JP6791467B2 - Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure - Google Patents

Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure Download PDF

Info

Publication number
JP6791467B2
JP6791467B2 JP2016144879A JP2016144879A JP6791467B2 JP 6791467 B2 JP6791467 B2 JP 6791467B2 JP 2016144879 A JP2016144879 A JP 2016144879A JP 2016144879 A JP2016144879 A JP 2016144879A JP 6791467 B2 JP6791467 B2 JP 6791467B2
Authority
JP
Japan
Prior art keywords
carbon
fiber
resin
woven fabric
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016144879A
Other languages
Japanese (ja)
Other versions
JP2018012313A (en
Inventor
高岡 和千代
和千代 高岡
近藤 健
健 近藤
壹裕 藤本
壹裕 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2016144879A priority Critical patent/JP6791467B2/en
Publication of JP2018012313A publication Critical patent/JP2018012313A/en
Application granted granted Critical
Publication of JP6791467B2 publication Critical patent/JP6791467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、炭素短繊維樹脂構造体及び炭素短繊維樹脂構造体の製造方法に関する。 The present invention relates to a carbon short fiber resin structure and a method for producing a carbon short fiber resin structure.

炭素繊維と樹脂を複合化してなる炭素繊維強化樹脂複合体は、金属材料に匹敵する強度・弾性率を有しながら、金属材料よりも比重が小さいため、部材の軽量化を図ることができ、また、発錆の問題もなく、酸やアルカリにも強いという性質を有していることから、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等で使用されている。 The carbon fiber reinforced resin composite, which is a composite of carbon fiber and resin, has strength and elastic modulus comparable to that of a metal material, but has a smaller specific gravity than that of a metal material, so that the weight of the member can be reduced. In addition, since it has no rusting problem and is resistant to acids and alkalis, it is used in electronic equipment materials, electrical equipment materials, civil engineering materials, building materials, automobile materials, aircraft materials, and various manufacturing industries. It is used in manufacturing parts such as robots and rolls.

炭素繊維強化樹脂複合体は、炭素繊維布帛と、熱硬化性樹脂、熱可塑性樹脂等の樹脂とを複合させた複合体である。炭素繊維布帛には、炭素長繊維を用いた布帛と炭素短繊維を用いた布帛がある。炭素長繊維を用いた布帛としては、炭素長繊維織布、炭素長繊維一方向性ウェブ、炭素長繊維開繊糸シート等がある。炭素短繊維を用いた布帛としては、炭素短繊維不織布がある。また、炭素長繊維開繊糸シートとしては、炭素長繊維開繊糸織物、炭素長繊維開繊糸一方向性ウェブ(炭素長繊維開繊糸UDウェブ、UD:UniDerection)等が挙げられる。最も一般的な炭素繊維強化樹脂複合体には、長繊維織布と熱硬化性樹脂とを複合させた複合体であるが、設計が難しい、均質材料ではない、成形加工時間が長い、高価等の課題があった。 The carbon fiber reinforced resin composite is a composite of a carbon fiber fabric and a resin such as a thermosetting resin or a thermoplastic resin. Carbon fiber fabrics include fabrics using long carbon fibers and fabrics using short carbon fibers. Examples of the fabric using carbon long fibers include a carbon long fiber woven fabric, a carbon long fiber unidirectional web, and a carbon long fiber spread yarn sheet. As a cloth using carbon short fibers, there is a carbon short fiber non-woven fabric. Examples of the carbon long fiber spread yarn sheet include a carbon long fiber spread yarn woven fabric, a carbon long fiber spread yarn unidirectional web (carbon long fiber spread yarn UD web, UD: UniDirection) and the like. The most common carbon fiber reinforced resin composite is a composite of a long fiber woven fabric and a thermosetting resin, but it is difficult to design, it is not a homogeneous material, the molding process time is long, it is expensive, etc. There was a problem.

また、炭素長繊維を用いた炭素繊維布帛の1種である炭素長繊維開繊糸UDウェブに熱可塑性樹脂を含浸し、上下一対のスチールベルトコンベアで挟みながら、加熱炉内を搬送して、炭素長繊維開繊糸UDウェブと熱可塑性樹脂を複合させる方法も提案されている(例えば、特許文献1参照)。炭素長繊維開繊糸UDウェブには、繊維のずれや移動が起こりやすいという課題があった。 In addition, carbon long fiber spread yarn UD web, which is a kind of carbon fiber cloth using long carbon fiber, is impregnated with a thermoplastic resin and conveyed in a heating furnace while being sandwiched between a pair of upper and lower steel belt conveyors. A method of combining a carbon long fiber spread fiber UD web and a thermoplastic resin has also been proposed (see, for example, Patent Document 1). The carbon long fiber spread fiber UD web has a problem that fibers are likely to be displaced or moved.

これらの課題を解決した炭素繊維強化樹脂複合体として、炭素短繊維を熱可塑性樹脂と混練し、複合体として射出成形用材料して用いる方法(例えば、特許文献2参照)が知られているが、炭素繊維は混練時に破断しやすく繊維長が短くなり、充分な特性を得られないばかりか、数百ミクロン以下のフィルム状の構造体を得ることが難しいなどの課題があった。 As a carbon fiber reinforced resin composite that solves these problems, a method of kneading short carbon fibers with a thermoplastic resin and using it as a composite for injection molding (see, for example, Patent Document 2) is known. In addition, carbon fibers are easily broken during kneading and the fiber length is shortened, so that not only sufficient properties cannot be obtained, but also it is difficult to obtain a film-like structure of several hundred microns or less.

別の方法として、予め炭素短繊維を含有してなる不織布(炭素短繊維不織布)を作製し、炭素短繊維不織布と熱可塑性樹脂フィルムを熱プレス成形法により複合させる方法が提案されている(例えば、特許文献2〜7参照)。また、炭素短繊維不織布と熱可塑性樹脂フィルムを加熱ロールと冷却ロールとの組合せからなるロールユニットを用いてプレスし、熱可塑性樹脂を溶融固化させて複合させる方法が提案されている(例えば、特許文献8参照)。また、炭素短繊維不織布と熱可塑性樹脂フィルムとを積層し、電磁誘導加熱によって、熱可塑性樹脂フィルムを炭素短繊維不織布に含浸させた後にプレスして複合させる方法も提案されている(例えば、特許文献9〜11参照)。なお、熱可塑性樹脂フィルムを溶融させる方法として、過熱蒸気を吹き付ける方法も提案されている(例えば、特許文献12参照)。 As another method, a method has been proposed in which a non-woven fabric containing carbon short fibers (carbon short fiber non-woven fabric) is prepared in advance, and the carbon short fiber non-woven fabric and the thermoplastic resin film are composited by a hot press molding method (for example). , Patent Documents 2 to 7). Further, a method has been proposed in which a short carbon fiber non-woven fabric and a thermoplastic resin film are pressed by using a roll unit composed of a combination of a heating roll and a cooling roll to melt and solidify the thermoplastic resin to form a composite (for example, a patent). Reference 8). Further, a method has also been proposed in which a short carbon fiber non-woven fabric and a thermoplastic resin film are laminated, and the thermoplastic resin film is impregnated into the short carbon fiber non-woven fabric by electromagnetic induction heating and then pressed to be composited (for example, a patent). References 9 to 11). As a method of melting the thermoplastic resin film, a method of spraying superheated steam has also been proposed (see, for example, Patent Document 12).

しかし、単純に、炭素短繊維不織布と熱可塑性樹脂とを複合してなる炭素短繊維樹脂構造体は、長繊維を用いた炭素繊維強化樹脂複合体に比べて、充分な強度物性を得ることが難しいという問題があった。 However, the carbon short fiber resin structure, which is simply a composite of a carbon short fiber non-woven fabric and a thermoplastic resin, can obtain sufficient strength physical properties as compared with a carbon fiber reinforced resin composite using long fibers. There was a problem that it was difficult.

加工性の点から、シート状の炭素繊維強化樹脂複合体を巻回してロール状に巻き取ったロール状巻回体を得ることを目的として、シート状の炭素繊維強化樹脂複合体の少なくとも一方の面に、フィルム、織布又は不織布よりなる群から選ばれる1種又は2種以上を積層一体化する方法も提案されている(例えば、特許文献13参照)。しかし、炭素長繊維開繊糸UDウェブと熱可塑性樹脂とからなる炭素繊維強化樹脂複合体の場合には、フィルム等を積層一体化することが必要であるが、炭素短繊維不織布と熱可塑性樹脂とからなる炭素繊維強化樹脂複合体の場合には、比較的屈曲性に優れているため、フィルム等を積層一体化することは必ずしも必要ではないことが記載されている。 From the viewpoint of processability, at least one of the sheet-shaped carbon fiber reinforced resin composites is intended to obtain a roll-shaped wound body obtained by winding the sheet-shaped carbon fiber reinforced resin composite and winding it into a roll shape. A method of laminating and integrating one or more selected from the group consisting of a film, a woven fabric or a non-woven fabric on a surface has also been proposed (see, for example, Patent Document 13). However, in the case of a carbon fiber reinforced resin composite composed of a carbon long fiber spread yarn UD web and a thermoplastic resin, it is necessary to laminate and integrate a film or the like, but the carbon short fiber non-woven fabric and the thermoplastic resin It is described that in the case of the carbon fiber reinforced resin composite composed of the above, it is not always necessary to laminate and integrate the film or the like because it is relatively excellent in flexibility.

特開2000−355629号公報Japanese Unexamined Patent Publication No. 2000-355629 特開平07−156146号公報Japanese Unexamined Patent Publication No. 07-156146 特開2013−208791号公報Japanese Unexamined Patent Publication No. 2013-208791 特開2013−202891号公報Japanese Unexamined Patent Publication No. 2013-20281 特開2011−21303号公報Japanese Unexamined Patent Publication No. 2011-21303 特開2011−194852号公報Japanese Unexamined Patent Publication No. 2011-194852 特開2014−224333号公報Japanese Unexamined Patent Publication No. 2014-224333 特開2004−43985号公報JP-A-2004-43985 特開2005−238758号公報Japanese Unexamined Patent Publication No. 2005-238758 特開2008−254437号公報Japanese Unexamined Patent Publication No. 2008-254437 特開2014−34162号公報Japanese Unexamined Patent Publication No. 2014-34162 特開2015−47807号公報JP-A-2015-47807 特開2010−229238号公報JP-A-2010-229238

本発明の課題は、強度の優れた炭素短繊維樹脂構造体を提供することである。 An object of the present invention is to provide a carbon short fiber resin structure having excellent strength.

