JP3546591B2 - Carbon fiber and prepreg - Google Patents

Carbon fiber and prepreg Download PDF

Info

Publication number
JP3546591B2
JP3546591B2 JP11776196A JP11776196A JP3546591B2 JP 3546591 B2 JP3546591 B2 JP 3546591B2 JP 11776196 A JP11776196 A JP 11776196A JP 11776196 A JP11776196 A JP 11776196A JP 3546591 B2 JP3546591 B2 JP 3546591B2
Authority
JP
Japan
Prior art keywords
carbon fiber
group
resin
prepreg
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11776196A
Other languages
Japanese (ja)
Other versions
JPH09302585A (en
Inventor
正信 小林
基 伊藤
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11776196A priority Critical patent/JP3546591B2/en
Publication of JPH09302585A publication Critical patent/JPH09302585A/en
Application granted granted Critical
Publication of JP3546591B2 publication Critical patent/JP3546591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性樹脂をマトリックス樹脂とする繊維強化複合材料として用いるのに適した炭素繊維およびプリプレグに関する。
【0002】
【従来の技術】
炭素繊維とマトリックス樹脂とからなる複合材料は、軽量で優れた機械特性を有するために、スポーツ用品用途、航空宇宙用途、一般産業用途に広く用いられている。また、プリプレグとして用いられるマトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂がともに使用され、特に熱可塑性樹脂をマトリックス樹脂とする炭素繊維強化複合材料は、生産性が高くかつ耐熱性に優れた材料として注目され、その需要が急速に増加している。
【0003】
さらに、近年は耐熱性に優れた熱硬化性または熱可塑性樹脂であるポリエーテルエーテルケトン樹脂、ポリエーテルサルホン樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、ポリフェニレンサルファイド樹脂を炭素繊維で強化した材料の開発が進められている。
【0004】
熱可塑性樹脂を炭素繊維で強化する場合、一定長さに切断した短繊維(チョップドストランド)を樹脂ペレットあるいは樹脂パウダーとともに押し出し機で溶融混練して、直接射出成形・押し出し成形する方法が一般的であるが、航空機用途では、複数本の炭素繊維束が溶媒を含む熱可塑性樹脂に含浸されてシート状に拡幅されたプリプレグと呼ばれる中間基材を一旦作製し、かかるプリプレグを通常複数枚積層した後、例えば300℃以上という高温で加熱することによって複合材料の成形物を得るのが一般的である。
【0005】
炭素繊維束をプリプレグに加工するには、炭素繊維束が拡幅する程度に十分な開繊性を有することが要求される一方、加工時に炭素繊維束が工程途中のローラーやガイドで擦過されて毛羽立たない性質、いわゆる耐擦過性に優れていることが要求される。また、炭素繊維束を取り扱いやすくするためにある程度の集束性を有することも要求される。かかる要求に適合させるため、通常炭素繊維束にはサイジング剤が付与されている。ここで、通常300℃以上という高温で加熱して作製される、耐熱性樹脂複合材料の場合には、炭素繊維に付与するサイジング剤自身の耐熱性が要求される。従来用いられているサイジング剤は、エポキシ樹脂などの比較的低温加工される複合材料用に設計されているために耐熱性に不足していた。
【0006】
耐熱性樹脂複合材料として用いる炭素繊維に適したサイジング剤として、耐熱性の高いポリイミド樹脂やポリエーテルイミド樹脂などが提案されている(特公平2−2990号公報など)。これらの樹脂をサイジング剤として用いた炭素繊維は、開繊性が要求されない前記射出成形・押し出し成形に用いるような短繊維として用いる場合には適しているが、集束性とともに開繊性を要求される、プリプレグに加工するための炭素繊維束の場合には適当ではない。たとえば、耐熱性の高いポリイミド樹脂やポリエーテルイミド樹脂をサイジング剤として用いた場合、サイジング剤の炭素繊維に対する付着量を増やして集束性を高めようとすると、繊維束自体が硬くなるために繊維束の開繊性が悪化し、また硬さを調節するため付着量を少なくすると、炭素繊維束の耐擦過性、耐毛羽性などの高次加工性が低下するという問題が生じる。特に炭素繊維の開繊性が低いと、プリプレグ作製時にマトリックス樹脂が繊維束内部まで十分に含浸できず、成形物にボイドが生成しやすくなったり、繊維束間に隙間ができプリプレグが凹凸のある品位の悪いものになる。
【0007】
そこで、耐熱性樹脂をマトリックスとしたプリプレグを製造する場合には、集束性を犠牲にして開繊性を優先すべく、サイジング剤を付与しない炭素繊維束、いわゆるノンサイジング糸が用いられることが多かった。
【0008】
さらに、耐熱性樹脂複合材料として用いる炭素繊維に適したサイジング剤として、ポリイミドの単量体であるジアミンおよびジ酸無水物の混合物を用いることが提案されている(特公昭63−6675号公報)。かかる単量体は低粘度であるので、繊維束の開繊性は確保でき炭素繊維束の集束性もノンサイジング糸に比べれば改善はするが、エポキシ樹脂マトリックスに用いられるような従来の炭素繊維束ほどの集束性が得られず、プリプレグに加工するときの高次加工性は満足できるものではなかった。
【0009】
【発明が解決しようとする課題】
本発明の課題は、上記問題点を解決すること、すなわち、集束性、高次加工性および開繊性に優れ、かつ、耐熱性熱可塑性樹脂をマトリックスとする繊維強化複合材料に用いてもその耐熱性を低下させることの少ない炭素繊維ならびにそのような繊維強化複合材料を得るに適したプリプレグを提供することにある。
【0010】
【課題を解決するための手段】
上記した課題を解決するために、本発明の炭素繊維は次の構成を有する。すなわち、両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物からなるサイジング剤が付与されてなる炭素繊維である。
【0011】
また、上記した課題を解決するために、本発明のプリプレグは次の構成を有する。すなわち、上記炭素繊維と樹脂とからなるプリプレグである。
【0012】
【発明の実施の形態】
まず、本発明の炭素繊維について詳細に説明する。
【0013】
本発明において、炭素繊維に付着させるサイジング剤は、両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物からなる。
【0014】
アルキル基としては、ステアリル基、セチル基、オレイル基、シクロヘキシル基などを、アリール基としては、フェニル基、ナフチル基、ステアリル基、フェニルエチニル基などを具体的に挙げることができる。
【0015】
両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物は、例えば、芳香族ジ酸無水物と芳香族ジアミン化合物との重合物に、アルキル基またはアリール基を有するモノアミン化合物またはモノ酸無水物を反応せしめることにより得ることができる。具体的には、芳香族ジ酸無水物として、ビフェニルテトラカルボン酸ジ酸無水物、ピロメリック酸ジ酸無水物、オキシジフタル酸ジ酸無水物、ベンゾフェノンジ酸無水物などを挙げることができ、芳香族ジアミン化合物として、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−オキシジアニリン、3,4’−オキシジアニリン、1,3−ビス(3−アミノフェノキシ)ベンゼンなどを、アルキル基またはアリール基を有するモノアミン化合物またはモノ酸無水物として、フェニルアミン、2−ナフチルアミン、ステアリルアミン、シクロヘキサンカルボン酸無水物、無水フタル酸、4−フェニルエチニルフタル酸無水物等を挙げることができる。
【0016】
