon fiber non-woven fabric containing carbon fibers, thermoplastic resin fibers, and fibrillated cellulose fibers, and formed by a wet fabrication method using a slurry in which the carbon fibers are dispersed in water using a high-speed rotary shear type disperser. , Frazier A carbon fiber non-woven fabric having a fluctuation rate of air permeability of 8% or less.

本発明によれば、抄造性及び均一性に優れた炭素繊維不織布を提供することができる。 According to the present invention, it is possible to provide a carbon fiber nonwoven fabric having excellent paperability and uniformity.

本発明の炭素繊維不織布は、炭素繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有し、炭素繊維が水中で高速回転せん断型分散機を使って分散されたスラリーを用いて湿式抄造法により形成された炭素繊維不織布であり、フラジール通気度の変動率が8%以下である不織布である。 The carbon fiber non-woven fabric of the present invention contains carbon fibers, thermoplastic resin fibers, and fibrillated cellulose fibers, and the carbon fibers are dispersed in water using a high-speed rotary shear type disperser by a wet fabrication method. It is a formed carbon fiber non-woven fabric, and is a non-woven fabric having a fluctuation rate of Frazier air permeability of 8% or less.

炭素繊維としては、ポリアクリロニトリルを原料とするPAN系炭素繊維、ピッチ類を原料とするピッチ系炭素繊維、PAN系再生炭素繊維、ピッチ系再生炭素繊維が挙げられる。炭素繊維の繊維径は3〜20μmであることが好ましく、5〜15μmであることがより好ましい。また、炭素繊維の繊維長は1〜50mmであることが好ましく、3〜20mmであることがより好ましい。炭素繊維の含有量は、不織布中の全繊維に対して、50〜96質量%であることが好ましく、70〜93質量%であることがより好ましい。 Examples of the carbon fiber include PAN-based carbon fiber made from polyacrylonitrile, pitch-based carbon fiber made from pitches, PAN-based regenerated carbon fiber, and pitch-based regenerated carbon fiber. The fiber diameter of the carbon fiber is preferably 3 to 20 μm, more preferably 5 to 15 μm. The fiber length of the carbon fiber is preferably 1 to 50 mm, more preferably 3 to 20 mm. The content of the carbon fibers is preferably 50 to 96% by mass, more preferably 70 to 93% by mass, based on the total fibers in the non-woven fabric.

再生炭素繊維とは、炭素繊維と樹脂を複合化してなる炭素繊維強化樹脂複合体から得られる再生品である。炭素繊維強化樹脂複合体は、長繊維織布、開繊織物、一方向性ウェブ、長繊維不織布、短繊維不織布等の炭素繊維布帛と、熱硬化性樹脂、熱可塑性樹脂等の樹脂とを複合させた複合体である。最も一般的な炭素繊維強化樹脂複合体は、炭素長繊維布帛と熱硬化性樹脂とを複合させた複合体である。炭素繊維としては、ポリアクリロニトリルを原料とするPAN系炭素繊維やピッチ類を原料とするピッチ系炭素繊維が挙げられる。炭素繊維強化樹脂複合体から、熱処理法、焼結法、過熱法、過熱水蒸気法等の再生処理方法により、樹脂が除去されることによって得られる炭素繊維が再生炭素繊維である。 The recycled carbon fiber is a recycled product obtained from a carbon fiber reinforced resin composite formed by compounding carbon fiber and resin. The carbon fiber reinforced resin composite is a composite of a carbon fiber fabric such as a long fiber woven fabric, an open fiber woven fabric, a unidirectional web, a long fiber non-woven fabric, and a short fiber non-woven fabric, and a resin such as a thermosetting resin and a thermoplastic resin. It is a complex that has been made to. The most common carbon fiber reinforced resin composite is a composite of a long carbon fiber fabric and a thermosetting resin. Examples of the carbon fibers include PAN-based carbon fibers made from polyacrylonitrile and pitch-based carbon fibers made from pitches. The carbon fiber obtained by removing the resin from the carbon fiber reinforced resin composite by a regeneration treatment method such as a heat treatment method, a sintering method, a superheat method, or a superheated steam method is a regenerated carbon fiber.

本発明で用いられる再生炭素繊維は、炭素繊維自体の損傷を低減するため、窒素、アルゴン、水蒸気等の気体中で熱処理されたものが好ましい。熱処理温度としては、好ましくは400℃から800℃であり、更に好ましくは450℃から600℃である。 The regenerated carbon fiber used in the present invention is preferably one that has been heat-treated in a gas such as nitrogen, argon, or water vapor in order to reduce damage to the carbon fiber itself. The heat treatment temperature is preferably 400 ° C. to 800 ° C., more preferably 450 ° C. to 600 ° C.

熱可塑性樹脂繊維は、炭素繊維が不織布から脱離することを防止し、炭素繊維不織布に強度を付与するために添加される。熱可塑性樹脂繊維としては、非結晶性のポリビニルアルコール(ビニロン)繊維、表面が低融点化されているポリエステル芯鞘繊維、未延伸ポリエステル繊維、ポリカーボネート(PC)繊維、ポリオレフィン繊維、表面が低融点化されているポリオレフィン芯鞘繊維、表面が酸変性ポリオレフィンよりなるポリオレフィン繊維、脂肪族ポリアミド繊維、未延伸ポリフェニレンスルフィド繊維、ポリエーテルケトンケトン繊維等が挙げられる。 The thermoplastic resin fiber is added to prevent the carbon fiber from detaching from the non-woven fabric and to impart strength to the carbon fiber non-woven fabric. The thermoplastic resin fibers include non-crystalline polyvinyl alcohol (vinylon) fibers, polyester core-sheath fibers having a low melting point on the surface, unstretched polyester fibers, polycarbonate (PC) fibers, polyolefin fibers, and having a low melting point on the surface. Examples thereof include polyolefin core-sheath fibers, polyolefin fibers whose surface is made of acid-modified polyolefin, aliphatic polyamide fibers, unstretched polyphenylene sulfide fibers, polyether ketone ketone fibers, and the like.

熱可塑性樹脂繊維が融点を示す場合、融点は60〜260℃であることが好ましく、60〜230℃であることがより好ましく、60〜180℃であることが更に好ましく、80〜160℃であることが特に好ましい。熱可塑性樹脂繊維の融点がこの温度範囲であることによって、不織布製造工程における加熱処理によって、結着性が付与され、炭素繊維不織布に強度が付与される。 When the thermoplastic resin fiber exhibits a melting point, the melting point is preferably 60 to 260 ° C., more preferably 60 to 230 ° C., further preferably 60 to 180 ° C., and 80 to 160 ° C. Is particularly preferred. When the melting point of the thermoplastic resin fiber is in this temperature range, the binding property is imparted by the heat treatment in the nonwoven fabric manufacturing process, and the strength is imparted to the carbon fiber nonwoven fabric.