上記課題は、下記発明によって解決することができる。 The above problem can be solved by the following invention.

(1)炭素短繊維を含有してなる不織布と熱可塑性フィルムと炭素長繊維開繊糸シートとの積層体である炭素短繊維樹脂構造体。
(2)炭素長繊維開繊糸シートが、サイジング剤の含有量が1質量%以下である炭素長繊維開繊糸シートと熱可塑性フィルムとの積層体である上記(1)記載の炭素短繊維樹脂構造体。
(3)炭素短繊維を含有してなる不織布がミクロフィブリル化セルロースを含有してなる上記(1)又は(2)記載の炭素短繊維樹脂構造体。
(1) A carbon short fiber resin structure which is a laminate of a non-woven fabric containing carbon short fibers, a thermoplastic film, and a carbon long fiber spread yarn sheet.
(2) The short carbon fiber according to (1) above, wherein the long carbon fiber spread yarn sheet is a laminate of a long carbon fiber spread yarn sheet having a sizing agent content of 1% by mass or less and a thermoplastic film. Resin structure.
(3) The carbon short fiber resin structure according to (1) or (2) above, wherein the non-woven fabric containing carbon short fibers contains microfibrillated cellulose.

(4)炭素短繊維を含有してなる不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化して炭素短繊維強化フィルムを製造する工程と、該炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する工程とを含む炭素短繊維樹脂構造体の製造方法。
(5)炭素長繊維開繊糸シートが、サイジング剤の含有量が1質量%以下である炭素長繊維開繊糸シートと熱可塑性フィルムとの積層体である上記(4)記載の炭素短繊維樹脂構造体の製造方法。
(6)炭素短繊維を含有してなる不織布がミクロフィブリル化セルロースを含有してなる上記(4)又は(5)記載の炭素短繊維樹脂構造体の製造方法。
(4) By heat-pressing treatment with a roll from both sides of a laminate of a non-woven fabric containing carbon short fibers and a thermoplastic film, the non-woven fabric and the thermoplastic film are integrated to form a carbon short fiber reinforced film. A method for producing a carbon short fiber resin structure, which comprises a step of manufacturing and a step of integrating the carbon short fiber reinforced film and a carbon long fiber nonwoven fabric sheet.
(5) The short carbon fiber according to (4) above, wherein the long carbon fiber spread yarn sheet is a laminate of a long carbon fiber spread yarn sheet having a sizing agent content of 1% by mass or less and a thermoplastic film. A method for manufacturing a resin structure.
(6) The method for producing a carbon short fiber resin structure according to (4) or (5) above, wherein the nonwoven fabric containing carbon short fibers contains microfibrillated cellulose.

本発明によれば、単純に炭素短繊維不織布と熱可塑性樹脂とを複合してなる炭素短繊維樹脂構造体と比較して、高い強度物性を有し、加工性に優れた炭素短繊維強化構造体を得ることができる。 According to the present invention, a carbon short fiber reinforced structure having high strength physical properties and excellent workability as compared with a carbon short fiber resin structure formed by simply combining a carbon short fiber non-woven fabric and a thermoplastic resin. You can get a body.

本発明の炭素短繊維樹脂構造体は、炭素短繊維を含有してなる不織布と熱可塑性フィルムと炭素長繊維開繊糸シートとの積層体である。 The carbon short fiber resin structure of the present invention is a laminate of a non-woven fabric containing carbon short fibers, a thermoplastic film, and a carbon long fiber spread yarn sheet.

本発明において、炭素短繊維を含有してなる不織布(炭素短繊維不織布)としては、湿式法又は乾式法により製造される湿式不織布又は乾式不織布を用いることができる。そして、炭素短繊維不織布は、結着材として、熱可塑性短繊維、熱可塑性エマルジョン等を含むことができる。この結着材によって、炭素短繊維不織布に強度を容易に付与することができる。 In the present invention, as the non-woven fabric containing carbon short fibers (carbon short fiber non-woven fabric), a wet non-woven fabric or a dry non-woven fabric produced by a wet method or a dry method can be used. The carbon short fiber non-woven fabric can contain a thermoplastic short fiber, a thermoplastic emulsion, or the like as a binder. With this binder, strength can be easily imparted to the short carbon fiber non-woven fabric.

炭素短繊維としては、ポリアクリロニトリルを原料とするPAN系炭素繊維、ピッチ類を原料とするピッチ系炭素短繊維が挙げられる。炭素短繊維の繊維径は3μm以上20μm以下であることが好ましく、5μm以上15μm以下であることがより好ましい。また、炭素短繊維の繊維長は、湿式不織布の場合は、3μm以上40mm以下であることが好ましく、乾式不織布の場合は、20μm以上120mm以下であることが好ましい。 Examples of the carbon short fibers include PAN-based carbon fibers made from polyacrylonitrile and pitch-based carbon short fibers made from pitches. The fiber diameter of the carbon short fibers is preferably 3 μm or more and 20 μm or less, and more preferably 5 μm or more and 15 μm or less. The fiber length of the short carbon fibers is preferably 3 μm or more and 40 mm or less in the case of a wet non-woven fabric, and preferably 20 μm or more and 120 mm or less in the case of a dry non-woven fabric.

本発明において、炭素短繊維としてリサイクル炭素短繊維を用いることができる。リサイクル炭素繊維とは、一度成形体として成った炭素繊維と樹脂複合体を、アルゴン、窒素などの不活性ガス中又は水蒸気中で、樹脂成分を焼結除去して得られる材料である。特に過熱水蒸気による焼結方法は、大気下で熱を奪うと水に戻ることから、安価で環境を汚染しない有効な方法である。プリプレグより成る樹脂複合体はアングルプライ積層体など多様な形態をしており、通常は一定サイズに落としてから、焼結処理し、熱硬化性樹脂を除去して、裁断する。この場合、繊維長の異なるリサイクル炭素短繊維が得られる。 In the present invention, recycled carbon short fibers can be used as the carbon short fibers. The recycled carbon fiber is a material obtained by sintering and removing a resin component in an inert gas such as argon or nitrogen or in steam from a carbon fiber and a resin composite once formed as a molded body. In particular, the sintering method using superheated steam is an effective method that is inexpensive and does not pollute the environment because it returns to water when it takes heat in the atmosphere. The resin composite made of prepreg has various forms such as an angle ply laminate, and is usually dropped to a certain size and then sintered to remove the thermosetting resin and cut. In this case, recycled carbon short fibers having different fiber lengths can be obtained.

乾式不織布の製造方法を説明する。まず、大気中で解繊された炭素短繊維をウェッブに展開し、カード法などで分散さる。この時、結着材として熱可塑性短繊維を併用する場合は、炭素短繊維と一緒に解繊分散させて、熱処理を施す。また、結着材として熱可塑性エマルジョンを併用する場合には、炭素短繊維のウェッブに熱可塑性エマルジョンを付与して熱処理を施す。結着材によって、強度を持たせて、乾式不織布とする。 A method for manufacturing a dry nonwoven fabric will be described. First, short carbon fibers defibrated in the atmosphere are developed on a web and dispersed by a card method or the like. At this time, when thermoplastic short fibers are used together as the binder, the fibers are defibrated and dispersed together with the carbon short fibers and heat-treated. When a thermoplastic emulsion is used in combination as a binder, the thermoplastic emulsion is applied to a web of short carbon fibers and heat-treated. The non-woven fabric is made into a dry non-woven fabric by giving it strength with a binder.

湿式不織布の製造方法を説明する。まず、水中で炭素短繊維を解繊し、次に、円網、短網、長網、傾斜短網などの抄紙網で漉き上げて、乾燥・加熱処理等を施して、湿式不織布とする。そして、乾式不織布と同様に、熱可塑性短繊維、熱可塑性エマルジョン等の結着材によって、強度を持たせて、湿式不織布とする。 A method for producing a wet non-woven fabric will be described. First, carbon short fibers are defibrated in water, then squeezed with a papermaking net such as a circular net, a short net, a long net, or an inclined short net, and dried and heat-treated to obtain a wet non-woven fabric. Then, as with the dry non-woven fabric, a wet non-woven fabric is obtained by imparting strength with a binder such as a thermoplastic short fiber or a thermoplastic emulsion.

本発明では、乾式不織布、湿式不織布のいずれの不織布も利用できるが、薄い不織布を利用する場合には、繊維の分散性が優れている湿式不織布を利用することが好ましい。また、厚い不織布を利用する場合には、製造方法の簡素で、厚みを持たせるのに有利な、乾式不織布を利用することが好ましい。 In the present invention, either a dry non-woven fabric or a wet non-woven fabric can be used, but when a thin non-woven fabric is used, it is preferable to use a wet non-woven fabric having excellent fiber dispersibility. Further, when a thick non-woven fabric is used, it is preferable to use a dry non-woven fabric which has a simple manufacturing method and is advantageous for increasing the thickness.

熱可塑性短繊維としては、非結晶性のポリビニルアルコール(ビニロン)短繊維、表面が低融点化されているポリエステル芯鞘短繊維、未延伸ポリエステル短繊維、ポリカーボネート(PC)短繊維、ポリオレフィン短繊維、表面が低融点化されているポリオレフィン芯鞘短繊維、表面が酸変性ポリオレフィンよりなるポリオレフィン短繊維、脂肪族ポリアミド短繊維、未延伸ポリフェニレンスルフィド短繊維、ポリエーテルケトンケトン短繊維等の熱可塑性を有する樹脂の短繊維が挙げられる。 The thermoplastic short fibers include non-crystalline polyvinyl alcohol (vinylon) short fibers, polyester core-sheath short fibers having a low melting point on the surface, unstretched polyester short fibers, polycarbonate (PC) short fibers, and polyolefin short fibers. It has thermoplasticity such as polyolefin core-sheath short fibers whose surface has a low melting point, polyolefin short fibers whose surface is made of acid-modified polyolefin, aliphatic polyamide short fibers, unstretched polyphenylene sulfide short fibers, and polyether ketone ketone short fibers. Examples include short resin fibers.