両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物は、ポリアミドカルボン酸骨格であるため、分子間の架橋が少なく柔軟性を有している他、加熱により脱水反応を起こし耐熱性の高いポリイミドやポリエーテルイミドに転換する特徴を有する。したがって、それを付与した炭素繊維は、集束性、高次加工性および開繊性に優れ、かつ、成形時のため、耐熱性樹脂をマトリックスとする繊維強化複合材料に本発明の炭素繊維を用いても得られる繊維強化複合材料の耐熱性がほとんど低下しない。特に本発明で用いるポリアミドカルボン酸化合物は両末端がアルキル基またはアリール基で終わっているため、それを付与した炭素繊維は平滑性に優れるため、炭素繊維単繊維間の摩擦係数が低下し、繊維の開繊性が向上するので、炭素繊維束間に隙間が無くかつ目付の低い薄物のプリプレグを得るに適した拡がり性の良い炭素繊維とすることができる。得られる成形物はボイドの生成がなく、成形物の炭素繊維含有量のバラツキが小さくなるため高い機械的特性が得られる。
【0017】
両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物は、その数平均分子量が2000以上20000以下、好ましくは3000以上10000以下が望ましい。数平均分子量が2000未満の場合は、炭素繊維束の開繊性は優れるものの、付着した、両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物から転換されるポリイミド自体の耐熱性が低下する場合があり、成形物の高い耐熱性が得られない可能性がある。また数平均分子量が20000を超える場合には、高い耐熱性は得られるものの、集束性が強すぎてプリプレグ化工程での炭素繊維の開繊性が十分でない場合があり、プリプレグに隙間が生じる可能性がある。
【0018】
両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物としては、具体的には、次の[I]、[II]または[III]に示すような化学構造を有する化合物を例示することができる。
【0019】
【化1】

Figure 0003546591
【化2】
Figure 0003546591
【化3】
Figure 0003546591
ここで、上式中、Xは単結合、−CO−または−O−、Yは−C−O−C−または−(C−O)−C−、Rはフェニルエチニル基、Rはフェニル基またはステアリル基、およびnは3〜32の正数である。本発明において、サイジング剤には前記ポリアミドカルボン酸化合物の他、サイジング剤の粘度を調整する観点から、低粘度化合物や低沸点化合物などを、また、サイジング剤としてのより高い耐熱性を得る観点からポリイミド化合物などが含まれていても良い。本発明の効果をより顕著に発現せしめる観点からは、本発明で用いるサイジング剤は、両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物の含有量を、好ましくは90〜100重量%、より好ましくは95〜100重量%とするのがよい。
【0020】
両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物の炭素繊維重量当たりの付着量は、0.1〜3重量%、特に0.2〜1.0重量%が好ましい。付着量が0.1重量%未満では、繊維の集束性が低く、高次加工性も不足する場合がある。また3重量%を超えると集束性が強すぎて炭素繊維束の開繊性が悪くなり、プリプレグ上でマトリックス樹脂が炭素繊維束内に含浸し難く、かつ開繊不足で炭素繊維束間に隙間が生成し、成形物にボイドが生成したり、成形物の炭素繊維含有率にバラツキが大きくなって機械的物性が低下することがある。
【0021】
サイジング剤が付与される炭素繊維としては、アクリル系、ピッチ系、レーヨン系等の炭素繊維を適用できるが、好ましくは高強度の炭素繊維フィラメントが得られやすいアクリル系炭素繊維がよい。
【0022】
強度および弾性率を高めるとともに、炭素繊維製造時の単繊維切れを抑制する観点から、単繊維径が3μm以上7.5μm以下、好ましくは4μm以上6μm以下の細繊度の炭素繊維を用いるのがよい。炭素繊維の単繊維径は、炭素繊維束の繊度および比重から繊維断面を円形と仮定して算出することができる。
【0023】
また、圧縮強度の高い炭素繊維を得るためには、繊維の横断面が非円形であることが好ましく、繊維断面の変形度(Pmin、Pmax)が後述する範囲に規定されるものが望ましい。繊維断面の最小二次モーメントと面積の比(Pmin)が0.085以上1以下と規定されるものが好ましい。即ち、非円形断面繊維の場合、方向によって断面二次モーメントが異なるが、その中で最小の値を面積で割った値が0.085以上1以下とするものが望ましい。Pminが0.085未満の非円形断面炭素繊維は、圧縮応力に対して座屈しやすく、複合材の圧縮強度、曲げ強度および曲げ剛性が向上せず好ましくない。また、繊維断面の最大二次モーメントと面積の比(Pmax)もPminと同様に大きいことが好ましく、Pmaxが0.13以上と大きければPminが0.019以上1以下でも圧縮強度向上効果が得られ望ましい。
【0024】
さらに、航空機用途に適用するには高い機械的特性、特に圧縮強度を有する炭素繊維が求められており、JIS−R−7601の樹脂含浸ストランド試験法に準じ測定した引張強度は4.5GPa以上9.0GPa以下、好ましくは5.5GPa以上、さらに好ましくは6.5GPa以上が望ましい。弾性率は、220GPa以上490GPa以下、好ましくは230GPa以上300GPa以下が望ましい。
【0025】
サイジング剤を付与する前の炭素繊維は、X線光電子分光により測定される表面比酸素濃度O/Cを0.20以下、好ましくは0.15以下さらに好ましくは0.10以下とするのが望ましい。O/Cが0.20を超えると、樹脂の官能基と炭素繊維最表面との化学結合は強固になるものの、本来炭素繊維基質自身が有する強度よりもかなり低い酸化物層が炭素繊維表層を覆うことになるため、結果として得られるコンポジットの横方向特性は低いものとなってしまう場合がある。
【0026】
O/Cの下限としては、0.02以上、好ましくは0.04以上更に好ましくは0.06以上が望ましい。O/Cが0.02に満たないと、コンポジットの横方向特性が低く、さらには疲労特性が悪くなり航空機用部材として適用できない場合がある。
【0027】
本発明の炭素繊維を得るためには、通常、前記サイジング剤を溶媒に溶解又は分散した溶液又は分散液を、前記炭素繊維に付与して後熱処理して溶媒を除去する。溶媒としては、末端基がアルキル基および/またはアリール基であるポリアミドカルボン酸化合物の溶解度が高いN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジグライム、ジメチルホルムアミドなどの非プロトン溶媒が好ましい。また、熱処理条件は、温度、時間とも溶媒の種類などによって最適化するのが好ましいが、炭素繊維束の開繊性を確保するため、溶媒を完全に除去しない程度に熱処理するのが好ましい。具体的には、溶媒の除去速度を大きくし熱処理時間を短くして炭素繊維を連続的に製造する場合の生産性を高める一方、両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物の脱水反応が進行しすぎて繊維束が硬くなり開繊性が悪くなることを抑制する観点から、熱処理温度は180℃以上250℃以下が好ましく、熱処理時間は30秒以上5分以下が好ましい。
【0028】
本発明の炭素繊維は、通常樹脂と組み合わせてプリプレグとなされる。特に耐熱性樹脂をマトリックス樹脂とするプリプレグに適する。耐熱性樹脂とは、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルイミドスルホン樹脂、ポリイミドケトン樹脂、ビスマレイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンサルファイド樹脂などである。これらの耐熱性樹脂と本発明の炭素繊維を組み合わせることによって、初めて高い耐熱性をもつ隙間ない薄物のプリプレグが得られる。これらのプリプレグからはボイドの無い高耐熱性の成形物が得られ、高い機械的物性が発現できる。また、室温での粘度が高い樹脂を組み合わせる場合には、溶媒を含む樹脂をフィルム化した後、プリプレグを得ることができる。溶媒の含有量は樹脂の粘度によって最適化されるが、0〜70重量%、好ましくは0〜60重量%とするのがよい。本発明の炭素繊維を用いることによって、炭素繊維束間の隙間のない、炭素繊維目付の低いプリプレグ、具体的には、炭素繊維目付が、200g/m以下、好ましくは150g/m以下という薄物プリプレグを得ることができる。なお、あまりに薄物のプリプレグを得ようとする場合には、炭素繊維束を厳しい圧力下で機械的に押し拡げる必要があり、最終的な成型物の機械物性、特に引張強度特性が低下することもあるので、本発明におけるプリプレグの炭素繊維目付は、100g/m以上、好ましくは120g/m以上にとどめるのがよい。
【0029】
プリプレグにおける炭素繊維は、一方向や織物等の形態を採り得るが、繊維強化複合材料としたときに高い機械的物性が得られやすい一方向とするのが好ましい。
【0030】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0031】