熱可塑性樹脂繊維である非晶性のポリビニルアルコール(ビニロン)繊維は明確な融点を示さないが、水の存在下60〜100℃で溶解するため、湿式抄造法においては、ドライヤーでの加熱処理によって、湿熱溶解して、結着性が付与され、炭素繊維不織布に強度が付与される。 Amorphous polyvinyl alcohol (vinylon) fiber, which is a thermoplastic resin fiber, does not show a definite melting point, but it dissolves at 60 to 100 ° C. in the presence of water. Therefore, in the wet fabrication method, heat treatment with a dryer is performed. , Moist heat melts to impart binding properties and imparts strength to the carbon fiber non-woven fabric.

熱可塑性樹脂繊維の繊維径は3〜40μmであることが好ましく、5〜20μmであることがより好ましい。また、熱可塑性樹脂繊維の繊維長は1〜20mmであることが好ましく、3〜12mmであることがより好ましい。熱可塑性樹脂繊維の含有量は、不織布中の全繊維に対して、2〜40質量%であることが好ましい。 The fiber diameter of the thermoplastic resin fiber is preferably 3 to 40 μm, more preferably 5 to 20 μm. The fiber length of the thermoplastic resin fiber is preferably 1 to 20 mm, more preferably 3 to 12 mm. The content of the thermoplastic resin fiber is preferably 2 to 40% by mass with respect to the total fiber in the non-woven fabric.

本発明に用いられるフィブリル化セルロース繊維とは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下であるセルロース繊維である。長さと幅のアスペクト比が20〜100000であることが好ましい。また、変法濾水度が0〜770mlであることが好ましく、0〜600mlであることがより好ましい。さらに、質量平均繊維長が0.1〜2mmであることが好ましい。フィブリル化セルロース繊維の含有量は、不織布中の全繊維に対して、2〜20質量%であることが好ましく、2〜10質量%であることがより好ましい。フィブリル化セルロース繊維を含有させることにより、炭素繊維と熱可塑性樹脂繊維との結着性を向上させ、抄造性が良化すると共に、加熱及び加熱加圧時の不織布層の崩れを抑制し、炭素繊維強化熱可塑性樹脂複合体の均一性を高めることができる。本発明における変法濾水度は、ふるい板として線径0.14mm、目開き0.18mmの金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を用い、試料濃度を0.1質量%にした以外はJIS P8121−2:2012に準拠して測定した濾水度である。 The fibrillated cellulose fiber used in the present invention is not in the form of a film, but in the form of a fiber having a portion mainly divided in a direction parallel to the fiber axis, and at least a part thereof has a fiber diameter of 1 μm or less. It is a fiber. The aspect ratio of length to width is preferably 20-100,000. Further, the modified drainage degree is preferably 0 to 770 ml, more preferably 0 to 600 ml. Further, the mass average fiber length is preferably 0.1 to 2 mm. The content of the fibrillated cellulose fibers is preferably 2 to 20% by mass, more preferably 2 to 10% by mass, based on the total fibers in the non-woven fabric. By containing the fibrillated cellulose fiber, the bondability between the carbon fiber and the thermoplastic resin fiber is improved, the manufacturability is improved, and the collapse of the non-woven fabric layer during heating and heating and pressurization is suppressed, and carbon is used. The uniformity of the fiber-reinforced thermoplastic resin composite can be improved. The modified drainage degree in the present invention uses a wire mesh (made by PULP AND PAPER RESEARCH INSTITUTE OF CANADA) with a wire diameter of 0.14 mm and a mesh opening of 0.18 mm as a sieving plate, except that the sample concentration is 0.1% by mass. Is the degree of drainage measured in accordance with JIS P8121-2: 2012.

フィブリル化セルロース繊維用のセルロース材料としては、植物パルプ、溶剤紡糸セルロース、半合成セルロース等が挙げられる。植物パルプとしては、広葉樹材(L材)や針葉樹材(N材)を用いたクラフトパルプ(KP)、溶解パルプ(DP)、溶解クラフトパルプ(DKP)等の木質系パルプが挙げられる。また、藁、麻、コットン、コットンリンター等の非木質系パルプも挙げられる。市販品としては、セリッシュ(登録商標、ダイセルファインケム社製)が挙げられる。なお、セルロース材料の結晶形には、I型、II型、III型、IV型等があるが、耐熱性の観点から、I型、II型が好ましく、I型がより好ましい。I型のセルロース材料源としては、コットンパルプ、コットンリンターパルプ、麻パルプ、ケナフパルプ等の非木質系パルプで、リグニン及びヘミセルロースの含有量が低減されたパルプと、L材又はN材から得られる、リグニン及びヘミセルロースの含有量が低減されたKP、DP、DKP等の木質系パルプとが挙げられる。特に、コットン系材料が好ましい。 Examples of the cellulose material for fibrillated cellulose fibers include plant pulp, solvent-spun cellulose, semi-synthetic cellulose and the like. Examples of the vegetable pulp include wood-based pulp such as kraft pulp (KP), dissolved pulp (DP), and dissolved kraft pulp (DKP) using softwood (L material) and softwood (N material). In addition, non-wood pulp such as straw, hemp, cotton and cotton linter can also be mentioned. Examples of commercially available products include Serish (registered trademark, manufactured by Daicel Fine Chem Ltd.). The crystal form of the cellulose material includes type I, type II, type III, type IV and the like, but from the viewpoint of heat resistance, type I and type II are preferable, and type I is more preferable. The I-type cellulose material source is non-wood pulp such as cotton pulp, cotton linter pulp, hemp pulp, and kenaf pulp, which is obtained from pulp having a reduced content of lignin and hemicellulose, and L material or N material. Examples thereof include wood-based pulps such as KP, DP and DKP in which the contents of lignin and hemicellulose are reduced. In particular, cotton-based materials are preferable.

フィブリル化セルロース繊維を得るためには、セルロース材料が、まず、水中で分散され、機械的に粉砕される。そして、セルロース材料の繊維が解繊されてフィブリルが形成される。セルロース材料を解繊する装置としては、ディスクリファイナー、石臼型磨砕機、高圧ホモジナイザー、ボールミル、水中カウンターコリジョン法用装置、超音波破砕器等が挙げられる。これらの装置を適宜組み合わせて使用することもできる。 To obtain fibrillated cellulosic fibers, the cellulosic material is first dispersed in water and mechanically ground. Then, the fibers of the cellulose material are defibrated to form fibrils. Examples of the apparatus for defibrating the cellulose material include a disc refiner, a millstone type grinder, a high pressure homogenizer, a ball mill, an underwater counter-collision method apparatus, an ultrasonic crusher and the like. These devices can also be used in combination as appropriate.

本発明において、炭素繊維、熱可塑性樹脂繊維、フィブリル化セルロース繊維と共に用いることのできる繊維としては、フェノール樹脂繊維、メラミン樹脂繊維、尿素樹脂繊維、ポリウレタン繊維等の熱硬化性樹脂繊維、ガラス繊維等が挙げられる。 In the present invention, the fibers that can be used together with the carbon fiber, the thermoplastic resin fiber, and the fibrillated cellulose fiber include a phenol resin fiber, a melamine resin fiber, a urea resin fiber, a thermosetting resin fiber such as a polyurethane fiber, and a glass fiber. Can be mentioned.