熱可塑性エマルジョンとしては、アクリル樹脂、スチレンアクリル樹脂、酸変性されたポリオレフィン、酸変性されたαオレフィンを含むポリオレフィン、アイオノマー、塩素化ポリオレフィンなどの熱可塑性を有する樹脂のエマルジョンが用いられる。 As the thermoplastic emulsion, an emulsion of a resin having thermoplasticity such as acrylic resin, styrene acrylic resin, acid-modified polyolefin, polyolefin containing acid-modified α-olefin, ionomer, and chlorinated polyolefin is used.

熱可塑性を有する樹脂の融点は60℃以上260℃以下であることが好ましく、60℃以上230℃以下であることがより好ましく、60℃以上180℃以下であることが更に好ましく、80℃以上160℃以下であることが特に好ましい。 The melting point of the thermoplastic resin is preferably 60 ° C. or higher and 260 ° C. or lower, more preferably 60 ° C. or higher and 230 ° C. or lower, further preferably 60 ° C. or higher and 180 ° C. or lower, and 80 ° C. or higher and 160 ° C. It is particularly preferable that the temperature is below ° C.

熱可塑性短繊維の繊維径は3μm以上40μm以下であることが好ましく、5μm以上20μm以下であることがより好ましい。また、熱可塑性短繊維の繊維長は1μm以上120mm以下であることが好ましく、3μm以上40mm以下であることがより好ましい。 The fiber diameter of the thermoplastic short fiber is preferably 3 μm or more and 40 μm or less, and more preferably 5 μm or more and 20 μm or less. The fiber length of the thermoplastic short fiber is preferably 1 μm or more and 120 mm or less, and more preferably 3 μm or more and 40 mm or less.

炭素短繊維と結着材の含有比率(質量基準による、炭素短繊維:結着材)は、8.5:0.0〜5:4であることが好ましく、8.5:0.5〜5:4であることがより好ましく、8:1〜6:3であることが更に好ましい。結着材は必須成分では無いが、炭素短繊維と結着材の含有比率を上記範囲内とすることにより、炭素短繊維樹脂構造体の強度を容易に高めることができる。 The content ratio of the carbon short fibers and the binder (carbon short fibers: binder according to the mass standard) is preferably 8.5: 0.0 to 5: 4, preferably 8.5: 0.5 to 5. It is more preferably 5: 4, and even more preferably 8: 1 to 6: 3. Although the binder is not an essential component, the strength of the carbon short fiber resin structure can be easily increased by setting the content ratio of the carbon short fibers and the binder within the above range.

本発明の炭素短繊維樹脂構造体の製造方法は、炭素短繊維含有不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化して炭素短繊維強化フィルムを製造する工程と、該炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する工程とを含む。本発明では、炭素短繊維不織布が、ミクロフィブリル化セルロースを含有することが好ましい。炭素短繊維不織布がミクロフィブリル化セルロースを含有している場合、加熱加圧処理時や炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する際に、炭素短繊維不織布内で炭素短繊維の分散性が崩れないため、強度物性及び加工性の優れた炭素短繊維樹脂構造体を得ることができる。 In the method for producing a carbon short fiber resin structure of the present invention, the non-woven fabric and the thermoplastic film are integrated by heat-pressing the laminated body of the carbon short fiber-containing non-woven fabric and the thermoplastic film with a roll. It includes a step of manufacturing the carbon short fiber reinforced film and a step of integrating the carbon short fiber reinforced film and the carbon long fiber non-woven fabric sheet. In the present invention, the short carbon fiber non-woven fabric preferably contains microfibrillated cellulose. When the carbon short fiber non-woven fabric contains microfibrillated cellulose, carbon is contained in the carbon short fiber non-woven fabric during heat and pressure treatment or when the carbon short fiber reinforced film and the carbon long fiber spread yarn sheet are integrated. Since the dispersibility of the short fibers does not collapse, a carbon short fiber resin structure having excellent strength physical properties and processability can be obtained.

ミクロフィブリル化セルロース繊維とは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下であるセルロース繊維である。長さと幅のアスペクト比が20〜100000であることが好ましい。また、変法濾水度が0ml以上770ml以下であることが好ましく、0ml以上600ml以下であることがより好ましい。更に、質量平均繊維長が0.1mm以上2mm以下であることが好ましい。本発明における変法濾水度は、ふるい板として線径0.14mm、目開き0.18mmの金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を用い、試料濃度を0.1%にした以外はJIS P8121(1995年版)に準拠して測定した濾水度である。 The microfibrillated cellulose fiber is not a film-like fiber, but a fiber-like fiber having a portion mainly divided in a direction parallel to the fiber axis, and at least a part thereof has a fiber diameter of 1 μm or less. The aspect ratio of length to width is preferably 20-100,000. Further, the modified drainage degree is preferably 0 ml or more and 770 ml or less, and more preferably 0 ml or more and 600 ml or less. Further, the mass average fiber length is preferably 0.1 mm or more and 2 mm or less. The modified drainage degree in the present invention is determined by using a wire mesh (manufactured by PULP AND PAPER RESEARCH INSTITUTE OF CANADA) having a wire diameter of 0.14 mm and a mesh size of 0.18 mm as a sieving plate, except that the sample concentration is 0.1%. It is the degree of drainage measured according to JIS P8121 (1995 version).

ミクロフィブリル化セルロースのフィブリル化度合いは、低濃度での分散液粘度で把握することも可能である。粘度が高くなるほど、フィブリル化が進行しているが、粘度が高過ぎる場合は、繊維長が短くなり過ぎている可能性がある。ミクロフィブリル化セルロースの分散液(濃度0.5質量%)の粘度が、B型粘度計(ローターNo.2、ローター回転数60rpm、温度23℃以上25℃以下)を用いた場合、50cp以上200cp以下であることが好ましい。 The degree of fibrillation of microfibrillated cellulose can also be determined by the viscosity of the dispersion at a low concentration. The higher the viscosity, the more fibrillation progresses, but if the viscosity is too high, the fiber length may be too short. The viscosity of the dispersion of microfibrillated cellulose (concentration 0.5% by mass) is 50 cp or more and 200 cp when a B-type viscometer (rotor No. 2, rotor rotation speed 60 rpm, temperature 23 ° C or higher and 25 ° C or lower) is used. The following is preferable.

炭素短繊維不織布がミクロフィブリル化セルロースを含有する場合、その含有量は、特に限定されないが、不織布中の全繊維に対して、0.5〜20質量%であることが好ましく、2〜15質量%であることがより好ましい。ミクロフィブリル化セルロース繊維の含有量が上記範囲内である場合、加熱加圧処理時や炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する際に、炭素短繊維不織布内で炭素短繊維の分散性が崩れないため、強度物性及び加工性の優れた炭素短繊維樹脂構造体を得ることができる。ミクロフィブリル化セルロース繊維の含有量が上記範囲より少ない場合、ミクロフィブリル化セルロースを含有していない場合と効果が変わらない場合がある。ミクロフィブリル化セルロース繊維の含有量が上記範囲を超えた場合、不織布製造時に脱水された後、ミクロフィブリル化セルロース同士が密な構造を形成して、フィルム状となり、加熱加圧処理時や炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する際に、炭素短繊維不織布内へ熱可塑性樹脂フィルムが進入し難くなる。また、炭素短繊維不織布と熱可塑性フィルムとを一体化してなる炭素短繊維強化フィルムに、ボイドが見られる場合がある。 When the carbon short fiber non-woven fabric contains microfibrillated cellulose, the content thereof is not particularly limited, but is preferably 0.5 to 20% by mass, preferably 2 to 15% by mass, based on the total fibers in the non-woven fabric. More preferably. When the content of the microfibrillated cellulose fibers is within the above range, carbon is contained in the carbon short fiber non-woven fabric during heat and pressure treatment or when the carbon short fiber reinforced film and the carbon long fiber spread yarn sheet are integrated. Since the dispersibility of the short fibers does not collapse, a carbon short fiber resin structure having excellent strength physical properties and processability can be obtained. When the content of the microfibrillated cellulose fiber is less than the above range, the effect may not be different from the case where the microfibrillated cellulose fiber is not contained. When the content of the microfibrillated cellulose fibers exceeds the above range, after dehydration during the production of the non-woven fabric, the microfibrillated celluloses form a dense structure to form a film, which is formed during heat and pressure treatment or carbon short. When integrating the fiber-reinforced film and the carbon-long fiber spread yarn sheet, it becomes difficult for the thermoplastic resin film to enter the carbon short-fiber non-woven fabric. In addition, voids may be seen in the carbon short fiber reinforced film formed by integrating the carbon short fiber non-woven fabric and the thermoplastic film.

ミクロフィブリル化セルロース繊維用のセルロース材料としては、植物パルプ、溶剤紡糸セルロース、半合成セルロース等が挙げられる。植物パルプとしては、広葉樹材(L材)や針葉樹材(N材)を用いたクラフトパルプ(KP)、溶解パルプ(DP)、溶解クラフトパルプ(DKP)などの木質系パルプが挙げられる。また、藁、麻、コットン、コットンリンターなどの非木質系パルプも挙げられる。市販品としては、セリッシュ(登録商標、ダイセルファインケム社製)が挙げられる。なお、セルロース材料の結晶形には、I型、II型、III型、IV型等があるが、耐熱性の観点から、I型、II型が好ましく、I型がより好ましい。I型のセルロース材料源としては、コットンパルプ、コットンリンターパルプ、麻パルプ、ケナフパルプなどの非木質系パルプで、リグニン及びヘミセルロースの含有量が低減されたパルプ、L材又はN材から得られる、リグニン及びヘミセルロースの含有量が低減されたKP、DP、DKPなどの木質系パルプが挙げられる。特に、コットン系材料が好ましい。 Examples of the cellulose material for microfibrillated cellulose fibers include plant pulp, solvent-spun cellulose, semi-synthetic cellulose and the like. Examples of the vegetable pulp include wood-based pulp such as kraft pulp (KP) using softwood (L material) and softwood (N material), dissolving pulp (DP), and dissolving kraft pulp (DKP). Also included are non-wood pulps such as straw, hemp, cotton and cotton linters. Examples of commercially available products include Serish (registered trademark, manufactured by Daicel Fine Chem Ltd.). The crystal form of the cellulose material includes type I, type II, type III, type IV and the like, but from the viewpoint of heat resistance, type I and type II are preferable, and type I is more preferable. The I-type cellulose material source is non-wood pulp such as cotton pulp, cotton linter pulp, hemp pulp, and kenaf pulp, and lignin obtained from pulp, L material, or N material having a reduced content of lignin and hemicellulose. And wood-based pulp such as KP, DP and DKP with reduced hemicellulose content. In particular, cotton-based materials are preferable.