なお、本例中の擦過毛羽数、繊維束の開繊性、0°引張強度、90°引張強度は次の測定方法を用いた。
【0032】
(1)擦過毛羽数
直径10mmのステンレス棒(クロムめっき、表面粗さ1〜1.5)5本を50mm間隔で各々平行に、かつそれらの表面を炭素繊維糸条が120°の接触角で接触しながら通過し得るように棒をジグザグに配置した擦過装置を用いた。この装置により入り側の炭素繊維糸条に1デニール当たり0.09gの張力をかけ、3m/分の糸速で通過させ、側面から繊維糸条に対して直角にレーザー光線を照射し、毛羽数を毛羽検出装置で検出カウントし、個/mで表示する。
【0033】
(2)繊維束の開繊性
上記の擦過毛羽測定において、糸条出側のステンレス棒での炭素繊維束の幅を測定する。開繊性は、測定を10回行い平均値を求める。
【0034】
(3)0°引張強度、90°引張強度
JIS−K−7073に従って測定を行う。
【0035】
(4)有孔板圧縮強度
有孔板圧縮強度(OHC)は、BMS8−276C(Boeing Material Specification 8−276, Version C)に準じて測定した。[+45/0/−45/90度]2Sの構成の硬化板を、0°方向が12インチ、90°方向が1.5インチの長方形に切り出し、中央部に直径0.25インチの円形の孔を穿孔して有孔板に加工し、室温(24℃)下で、負荷速度1.27mm/minで圧縮試験する。
【0036】
(実施例1)
(1)マトリックス樹脂の調整
撹拌機、還流冷却器および窒素導入管を取り付けた反応容器に、3,4’−オキシジアニリン(697g、3.5モル)、1,3−ビス(3−アミノフェノキシ)ベンゼン(179g、0.6モル)、N−メチル−2−ピロリドン(NMP、900g)を投入し、窒素雰囲気下で撹拌した。この溶液に、3,3’、4,4’−ビフェニルテトラカルボン酸ジ酸無水物(1324g、4.5モル)および4−フェニルエチニルフタル酸無水物(183g、0.7モル)をNMP(1484g)に加えたスラリーを投入し、窒素雰囲気下で24時間撹拌し、固形分50%のポリアミック酸NMP溶液を得た。
【0037】
(2)プリプレグ化および成形
得られたポリアミック酸NMP溶液をナイフコーターを用いて離型紙上に塗布した。塗布量は86.7g/mであった。この樹脂フィルムを、一方向に引き揃えた炭素繊維の両側から加圧含浸させてプリプレグを得た。単位面積当たりの炭素繊維の目付量は、145g/mであった。
【0038】
このプリプレグを各物性評価項目に応じた構成で積層し、これをオートクレーブ中で、先ず温度250度℃で1時間処理し脱NMPおよび脱水し、続いて温度371℃、圧力1.4MPaで1時間硬化を行った。
【0039】
(3)サイジング剤の調整
撹拌機、還流冷却器および窒素導入管を取り付けた反応容器に、3,4’−オキシジアニリン(69.7g、0.35モル)、1,3−ビス(3−アミノフェノキシ)ベンゼン(17.9g、0.06モル)、N−メチル−2−ピロリドン(NMP、90g)を投入し、窒素雰囲気下で撹拌した。この溶液に、3,3’、4,4’−ビフェニルテトラカルボン酸ジ酸無水物(132.4g、0.45モル)および4−フェニルエチニルフタル酸無水物(18.3g、0.07モル)をNMP(148.4g)に加えたスラリーを投入し、窒素雰囲気下で24時間撹拌し、固形分50%のポリアミドカルボン酸化合物(数平均分子量6,000)のNMP溶液を得た。得られたNMP溶液をサイジング溶液として用いた。(4)炭素繊維の製造
アクリロニトリル(以下、AN)99.5モル%とイタコン酸0.5モル%の共重合体からなる紡糸原液を、円形の吐出孔を有する紡糸口金に通し湿式紡糸し、凝固、延伸することにより単糸繊度が0.7デニールのアクリル繊維糸条を得た。
【0040】
このアクリル系繊維糸条を240〜260℃で耐炎化処理し、最高温度が1400℃で炭化処理し、引き続き電解酸化処理して炭素繊維を得た。得られた炭素繊維の断面の変形度は、Pminが0.080、Pmaxが0.080であり、表面比酸素濃度0/Cは0.12であった。この炭素繊維を、さらに、上記サイジング剤のNMP溶液(濃度0.6重量%)に含浸させ、230℃の加熱空気中で1分間乾燥させた。
【0041】
得られたサイジング剤付着炭素繊維の擦過毛羽数、開繊性および成形物の物性を測定した。得られたプリプレグは炭素繊維束間で隙間が無くかつプリプレグ表面に凹凸が認められなかった。試験片の端部を研磨し、樹脂含浸状態を観察したところ観察部位において含浸不良によるボイド等は観察されなかった。結果を表1に示した。また、OHCは304MPaであった。
【0042】
(実施例2)
サイジング剤の母液濃度を0.3重量%にした以外は、実施例1と同様にしてプリプレグおよび炭素繊維複合材料を得た。得られたプリプレグは炭素繊維束間で隙間が無くかつプリプレグ表面に凹凸が認められなかった。また、含浸不良によるボイド等が観察されなかった。結果を表1に示した。
【0043】
(実施例3)
サイジング剤の母液濃度を1.7重量%にした以外は、実施例1と同様にして炭素繊維複合材料を得た。いずれも得られたプリプレグは炭素繊維束間で隙間が無くかつプリプレグ表面の凹凸は僅かであった。また含浸不良によるボイド等が観察されなかった。結果を表1に示した。
【0044】
(実施例4)
アクリロニトリル99.5重量%、イタコン酸0.5重量%の共重合体からなる紡糸原液を、図1に示した吐出孔を有する紡糸口金に通し乾湿式紡糸し、凝固、延伸することによって単糸繊度が1.0デニールのアクリル繊維糸条を得た。このアクリル繊維糸条を実施例1と同様にして炭素繊維に転換した。得られた炭素繊維の繊維断面は図2に示したような形状で、繊維断面の変形度はPminが0.094、Pmaxが0.094であり、表面比酸素濃度O/Cは0.13であった。
【0045】
この炭素繊維を、さらに、実施例1と同様のサイジング剤のNMP溶液(濃度0.6重量%)に含浸させ、230℃の加熱空気中で1分間乾燥させた。
【0046】
得られたサイジング剤付着炭素繊維の擦過毛羽数、開繊性および成形物の物性を測定した。
【0047】
得られたプリプレグは炭素繊維束間で隙間が無くかつプリプレグ表面に凹凸が認められなかった。また、試験片の端部を研磨し、樹脂含浸状態を観察したところ観察部位において含浸不良によるボイド等は観察されなかった。結果を表1に示した。また、OHCは335MPaであった。
【0048】
(比較例1)
4−フェニルエチニルフタル酸無水物を添加しなかった以外は実施例1と同様にサイジング剤の調整し、炭素繊維複合材料を得た。得られたプリプレグは炭素繊維束間で隙間が数ヶ所あり、かつプリプレグ表面に凹凸が僅かに認められた。試験片の端部を研磨し、樹脂含浸状態を観察したところ観察部位において含浸不良によるボイドが観察された。結果を表1に示した。また、OHCは289MPaであった。
【0049】
(比較例2)
サイジング剤を、3,4’−オキシジアニリン(29重量%)、1,3−ビス(3−アミノフェノキシ)ベンゼン(8重量%)、3,3’,4,4’−ビフェニルテトラカルボン酸ジ酸無水物(55重量%)、4−フェニルエチニルフタル酸無水物(8重量%)の混合物に変更した以外は、実施例1と同様にしてサイジング剤付着炭素繊維を得た。
【0050】
得られたサイジング剤付着炭素繊維は、擦過毛羽が多く、プリプレグ化時の加工性、取扱い性が悪い。
【0051】
(比較例3)
サイジング剤を、耐熱性の低いエポキシ樹脂(油化シェルエポキシ社製エピコート828)100重量%に変更した以外は、実施例1と同様にしてサイジング剤付着炭素繊維を得た。このサイジング剤付着炭素繊維を用いて実施例1と同様にしてプリプレグを得た。試験片の端部を研磨し、樹脂含浸状態を観察したところ観察部位にボイドが観察された。
【0052】
【表1】
Figure 0003546591
【0053】
【発明の効果】
本発明によって、集束性に優れ、しかもプリプレグ化時の炭素繊維束の開繊性が良く、耐熱性に優れた樹脂被覆を有する炭素繊維及び機械的特性、加工性、成形性が良好な炭素繊維強化熱可塑性樹脂を得ることができる。
【図面の簡単な説明】
【図1】実施例4で用いた口金の吐出孔を示す平面図である。
【図2】実施例4で得た炭素繊維の単繊維断面形状を示す模式図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon fiber and a prepreg suitable for use as a fiber-reinforced composite material using a heat-resistant resin as a matrix resin.
[0002]
[Prior art]