本発明における炭素繊維不織布は、湿式抄造法で製造された湿式不織布である。湿式抄造法では、炭素繊維と、熱可塑性樹脂繊維、フィブリル化セルロース繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01〜0.50質量%に調整されたスラリーが抄紙機で抄き上げられ、湿紙(湿潤状態の不織布)が得られる。繊維の分散性の均一化等のために、工程中で分散剤、消泡剤、親水化剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。 The carbon fiber nonwoven fabric in the present invention is a wet nonwoven fabric produced by a wet papermaking method. In the wet papermaking method, carbon fibers, thermoplastic resin fibers, and fibrillated cellulose fibers are uniformly dispersed in water, and then the final fiber concentration is 0.01 through steps such as screen (removal of foreign matter, lumps, etc.). The slurry adjusted to ~ 0.50% by mass is made by a paper machine to obtain wet paper (nonwoven fabric in a wet state). In order to make the dispersibility of fibers uniform, chemicals such as dispersants, defoamers, hydrophilic agents, antistatic agents, polymer thickeners, mold release agents, antibacterial agents, and bactericidal agents are added during the process. In some cases.

本発明では、炭素繊維不織布を製造する場合、一般的なパルパーでの分散処理の他に、炭素繊維を水中で、高速回転せん断型分散機を使って分散したスラリーを用いる。本発明において、「高速回転せん断型分散機」とは、分散刃を有して回転するローターと分散刃を有したステーターとの間に、繊維を含むスラリーを通過させ、スラリー中の繊維にせん断力を与えて分散させる分散機である。具体的な装置としては、シングルディスクリファイナー、ダブルディスクリファイナー、コニカルリファイナー等が挙げられる。 In the present invention, when producing a carbon fiber non-woven fabric, in addition to the dispersion treatment with a general pulper, a slurry in which carbon fibers are dispersed in water using a high-speed rotary shear type disperser is used. In the present invention, the "high-speed rotary shear type disperser" means that a slurry containing fibers is passed between a rotor having a dispersion blade and rotating and a stator having a dispersion blade, and shearing is performed on the fibers in the slurry. It is a disperser that applies force to disperse. Specific examples of the device include a single disc refiner, a double disc refiner, a conical refiner, and the like.

さらに、均一に効率良く、炭素繊維を分散させたスラリーを得るためには、高速回転せん断型分散機が、高速回転する細かなスリットを持つリング状刃物を構造の一部に有する高速回転せん断分散機であることが有効である。高速回転する細かなスリットを持つリング状刃物を構造の一部に有する高速回転せん断分散機においては、スリット間で発生する流体力学的な衝撃波が、炭素繊維に有効に作用する。具体的な装置としては、トップファイナー(相川鉄工製)、完全離解機VF型(新浜ポンプ製作所製)、マイルダー(太平洋機工製)等が挙げられる。 Further, in order to obtain a slurry in which carbon fibers are dispersed uniformly and efficiently, a high-speed rotary shear dispersion machine has a ring-shaped blade having fine slits that rotate at high speed as a part of the structure. It is effective to be a machine. In a high-speed rotary shear disperser having a ring-shaped blade having fine slits that rotate at high speed as a part of the structure, a hydrodynamic shock wave generated between the slits effectively acts on carbon fibers. Specific devices include a top finer (manufactured by Aikawa Iron Works), a complete disassembly machine VF type (manufactured by Shinhama Pump Mfg. Co., Ltd.), and a milder (manufactured by Pacific Kiko Co., Ltd.).

上記分散機を使って、炭素繊維を分散させたスラリーを得る際には、スラリー濃度、処理時間、分散機のローターの回転数、ステーターとローターとのクリアランス等を調整することによって、炭素繊維の分散性を適宜調整することができる。 When obtaining a slurry in which carbon fibers are dispersed using the above disperser, the carbon fibers are prepared by adjusting the slurry concentration, the processing time, the rotation speed of the rotor of the disperser, the clearance between the stator and the rotor, and the like. The dispersibility can be adjusted as appropriate.

本発明で用いられる熱可塑性樹脂繊維やフィブリル化セルロース繊維等は、炭素繊維とは別にパルパー等で分散した後、水中で高速せん断型分散機を使って分散した炭素繊維スラリーと混合しても構わないし、炭素繊維と共に水中で高速せん断型分散機を使って分散しても構わない。 The thermoplastic resin fiber, fibrillated cellulose fiber, etc. used in the present invention may be dispersed separately from the carbon fiber with a pulper or the like, and then mixed with the carbon fiber slurry dispersed in water using a high-speed shearing disperser. Alternatively, it may be dispersed together with carbon fibers in water using a high-speed shearing disperser.

抄紙機としては、例えば、長網、円網、傾斜ワイヤー等の抄紙網を単独で使用した抄紙機、同種又は異種の2以上の抄紙網がオンラインで設置されているコンビネーション抄紙機等を使用することができる。また、不織布が2層以上の多層構造の場合には、各々の抄紙機で抄き上げた湿紙を積層する抄き合わせ法や、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して積層とする流延法等で、不織布を製造することができる。繊維を分散したスラリーを流延する際に、先に形成した層は湿紙状態であっても、乾燥状態であってもいずれでも良い。また、2枚以上の乾燥状態の層を熱融着させて、多層構造の不織布とすることもできる。 As the paper machine, for example, a paper machine that uses a paper machine such as a long net, a circular net, or an inclined wire alone, or a combination paper machine in which two or more paper machines of the same type or different types are installed online is used. be able to. When the non-woven fabric has a multi-layer structure of two or more layers, a laminating method of laminating wet papers made by each paper machine or a method of forming one layer and then dispersing fibers on the layers. A non-woven fabric can be produced by a casting method or the like in which the slurry is cast and laminated. When the slurry in which the fibers are dispersed is cast, the previously formed layer may be in a wet paper state or a dry state. Further, two or more dried layers can be heat-sealed to form a multilayer structure non-woven fabric.

本発明において、不織布が多層構造である場合、各層の繊維配合が同一である多層構造であっても良く、各層の繊維配合が異なっている多層構造であっても良い。多層構造である場合、各層の目付が下がることにより、スラリーの繊維濃度を下げることができるため、各層の地合が良くなり、その結果、不織布全体の地合の均一性が向上する。また、各層の地合が不均一であった場合でも、積層することで補填できる。さらに、抄紙速度を上げることができ、操業性が向上するという効果も得られる。 In the present invention, when the nonwoven fabric has a multi-layer structure, it may have a multi-layer structure in which the fiber composition of each layer is the same, or a multi-layer structure in which the fiber composition of each layer is different. In the case of a multi-layer structure, the fiber concentration of the slurry can be lowered by lowering the basis weight of each layer, so that the texture of each layer is improved, and as a result, the uniformity of the texture of the entire non-woven fabric is improved. Further, even if the formation of each layer is uneven, it can be compensated by laminating. Further, the papermaking speed can be increased, and the effect of improving the operability can be obtained.