ミクロフィブリル化セルロースを得るためには、セルロース材料が、まず、水中で分散され、機械的に粉砕される。そして、セルロース材料の繊維が解繊されてミクロフィブリルが形成される。セルロース材料を解繊する装置としては、ディスクリファイナー、石臼型磨砕機、高圧ホモジナイザー、ボールミル、水中カウンターコリジョン法用装置、超音波破砕器等が挙げられる。これらの装置を適宜組み合わせて使用することもできる。 To obtain microfibrillated cellulose, the cellulosic material is first dispersed in water and mechanically ground. Then, the fibers of the cellulose material are defibrated to form microfibrils. Examples of the apparatus for defibrating the cellulose material include a disc refiner, a millstone type grinder, a high pressure homogenizer, a ball mill, an underwater counter-collision method apparatus, an ultrasonic crusher and the like. These devices can also be used in combination as appropriate.

炭素長繊維開繊糸シートとしては、炭素長繊維開繊糸一方向性ウェブ(炭素長繊維開繊糸UDウェブ、UD:UniDerection)、炭素長繊維開繊糸織物等が挙げられる。炭素長繊維開繊糸UDウェブとは、炭素長繊維とサイジング剤の糸状複合体を、エアーフローやウオーターフローなどによって開繊し、テープ状としたものである。炭素長繊維開繊糸織物とは、炭素長繊維開繊糸UDウェブを経糸と緯糸として使用した織物である。 Examples of the carbon long fiber spread yarn sheet include a carbon long fiber spread yarn unidirectional web (carbon long fiber spread yarn UD web, UD: UniDirection), a carbon long fiber spread yarn woven fabric, and the like. The carbon long fiber spread fiber UD web is a tape-like material obtained by opening a filamentous composite of carbon long fibers and a sizing agent by air flow, water flow, or the like. The carbon long fiber spread fiber woven fabric is a woven fabric using the carbon long fiber spread fiber UD web as a warp and a weft.

本発明では、この炭素長繊維開繊糸シートをそのまま使用しても良いが、溶剤処理法、酸化法、焼結法などにより、洗浄処理を施して、サイジング剤を除去し、熱可塑性フィルムと積層させた炭素長繊維開繊糸シートを用いることがより好ましい。溶剤処理法とは、アセトン、メチルエチルケトン、アルコールなどの有機溶剤で、サイジング剤を除去し、炭素長繊維の表面を出す方法である。酸化法とは、硫酸と過酸化水素などを併用して、酸化分解によりサイジング剤を除去する方法である。焼結法とは、アルゴン、窒素などの不活性ガスや過熱水蒸気中で、400℃以上700℃以下の温度域でサイジング剤を熱分解する方法である。焼結法は、熱源を導入するだけで、他の化学種を用いず、規模を大きくすることができるため、好ましい方法である。特に過熱水蒸気による焼結法は雰囲気中の酸素濃度を低く抑えて炭素繊維表面の劣化を防ぐことができることから、より好ましい方法である。本発明において、熱可塑性フィルムと積層する前の炭素長繊維開繊糸シートにおけるサイジング剤の含有量は、好ましくは0.001質量%以上3質量%以下である。より好ましい含有量は、0.01質量%以上1質量%以下である。 In the present invention, this long carbon fiber spread yarn sheet may be used as it is, but a cleaning treatment is performed by a solvent treatment method, an oxidation method, a sintering method, etc. to remove the sizing agent, and the film is formed into a thermoplastic film. It is more preferable to use a laminated carbon long fiber spread yarn sheet. The solvent treatment method is a method of removing the sizing agent with an organic solvent such as acetone, methyl ethyl ketone, alcohol, etc. to expose the surface of long carbon fibers. The oxidation method is a method of removing a sizing agent by oxidative decomposition by using sulfuric acid and hydrogen peroxide in combination. The sintering method is a method of thermally decomposing a sizing agent in a temperature range of 400 ° C. or higher and 700 ° C. or lower in an inert gas such as argon or nitrogen or superheated steam. The sintering method is a preferable method because the scale can be increased simply by introducing a heat source without using other chemical species. In particular, the sintering method using superheated steam is a more preferable method because the oxygen concentration in the atmosphere can be suppressed to a low level and deterioration of the carbon fiber surface can be prevented. In the present invention, the content of the sizing agent in the long carbon fiber spread yarn sheet before being laminated with the thermoplastic film is preferably 0.001% by mass or more and 3% by mass or less. A more preferable content is 0.01% by mass or more and 1% by mass or less.

熱可塑性樹脂フィルムの熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂等のポリオレフィン系樹脂;ポリメチルメタクリレート樹脂等のアクリ系樹脂;ポリスチレン樹脂、アクリロニトリル(Acrylonitrile)・ブタジエン(Butadiene)・スチレン(Styrene)共重合合成樹脂(ABS樹脂)、アクリロニトリル(Acrylonitrile)・スチレン(Styrene)共重合合成樹脂(AS樹脂)等のポリスチレン系樹脂;ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリ1,4−シクロヘキシルジメチレンテレフタレート(PCT)樹脂等のポリエステル系樹脂;6−ナイロン樹脂、6,6−ナイロン樹脂等のポリアミド(PA)樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン(POM)樹脂;ポリカーボネート(PC)樹脂;ポリフェニレンサルファイド(PPS)樹脂;変性ポリフェニレンエーテル(PPE)樹脂;ポリエーテルイミド(PEI)樹脂;ポリスルホン(PSF)樹脂;ポリエーテルスルホン(PES)樹脂;ポリケトン樹脂;ポリアリレート(PAR)樹脂;ポリエーテルニトリル(PEN)樹脂;ポリエーテルケトン(PEK)樹脂;ポリエーテルエーテルケトン(PEEK)樹脂;ポリエーテルケトンケトン(PEKK)樹脂;ポリイミド(PI)樹脂;ポリアミドイミド(PAI)樹脂;フッ素(F)樹脂;液晶ポリエステル樹脂等の液晶ポリマー樹脂;ポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系又はフッ素系等の熱可塑性エラストマー;又はこれらの共重合体樹脂や変性樹脂;アイオノマー樹脂等が挙げられる。これらの樹脂の中から、1種又は2種以上を用いることができる。質量の観点からはPPが好ましく、燃焼性の観点から、PC、PPS、PEEK、PEI等が好ましい。 Examples of the thermoplastic resin of the thermoplastic resin film include polyolefin resins such as polyethylene resin, polypropylene resin and polybutylene resin; acrylic resins such as polymethylmethacrylate resin; polystyrene resin, acryliconitrile, butadiene, and styrene (). Polystyrene-based resins such as Stylene copolymer synthetic resin (ABS resin), acryliconirile / styrene copolymer synthetic resin (AS resin); polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, poly Polyester resins such as trimethylene terephthalate resin, polyethylene naphthalate (PEN) resin, poly 1,4-cyclohexyldimethylene terephthalate (PCT) resin; polyamide (PA) resin such as 6-nylon resin and 6,6-nylon resin. Polyvinyl chloride resin; Polyoxymethylene (POM) resin; Polycarbonate (PC) resin; Polyphenylene sulfide (PPS) resin; Modified polyphenylene ether (PPE) resin; Polyetherimide (PEI) resin; Polysulfone (PSF) resin; Poly Ether sulfone (PES) resin; Polyketone resin; Polyarylate (PAR) resin; Polyether nitrile (PEN) resin; Polyether ketone (PEK) resin; Polyether ether ketone (PEEK) resin; Polyether ketone ketone (PEKK) resin Polyethylene (PI) resin; Polyamiimide (PAI) resin; Fluorine (F) resin; Liquid crystal polymer resin such as liquid crystal polyester resin; Polystyrene-based, polyolefin-based, polyurethane-based, polyester-based, polyamide-based, polybutadiene-based, polyisoprene-based Alternatively, a fluoroplastic elastomer such as fluorine; or a copolymer resin or modified resin thereof; an ionomer resin and the like can be mentioned. From these resins, one type or two or more types can be used. From the viewpoint of mass, PP is preferable, and from the viewpoint of flammability, PC, PPS, PEEK, PEI and the like are preferable.

アイオノマー樹脂としては、エチレン−不飽和カルボン酸共重合樹脂のカルボキシル基の一部を金属イオンで中和してなるエチレン系アイオノマー樹脂が挙げられる。カルボキシル基の10モル%以上、好ましくは10モル%以上90モル%以下を金属イオンで中和したものが使用される。金属イオンとしては、リチウム、ナトリウムなどのアルカリ金属、亜鉛、マグネシウム、カルシウムなどのアルカリ土類金属のような多価金属イオンを挙げることができる。 Examples of the ionomer resin include an ethylene-based ionomer resin obtained by neutralizing a part of the carboxyl groups of the ethylene-unsaturated carboxylic acid copolymer resin with metal ions. A carboxyl group in which 10 mol% or more, preferably 10 mol% or more and 90 mol% or less is neutralized with a metal ion is used. Examples of the metal ion include alkali metals such as lithium and sodium, and polyvalent metal ions such as alkaline earth metals such as zinc, magnesium and calcium.

本発明の炭素短繊維樹脂構造体の製造方法は、炭素短繊維不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化して炭素短繊維強化フィルムを製造する工程と、該炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する工程とを含む。 In the method for producing a carbon short fiber resin structure of the present invention, the non-woven fabric and the thermoplastic film are integrated by heat-pressing the laminated body of the carbon short fiber non-woven fabric and the thermoplastic film with a roll. It includes a step of producing a carbon short fiber reinforced film and a step of integrating the carbon short fiber reinforced film and a carbon long fiber non-woven fabric sheet.