BACKGROUND ART A composite material composed of carbon fiber and a matrix resin has been widely used for sporting goods, aerospace, and general industrial applications because of its light weight and excellent mechanical properties. In addition, as the matrix resin used as the prepreg, a thermosetting resin and a thermoplastic resin are both used, and in particular, a carbon fiber reinforced composite material using a thermoplastic resin as a matrix resin has high productivity and excellent heat resistance. It is attracting attention as a material, and its demand is rapidly increasing.
[0003]
In addition, in recent years, the development of materials reinforced with carbon fibers from polyetheretherketone resin, polyethersulfone resin, polyetherimide resin, polyimide resin, and polyphenylenesulfide resin, which are thermosetting or thermoplastic resins with excellent heat resistance. Is being promoted.
[0004]
When reinforcing a thermoplastic resin with carbon fiber, it is common to melt-knead a short fiber (chopped strand) cut to a certain length with an extruder together with resin pellets or resin powder, and directly injection-mold and extrude. However, in aircraft applications, a plurality of carbon fiber bundles are impregnated with a thermoplastic resin containing a solvent, and an intermediate substrate called a prepreg which is widened in a sheet shape is once prepared, and usually, a plurality of such prepregs are laminated. For example, a composite material molded article is generally obtained by heating at a high temperature of, for example, 300 ° C. or higher.
[0005]
In order to process a carbon fiber bundle into a prepreg, it is required that the carbon fiber bundle has sufficient openability to widen the carbon fiber bundle. On the other hand, the carbon fiber bundle is frayed by being rubbed by rollers and guides in the process during processing. It is required to have excellent properties, that is, excellent scratch resistance. In addition, the carbon fiber bundle is required to have a certain degree of bunching in order to make it easy to handle. In order to meet such requirements, a sizing agent is usually added to the carbon fiber bundle. Here, in the case of a heat-resistant resin composite material which is usually produced by heating at a high temperature of 300 ° C. or higher, the heat resistance of the sizing agent itself applied to the carbon fiber is required. Conventionally used sizing agents are insufficient in heat resistance because they are designed for a composite material which is processed at a relatively low temperature such as an epoxy resin.
[0006]
As a sizing agent suitable for carbon fibers used as a heat-resistant resin composite material, polyimide resins and polyetherimide resins having high heat resistance have been proposed (Japanese Patent Publication No. 2-2990, etc.). Carbon fibers using these resins as a sizing agent are suitable when used as short fibers used in the injection molding and extrusion molding which do not require spreadability, but are required to have spreadability as well as bunching properties. However, this is not appropriate in the case of a carbon fiber bundle for processing into a prepreg. For example, when a heat-resistant polyimide resin or polyetherimide resin is used as a sizing agent, if the sizing agent is attached to carbon fibers to increase the bunching property, the fiber bundle itself becomes hard, so the fiber bundle is hardened. However, if the amount of the carbon fiber bundle is reduced in order to control the hardness and the hardness thereof is reduced, there arises a problem that the higher order workability of the carbon fiber bundle, such as abrasion resistance and fuzz resistance, is reduced. In particular, when the opening properties of the carbon fibers are low, the matrix resin cannot be sufficiently impregnated into the inside of the fiber bundle during the preparation of the prepreg, so that voids are easily generated in the molded product, gaps are formed between the fiber bundles, and the prepreg has irregularities. It will be of poor quality.