湿式抄造法では、抄紙網で抄造された湿紙を必要に応じて、プレスロール等で加圧脱水し、含有水分量を制御した上で、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することによって、シート状の湿式不織布が得られる。湿紙をプレスロール等で加圧する場合、圧力は、好ましくは50〜1000N/cmであり、より好ましくは200〜800N/cmである。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることを言う。熱ロールの表面温度は、100〜180℃が好ましく、100〜160℃がより好ましく、110〜160℃が更に好ましい。圧力は、好ましくは30〜800N/cmであり、より好ましくは50〜500N/cmである。 In the wet papermaking method, wet paper made with a papermaking net is pressure-dehydrated with a press roll or the like as necessary, and after controlling the water content, a yankee dryer, an air dryer, a cylinder dryer, and a suction drum type dryer are used. , A sheet-shaped wet non-woven fabric can be obtained by drying with an infrared dryer or the like. When the wet paper is pressed with a press roll or the like, the pressure is preferably 50 to 1000 N / cm, more preferably 200 to 800 N / cm. When the wet paper is dried, it is brought into close contact with a heat roll such as a Yankee dryer and heat-pressure dried, so that the smoothness of the adhered surface is improved. Hot-pressure drying refers to drying by pressing wet paper against the hot roll with a touch roll or the like. The surface temperature of the heat roll is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and even more preferably 110 to 160 ° C. The pressure is preferably 30 to 800 N / cm, more preferably 50 to 500 N / cm.

本発明の炭素繊維不織布はフラジール通気度の変動率が8%以下であり、好ましくは6%以下、より好ましくは4%以下である。湿式抄造法による炭素繊維不織布の製造において、一般的なパルパーでの分散処理の他に、炭素繊維を水中で、高速回転せん断型分散機を使って分散したスラリーを用い、不織布のフラジール通気度の変動率を8%以下とすることにより、繊維の分散の偏りがなく、均一性の高い炭素繊維不織布を得ることができる。 The carbon fiber non-woven fabric of the present invention has a volatility of Frazier air permeability of 8% or less, preferably 6% or less, and more preferably 4% or less. In the production of carbon fiber non-woven fabric by the wet fabrication method, in addition to the dispersion treatment with a general pulper, a slurry in which carbon fibers are dispersed in water using a high-speed rotary shear type disperser is used to determine the Frazier air permeability of the non-woven fabric. By setting the fluctuation rate to 8% or less, it is possible to obtain a highly uniform carbon fiber non-woven fabric without uneven dispersion of fibers.

本発明の炭素繊維不織布において、フラジール通気度の変動率を8%以下にするために下記の方法が用いられる。炭素繊維と熱可塑性樹脂繊維とフィブリル化セルロースを含有し、炭素繊維を水中で、高速回転せん断型分散機を使って分散したスラリーを用いて湿式抄造法を用いて炭素繊維不織布を作製する。ここでフラジール通気度の変動率をより低減させるためには、(1)高速せん断型分散機での処理時間を長くする。(2)高速せん断型分散機の回転数を上げる。(3)ステーターとローターのクリアランスを狭くする、という方法で調整することができる。また(4)抄造時のプレスロール圧を200〜800N/cmのより好ましい範囲に調整する。(5)抄造時のタッチロール圧を50〜500N/cmのより好ましい範囲に調整する、という方法でフラジール通気度の変動率を低減することができる。 In the carbon fiber nonwoven fabric of the present invention, the following method is used in order to reduce the volatility of Frazier air permeability to 8% or less. A carbon fiber non-woven fabric containing carbon fibers, thermoplastic resin fibers and fibrillated cellulose is prepared by a wet fabrication method using a slurry in which carbon fibers are dispersed in water using a high-speed rotary shear type disperser. Here, in order to further reduce the volatility of Frazier air permeability, (1) the processing time in the high-speed shear type disperser is lengthened. (2) Increase the rotation speed of the high-speed shear type disperser. (3) It can be adjusted by narrowing the clearance between the stator and the rotor. (4) The press roll pressure at the time of papermaking is adjusted to a more preferable range of 200 to 800 N / cm. (5) The volatility of Frazier air permeability can be reduced by adjusting the touch roll pressure during papermaking to a more preferable range of 50 to 500 N / cm.

本発明におけるフラジール通気度の変動率は以下のようにして求めることができる。炭素繊維不織布から縦横500mm角のシートを切り取り、ここから50mm角の通気度測定用試料100枚を作製し、JIS L 1096に規定される通気性A法(フラジール形法)に準じて、通気性試験機(装置名:KES−F8−AP1、カトーテック(株)製)で通気度を測定し、試料100枚の通気度の平均値(P1)と標準偏差(P2)を算出し、次の式(1)から求められる値を変動率(%)とした。
変動率(%)=通気度の標準偏差(P2)/通気度の平均値(P1)×100 (1)
The volatility of Frazier air permeability in the present invention can be obtained as follows. A sheet of 500 mm square in length and width is cut out from the carbon fiber non-woven fabric, and 100 samples for measuring the air permeability of 50 mm square are prepared from this, and the air permeability is determined according to the breathability A method (Frazier type method) specified in JIS L 1096. The air permeability was measured with a testing machine (device name: KES-F8-AP1, manufactured by Kato Tech Co., Ltd.), the average value (P1) and standard deviation (P2) of the air permeability of 100 samples were calculated, and the following The value obtained from the equation (1) was defined as the fluctuation rate (%).
Volatility (%) = standard deviation of air permeability (P2) / average value of air permeability (P1) x 100 (1)

本発明の炭素繊維不織布は、例えば熱可塑性樹脂フィルムと積層して、加熱処理又は加熱加圧処理することによって、炭素繊維強化熱可塑性樹脂複合体として用いることもできる。 The carbon fiber non-woven fabric of the present invention can also be used as a carbon fiber reinforced thermoplastic resin composite by, for example, laminating it with a thermoplastic resin film and heat-treating or heat-pressurizing it.