炭素短繊維強化フィルムを製造する工程では、炭素短繊維不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理する。また、炭素長繊維開繊糸シートと熱可塑性フィルムとの積層体も、該積層体の両面からロールで加熱加圧処理することによって得られる。また、炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する工程でも、炭素短繊維強化フィルムと炭素長繊維開繊糸シートとの積層体の両面からロールで加熱加圧処理することもできる。また、プレス成形時に、炭素短繊維強化フィルムの必要な箇所にのみ、炭素長繊維開繊糸シートを一体化することもできる。 In the process of producing the carbon short fiber reinforced film, heat and pressure treatment is performed with a roll from both sides of the laminate of the carbon short fiber non-woven fabric and the thermoplastic film. Further, a laminate of the long carbon fiber spread yarn sheet and the thermoplastic film is also obtained by heat-pressing treatment with a roll from both sides of the laminate. Further, in the step of integrating the carbon short fiber reinforced film and the carbon long fiber spread yarn sheet, heat and pressure treatment is performed with a roll from both sides of the laminate of the carbon short fiber reinforced film and the carbon long fiber spread yarn sheet. You can also do it. Further, at the time of press molding, the carbon long fiber spread yarn sheet can be integrated only in the necessary part of the carbon short fiber reinforced film.

加熱温度としては、熱可塑性フィルムの融点前後が適当であるが、動作中や加圧場所での温度の変化或いは振れには注意が必要であって、温度の振れが大きくなると、不織布やフィルムの断裂や、熱可塑性フィルムの不織布への浸透性にムラが生ずるので、温度の振れは1℃以内であることが好ましく、0.5℃以内であることがより好ましい。加圧としては、線圧で10N/mm以上600N/mm以下であることが好ましい。速度としては、1m/min以上100m/min以下であることが好ましく、3m/min以上40m/min以下であることがより好ましい。これらの条件は、選択する材料によって適宜調整する必要がある。 As the heating temperature, around the melting point of the thermoplastic film is appropriate, but it is necessary to pay attention to the temperature change or runout during operation or in the pressurized place, and when the temperature shake becomes large, the non-woven fabric or film becomes Since tearing and uneven penetration of the thermoplastic film into the non-woven fabric occur, the temperature fluctuation is preferably within 1 ° C., more preferably within 0.5 ° C. The pressurization is preferably 10 N / mm or more and 600 N / mm or less in terms of linear pressure. The speed is preferably 1 m / min or more and 100 m / min or less, and more preferably 3 m / min or more and 40 m / min or less. These conditions need to be adjusted as appropriate depending on the material selected.

ロールは、積層体の両面に対を成して配置されるが、単対でも良いし、複数対用いることもできる。また、スーパーエンジニアリング・プラスチック系の熱可塑性フィルムについては、予備加熱のための装置を設けることができる。 The rolls are arranged in pairs on both sides of the laminated body, but may be a single pair or a plurality of pairs may be used. Further, for super engineering plastic-based thermoplastic films, a device for preheating can be provided.

炭素短繊維強化フィルムを製造する際の積層体としては、1層の炭素短繊維不織布と1層の熱可塑性フィルムからなる積層体、1層の炭素短繊維不織布の両側に熱可塑性フィルムを配置する積層体、1層の熱可塑性フィルムの両側に炭素短繊維不織布を配置する積層体、複数の炭素短繊維不織布と複数の熱可塑性フィルムを交互に配置する積層体、複数の炭素短繊維不織布と複数の熱可塑性フィルムをランダムに配置する積層体等が挙げられる。しかし、製造された炭素短繊維強化フィルムの厚みが厚くなり過ぎると、ロール状に巻き取ることが難しくなるので、炭素短繊維強化フィルムの厚みは、20μm以上500μm以下であることが好ましく、30μm以上250μm以下であることがより好ましい。 As a laminate for producing a carbon short fiber reinforced film, a laminate composed of one layer of carbon short fiber non-woven fabric and one layer of thermoplastic film is arranged on both sides of the one layer of carbon short fiber non-woven fabric. Laminates, laminates in which carbon short fiber non-woven fabrics are arranged on both sides of one layer of thermoplastic film, laminates in which a plurality of carbon short fiber non-woven fabrics and a plurality of thermoplastic films are alternately arranged, a plurality of carbon short fiber non-woven fabrics and a plurality of Examples thereof include a laminate in which the thermoplastic films of the above are randomly arranged. However, if the thickness of the produced carbon short fiber reinforced film becomes too thick, it becomes difficult to wind it into a roll. Therefore, the thickness of the carbon short fiber reinforced film is preferably 20 μm or more and 500 μm or less, preferably 30 μm or more. It is more preferably 250 μm or less.

ロールとしては、ロール軸方向に表面温度が高い精度で保たれる必要があるので、ヒートパイプ機能を有するジャケット室と、ロール軸方向に多層加熱層を作ることが可能な、電磁誘導加熱方法を組み合わせたロールを用いることが好ましい。このようなロールとしては、トクデン社製誘導発熱ジャケットロール(登録商標)が挙げられる。 As the roll, it is necessary to maintain the surface temperature with high accuracy in the roll axis direction, so a jacket chamber having a heat pipe function and an electromagnetic induction heating method capable of forming a multi-layer heating layer in the roll axis direction are used. It is preferable to use a combined roll. Examples of such a roll include an induction heating jacket roll (registered trademark) manufactured by Tokuden Corporation.

本発明の炭素短繊維樹脂構造体は、単層で使用することもできる。更に、炭素短繊維樹脂構造体を積層して使用することもできる。炭素単繊維樹脂構造体は、熱プレス成形、真空成形などの加工を通じて各種用途に用いることができる。 The carbon short fiber resin structure of the present invention can also be used in a single layer. Further, the carbon short fiber resin structure can be laminated and used. The carbon monofiber resin structure can be used for various purposes through processing such as hot press molding and vacuum forming.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。なお、実施例中における部や百分率は断りのない限り、すべて質量によるものである。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the present examples. Unless otherwise specified, all parts and percentages in the examples are based on mass.

(ミクロフィブリル化セルロースの作製)
リンターパルプ(質量平均繊維長1.2mm)を、増幸産業社製マスコロイダー(登録商標、装置名:MKZA12)を用いて、磨砕処理を行い、ミクロフィブリル化セルロース(MFC)を作製した。更に高圧ホモジナイザー(BOS製MC2)を用い50MPaで4回処理した。ミクロフィブリル化セルロースの分散液(濃度0.5質量%)での粘度をB型粘度計(ローターNo.2、ローター回転数60rpm、温度23℃以上25℃以下)で測定したところ、170cpであった。
(Preparation of microfibrillated cellulose)
Linter pulp (mass average fiber length 1.2 mm) was ground using a mascoroider (registered trademark, device name: MKZA12) manufactured by Masuko Sangyo Co., Ltd. to prepare microfibrillated cellulose (MFC). Further, the treatment was performed 4 times at 50 MPa using a high-pressure homogenizer (MC2 manufactured by BOS). The viscosity of the microfibrillated cellulose dispersion (concentration 0.5% by mass) was measured with a B-type viscometer (rotor No. 2, rotor speed 60 rpm, temperature 23 ° C or higher and 25 ° C or lower) and found to be 170 cp. It was.

(炭素短繊維)
炭素短繊維:繊維径7μm、繊維長6mm
(Short carbon fiber)
Short carbon fiber: Fiber diameter 7 μm, fiber length 6 mm

(熱可塑性短繊維)
熱可塑性短繊維:繊維径4.5μm、繊維長3mm、未延伸PET繊維
(Thermoplastic short fiber)
Thermoplastic short fiber: fiber diameter 4.5 μm, fiber length 3 mm, undrawn PET fiber

(炭素短繊維不織布1の製造)
炭素短繊維85質量%、熱可塑性短繊維15質量%の繊維配合率で、分散濃度0.2質量%で、5分間、繊維を水に分散して、90メッシュの円網型抄紙機で、速度3m/minで漉き上げて、表面温度150℃のヤンキードライヤーにて10秒乾燥し、目付量25g/m、厚み120μm、幅40cm、長さ100mの炭素短繊維不織布を作製し、ロール状に巻き取った。
(Manufacturing of carbon short fiber non-woven fabric 1)
With a fiber content of 85% by mass of short carbon fibers and 15% by mass of thermoplastic short fibers, the fibers were dispersed in water for 5 minutes at a dispersion concentration of 0.2% by mass, and a 90-mesh circular net paper machine was used. It is squeezed at a speed of 3 m / min and dried for 10 seconds with a Yankee dryer having a surface temperature of 150 ° C. to prepare a short carbon fiber non-woven fabric having a mesh size of 25 g / m 2 , a thickness of 120 μm, a width of 40 cm, and a length of 100 m. Wrapped up in.

(炭素短繊維不織布2の製造)
炭素短繊維80質量%、熱可塑性短繊維15質量%、ミクロフィブリル化セルロース5質量%の繊維配合率で、分散濃度0.2質量%で、5分間、繊維を水に分散して、90メッシュの円網型抄紙機で、速度3m/minで漉き上げて、表面温度150℃のヤンキードライヤーにて10秒乾燥し、目付量25g/m、厚み120μm、幅40cm、長さ100m炭素短繊維不織布を作製し、ロール状に巻き取った。
(Manufacturing of carbon short fiber non-woven fabric 2)
With a fiber content of 80% by mass of carbon short fibers, 15% by mass of thermoplastic short fibers, and 5% by mass of microfibrillated cellulose, the fibers are dispersed in water for 5 minutes at a dispersion concentration of 0.2% by mass, and 90 meshes are used. Machined with a circular net type paper machine at a speed of 3 m / min, dried with a Yankee dryer with a surface temperature of 150 ° C. for 10 seconds, and has a grain size of 25 g / m 2 , a thickness of 120 μm, a width of 40 cm, and a length of 100 m. A non-woven fabric was prepared and wound into a roll.

(炭素短繊維強化フィルム1の製造)
炭素短繊維不織布1と熱可塑性フィルム(樹脂:無延伸PP、東洋紡製、トーヨータック(登録商標)E−100、融点160℃)100μmの積層体を、170℃に加熱したロール対で、速度5m/min、線圧80N/mmで挟み込み、厚み125μmの炭素短繊維強化フィルム1を作製した。
(Manufacturing of carbon short fiber reinforced film 1)
A laminated body of carbon short fiber non-woven fabric 1 and a thermoplastic film (resin: unstretched PP, Toyobo, Toyo Tuck (registered trademark) E-100, melting point 160 ° C.) of 100 μm was heated to 170 ° C. at a speed of 5 m. A short carbon fiber reinforced film 1 having a thickness of 125 μm was produced by sandwiching it at / min and a linear pressure of 80 N / mm.