[0007]
Therefore, when producing a prepreg using a heat-resistant resin as a matrix, a carbon fiber bundle to which a sizing agent is not applied, that is, a so-called non-sizing yarn, is often used in order to prioritize the opening property at the expense of sizing property. Was.
[0008]
Further, it has been proposed to use a mixture of a diamine and a dianhydride, which are monomers of polyimide, as a sizing agent suitable for carbon fibers used as a heat-resistant resin composite material (Japanese Patent Publication No. 63-6675). . Since such a monomer has a low viscosity, the opening property of the fiber bundle can be secured and the sizing property of the carbon fiber bundle is improved as compared with the non-sizing yarn, but the conventional carbon fiber used for the epoxy resin matrix is used. The convergence of a bundle was not obtained, and the high-order workability in processing into a prepreg was not satisfactory.
[0009]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems, that is, excellent bunching, high-order workability and spreadability, and, even when used in a fiber-reinforced composite material having a heat-resistant thermoplastic resin as a matrix. An object of the present invention is to provide a carbon fiber which does not lower heat resistance and a prepreg suitable for obtaining such a fiber-reinforced composite material.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the carbon fiber of the present invention has the following configuration. That is, it is a carbon fiber to which a sizing agent comprising a polyamide carboxylic acid compound having an alkyl group or an aryl group at both ends is provided.
[0011]
In order to solve the above-mentioned problems, a prepreg of the present invention has the following configuration. That is, it is a prepreg composed of the carbon fiber and the resin.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the carbon fiber of the present invention will be described in detail.
[0013]
In the present invention, the sizing agent to be attached to the carbon fiber comprises a polyamidecarboxylic acid compound having an alkyl group or an aryl group at both ends.
[0014]
Specific examples of the alkyl group include a stearyl group, a cetyl group, an oleyl group, and a cyclohexyl group, and examples of the aryl group include a phenyl group, a naphthyl group, a stearyl group, and a phenylethynyl group.
[0015]
The polyamide carboxylic acid compound having an alkyl group or an aryl group at both terminals is, for example, a polymer of an aromatic diacid anhydride and an aromatic diamine compound, a monoamine compound or a monoacid anhydride having an alkyl group or an aryl group. It can be obtained by reacting. Specifically, examples of the aromatic dianhydride include biphenyltetracarboxylic dianhydride, pyromeric dianhydride, oxydiphthalic dianhydride, and benzophenone dianhydride. Examples of the diamine compound include p-phenylenediamine, m-phenylenediamine, 4,4′-oxydianiline, 3,4′-oxydianiline, 1,3-bis (3-aminophenoxy) benzene, and the like. Examples of the monoamine compound or monoacid anhydride having an aryl group include phenylamine, 2-naphthylamine, stearylamine, cyclohexanecarboxylic anhydride, phthalic anhydride, and 4-phenylethynylphthalic anhydride.
[0016]
Polyamide carboxylic acid compounds having an alkyl group or an aryl group at both ends are polyamide carboxylic acid skeletons, so there is little crosslinking between molecules and flexibility. It has the feature of converting to polyetherimide. Therefore, the carbon fiber to which the carbon fiber is applied is excellent in sizing property, high processing property and spreadability, and at the time of molding, the carbon fiber of the present invention is used for a fiber-reinforced composite material having a heat-resistant resin as a matrix. However, the heat resistance of the obtained fiber-reinforced composite material hardly decreases. In particular, since the polyamide carboxylic acid compound used in the present invention has both ends terminated with an alkyl group or an aryl group, the carbon fiber provided with the compound has excellent smoothness. Since the spreadability of the carbon fiber bundle is improved, it is possible to obtain a carbon fiber having good spreadability suitable for obtaining a thin prepreg having no gap between the carbon fiber bundles and a low basis weight. The resulting molded article has no voids, and the dispersion of the carbon fiber content of the molded article is small, so that high mechanical properties can be obtained.
[0017]
The number average molecular weight of the polyamide carboxylic acid compound having an alkyl group or an aryl group at both terminals is desirably 2,000 to 20,000, preferably 3,000 to 10,000. When the number average molecular weight is less than 2,000, the spreadability of the carbon fiber bundle is excellent, but the heat resistance of the polyimide itself converted from the attached polyamide carboxylic acid compound having an alkyl group or an aryl group at both ends is reduced. In some cases, high heat resistance of the molded product may not be obtained. When the number average molecular weight exceeds 20,000, high heat resistance is obtained, but the convergence is too strong and the carbon fiber opening property in the prepreg forming step may not be sufficient, and a gap may be formed in the prepreg. There is.
[0018]
Specific examples of the polyamidecarboxylic acid compound having an alkyl group or an aryl group at both terminals include compounds having a chemical structure as shown in the following [I], [II] or [III]. .
[0019]
Embedded image
Figure 0003546591
Embedded image
Figure 0003546591
Embedded image
Figure 0003546591
Here, in the above formula, X represents a single bond, -CO- or -O-, Y is -C 6 H 4 -O-C 6 H 4 - or - (C 6 H 4 -O) 2 -C 6 H 4 -, R 1 is a phenyl ethynyl group, R 3 is a phenyl group or a stearyl group, and n is a positive number of 3 to 32. In the present invention, the sizing agent, in addition to the polyamide carboxylic acid compound, from the viewpoint of adjusting the viscosity of the sizing agent, a low-viscosity compound or a low-boiling compound, and also from the viewpoint of obtaining higher heat resistance as a sizing agent. A polyimide compound or the like may be contained. From the viewpoint of more remarkably exhibiting the effects of the present invention, the sizing agent used in the present invention preferably contains 90 to 100% by weight of a polyamide carboxylic acid compound having an alkyl group or an aryl group at both terminals. Preferably, the content is 95 to 100% by weight.
[0020]
The adhesion amount of the polyamide carboxylic acid compound having an alkyl group or an aryl group at both terminals per carbon fiber weight is preferably 0.1 to 3% by weight, particularly preferably 0.2 to 1.0% by weight. If the attached amount is less than 0.1% by weight, the convergence of the fiber is low, and the high-order workability may be insufficient. On the other hand, if it exceeds 3% by weight, the bunching property is too strong and the opening property of the carbon fiber bundle is deteriorated, the matrix resin is hardly impregnated in the carbon fiber bundle on the prepreg, and the gap between the carbon fiber bundles is insufficient due to insufficient opening. May be formed, voids may be formed in the molded product, or the dispersion of the carbon fiber content of the molded product may be large, and the mechanical properties may be reduced.
[0021]
As the carbon fiber to which the sizing agent is applied, acryl-based, pitch-based, rayon-based, or other carbon fibers can be used, but acryl-based carbon fibers from which high-strength carbon fiber filaments are easily obtained are preferred.
[0022]
From the viewpoint of increasing the strength and elastic modulus and suppressing the breakage of single fibers during carbon fiber production, it is preferable to use carbon fibers having a fineness of 3 μm or more and 7.5 μm or less, preferably 4 μm or more and 6 μm or less. . The single fiber diameter of the carbon fiber can be calculated from the fineness and specific gravity of the carbon fiber bundle, assuming that the fiber cross section is circular.