熱可塑性樹脂フィルムの熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂等のポリオレフィン系樹脂;ポリメチルメタクリレート樹脂等のメタクリル系樹脂;ポリスチレン樹脂、ABS樹脂、AS樹脂等のポリスチレン系樹脂;ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリシクロヘキシレンジメチレンテレフタレート(PCT)樹脂等のポリエステル系樹脂;6−ナイロン樹脂、6,6−ナイロン樹脂等のポリアミド(PA)樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン(POM)樹脂;ポリカーボネート(PC)樹脂;ポリフェニレンサルファイド(PPS)樹脂;変性ポリフェニレンエーテル(PPE)樹脂;ポリエーテルイミド(PEI)樹脂;ポリスルホン(PSF)樹脂;ポリエーテルスルホン(PES)樹脂;ポリケトン樹脂;ポリアリレート(PAR)樹脂;ポリエーテルニトリル(PEN)樹脂;ポリエーテルケトン(PEK)樹脂;ポリエーテルエーテルケトン(PEEK)樹脂;ポリエーテルケトンケトン(PEKK)樹脂;ポリイミド(PI)樹脂;ポリアミドイミド(PAI)樹脂;フッ素(F)樹脂;液晶ポリエステル樹脂等の液晶ポリマー樹脂;ポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系又はフッ素系等の熱可塑性エラストマー;又はこれらの共重合体樹脂や変性樹脂;アイオノマー樹脂等が挙げられる。これらの樹脂の中から、1種又は2種以上を用いることができる。成形加工性の観点から、ポリプロピレン樹脂、ポリカーボネート樹脂、ポリアミド樹脂等が好ましく用いられる。 Examples of the thermoplastic resin of the thermoplastic resin film include polyolefin resins such as polyethylene resin, polypropylene resin and polybutylene resin; methacrylic resins such as polymethylmethacrylate resin; polystyrene resins such as polystyrene resin, ABS resin and AS resin; polyethylene. Polyester resins such as terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate resin, polyethylene naphthalate (PEN) resin, polycyclohexylene methylene terephthalate (PCT) resin; 6-nylon resin, 6 , 6-Nylon resin and other polyamide (PA) resin; Polyvinyl chloride resin; Polyoxymethylene (POM) resin; Polycarbonate (PC) resin; Polyphenylene sulfide (PPS) resin; Modified polyphenylene ether (PPE) resin; Polyetherimide (PEI) resin; Polysulfone (PSF) resin; Polyethersulfone (PES) resin; Polyketone resin; Polyetherlate (PAR) resin; Polyethernitrile (PEN) resin; Polyetherketone (PEK) resin; Polyetheretherketone ( PEEK) resin; polyetherketone ketone (PEKK) resin; polyimide (PI) resin; polyamideimide (PAI) resin; fluorine (F) resin; liquid crystal polymer resin such as liquid crystal polyester resin; polystyrene-based, polyolefin-based, polyurethane-based, Thermoplastic elastomers such as polyester-based, polyamide-based, polybutadiene-based, polyisoprene-based, and fluorine-based; or copolymer resins and modified resins thereof; ionomer resins and the like can be mentioned. From these resins, one type or two or more types can be used. From the viewpoint of moldability, polypropylene resin, polycarbonate resin, polyamide resin and the like are preferably used.

アイオノマー樹脂としては、エチレン−不飽和カルボン酸共重合樹脂のカルボキシル基の一部を金属イオンで中和してなるエチレン系アイオノマー樹脂が挙げられる。カルボキシル基の10モル%以上、好ましくは10〜90モル%を金属イオンで中和したものが使用される。金属イオンとしては、リチウム、ナトリウム等のアルカリ金属、カルシウム等のアルカリ土類金属、亜鉛、マグネシウム等の多価金属イオンを挙げることができる。 Examples of the ionomer resin include an ethylene-based ionomer resin obtained by neutralizing a part of the carboxyl groups of the ethylene-unsaturated carboxylic acid copolymer resin with metal ions. A carboxyl group in which 10 mol% or more, preferably 10 to 90 mol% of the carboxyl group is neutralized with a metal ion is used. Examples of the metal ion include alkali metals such as lithium and sodium, alkaline earth metals such as calcium, and polyvalent metal ions such as zinc and magnesium.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the present examples.

<炭素繊維A1>
平均繊維径9μm、繊維長8mmのPAN系炭素繊維(再生していない炭素繊維)を炭素繊維A1とした。
<Carbon fiber A1>
A PAN-based carbon fiber (non-regenerated carbon fiber) having an average fiber diameter of 9 μm and a fiber length of 8 mm was designated as carbon fiber A1.

<炭素繊維A2>
炭素繊維強化樹脂複合体(PAN系炭素繊維、エポキシ系樹脂使用)を過熱水蒸気法により再生し、繊維長6mmに分級処理した平均繊維径7μmの再生炭素繊維を炭素繊維A2とした。
<Carbon fiber A2>
The carbon fiber reinforced resin composite (using PAN-based carbon fiber and epoxy-based resin) was regenerated by the superheated steam method, and the regenerated carbon fiber having an average fiber diameter of 7 μm was classified into a fiber length of 6 mm and used as carbon fiber A2.

<熱可塑性樹脂繊維B1>
平均繊維径10μm、繊維長5mmの熱融着性ポリエチレンテレフタレート芯鞘繊維を熱可塑性樹脂繊維B1とした。
<Thermoplastic resin fiber B1>
The heat-sealing polyethylene terephthalate core-sheath fiber having an average fiber diameter of 10 μm and a fiber length of 5 mm was designated as a thermoplastic resin fiber B1.

<熱可塑性樹脂繊維B2>
平均繊維径11μm、繊維長3mmのビニロン繊維(水中溶解温度70℃)を熱可塑性樹脂繊維B2とした。
<Thermoplastic resin fiber B2>
A vinylon fiber (dissolution temperature in water of 70 ° C.) having an average fiber diameter of 11 μm and a fiber length of 3 mm was designated as a thermoplastic resin fiber B2.

<フィブリル化セルロース繊維C1>
リンターパルプをパルパーで5分間解繊した後、増幸産業社製マスコロイダー(登録商標、装置名:MKZA12)を用いて、磨砕処理を行い、変法濾水度250mlのフィブリル化セルロース繊維C1を作製した。
<Fibrilized cellulose fiber C1>
After defibrating the linter pulp with pulper for 5 minutes, it is ground using a Mascoroider (registered trademark, device name: MKZA12) manufactured by Masuyuki Sangyo Co., Ltd. to obtain fibrillated cellulose fiber C1 having a modified drainage degree of 250 ml. Made.

<セルロース繊維C2>
リンターパルプをパルパーで5分間解繊したものをフィブリル化していないセルロース繊維C2とした。
<Cellulose fiber C2>
Linter pulp defibrated with pulper for 5 minutes was used as unfibrillated cellulose fiber C2.

実施例1〜13及び比較例1〜4
(炭素繊維の分散処理)
分散機1を用いて表1記載の処理時間で分散後、比較例1及び2以外は分散機2を用いて表1記載の処理時間で炭素繊維の分散処理を行い、炭素繊維の水分散スラリーを得た。
Examples 1 to 13 and Comparative Examples 1 to 4
(Carbon fiber dispersion treatment)
After dispersion using the disperser 1 for the treatment time shown in Table 1, carbon fibers were dispersed using the disperser 2 for the treatment time shown in Table 1 except for Comparative Examples 1 and 2, and the carbon fiber aqueous dispersion slurry was used. Got

Figure 0006829174
Figure 0006829174

(炭素繊維不織布の製造)
表2記載の繊維配合で抄造用スラリーを調製し、表2記載のプレスロール圧、タッチロール圧、ドライヤー温度の条件で抄造を実施した。
(Manufacturing of carbon fiber non-woven fabric)
A papermaking slurry was prepared with the fiber formulations shown in Table 2, and papermaking was carried out under the conditions of the press roll pressure, touch roll pressure, and dryer temperature shown in Table 2.