(炭素短繊維強化フィルム2の製造)
炭素短繊維不織布2と熱可塑性フィルム(樹脂:PEEK)100μmの積層体を、380℃に加熱したロール対で、速度5m/min、線圧150N/mmで挟み込み、厚み125μmの炭素短繊維強化フィルム2を作製した。
(Manufacturing of carbon short fiber reinforced film 2)
A carbon short fiber reinforced film having a thickness of 125 μm by sandwiching a laminate of carbon short fiber non-woven fabric 2 and a thermoplastic film (resin: PEEK) of 100 μm between roll pairs heated to 380 ° C. at a speed of 5 m / min and a linear pressure of 150 N / mm. 2 was prepared.

(炭素短繊維強化フィルム3の製造)
炭素短繊維不織布2と熱可塑性フィルム(樹脂:無延伸PP、東洋紡製、トーヨータック(登録商標)E−100、融点160℃)100μmの積層体を、170℃に加熱したロール対で、速度5m/min、線圧80N/mmで挟み込み、厚み125μmの炭素短繊維強化フィルム3を作製した。
(Manufacturing of carbon short fiber reinforced film 3)
A laminated body of carbon short fiber non-woven fabric 2 and a thermoplastic film (resin: unstretched PP, Toyobo, Toyo Tuck (registered trademark) E-100, melting point 160 ° C.) of 100 μm was heated to 170 ° C. at a speed of 5 m. A short carbon fiber reinforced film 3 having a thickness of 125 μm was produced by sandwiching the film at a linear pressure of 80 N / mm at / min.

(炭素長繊維開繊糸シート1の作製)
炭素長繊維開繊糸UDウェブ(サカイオーベックス製、炭素繊維12k、幅20mm、サイジング剤含有量3質量%)と、熱可塑性フィルム(樹脂:PEEK)30μmの積層体を、380℃に加熱したロール対で速度5m/min、線圧60N/mmで挟み込み、厚み50μmの炭素長繊維開繊糸シート1を作製した。
(Preparation of long carbon fiber spread yarn sheet 1)
A laminate of carbon long fiber spread yarn UD web (manufactured by Sakai Obex, carbon fiber 12 k, width 20 mm, sizing agent content 3% by mass) and a thermoplastic film (resin: PEEK) of 30 μm was heated to 380 ° C. A carbon long fiber spread fiber sheet 1 having a thickness of 50 μm was prepared by sandwiching the roll pairs at a speed of 5 m / min and a linear pressure of 60 N / mm.

(炭素長繊維開繊糸シート2の作製)
炭素長繊維開繊糸UDウェブ(サカイオーベックス製、炭素繊維12k、幅20mm、サイジング剤含有量3質量%)と、熱可塑性フィルム(樹脂:無延伸PP、東洋紡製、トーヨータック(登録商標)E−100、融点160℃)30μmの積層体を、170℃に加熱したロール対で速度5m/min、線圧60N/mmで挟み込み、厚み50μmの炭素長繊維開繊糸シート2を作製した。
(Preparation of long carbon fiber spread yarn sheet 2)
Carbon long fiber spread fiber UD web (manufactured by Sakai Obex, carbon fiber 12k, width 20 mm, sizing agent content 3% by mass) and thermoplastic film (resin: unstretched PP, Toyobo, Toyo Tuck (registered trademark)) A laminate having an E-100 and a melting point of 160 ° C.) of 30 μm was sandwiched between roll pairs heated to 170 ° C. at a speed of 5 m / min and a linear pressure of 60 N / mm to prepare a carbon long fiber spread fiber sheet 2 having a thickness of 50 μm.

(炭素長繊維開繊糸シート3の作製)
炭素長繊維開繊糸UDウェブ(サカイオーベックス製、炭素繊維12k、幅20mm)を、580℃の過熱水蒸気中で、1時間熱処理をした後、熱可塑性フィルム(樹脂:PEEK)30μmと積層し、次に、380℃に加熱したロール対で速度5m/min、線圧150N/mmで挟み込み、厚み50μmの炭素長繊維開繊糸シート3を作製した。洗浄処理後の炭素長繊維開繊糸UDウェブのサイジング剤含有量は0.1質量%以下であった。
(Preparation of long carbon fiber spread yarn sheet 3)
Carbon long fiber spread yarn UD web (manufactured by Sakai Obex, carbon fiber 12k, width 20 mm) is heat-treated in superheated steam at 580 ° C. for 1 hour, and then laminated with a thermoplastic film (resin: PEEK) of 30 μm. Next, the roll pair heated to 380 ° C. was sandwiched at a speed of 5 m / min and a linear pressure of 150 N / mm to prepare a carbon long fiber spread fiber sheet 3 having a thickness of 50 μm. The sizing agent content of the carbon long fiber spread fiber UD web after the washing treatment was 0.1% by mass or less.

(炭素長繊維開繊糸シート4の作製)
炭素長繊維開繊糸UDウェブ(サカイオーベックス製、炭素繊維12k、幅20mm)を、580℃の過熱水蒸気で、1時間熱処理をした後、熱可塑性フィルム(樹脂:無延伸PP、東洋紡製、トーヨータック(登録商標)E−100、融点160℃)30μmと積層し、次に、170℃に加熱したロール対で速度5m/min、線圧60N/mmで挟み込み、厚み50μmの炭素長繊維開繊糸シート4を作製した。洗浄処理後の炭素長繊維開繊糸UDウェブのサイジング剤含有量は0.1質量%以下であった。
(Preparation of long carbon fiber spread yarn sheet 4)
Carbon long fiber spread fiber UD web (manufactured by Sakai Obex, carbon fiber 12k, width 20 mm) is heat-treated with superheated steam at 580 ° C. for 1 hour, and then a thermoplastic film (resin: unstretched PP, manufactured by Toyobo). It was laminated with Toyobo (registered trademark) E-100, melting point 160 ° C.) 30 μm, and then sandwiched between roll pairs heated to 170 ° C. at a speed of 5 m / min and a linear pressure of 60 N / mm to open carbon fiber with a thickness of 50 μm. The fiber thread sheet 4 was produced. The sizing agent content of the carbon long fiber spread fiber UD web after the washing treatment was 0.1% by mass or less.

(炭素長繊維開繊糸シート5の作製)
炭素長繊維開繊織物(サカイオーベックス製、炭素繊維12k、幅3mm品による織物、厚み95μm、サイジング剤含有量3質量%)を、熱可塑性フィルム(樹脂:無延伸PP、東洋紡製、トーヨータック(登録商標)E−100、融点160℃)30μmを両面にして積層し、次に、170℃に加熱したロール対で速度5m/min、線圧60N/mmで挟み込み、厚み100μmの炭素長繊維開繊糸シート5を作製した。
(Preparation of long carbon fiber spread yarn sheet 5)
Carbon long fiber spread woven fabric (made by Sakai Obex, woven fabric with carbon fiber 12k, width 3 mm, thickness 95 μm, sizing agent content 3% by mass), thermoplastic film (resin: unstretched PP, Toyobo, Toyo Tuck (Registered trademark) E-100, melting point 160 ° C.) 30 μm was laminated on both sides, and then sandwiched between roll pairs heated to 170 ° C. at a speed of 5 m / min and a linear pressure of 60 N / mm, and a carbon fiber having a thickness of 100 μm. The spread fiber sheet 5 was produced.

(炭素長繊維開繊シート6の作製)
炭素長繊維開繊織物(サカイオーベックス製、炭素繊維12k、幅3mm品による織布厚み95μm)を、580℃の過熱水蒸気で1時間熱処理した後、熱可塑性フィルム(樹脂:無延伸PP、東洋紡製、トーヨータック(登録商標)E−100、融点160℃)30μmを両面にして積層し、次に、170℃に加熱したロール対で速度5m/min、線圧60N/mmで挟み込み、厚み100μmの炭素長繊維開繊糸シート6を作製した。洗浄処理後の炭素長繊維開繊糸織物のサイジング剤含有量は0.1質量%以下であった。
(Preparation of long carbon fiber spread sheet 6)
Carbon long fiber spread woven fabric (manufactured by Sakai Obex, carbon fiber 12k, woven fabric thickness 95 μm with a width of 3 mm) is heat-treated with superheated steam at 580 ° C for 1 hour, and then a thermoplastic film (resin: unstretched PP, Toyobo). Made by Toyobo (registered trademark) E-100, melting point 160 ° C), 30 μm was laminated on both sides, and then sandwiched between roll pairs heated to 170 ° C at a speed of 5 m / min and a linear pressure of 60 N / mm, and a thickness of 100 μm. The carbon long fiber spread fiber sheet 6 of the above was prepared. The sizing agent content of the long carbon fiber spread yarn woven fabric after the washing treatment was 0.1% by mass or less.

(実施例1〜3)
表1に示した炭素短繊維強化フィルムと炭素長繊維開繊糸シートの組合せで、実施例1〜3の炭素短繊維樹脂構造体を得た。31枚の炭素短繊維強化フィルムと、その両面に2枚の炭素長繊維開繊糸シートを組み合わせて、1枚の炭素長繊維開繊紙シート/31枚の炭素短繊維強化フィルム/1枚の炭素長繊維開繊糸シートの順に積層して一体化し、厚み4mmの炭素短繊維樹脂構造体を得た。一体化には、プレス成形法を用い、熱可塑性フィルムが無延伸PPの場合には、温度170℃、圧力0.5MPa、昇温後1分間で加熱処理した。得られた構造体から、炭素長繊維の繊維方向に平行である方向を長さとして、長さ80mm、幅10mmの試験片を5本切り出した。熱可塑性フィルムが無延伸PPの場合は、試験片に、120℃で3時間、熱処理を施した後冷却して、万能材料試験機(株式会社ティー・エス・イー、装置名:オートコム(登録商標、AutoCOM)AC−100)で、その曲げ弾性率を測定した。平均値の結果を表1に示した。
(Examples 1 to 3)
The carbon short fiber resin structures of Examples 1 to 3 were obtained by combining the carbon short fiber reinforced film and the carbon long fiber spread yarn sheet shown in Table 1. Combining 31 carbon short fiber reinforced films and 2 carbon long fiber spread yarn sheets on both sides, 1 carbon long fiber spread paper sheet / 31 carbon short fiber reinforced films / 1 sheet The carbon long fiber spread fiber sheets were laminated and integrated in this order to obtain a carbon short fiber resin structure having a thickness of 4 mm. A press molding method was used for integration, and when the thermoplastic film was unstretched PP, heat treatment was performed at a temperature of 170 ° C., a pressure of 0.5 MPa, and 1 minute after the temperature rise. From the obtained structure, five test pieces having a length of 80 mm and a width of 10 mm were cut out with the direction parallel to the fiber direction of the long carbon fibers as the length. When the thermoplastic film is unstretched PP, the test piece is heat-treated at 120 ° C. for 3 hours and then cooled, and then cooled to a universal material testing machine (TSE Co., Ltd., device name: Autocom (registered). Its flexural modulus was measured under the trademark AutoCOM) AC-100). The results of the average values are shown in Table 1.