[0023]
Further, in order to obtain carbon fibers having high compressive strength, the cross section of the fibers is preferably non-circular, and the degree of deformation (Pmin, Pmax) of the fiber cross section is desirably set in a range described later. It is preferable that the ratio (Pmin) of the minimum second moment to the area of the fiber cross section be specified to be 0.085 or more and 1 or less. That is, in the case of a non-circular cross-section fiber, although the second moment of area varies depending on the direction, it is desirable that the value obtained by dividing the minimum value thereof by the area be 0.085 or more and 1 or less. Non-circular carbon fibers having a Pmin of less than 0.085 tend to buckle against compressive stress, and do not improve the compressive strength, flexural strength and flexural rigidity of the composite material, which is not preferable. Also, the ratio of the maximum moment to area (Pmax) of the fiber cross section is preferably as large as Pmin. If Pmax is as large as 0.13 or more, the effect of improving the compressive strength is obtained even if Pmin is from 0.019 or more and 1 or less. It is desirable.
[0024]
Further, carbon fibers having high mechanical properties, particularly compressive strength, are required for application to aircraft applications, and the tensile strength measured according to the resin-impregnated strand test method of JIS-R-7601 is 4.5 GPa or more and 9 GPa or more. 0.0 GPa or less, preferably 5.5 GPa or more, more preferably 6.5 GPa or more. The elastic modulus is preferably from 220 GPa to 490 GPa, more preferably from 230 GPa to 300 GPa.
[0025]
The carbon fiber before applying the sizing agent has a surface specific oxygen concentration O / C measured by X-ray photoelectron spectroscopy of 0.20 or less, preferably 0.15 or less, and more preferably 0.10 or less. . When the O / C exceeds 0.20, the chemical bond between the functional group of the resin and the outermost surface of the carbon fiber becomes strong, but the oxide layer, which is considerably lower than the strength originally possessed by the carbon fiber substrate itself, forms the carbon fiber surface layer. Because of this, the resulting composite may have poor lateral properties.
[0026]
The lower limit of O / C is desirably 0.02 or more, preferably 0.04 or more, and more preferably 0.06 or more. If the O / C is less than 0.02, the lateral properties of the composite are low, and the fatigue properties are poor, so that the composite may not be applicable as an aircraft member.
[0027]
In order to obtain the carbon fiber of the present invention, usually, a solution or dispersion obtained by dissolving or dispersing the sizing agent in a solvent is applied to the carbon fiber, followed by heat treatment to remove the solvent. As the solvent, an aprotic solvent such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, diglyme, or dimethylformamide, which has a high solubility of the polyamide carboxylic acid compound having a terminal group of an alkyl group and / or an aryl group, is preferable. Further, the heat treatment conditions are preferably optimized for both the temperature and the time depending on the type of the solvent and the like, but it is preferable to perform the heat treatment to such an extent that the solvent is not completely removed in order to secure the opening property of the carbon fiber bundle. Specifically, while increasing the removal rate of the solvent and shortening the heat treatment time to increase the productivity in continuously producing carbon fibers, the dehydration of a polyamide carboxylic acid compound having an alkyl group or an aryl group at both ends is increased. The heat treatment temperature is preferably from 180 ° C to 250 ° C, and the heat treatment time is preferably from 30 seconds to 5 minutes, from the viewpoint of suppressing the fiber bundle from becoming too hard due to the excessive progress of the reaction to deteriorate the spreadability.
[0028]
The carbon fiber of the present invention is usually made into a prepreg in combination with a resin. Particularly, it is suitable for a prepreg using a heat-resistant resin as a matrix resin. Heat resistant resins include polyimide resin, polyetherimide resin, polyetherimide sulfone resin, polyimide ketone resin, bismaleimide resin, polyamideimide resin, polyetheretherketone resin, polyetherketone resin, polyethersulfone resin, polyphenylenesulfide For example, resin. By combining these heat-resistant resins with the carbon fibers of the present invention, thin prepregs having high heat resistance and having no gap can be obtained for the first time. From these prepregs, a molded article having high heat resistance without voids can be obtained, and high mechanical properties can be exhibited. When a resin having a high viscosity at room temperature is combined, a prepreg can be obtained after forming a resin-containing resin into a film. The content of the solvent is optimized depending on the viscosity of the resin, but it is preferably 0 to 70% by weight, preferably 0 to 60% by weight. By using the carbon fiber of the present invention, a prepreg having a low carbon fiber basis weight without a gap between carbon fiber bundles, specifically, a carbon fiber basis weight of 200 g / m 2 or less, preferably 150 g / m 2 or less. A thin prepreg can be obtained. In order to obtain a prepreg that is too thin, it is necessary to mechanically expand the carbon fiber bundle under severe pressure, and the mechanical properties of the final molded product, particularly the tensile strength characteristics, may be reduced. Therefore, the basis weight of the carbon fiber of the prepreg in the present invention is 100 g / m 2 or more, preferably 120 g / m 2 or more.
[0029]
The carbon fiber in the prepreg can take the form of one direction, woven fabric, or the like, but is preferably in one direction in which high mechanical properties are easily obtained when the fiber reinforced composite material is used.
[0030]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0031]
In this example, the following measurement methods were used for the number of rubbing feathers, the fiber bundle opening property, 0 ° tensile strength, and 90 ° tensile strength.
[0032]
(1) Five stainless steel rods (chrome plating, surface roughness: 1 to 1.5 S ) having a diameter of 10 mm and having a diameter of 50 mm are parallel to each other at intervals of 50 mm, and their surfaces are formed by a carbon fiber thread having a contact angle of 120 °. A rubbing device was used in which the rods were arranged in a zigzag manner so that they could pass while making contact. With this device, a tension of 0.09 g per denier is applied to the entrance side carbon fiber yarn at a yarn speed of 3 m / min, and a laser beam is irradiated at right angles to the fiber yarn from the side surface to reduce the number of fluffs. It is detected and counted by the fluff detecting device, and is displayed in pieces / m.
[0033]
(2) Opening property of fiber bundle In the above-mentioned measurement of the fluffiness, the width of the carbon fiber bundle with a stainless steel rod on the yarn exit side is measured. The spreadability is measured 10 times and the average value is determined.
[0034]
(3) 0 ° tensile strength, 90 ° tensile strength Measure according to JIS-K-7073.
[0035]
(4) Perforated plate compression strength The perforated plate compression strength (OHC) was measured according to BMS8-276C (Boing Material Specification 8-276, Version C). [+ 45/0 / -45 / 90 degrees] A hardened plate having a 2S configuration is cut into a rectangle having 12 inches in the 0 ° direction and 1.5 inches in the 90 ° direction. A hole is formed into a perforated plate, and a compression test is performed at room temperature (24 ° C.) at a load speed of 1.27 mm / min.