Figure 0006829174
Figure 0006829174

(実施例1)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合し、分散濃度0.2質量%に水で希釈し、アジテーターで30分間撹拌して抄造用スラリーを調製した。この抄造用スラリーを90メッシュの金属ワイヤーを有した円網抄紙機で湿紙を形成し、プレスロール圧500N/cmで加圧脱水した後、140℃のヤンキードライヤーに接触させ、タッチロール圧300N/cmで圧着乾燥させて、目付50.2g/mの炭素繊維不織布を得た。
(Example 1)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 and the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in the pulper for 5 minutes were mixed in the formulation shown in Table 2 and the dispersion concentration was 0. A slurry for papermaking was prepared by diluting with water to 2% by mass and stirring with an agitator for 30 minutes. A wet paper is formed from this papermaking slurry with a circular net paper machine having a 90-mesh metal wire, pressure-dehydrated at a press roll pressure of 500 N / cm, and then brought into contact with a Yankee dryer at 140 ° C. and a touch roll pressure of 300 N. The mixture was pressure-bonded and dried at / cm to obtain a carbon fiber non-woven fabric having a mesh size of 50.2 g / m 2 .

(実施例2)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例1と同様にして、目付50.5g/mの炭素繊維不織布を得た。
(Example 2)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 1, a carbon fiber non-woven fabric having a grain size of 50.5 g / m 2 was obtained.

(実施例3)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例1と同様にして、目付50.4g/mの炭素繊維不織布を得た。
(Example 3)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 1, a carbon fiber non-woven fabric having a grain size of 50.4 g / m 2 was obtained.

(実施例4)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例1と同様にして、目付50.6g/mの炭素繊維不織布を得た。
(Example 4)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 1, a carbon fiber non-woven fabric having a grain size of 50.6 g / m 2 was obtained.

(実施例5)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合し、プレスロール圧を600N/cmとし、ヤンキードライヤー温度を150℃とし、タッチロール圧を400N/cmとした以外は、実施例1と同様にして、目付50.3g/mの炭素繊維不織布を得た。
(Example 5)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 and the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in the pulper for 5 minutes were mixed in the formulation shown in Table 2 and pressed. Was 600 N / cm, the Yankee dryer temperature was 150 ° C., and the touch roll pressure was 400 N / cm. A carbon fiber non-woven fabric having a grain size of 50.3 g / m 2 was obtained in the same manner as in Example 1.

(実施例6)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例5と同様にして、目付50.5g/mの炭素繊維不織布を得た。
(Example 6)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 5, a carbon fiber non-woven fabric having a grain size of 50.5 g / m 2 was obtained.

(実施例7)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例5と同様にして、目付50.4g/mの炭素繊維不織布を得た。
(Example 7)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 5, a carbon fiber non-woven fabric having a grain size of 50.4 g / m 2 was obtained.

(実施例8)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例5と同様にして、目付50.7g/mの炭素繊維不織布を得た。
(Example 8)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 5, a carbon fiber non-woven fabric having a grain size of 50.7 g / m 2 was obtained.

(実施例9)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例5と同様にして、目付50.2g/mの炭素繊維不織布を得た。
(Example 9)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 5, a carbon fiber non-woven fabric having a grain size of 50.2 g / m 2 was obtained.

(実施例10)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合し、実施例5と同様に抄造用スラリーを調製し、抄造時のプレスロール圧を100N/cmとした以外は、実施例5と同様にして、目付50.6g/mの炭素繊維不織布を得た。
(Example 10)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 and the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in the pulper for 5 minutes were mixed in the formulation shown in Table 2 and Example 5 A papermaking slurry was prepared in the same manner as in Example 5, and a carbon fiber non-woven fabric having a grain size of 50.6 g / m 2 was obtained in the same manner as in Example 5 except that the press roll pressure at the time of papermaking was 100 N / cm.

(実施例11)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合し、実施例5と同様に抄造用スラリーを調製し、抄造時のプレスロール圧を900N/cmとした以外は、実施例5と同様にして、目付50.4g/mの炭素繊維不織布を得た。
(Example 11)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 and the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in the pulper for 5 minutes were mixed in the formulation shown in Table 2 and Example 5 A papermaking slurry was prepared in the same manner as in Example 5, and a carbon fiber non-woven fabric having a grain size of 50.4 g / m 2 was obtained in the same manner as in Example 5 except that the press roll pressure at the time of papermaking was 900 N / cm.

(実施例12)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合し、実施例5と同様に抄造用スラリーを調製し、抄造時のタッチロール圧を600N/cmとした以外は、実施例5と同様にして、目付50.1g/mの炭素繊維不織布を得た。
(Example 12)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 and the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in the pulper for 5 minutes were mixed in the formulation shown in Table 2 and Example 5 A papermaking slurry was prepared in the same manner as in Example 5, and a carbon fiber nonwoven fabric having a grain size of 50.1 g / m 2 was obtained in the same manner as in Example 5 except that the touch roll pressure at the time of papermaking was 600 N / cm.

(実施例13)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合し、実施例5と同様に抄造用スラリーを調製し、抄造時のタッチロール圧を40N/cmとした以外は、実施例5と同様にして、目付50.5g/mの炭素繊維不織布を得た。
(Example 13)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 and the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in the pulper for 5 minutes were mixed in the formulation shown in Table 2 and Example 5 A papermaking slurry was prepared in the same manner as in Example 5, and a carbon fiber nonwoven fabric having a grain size of 50.5 g / m 2 was obtained in the same manner as in Example 5 except that the touch roll pressure at the time of papermaking was 40 N / cm.

(比較例1)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例1と同様にして、目付50.3g/mの炭素繊維不織布を得た。
(Comparative Example 1)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 1, a carbon fiber non-woven fabric having a grain size of 50.3 g / m 2 was obtained.

(比較例2)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例5と同様にして、目付50.2g/mの炭素繊維不織布を得た。
(Comparative Example 2)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 5, a carbon fiber non-woven fabric having a grain size of 50.2 g / m 2 was obtained.

(比較例3)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例1と同様にして、目付50.6g/mの炭素繊維不織布を得た。
(Comparative Example 3)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 1, a carbon fiber non-woven fabric having a grain size of 50.6 g / m 2 was obtained.

(比較例4)
表1記載の装置、条件で分散処理を行い、得られた炭素繊維スラリーと、パルパーで5分間分散処理した熱可塑性樹脂繊維、フィブリル化セルロース繊維を表2記載の配合で混合した以外は、実施例1と同様にして、目付50.5g/mの炭素繊維不織布を得た。
(Comparative Example 4)
The carbon fiber slurry obtained by performing the dispersion treatment under the equipment and conditions shown in Table 1 was mixed with the thermoplastic resin fiber and the fibrillated cellulose fiber dispersed in a pulper for 5 minutes, except for the formulation shown in Table 2. In the same manner as in Example 1, a carbon fiber non-woven fabric having a grain size of 50.5 g / m 2 was obtained.