(実施例4〜5)
表1に示した炭素短繊維強化フィルムと炭素長繊維開繊糸シートの組合せで、実施例4及び5の炭素短繊維樹脂構造体を得た。31枚の炭素短繊維強化フィルムと、その両面に炭素長繊維開繊糸シートを組み合わせて、1枚の炭素長繊維開繊紙シート/31枚の炭素短繊維強化フィルム/1枚の炭素長繊維開繊糸シートの順に積層して一体化し、厚み4mmの炭素短繊維樹脂構造体を得た。一体化にはプレス成形法を用い、熱可塑性フィルムがPEEKの場合には、温度360℃、圧力5MPa、昇温後3分間加熱して作製した。得られた構造体から、炭素長繊維の繊維方向に平行である方向を長さとして、長さ80mm、幅10mmの試験片を5本切り出した。熱可塑性フィルムがPEEKの場合は、試験片に、200℃で4時間、熱処理を施した後冷却して、万能材料試験機(株式会社ティー・エス・イー、装置名:オートコム(登録商標、AutoCOM)AC−100)で、その曲げ弾性率を測定した。平均値の結果を表1に示した。
(Examples 4 to 5)
The carbon short fiber resin structures of Examples 4 and 5 were obtained by combining the carbon short fiber reinforced film and the carbon long fiber spread yarn sheet shown in Table 1. Combining 31 carbon short fiber reinforced films and carbon long fiber spread yarn sheets on both sides, 1 carbon long fiber spread paper sheet / 31 carbon short fiber reinforced film / 1 carbon long fiber The spread fiber sheets were laminated in this order and integrated to obtain a carbon short fiber resin structure having a thickness of 4 mm. A press molding method was used for integration, and when the thermoplastic film was PEEK, it was produced by heating at a temperature of 360 ° C., a pressure of 5 MPa, and heating for 3 minutes after raising the temperature. From the obtained structure, five test pieces having a length of 80 mm and a width of 10 mm were cut out with the direction parallel to the fiber direction of the long carbon fibers as the length. When the thermoplastic film is PEEK, the test piece is heat-treated at 200 ° C. for 4 hours and then cooled, and then cooled to a universal material testing machine (TSE Co., Ltd., device name: Autocom (registered trademark, registered trademark)). The flexural modulus was measured with AutoCOM) AC-100). The results of the average values are shown in Table 1.

(実施例6〜7)
表1に示した炭素短繊維強化フィルムと炭素長繊維開繊シートの組合せで、実施例6及び7の炭素短繊維樹脂構造体を得た。30枚の炭素短繊維強化フィルムと、その両面に2枚の炭素長繊維開繊糸シートを組み合わせて、1枚の炭素長繊維開繊紙シート/30枚の炭素短繊維強化フィルム/1枚の炭素長繊維開繊糸シートの順に積層して一体化し、厚み4mmの炭素短繊維樹脂構造体を得た。一体化には、プレス成形法を用い、熱可塑性フィルムが無延伸PPの場合には、温度170℃、圧力0.5MPa、昇温後1分間で加熱処理した。得られた構造体から、長さ80mm、幅10mmの試験片を5本切り出した。熱可塑性フィルムがPPの場合は、試験片に、120℃で3時間、熱処理を施した後冷却して、万能材料試験機(株式会社ティー・エス・イー、装置名:オートコム(登録商標、AutoCOM)AC−100)で、その曲げ弾性率を測定した。平均値の結果を表1に示した。
(Examples 6 to 7)
The carbon short fiber resin structures of Examples 6 and 7 were obtained by combining the carbon short fiber reinforced film and the carbon long fiber spread sheet shown in Table 1. Combining 30 carbon short fiber reinforced films and 2 carbon long fiber spread yarn sheets on both sides, 1 carbon long fiber spread paper sheet / 30 carbon short fiber reinforced films / 1 sheet The carbon long fiber spread fiber sheets were laminated and integrated in this order to obtain a carbon short fiber resin structure having a thickness of 4 mm. A press molding method was used for integration, and when the thermoplastic film was unstretched PP, heat treatment was performed at a temperature of 170 ° C., a pressure of 0.5 MPa, and 1 minute after the temperature rise. From the obtained structure, five test pieces having a length of 80 mm and a width of 10 mm were cut out. When the thermoplastic film is PP, the test piece is heat-treated at 120 ° C. for 3 hours and then cooled to be a universal material testing machine (TSE Co., Ltd., device name: Autocom (registered trademark, registered trademark)). The flexural modulus was measured with AutoCOM) AC-100). The results of the average values are shown in Table 1.

(比較例1)
炭素短繊維強化フィルム2を32層積層して一体化し、厚み4mmの比較炭素短繊維樹脂構造体を得た。一体化にはプレス成形法を用い、熱可塑性フィルムがPEEKの場合には、温度360℃、圧力5MPa、昇温後3分間加熱して作製した。得られた構造体から、長さ80mm、幅10mm試験片を5本切り出した。試験片に、150℃で3時間、熱処理を施した後冷却して、万能材料試験機(株式会社ティー・エス・イー、装置名:オートコム(登録商標、AutoCOM)AC−100)で、その曲げ弾性率を測定した。平均値の結果を表1に示した。
(Comparative Example 1)
32 layers of carbon short fiber reinforced film 2 were laminated and integrated to obtain a comparative carbon short fiber resin structure having a thickness of 4 mm. A press molding method was used for integration, and when the thermoplastic film was PEEK, it was produced by heating at a temperature of 360 ° C., a pressure of 5 MPa, and heating for 3 minutes after raising the temperature. From the obtained structure, five test pieces having a length of 80 mm and a width of 10 mm were cut out. The test piece is heat-treated at 150 ° C. for 3 hours and then cooled, and then cooled with a universal material testing machine (TSE Co., Ltd., device name: Autocom (registered trademark, AutoCOM) AC-100). The flexural modulus was measured. The results of the average values are shown in Table 1.

(比較例2)
炭素短繊維強化フィルム3を32層積層して一体化し、厚み4mmの比較炭素短繊維樹脂構造体を得た。一体化には、プレス成形法を用い、熱可塑性フィルムが無延伸PPの場合には、温度170℃、圧力0.5MPa、昇温後1分間で加熱処理した。得られた構造体から、長さ80mm、幅10mm試験片を5本切り出した。試験片に、150℃で3時間、熱処理を施した後冷却して、万能材料試験機(株式会社ティー・エス・イー、装置名:オートコム(登録商標、AutoCOM)AC−100)で、その曲げ弾性率を測定した。平均値の結果を表1に示した。
(Comparative Example 2)
32 layers of carbon short fiber reinforced film 3 were laminated and integrated to obtain a comparative carbon short fiber resin structure having a thickness of 4 mm. A press molding method was used for integration, and when the thermoplastic film was unstretched PP, heat treatment was performed at a temperature of 170 ° C., a pressure of 0.5 MPa, and 1 minute after the temperature rise. From the obtained structure, five test pieces having a length of 80 mm and a width of 10 mm were cut out. The test piece is heat-treated at 150 ° C. for 3 hours and then cooled, and then cooled with a universal material testing machine (TSE Co., Ltd., device name: Autocom (registered trademark, AutoCOM) AC-100). The flexural modulus was measured. The results of the average values are shown in Table 1.

(比較例3)
炭素短繊維不織布2を31層と、熱可塑性フィルム(樹脂:無延伸PP、東洋紡製、トーヨータック(登録商標)E−100、融点160℃)30μmを31層とを、交互に重ねて、炭素短繊維不織布2と熱可塑性フィルムとの交互積層品とし、更に、両面に炭素長繊維開繊糸シート4を重ね、1枚の炭素長繊維開繊紙シート/交互積層品/1枚の炭素長繊維開繊紙シートの順に積層して、温度170℃、圧力0.5MPaで昇温後5分間加熱して、プレス成形法で一体化しようとしたところ、炭素短繊維不織布内部の空気が残留し、多量の気泡が発生し、気泡を残した状態の炭素短繊維樹脂構造体が得られた。得られた構造体から、炭素長繊維の繊維方向に平行である方向を長さとして、長さ80mm、幅10mmの試験片を5本切り出した。熱可塑性フィルムが無延伸PPの場合は、試験片に、120℃で3時間、熱処理を施した後冷却して、万能材料試験機(株式会社ティー・エス・イー、装置名:オートコム(登録商標、AutoCOM)AC−100)で、その曲げ弾性率を測定した。平均値の結果を表1に示した。
(Comparative Example 3)
31 layers of short carbon fiber non-woven fabric 2 and 31 layers of thermoplastic film (resin: unstretched PP, manufactured by Toyo Boseki, Toyo Tuck (registered trademark) E-100, melting point 160 ° C.) 30 μm are alternately layered to carbon. Alternate laminated product of short fiber non-woven fabric 2 and thermoplastic film, and further laminated carbon long fiber spread yarn sheet 4 on both sides, one carbon long fiber spread paper sheet / alternate laminated product / one carbon length When the fiber spread paper sheets were laminated in this order, heated at a temperature of 170 ° C. and a pressure of 0.5 MPa for 5 minutes, and then integrated by a press molding method, the air inside the carbon short fiber non-woven fabric remained. , A large amount of bubbles were generated, and a carbon short fiber resin structure in a state where the bubbles remained was obtained. From the obtained structure, five test pieces having a length of 80 mm and a width of 10 mm were cut out with the direction parallel to the fiber direction of the long carbon fibers as the length. When the thermoplastic film is unstretched PP, the test piece is heat-treated at 120 ° C. for 3 hours and then cooled, and then cooled to a universal material testing machine (TSE Co., Ltd., device name: Autocom (registered). Its flexural modulus was measured under the trademark AutoCOM) AC-100). The results of the average values are shown in Table 1.

Figure 0006791467
Figure 0006791467

実施例1〜3及び6〜7と比較例2とを比較すると、炭素短繊維強化フィルムのみからなる構造体(比較例2)に比べて、炭素短繊維強化フィルムと炭素長繊維開繊糸シートとの積層体である構造体(実施例1〜3)は、曲げ弾性率がいずれも向上していた。また、実施例4〜5と比較例1とを比較すると、炭素短繊維強化フィルムのみからなる構造体(比較例1)に比べて、炭素短繊維強化フィルムと炭素長繊維開繊糸シートとの積層体である構造体(実施例4〜5)は、曲げ弾性率がいずれも向上していた。 Comparing Examples 1 to 3 and 6 to 7 with Comparative Example 2, a carbon short fiber reinforced film and a carbon long fiber spread yarn sheet are compared with a structure consisting of only a carbon short fiber reinforced film (Comparative Example 2). The flexural modulus was improved in all of the structures (Examples 1 to 3) which were laminated with the above. Further, when Examples 4 to 5 and Comparative Example 1 are compared, the carbon short fiber reinforced film and the carbon long fiber spread yarn sheet are compared with the structure composed of only the carbon short fiber reinforced film (Comparative Example 1). The flexural modulus of each of the laminated structures (Examples 4 to 5) was improved.

実施例2と3を比較すると、炭素長繊維開繊糸シートにおける炭素長繊維のサイジング剤の含有量が0.1質量%以下である実施例2の構造体は、サイジング剤の量が3質量%である実施例3の構造体と比較して、曲げ弾性率が向上していた。実施例4と5を比較すると、炭素長繊維開繊糸シートにおける炭素長繊維のサイジング剤の含有量が0.1質量%以下である実施例4の構造体は、サイジング剤の量が3質量%である実施例5の構造体と比較して、曲げ弾性率が向上していた。 Comparing Examples 2 and 3, the structure of Example 2 in which the content of the carbon length fiber sizing agent in the carbon length fiber spread yarn sheet is 0.1% by mass or less has an amount of 3% by mass of the sizing agent. The flexural modulus was improved as compared with the structure of Example 3 which was%. Comparing Examples 4 and 5, the structure of Example 4 in which the content of the carbon filament sizing agent in the carbon filament spread fiber sheet is 0.1% by mass or less has an amount of 3 mass of the sizing agent. The flexural modulus was improved as compared with the structure of Example 5 which was%.

実施例2と比較例3を比較すると、炭素短繊維不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって炭素短繊維強化フィルムを製造する工程と、該炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する工程とを含む炭素短繊維樹脂構造体の製造方法によって製造された実施例2の構造体と比較して、別の製造方法によって製造された比較例3の構造体では、気泡が発生し、曲げ弾性率が低下していた。 Comparing Example 2 and Comparative Example 3, a step of producing a carbon short fiber reinforced film by heat-pressing treatment with a roll from both sides of a laminate of a carbon short fiber non-woven fabric and a thermoplastic film, and the carbon short fiber Compared with the structure of Example 2 produced by the method for producing a carbon short fiber resin structure including a step of integrating a reinforcing film and a carbon long fiber non-woven fabric sheet, the structure is produced by another production method. In the structure of Comparative Example 3, bubbles were generated and the flexural modulus was lowered.

実施例1と2を比較すると、炭素短繊維不織布がミクロフィブリル化セルロースを含有してなる実施例2は、炭素短繊維不織布がミクロフィブリル化セルロースを含有していない実施例1と比較して、曲げ弾性率が向上していた。 Comparing Examples 1 and 2, Example 2 in which the carbon short fiber nonwoven fabric contains microfibrillated cellulose is compared with Example 1 in which the carbon short fiber nonwoven fabric does not contain microfibrillated cellulose. The bending elasticity was improved.

本発明の炭素短繊維不織布及び複合体は、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、各種製造業で使用されるロボット、ロール等の製造部品等に利用可能である。 The short carbon fiber non-woven fabric and composite of the present invention can be used for electronic device materials, electrical device materials, civil engineering materials, building materials, automobile materials, robots used in various manufacturing industries, manufacturing parts such as rolls, and the like.

Claims (3)

炭素短繊維を含有してなる不織布と熱可塑性フィルムとの積層体の両面からロールで加熱加圧処理することによって、該不織布と熱可塑性フィルムとを一体化して炭素短繊維強化フィルムを製造する工程と、該炭素短繊維強化フィルムと炭素長繊維開繊糸シートとを一体化する工程とを含み、ロールが、ヒートパイプ機能を有するジャケット室と、電磁誘導加熱方法を組合せたロールである炭素短繊維樹脂構造体の製造方法。 A step of producing a carbon short fiber reinforced film by integrating the non-woven fabric and the thermoplastic film by heat-pressing the laminated body of the non-woven fabric containing carbon short fibers and the thermoplastic film with a roll. When, viewed including the step of integrating the carbon Mototan fiber-reinforced film and the carbon long fibers opened yarn sheet, roll is a roll in combination with a jacket chamber, an electromagnetic induction heating method having a heat pipe function carbon A method for manufacturing a short fiber resin structure. 炭素長繊維開繊糸シートが、サイジング剤の含有量が1質量%以下である炭素長繊維開繊糸シートと熱可塑性フィルムとの積層体である請求項1記載の炭素短繊維樹脂構造体の製造方法。 The carbon short fiber resin structure according to claim 1, wherein the carbon long fiber spread yarn sheet is a laminate of a carbon long fiber spread yarn sheet having a sizing agent content of 1% by mass or less and a thermoplastic film. Production method. 炭素短繊維を含有してなる不織布がミクロフィブリル化セルロースを含有してなる請求項1又は2記載の炭素短繊維樹脂構造体の製造方法。 The method for producing a carbon short fiber resin structure according to claim 1 or 2, wherein the nonwoven fabric containing carbon short fibers contains microfibrillated cellulose.
JP2016144879A 2016-07-22 2016-07-22 Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure Active JP6791467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016144879A JP6791467B2 (en) 2016-07-22 2016-07-22 Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016144879A JP6791467B2 (en) 2016-07-22 2016-07-22 Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure

Publications (2)

Publication Number Publication Date
JP2018012313A JP2018012313A (en) 2018-01-25
JP6791467B2 true JP6791467B2 (en) 2020-11-25

Family

ID=61018934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016144879A Active JP6791467B2 (en) 2016-07-22 2016-07-22 Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure

Country Status (1)

Country Link
JP (1) JP6791467B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6914106B2 (en) * 2017-06-05 2021-08-04 三菱製紙株式会社 Carbon short fiber non-woven fabric
JP2019172797A (en) * 2018-03-28 2019-10-10 古河電気工業株式会社 Fiber reinforced resin composite material, laminate thereof, composition for fiber reinforced resin composite material, and method for producing fiber reinforced resin composite material
US20220388275A1 (en) * 2019-11-13 2022-12-08 Kurashiki Boseki Kabushiki Kaisha Fiber reinforced resin molded body and method for producing the same
JP7480743B2 (en) 2021-04-30 2024-05-10 王子ホールディングス株式会社 Carbon fiber pre-sheet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103244B2 (en) * 1987-09-24 1995-11-08 株式会社クラレ Stamping molding material
JPH03167390A (en) * 1989-11-27 1991-07-19 Mitsubishi Paper Mills Ltd Activated carbon fiber sheet and filter therefrom
JPH07100829A (en) * 1993-10-01 1995-04-18 Sumitomo Metal Ind Ltd Manufacture of long fiber-reinforced thermoplastic resin sheet
JP3546591B2 (en) * 1996-05-13 2004-07-28 東レ株式会社 Carbon fiber and prepreg
JPH10265591A (en) * 1997-03-27 1998-10-06 Toray Ind Inc Prepreg
JP6085798B2 (en) * 2012-06-27 2017-03-01 福井県 COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
PT2982504T (en) * 2013-04-02 2019-07-10 Toray Industries Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both
JP2015157384A (en) * 2014-02-24 2015-09-03 東洋紡株式会社 Method for producing fiber-reinforced thermoplastic resin-molded article
WO2016002470A1 (en) * 2014-07-01 2016-01-07 帝人株式会社 Method for producing fiber-reinforced plastic

Also Published As

Publication number Publication date
JP2018012313A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6718244B2 (en) Recycled carbon fiber reinforced thermoplastic resin composite
JP6785547B2 (en) Carbon fiber reinforced thermoplastic resin composite
JP6791467B2 (en) Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure
Wang et al. Preparation of Ultralong Cellulose Nanofibers and Optically Transparent Nanopapers Derived from Waste Corrugated Paper Pulp.
Petrucci et al. Tensile and fatigue characterisation of textile cotton waste/polypropylene laminates
Baez et al. Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films
Chen et al. Electrospun cellulose nanofiber reinforced soybean protein isolate composite film
JP6603185B2 (en) Method for producing carbon short fiber nonwoven fabric
Mautner et al. Better together: synergy in nanocellulose blends
JP6702536B2 (en) Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method
Smaradhana et al. A progress on nanocellulose as binders for loose natural fibres
JP2007138146A (en) Fiber reinforcement material for gear made of fiber-reinforced resin, gear made of fiber-reinforced resin and method for producing the same
JP6976767B2 (en) Carbon short fiber wet non-woven fabric and carbon short fiber reinforced resin composition
JP2020165048A (en) Carbon fiber nonwoven fabric and carbon fiber-reinforced resin composite
JP2019157315A (en) Carbon fiber non-woven fabric and composite
JP6829174B2 (en) Carbon fiber non-woven fabric
JP6503182B2 (en) Molded body and method for producing the same
JP2020040268A (en) Carbon fiber non-woven fabric composite
JP6718235B2 (en) Carbon fiber reinforced thermoplastic resin composite
JP2022070291A (en) Carbon fiber-containing wet type unwoven fabric
JP7211701B2 (en) Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin
JP2020051000A (en) Manufacturing method of carbon fiber unwoven fabric
JP2017172083A (en) Carbon short fiber nonwoven fabric and composite
JP2020158912A (en) Wet nonwoven fabric of short carbon fiber, and carbon fiber reinforced resin
JP7019534B2 (en) Carbon fiber non-woven fabric complex

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201020

R150 Certificate of patent or registration of utility model

Ref document number: 6791467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250