[0036]
(Example 1)
(1) Adjustment of matrix resin In a reaction vessel equipped with a stirrer, a reflux condenser and a nitrogen inlet tube, 3,4'-oxydianiline (697 g, 3.5 mol), 1,3-bis (3-amino (Phenoxy) benzene (179 g, 0.6 mol) and N-methyl-2-pyrrolidone (NMP, 900 g) were added, and the mixture was stirred under a nitrogen atmosphere. To this solution, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (1324 g, 4.5 mol) and 4-phenylethynylphthalic anhydride (183 g, 0.7 mol) were added to NMP ( 1484 g), and the mixture was stirred under a nitrogen atmosphere for 24 hours to obtain a polyamic acid NMP solution having a solid content of 50%.
[0037]
(2) Preparation of prepreg and molding The obtained polyamic acid NMP solution was applied on release paper using a knife coater. The coating amount was 86.7 g / m 2 . This resin film was impregnated under pressure from both sides of carbon fibers aligned in one direction to obtain a prepreg. The basis weight of carbon fibers per unit area was 145 g / m 2 .
[0038]
The prepreg was laminated in a configuration corresponding to each property evaluation item, and was first treated in an autoclave at a temperature of 250 ° C. for 1 hour, de-NMP and dewatered, and subsequently at a temperature of 371 ° C. and a pressure of 1.4 MPa for 1 hour. Curing was performed.
[0039]
(3) Adjustment of sizing agent 3,4′-oxydianiline (69.7 g, 0.35 mol) and 1,3-bis (3 -Aminophenoxy) benzene (17.9 g, 0.06 mol) and N-methyl-2-pyrrolidone (NMP, 90 g) were charged and stirred under a nitrogen atmosphere. To this solution was added 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (132.4 g, 0.45 mol) and 4-phenylethynylphthalic anhydride (18.3 g, 0.07 mol) ) Was added to NMP (148.4 g), and the mixture was stirred under a nitrogen atmosphere for 24 hours to obtain an NMP solution of a polyamidecarboxylic acid compound (number average molecular weight: 6,000) having a solid content of 50%. The obtained NMP solution was used as a sizing solution. (4) Production of carbon fiber A spinning solution comprising a copolymer of 99.5 mol% of acrylonitrile (hereinafter, AN) and 0.5 mol% of itaconic acid is wet-spun through a spinneret having a circular discharge hole, By coagulating and stretching, an acrylic fiber yarn having a single yarn fineness of 0.7 denier was obtained.
[0040]
This acrylic fiber yarn was subjected to a flameproof treatment at 240 to 260 ° C, carbonized at a maximum temperature of 1400 ° C, and subsequently subjected to electrolytic oxidation treatment to obtain carbon fibers. As for the degree of deformation of the cross section of the obtained carbon fiber, Pmin was 0.080, Pmax was 0.080, and the surface specific oxygen concentration 0 / C was 0.12. The carbon fiber was further impregnated with an NMP solution of the above sizing agent (concentration: 0.6% by weight) and dried in heated air at 230 ° C. for 1 minute.
[0041]
The sizing agent-attached carbon fibers thus obtained were measured for the number of rubbing fluffs, fiber opening properties, and physical properties of molded articles. The resulting prepreg had no gap between the carbon fiber bundles and no irregularities were observed on the prepreg surface. When the end of the test piece was polished and the resin impregnated state was observed, no void or the like due to impregnation failure was observed at the observation site. The results are shown in Table 1. OHC was 304 MPa.
[0042]
(Example 2)
A prepreg and a carbon fiber composite material were obtained in the same manner as in Example 1 except that the mother liquor concentration of the sizing agent was changed to 0.3% by weight. The resulting prepreg had no gap between the carbon fiber bundles and no irregularities were observed on the prepreg surface. Further, voids and the like due to impregnation failure were not observed. The results are shown in Table 1.
[0043]
(Example 3)
A carbon fiber composite material was obtained in the same manner as in Example 1, except that the mother liquor concentration of the sizing agent was changed to 1.7% by weight. In each case, the obtained prepreg had no gap between the carbon fiber bundles and had slight irregularities on the prepreg surface. No voids or the like due to impregnation failure were observed. The results are shown in Table 1.
[0044]
(Example 4)
A spinning dope comprising a copolymer of 99.5% by weight of acrylonitrile and 0.5% by weight of itaconic acid is passed through a spinneret having a discharge hole shown in FIG. 1 to form a single yarn by dry-wet spinning, coagulation and stretching. An acrylic fiber yarn having a fineness of 1.0 denier was obtained. This acrylic fiber yarn was converted to carbon fiber in the same manner as in Example 1. The fiber cross section of the obtained carbon fiber had a shape as shown in FIG. 2, and the degree of deformation of the fiber cross section was 0.094 for Pmin and 0.094 for Pmax, and the surface specific oxygen concentration O / C was 0.13. Met.
[0045]
This carbon fiber was further impregnated with the same sizing agent NMP solution (concentration: 0.6% by weight) as in Example 1, and dried in heated air at 230 ° C. for 1 minute.
[0046]
The sizing agent-attached carbon fibers thus obtained were measured for the number of rubbing fluffs, fiber opening properties, and physical properties of molded articles.
[0047]
The resulting prepreg had no gap between the carbon fiber bundles and no irregularities were observed on the prepreg surface. In addition, when the end of the test piece was polished and the resin impregnation state was observed, no void or the like due to impregnation failure was observed at the observation site. The results are shown in Table 1. OHC was 335 MPa.
[0048]
(Comparative Example 1)
A sizing agent was adjusted in the same manner as in Example 1 except that 4-phenylethynylphthalic anhydride was not added, to obtain a carbon fiber composite material. The obtained prepreg had several gaps between the carbon fiber bundles, and slight irregularities were observed on the prepreg surface. When the end of the test piece was polished and the state of resin impregnation was observed, voids due to impregnation failure were observed at the observed site. The results are shown in Table 1. OHC was 289 MPa.
[0049]
(Comparative Example 2)
The sizing agent was 3,4'-oxydianiline (29% by weight), 1,3-bis (3-aminophenoxy) benzene (8% by weight), 3,3 ', 4,4'-biphenyltetracarboxylic acid A sizing agent-attached carbon fiber was obtained in the same manner as in Example 1, except that the mixture was changed to a mixture of diacid anhydride (55% by weight) and 4-phenylethynylphthalic anhydride (8% by weight).
[0050]
The obtained sizing agent-adhered carbon fiber has a lot of fuzz and has poor processability and handleability during prepreg formation.
[0051]
(Comparative Example 3)
A sizing agent-attached carbon fiber was obtained in the same manner as in Example 1 except that the sizing agent was changed to 100% by weight of an epoxy resin having low heat resistance (Epicoat 828 manufactured by Yuka Shell Epoxy Co., Ltd.). A prepreg was obtained in the same manner as in Example 1 using this sizing agent-adhered carbon fiber. When the end of the test piece was polished and the state of resin impregnation was observed, voids were observed at the observed site.
[0052]
[Table 1]
Figure 0003546591
[0053]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, a carbon fiber having a resin coating excellent in bunching properties, excellent in opening properties of a carbon fiber bundle at the time of prepreg formation, and excellent in heat resistance, and excellent in mechanical properties, workability and moldability A reinforced thermoplastic resin can be obtained.