(抄造性の評価)
実施例及び比較例において、炭素繊維不織布の抄造性を次の項目(a)及び(b)で評価した。(a)金属ワイヤーからウエットフェルトへの湿紙(湿潤状態の不織布)の転写性、(b)乾燥後のドライヤーからの剥離不良による炭素繊維の脱落状態。(a)については、湿紙中の繊維が金属ワイヤーに全く残留せず非常に良い場合を「◎」、僅かに繊維は残留するが良いと判断する場合を「○」、繊維の残留が見られやや悪いと判断する場合を「△」、繊維の残留が多く悪いと判断する場合を「×」とした。(b)については、ドライヤーからの剥離が非常に良く繊維の脱落が全く無い場合を「◎」、剥離は良いが繊維の脱落が僅かにある場合を「○」、剥離がやや悪く繊維の脱落が少しある場合を「△」、剥離が悪く繊維の脱落が多い場合を「×」とした。尚、本発明の炭素繊維不織布の条件を満たす抄造性は、「△」以上の評価を有するものである。結果を表3に示す。
(Evaluation of papermaking property)
In Examples and Comparative Examples, the papermaking property of the carbon fiber nonwoven fabric was evaluated by the following items (a) and (b). (A) Transferability of wet paper (wet non-woven fabric) from metal wire to wet felt, (b) Carbon fiber falling off due to poor peeling from the dryer after drying. Regarding (a), "◎" is the case where the fibers in the wet paper do not remain on the metal wire at all and it is very good, "○" is the case where it is judged that the fibers should remain slightly, and the fiber residue is seen. The case where it was judged to be slightly bad was evaluated as "Δ", and the case where it was judged to be bad due to a large amount of residual fibers was evaluated as "x". Regarding (b), the case where the peeling from the dryer is very good and there is no fiber falling off is "◎", the case where the peeling is good but the fiber is slightly peeled off is "○", and the peeling is slightly bad and the fiber is dropped off. The case where there was a small amount of fiber was evaluated as “Δ”, and the case where the peeling was poor and the fiber was frequently removed was evaluated as “×”. The papermaking property satisfying the conditions of the carbon fiber nonwoven fabric of the present invention has an evaluation of "Δ" or higher. The results are shown in Table 3.

(均一性の評価)
実施例及び比較例で得られた炭素繊維不織布から縦横250mm角のシートを切り取り、この炭素繊維不織布を透過光で観察し、シート中に存在する欠点(離解せず束になった状態の繊維及び繊維が撚れて凝集した塊)の数を数えた。欠点の数が少ない方が均一性に優れ好ましい。結果を表3に示す。
(Evaluation of uniformity)
A sheet of 250 mm square in length and width was cut out from the carbon fiber non-woven fabrics obtained in Examples and Comparative Examples, and the carbon fiber non-woven fabric was observed with transmitted light, and defects existing in the sheet (fibers in a bundled state without being separated) and The number of lumps in which fibers were twisted and aggregated) was counted. It is preferable that the number of defects is small because the uniformity is excellent. The results are shown in Table 3.

更にこのシートの地合ムラを目視で評価した。ここで地合ムラとは、不織布を透過光で観察した場合に濃淡差が生じる部分があることを示す。シートに地合ムラが無い場合を「◎」、地合ムラが僅かにある場合を「○」、地合ムラがやや多い場合を「△」、地合ムラが多い場合を「×」とした。地合ムラが少ない方が均一性に優れ好ましい。尚、本発明の炭素繊維不織布の条件を満たす均一性は、欠点が15個以下で地合ムラが「△」以上の評価を有するものである。結果を表3に示す。 Further, the texture unevenness of this sheet was visually evaluated. Here, the unevenness of formation means that there is a portion where a difference in shade occurs when the non-woven fabric is observed with transmitted light. "◎" is the case where there is no formation unevenness on the sheet, "○" is the case where there is slight formation unevenness, "△" is when there is a little formation unevenness, and "×" is when there is a lot of formation unevenness. .. It is preferable that the texture unevenness is small because the uniformity is excellent. The uniformity satisfying the condition of the carbon fiber nonwoven fabric of the present invention has an evaluation of 15 or less defects and a formation unevenness of “Δ” or more. The results are shown in Table 3.

(フラジール通気度の変動率の評価)
実施例及び比較例で得られた炭素繊維不織布から縦横500mm角のシートを切り取り、ここから50mm角の通気度測定用試料100枚を作製し、JIS L 1096に規定される通気性A法(フラジール形法)に準じて、通気性試験機(装置名:KES−F8−AP1、カトーテック(株)製)で通気度を測定し、試料100枚の通気度の平均値(P1)と標準偏差(P2)を算出し、次の式(1)から変動率を求めた。結果を表3に示す。
変動率(%)=通気度の標準偏差(P2)/通気度の平均値(P1)×100 (1)
(Evaluation of volatility of Frazier air permeability)
A sheet of 500 mm square in length and width was cut from the carbon fiber non-woven fabric obtained in Examples and Comparative Examples, and 100 samples for measuring air permeability of 50 mm square were prepared from this sheet, and the breathability A method (Frazier) specified in JIS L 1096 was prepared. The air permeability was measured with a breathability tester (device name: KES-F8-AP1, manufactured by Kato Tech Co., Ltd.) according to the form method, and the average value (P1) and standard deviation of the air permeability of 100 samples. (P2) was calculated, and the fluctuation rate was calculated from the following equation (1). The results are shown in Table 3.
Volatility (%) = standard deviation of air permeability (P2) / average value of air permeability (P1) x 100 (1)

Figure 0006829174
Figure 0006829174

実施例で得られた炭素繊維不織布は、抄造性が良好で、均一性に優れている。 The carbon fiber non-woven fabric obtained in the examples has good papermaking property and excellent uniformity.

実施例1〜4を比較すると、通気度変動率が4%以下である実施例2及び実施例3で得られた炭素繊維不織布は、実施例1及び実施例4に比べ、抄造性に優れ、欠点や地合ムラが少なく、より優れている。 Comparing Examples 1 to 4, the carbon fiber nonwoven fabrics obtained in Examples 2 and 3 having a volatility of 4% or less are superior in papermaking property as compared with Examples 1 and 4. It is superior with less defects and uneven formation.

実施例5〜13を比較すると、通気度変動率が4%以下である実施例7及び実施例8で得られた炭素繊維不織布は、抄造性に優れ、欠点や地合ムラが非常に少なく、特に優れている。 Comparing Examples 5 to 13, the carbon fiber non-woven fabrics obtained in Examples 7 and 8 having a volatility of 4% or less are excellent in papermaking property and have very few defects and formation unevenness. Especially excellent.

実施例2と実施例4を比較すると、炭素繊維含有量が70質量部以上である実施例2の方が、通気度変動率が低く、抄造性に優れ、欠点や地合ムラが少なく優れている。 Comparing Example 2 and Example 4, Example 2 having a carbon fiber content of 70 parts by mass or more has a lower volatility of air permeability, is excellent in papermaking property, and is excellent in less defects and formation unevenness. There is.

実施例6、実施例10、及び実施例11を比較すると、プレスロール圧がより好ましい範囲である実施例6は、通気度変動率が低く、抄造性に優れ、欠点や地合ムラが少なく優れている。 Comparing Example 6, Example 10, and Example 11, Example 6 in which the press roll pressure is in a more preferable range has a low volatility of air permeability, is excellent in papermaking property, and is excellent in having few defects and formation unevenness. ing.

実施例6、実施例12、及び実施例13を比較すると、タッチロール圧がより好ましい範囲である実施例6は、通気度変動率が低く、抄造性に優れ、欠点や地合ムラが少なく優れている。 Comparing Example 6, Example 12, and Example 13, Example 6 in which the touch roll pressure is in a more preferable range has a low volatility of air permeability, is excellent in papermaking property, and is excellent with few defects and formation unevenness. ing.

比較例1及び比較例2は、炭素繊維を水中で高速回転せん断型分散機を使用してスラリー化しておらず、通気度変動率が8%を大きく超えて高く、抄造性が非常に悪く、欠点や地合ムラが多く均一性に劣っている。 In Comparative Example 1 and Comparative Example 2, the carbon fibers were not slurried in water using a high-speed rotary shear type disperser, the volatility of air permeability was much higher than 8%, and the papermaking property was very poor. There are many defects and uneven formation, and the uniformity is inferior.

比較例3はセルロース繊維がフィブリル化されておらず、通気度変動率は8%を超えていないものの、本発明の条件を満たしておらず、実施例1に比べ劣っている。 In Comparative Example 3, although the cellulose fibers were not fibrillated and the air permeability fluctuation rate did not exceed 8%, the conditions of the present invention were not satisfied and the results were inferior to those of Example 1.

比較例4は熱可塑性樹脂繊維を含有しておらず、通気度変動率は8%を超えていないものの、本発明の条件を満たしておらず、実施例1に比べ劣っている。 Although Comparative Example 4 does not contain a thermoplastic resin fiber and the air permeability fluctuation rate does not exceed 8%, it does not satisfy the conditions of the present invention and is inferior to Example 1.

本発明の炭素繊維不織布は、熱可塑性樹脂や熱硬化性樹脂と複合して、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等に利用可能である。 The carbon fiber non-woven fabric of the present invention is combined with a thermoplastic resin or a thermosetting resin to form an electronic device material, an electric device material, a civil engineering material, a building material, an automobile material, an aircraft material, or a robot used in various manufacturing industries. It can be used for manufacturing parts such as rolls.

Claims (1)

炭素繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有し、炭素繊維が水中で高速回転せん断型分散機を使って分散されたスラリーを用いて湿式抄造法により形成されてなる炭素繊維不織布であり、フラジール通気度の変動率が8%以下である炭素繊維不織布。 A carbon fiber non-woven fabric containing carbon fibers, thermoplastic resin fibers, and fibrillated cellulose fibers, which is formed by a wet fabrication method using a slurry in which the carbon fibers are dispersed in water using a high-speed rotary shear type disperser. Yes, a carbon fiber non-woven fabric with a fluctuation rate of Frazier air permeability of 8% or less.
JP2017185331A 2017-09-26 2017-09-26 Carbon fiber non-woven fabric Active JP6829174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185331A JP6829174B2 (en) 2017-09-26 2017-09-26 Carbon fiber non-woven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185331A JP6829174B2 (en) 2017-09-26 2017-09-26 Carbon fiber non-woven fabric

Publications (2)

Publication Number Publication Date
JP2019060043A JP2019060043A (en) 2019-04-18
JP6829174B2 true JP6829174B2 (en) 2021-02-10

Family

ID=66178058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185331A Active JP6829174B2 (en) 2017-09-26 2017-09-26 Carbon fiber non-woven fabric

Country Status (1)

Country Link
JP (1) JP6829174B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7077292B2 (en) * 2019-11-22 2022-05-30 三菱製紙株式会社 Carbon staple fiber non-woven fabric

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077410U (en) * 2000-10-31 2001-05-18 林 京子 Carbon fiber mixed sheet heating element
JP4653458B2 (en) * 2004-11-09 2011-03-16 リンテック株式会社 Adsorption filter base paper and method for producing the same
JP5799517B2 (en) * 2011-02-09 2015-10-28 三菱レイヨン株式会社 Method for producing carbon fiber-containing nonwoven fabric
JP6260528B2 (en) * 2014-12-22 2018-01-17 王子ホールディングス株式会社 Dispersion apparatus and dispersion method, dispersion treatment liquid and wet nonwoven fabric
JP5933771B2 (en) * 2015-01-16 2016-06-15 ユニチカ株式会社 Activated carbon sheet for water purification and water purification filter
EP3357569A4 (en) * 2015-09-29 2019-06-05 Kuraray Co., Ltd. Dispersant for carbon fibers, carbon fiber dispersion composition, and method for manufacturing carbon fiber sheet
JP6785547B2 (en) * 2015-12-08 2020-11-18 三菱製紙株式会社 Carbon fiber reinforced thermoplastic resin composite

Also Published As

Publication number Publication date
JP2019060043A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6785547B2 (en) Carbon fiber reinforced thermoplastic resin composite
JP6718244B2 (en) Recycled carbon fiber reinforced thermoplastic resin composite
JP6283370B2 (en) Dry cellulose filament and method for making the same
JP6603185B2 (en) Method for producing carbon short fiber nonwoven fabric
Winter et al. Reinforcement effect of pulp fines and microfibrillated cellulose in highly densified binderless paperboards
JP6791467B2 (en) Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure
JP2020165048A (en) Carbon fiber nonwoven fabric and carbon fiber-reinforced resin composite
JP6829174B2 (en) Carbon fiber non-woven fabric
JP6702536B2 (en) Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method
JP2020040268A (en) Carbon fiber non-woven fabric composite
JP6718235B2 (en) Carbon fiber reinforced thermoplastic resin composite
JP7211701B2 (en) Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin
JP2020051000A (en) Manufacturing method of carbon fiber unwoven fabric
JP2019157315A (en) Carbon fiber non-woven fabric and composite
JP2021155553A (en) Continuous manufacturing method of nonwoven fabric-like prepreg
JP7019534B2 (en) Carbon fiber non-woven fabric complex
JP2017172083A (en) Carbon short fiber nonwoven fabric and composite
JP2020158912A (en) Wet nonwoven fabric of short carbon fiber, and carbon fiber reinforced resin
JP7386776B2 (en) Carbon fiber-containing wet-laid nonwoven fabric
JP7211791B2 (en) Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin
JP7077292B2 (en) Carbon staple fiber non-woven fabric
JP7030472B2 (en) Carbon staple fiber wet non-woven fabric
JP7030868B2 (en) Manufacturing method of carbon fiber non-woven fabric
JP2020050984A (en) Carbon fiber nonwoven fabric manufacturing method
JP2019167662A (en) Carbon short fiber non-woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250