[Brief description of the drawings]
FIG. 1 is a plan view showing discharge holes of a die used in Example 4.
FIG. 2 is a schematic view showing a cross section of a single fiber of a carbon fiber obtained in Example 4.

Claims (7)

両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物からなるサイジング剤が付与されてなる炭素繊維。A carbon fiber provided with a sizing agent comprising a polyamidecarboxylic acid compound having an alkyl group or an aryl group at both ends. 両末端にアルキル基またはアリール基を有するポリアミドカルボン酸化合物が、ビフェニルテトラカルボン酸ジ酸無水物、ピロメリック酸ジ酸無水物、オキシジフタル酸ジ酸無水物、ベンゾフェノンジ酸無水物より選ばれる少なくとも1種の芳香族ジ酸無水物と、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−オキシジアニリン、3,4’−オキシジアニリン、1,3−ビス(3−アミノフェノキシ)ベンゼンより選ばれる少なくとも1種の芳香族ジアミン化合物との重合物に、アルキル基またはアリール基を有するモノアミン化合物またはモノ酸無水物を反応せしめて得られるものであることを特徴とする請求項1の炭素繊維。The polyamide carboxylic acid compound having an alkyl group or an aryl group at both ends is at least one selected from biphenyltetracarboxylic dianhydride, pyromeric dianhydride, oxydiphthalic dianhydride, and benzophenone dianhydride From an aromatic diacid anhydride of formula (I) and p-phenylenediamine, m-phenylenediamine, 4,4'-oxydianiline, 3,4'-oxydianiline, 1,3-bis (3-aminophenoxy) benzene The carbon fiber according to claim 1, wherein the carbon fiber is obtained by reacting a polymer of at least one selected aromatic diamine compound with a monoamine compound or monoacid anhydride having an alkyl group or an aryl group. . アルキル基が、ステアリル基、セチル基、オレイル基およびシクロヘキシル基からなる群より選ばれる少なくとも1つの基であることを特徴とする請求項1ないし2の炭素繊維。3. The carbon fiber according to claim 1, wherein the alkyl group is at least one group selected from the group consisting of a stearyl group, a cetyl group, an oleyl group, and a cyclohexyl group. アリール基が、フェニル基、ナフチル基、ステアリル基およびフェニルエチニル基からなる群より選ばれる少なくとも1つの基であることを特徴とする請求項1ないし2の炭素繊維。3. The carbon fiber according to claim 1, wherein the aryl group is at least one group selected from the group consisting of a phenyl group, a naphthyl group, a stearyl group, and a phenylethynyl group. アルキル基またはアリール基を有するモノアミン化合物が、フェニルアミン、2−ナフチルアミン、シクロヘキシルアミンおよびステアリルアミンから選ばれる少なくとも1種のアミン化合物であり、アルキル基またはアリール基を有するモノ酸無水物が、シクロヘキサンカルボン酸無水物、無水フタル酸、フェニルエチニルフタル酸無水物より選ばれる少なくとも1種のモノ酸無水物であることを特徴とする請求項2の炭素繊維。The monoamine compound having an alkyl group or an aryl group is at least one amine compound selected from phenylamine, 2-naphthylamine, cyclohexylamine and stearylamine, and the monoacid anhydride having an alkyl group or an aryl group is cyclohexanecarboxylic acid. 3. The carbon fiber according to claim 2, wherein the carbon fiber is at least one monoacid anhydride selected from an acid anhydride, phthalic anhydride, and phenylethynylphthalic anhydride. 請求項1ないし5のいずれかに記載の炭素繊維と樹脂とからなるプリプレグ。A prepreg comprising the carbon fiber according to any one of claims 1 to 5 and a resin. 前記樹脂が耐熱性樹脂である請求項6のプリプレグ。The prepreg according to claim 6, wherein the resin is a heat-resistant resin.
JP11776196A 1996-05-13 1996-05-13 Carbon fiber and prepreg Expired - Fee Related JP3546591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11776196A JP3546591B2 (en) 1996-05-13 1996-05-13 Carbon fiber and prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11776196A JP3546591B2 (en) 1996-05-13 1996-05-13 Carbon fiber and prepreg

Publications (2)

Publication Number Publication Date
JPH09302585A JPH09302585A (en) 1997-11-25
JP3546591B2 true JP3546591B2 (en) 2004-07-28

Family

ID=14719677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11776196A Expired - Fee Related JP3546591B2 (en) 1996-05-13 1996-05-13 Carbon fiber and prepreg

Country Status (1)

Country Link
JP (1) JP3546591B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524666A (en) * 1998-05-22 2003-08-19 サイテック テクノロジイ コーポレーション Product and core crash prevention methods
US6222007B1 (en) * 1998-05-29 2001-04-24 The United States Of America As Represented By The National Aeronautics And Space Administration Films, preimpregnated tapes and composites made from polyimide “Salt-like” Solutions
US20130143025A1 (en) * 2011-12-06 2013-06-06 Makoto Kibayashi Thermoplastic resin impregnated tape
JP6791467B2 (en) * 2016-07-22 2020-11-25 三菱製紙株式会社 Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure
JP7138993B1 (en) * 2022-04-15 2022-09-20 竹本油脂株式会社 Composition containing sizing agent for inorganic fiber and method for producing inorganic fiber

Also Published As

Publication number Publication date
JPH09302585A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
TWI504501B (en) Carbon fiber prepreg and method of making same, carbon fiber reinforced composite material
US5132394A (en) Fiber-reinforced composites comprising amide-imide copolymer matrix resin
JPH064246B2 (en) Flexible composite material and manufacturing method thereof
US20120123053A1 (en) Carbon fiber
JPS6175880A (en) Size agent
JPWO2013118689A1 (en) Carbon fiber composite material
KR20140114355A (en) Thermoplastic resin impregnated tape
KR100383455B1 (en) Prepreg and Carbon Fiber Reinforced Composites
KR20140147827A (en) Thermoplastic molding preform
WO2013129169A1 (en) Carbon fiber composite material
JP3387100B2 (en) Prepreg, production method thereof and laminated composite
JPH0253923A (en) Unshrinkable hybrid yarn
JP3546591B2 (en) Carbon fiber and prepreg
JP3312470B2 (en) Prepreg and laminate
JPH09235397A (en) Prepreg and fiber-reinforced plastic
EP2849939A1 (en) Carbon fiber braid
US5401779A (en) Thermotropic liquid crystalline polymer reinforced with polyimide sized carbon fibers
WO2020071445A1 (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP3539577B2 (en) Fiber reinforced composite material
JP3073083B2 (en) Fibrous polyimide resin molding for reinforcing composite materials
JP3593367B2 (en) Carbon fiber reinforced thermosetting resin prepreg
JPH10265591A (en) Prepreg
JP3571776B2 (en) Prepreg
JP2022096210A (en) Method for producing carbon fiber
JP2002061035A (en) Carbon fiber and method for manufacturing the same, and carbon fiber reinforced composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees