JP3571776B2 - Prepreg - Google Patents

Prepreg Download PDF

Info

Publication number
JP3571776B2
JP3571776B2 JP26563294A JP26563294A JP3571776B2 JP 3571776 B2 JP3571776 B2 JP 3571776B2 JP 26563294 A JP26563294 A JP 26563294A JP 26563294 A JP26563294 A JP 26563294A JP 3571776 B2 JP3571776 B2 JP 3571776B2
Authority
JP
Japan
Prior art keywords
resin
prepreg
polyfunctional maleimide
thermoplastic resin
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26563294A
Other languages
Japanese (ja)
Other versions
JPH08127663A (en
Inventor
繁次 林
政之 福元
忠義 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP26563294A priority Critical patent/JP3571776B2/en
Publication of JPH08127663A publication Critical patent/JPH08127663A/en
Application granted granted Critical
Publication of JP3571776B2 publication Critical patent/JP3571776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、炭素繊維強化多官能性マレイミド系樹脂プリプレグの改良に関するものである。
【0002】
【従来の技術】
炭素繊維強化複合材料は、その比強度、比弾性が優れているという特徴を活かして、スポ−ツ用品を中心に各種用途に広く使用されている。現在のところ、そのマトリックス樹脂としては、エポキシ樹脂が主流であるが、エポキシ樹脂は耐熱性が十分でなく、そのため炭素繊維強化エポキシ樹脂複合材料は航空・宇宙用途を中心に高まりつつある耐熱素材の要求を十分満足することが困難になってきた。
【0003】
耐熱性樹脂としては、熱硬化性のポリイミド、ビスマレイミド、ビスマレイミド−トリアジン、シアネ−ト樹脂などが良く知られているが、一般に耐熱性樹脂は、その硬化物が非常に脆く、その複合材料は靱性、耐衝撃性が乏しく、その用途はかなり制限されたものとなっている。この欠点を改良するため、ゴム成分や熱可塑性樹脂を配合する方法、他のモノマ−成分を共重合する方法などが提案されているが、耐熱性などの物性の低下が大きい割りには靱性の向上が十分でなかったり、樹脂単体の破壊靱性は一応向上しても複合材料にした時の靱性向上が十分でないなどの問題があった。
【0004】
また、複合材料全体として靱性を付与する考え方として、積層体の層間を選択的に補強し、衝撃時の層間剥離をおさえることが有効であるとの知見から、インタ−リ−フと呼ばれる一種の接着層ないしは衝撃吸収層を層間に挿入する方法が提案されたが、強化繊維含有率が上げられない、プリプレグとしての取扱性も悪いなどの欠点があり、一般に使用されるに至っていない。さらにゴム粒子あるいは高靱性熱可塑性樹脂微粒子をエポキシ樹脂プリプレグ表面に局在化させ、その積層体の層間を補強する方法も提案されている。
【0005】
一方、多官能性マレイミド系(ビスマレイミド)樹脂プリプレグにおいても同様の層間補強手法によって複合材料の靱性を向上することが可能と考えられるが、この場合単に、層間に高靱な樹脂を導入するだけでは不十分である。特に多官能性マレイミド系樹脂をマトリックス樹脂として使用する場合の靱性向上効果が著しく高い層間導入樹脂としては、導入樹脂の靱性が高いことは無論のこと、多官能性マレイミド系樹脂と相溶し、所定の導入量において、硬化樹脂の組織として多官能性マレイミド系樹脂がリッチな相が島、導入する高靱性樹脂がリッチな相が海となる様な海島構造を形成する樹脂(熱可塑性樹脂)があげられる。
【0006】
これらの熱硬化性樹脂と熱可塑性樹脂からなる多成分系での硬化挙動、硬化後の特性は、種々の要因によって変動するため、得られた複合材料性能の変動が大きく、場合によっては靱性の向上が全く得られないといった問題が生じる。変動要因の1つとしては、ベ−スのマトリックス樹脂である多官能性マレイミド系樹脂のB−ステ−ジ化の度合(反応の進行度合)が、導入する高靱性熱可塑性樹脂との相溶性に影響し、その結果複合材料性能特に靱性に悪影響を及ぼす結果を生む。特に、このようなプリプレグ積層材料の層間での少量の多官能性マレイミド系樹脂への熱可塑性樹脂成形物の溶解といった状況では、ベ−スとなる多官能性マレイミド系樹脂のBステ−ジ化の進行にともなう複合材料性能の変動は大きな課題であった。
【0007】
【発明が解決しようとする課題】
本発明は、炭素繊維強化多官能性マレイミド系複合材料に、耐熱性を損なうことなく優れた靱性を安定に付与することのできる炭素繊維強化多官能性マレイミド系樹脂プリプレグを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、表面に熱可塑性樹脂成形物が存在する炭素繊維強化多官能性マレイミド系樹脂プリプレグについて種々検討した結果、このプリプレグを構成する多官能性マレイミド系樹脂の成分である多官能性マレイミド化合物として、その50重量%以上が固形の微粒子として樹脂中に存在せしめ、かつこの固形の微粒子が、硬化温度以下の温度で溶融するものを用いることにより、該プリプレグで成形した複合材料の靱性を安定して高め得ることを知見し、本発明を完成した。
【0009】
すなわち本発明は、炭素繊維を強化繊維とし、多官能性マレイミド系樹脂をマトリックス樹脂とし、且つ表面に熱可塑性樹脂成形物が存在するプリプレグにおいて、多官能性マレイミド系樹脂が(1)多官能性マレイミド化合物並びに(2)アルケニルフェノ−ル及び/又はアルケニルフェノ−ルエ−テル化合物を必須成分とする樹脂であり、成分(1)の50重量%以上が固形の微粒子として樹脂中に存在すると共に硬化温度以下の温度で溶融するものであることを特徴とするプリプレグである。
【0010】
本発明に用いられる「炭素繊維」の用語は、炭素繊維及び黒鉛繊維の両方を意味する。この炭素繊維は、通常「プレカ−サ−」と称されるポリアクリロニトリル、ピッチ等の繊維状物を炭化するか、或はグラファイト温度に加熱することにより得られ、なかでも引張強度4500MPa以上、伸度1.7%以上の高強度・高伸度の炭素繊維が好適に用いられる。
【0011】
また、炭素繊維の表面を電解酸化、オゾン酸化することにより、炭素繊維表面に水酸基、カルボン酸基などの官能基を導入したものが好適に用いられる。さらに好ましくは、酸化処理後さらに炭素繊維表面を、アミノシラン、エポキシシラン、ビニルシランカップリング剤、あるいはアミノチタネ−ト系、アミノジルコネ−ト系などの金属系カップリング剤等で処理した炭素繊維がより好ましく使用される。
【0012】
本発明で用いられる多官能性マレイミド系樹脂とは、多官能性マレイミド化合物とアルケニルフェノ−ル及び/又はアルケニルフェノ−ルエ−テルを必須成分とする樹脂であり、且つ多官能性マレイミド化合物の50重量%以上が固形の微粒子として樹脂中に存在しかつ硬化温度以下の温度で多官能性マレイミド系樹脂に溶融するものであることに特徴がある。
【0013】
このように、マトリックス樹脂中に多官能性マレイミド化合物の50重量%以上が固形の微粒子として存在し、かつその微粒子が硬化温度以下の温度で多官能性マレイミド系樹脂に溶融し、混合するものを用いることによって、プリプレグ製造工程での熱履歴あるいは、樹脂またはプリプレグの貯蔵による多官能性マレイミド系樹脂のB−ステ−ジ化反応を抑制することができる。さらに、成形時の昇温速度の違いによる硬化の進行状態の変動をできるだけ抑えることが可能となる。
【0014】
従って多官能性マレイミド系樹脂の反応の進行が要因である熱可塑性樹脂成形物の多官能性マレイミド系樹脂への溶解性の低下を抑制でき、安定した熱可塑性樹脂成形物の溶解が可能となり、複合材料として安定性に優れた耐衝撃性が得られるのみならず、従来の樹脂調製で行われてきた多官能性マレイミド化合物の溶融温度以上の高温での樹脂混合の手間が除かれると共に、樹脂調製工程でのこのような高温混合に伴うB−ステ−ジ化反応の進行も抑制でき、複合材料性能の安定化の面でさらに好適な結果をもたらす。
【0015】
本発明で多官能性マレイミド化合物の微粒子が多官能性マレイミド系樹脂に溶融するとは、溶解する及び/または融解する意味を表す。使用する多官能性マレイミド化合物としては、例えば下記の化合物が上げられる。
1,2−ビスマレイミドエタン、1,6−ビスマレイミドヘキサン、1,12− ビスマレイミドドデカン、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン、1,6−ビスマレイミド−(2,4,4−トリメチル)ヘキサン、1,3−ビスマレイミドベンゼン、1,4−ビスマレイミドベンゼン、3,3’− または4,4’− ビスマレイミドジフェニルメタン、3,3’− または4,4’− ビスマレイミドジフェニルスルホン、3,3’− または4,4’− ビスマレイミドジフェニルエ−テル、2,4−、2,6−または3,4−ビスマレイミドトルエン、4,4’− ビスマレイミドジフェニルスルフィド、4,4’− ビスマレイミドジシクロヘキシルメタン、4,4’− ビスマレイミドジシクロヘキシルヘキセン、N,N’−m− または−p− キシリレンビスマレイミド、N,N’−m− フェニレンビス−シトラコンイミド、2,2’− ビス[4−(4−マレイミトフェノキシ)フェニル]フロハン、ビス[4−(4−マレイミトフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミトフェノキシ)フェニル]スルホン、1,3’− ビス(4− マレイミドフェノキシ)ベンゼン、1,3’− ビス(3− マレイミドフェノキシ)ベンゼン、N,N’−[1,3−フェニレン−シ−(2,2−フロヒリテン)−シ−p−フェニレン]ヒスマレイミトなど並びにこれらの混合物及びマレイミドとジアミンからなるプレポリマ−が含まれる。プレポリマ−に用いるジアミンとしては、ジアミノジフェニルメタン等の芳香族ジアミンが好ましい。4,4’− ビスマレイミドジフェニルメタン及びこの化合物と1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン及び/または、ビスマレイミドトルエンの共融混合物も好適に使用される。
【0016】
多官能性マレイミド化合物の微粒子を得る方法は、通常合成の最終段階でそのまま微粒子として得られる、あるいはその後、公知の方法により粉砕することにより得られる。粒子径は、通常平均100ミクロン以下、好ましくは、50ミクロン以下である。さらに好ましくは20ミクロン以下である。粒子が大き過ぎると、多官能性マレイミド化合物が得られる炭素繊維強化多官能性マレイミド系樹脂プリプレグのマトリックス樹脂中に均一に分散した該プリプレグを得ることが困難となり、均一な複合材料が得られず好ましくない。
【0017】
本発明では、多官能性マレイミド化合物の50重量%以上が樹脂中に固形の微粒子で存在していることが必要である。50重量%未満であると樹脂の安定性が十分得られず好ましくない。さらに本発明では、使用する多官能性マレイミド化合物の固形の微粒子が硬化温度以下の温度で樹脂に溶融する必要がある。多官能性マレイミド化合物の種類から適切な硬化温度を設定すれば良いが、通常硬化温度としては、150℃から300℃が好適に使用され、この温度以下の温度で樹脂に溶融する多官能性マレイミド化合物の微粒子が使用される。もっとも好適に使用されるものは3,3’− または4,4’− ビスマレイミドジフェニルメタンの微粒子であり、その時の硬化温度は、180℃である。
【0018】
アルケニルフェノ−ル及び/又はアルケニルフェノ−ルエ−テル化合物としては、フェノ−ル系化合物とアルケニルハライドとの反応により得られるアルケニルフェノ−ルエ−テルさらにアルケニルフェノ−ルエ−テルをクライゼン転移することにより得られるアルケニルフェノ−ルを挙げることができる。
例えばo,o’− ジアリルビスフェノ−ルA、ジアリルビスフェノ−ルF等のアルケニルフェノ−ル化合物及びこれらのアルケニルフェノ−ルのクライゼン転位反応前のアルケニルファノ−ルエ−テルとしてビスフェノ−ルAジアリルエ−テル、ビスフェノ−ルFジアリルエ−テル、さらにクライゼン反応途中に単離可能な、アリルビスフェノ−ルAアリルエ−テル、アリルビスフェノ−ルFアリルエ−テルをあげることができる。
【0019】
さらに、特開昭62−201916号公報記載のオリゴマ−性アリル又はプロペニル末端のアリ−ルエ−テルスルホン、又はアリ−ルエ−テルケトン等も適している。これらのアルケニルフェノ−ル及び/又はアルケニルフェノ−ルエ−テル化合物は、単独もしくは2種以上の混合物として使用できる。また、本発明では、アルケニルフェノ−ル及び/又はアルケニルフェノ−ルエ−テル化合物として、さらに80℃以下の温度好ましくは室温で低粘度の液体であるものが好ましく使用される。
【0020】
多官能性マレイミド化合物とアルケニルフェノ−ル及び/又はアルケニルフェノ−ルエ−テル化合物の混合比率は、所望により決定すればよいが、マレイミド基1に対して、アルケニル基 0.3〜2.0 の範囲が材料物性上好ましい。さらに、所望の特性、特にプリプレグにした時の粘着性、強化材である炭素繊維との接着性を改良する目的でエポキシ樹脂等を添加することは可能である。添加量としては、耐熱性などの低下を考慮して決定すればよいが、多官能性マレイミド系樹脂の20重量%以下が好ましい。
【0021】
また、硬化物に所望の特性を付与したり、硬化特性を調整する目的で触媒を添加してもよい。触媒としては、オルガノホスフィン類、オルガノホスホニウム塩、あるいはこれらの錯体、イミダゾ−ル類、第3級アミン、第4級アンモニウム塩、3弗化ホウ素アミン錯体及び有機過酸化物、アゾビスイソブチロニトリル等のラジカル重合触媒を用いることができる。触媒の添加量は、目的に応じて決定すれば良いが、樹脂成分全量に対して、0.01〜5重量%が安定性の点から好ましい。
【0022】
さらに熱可塑性樹脂あるいはそのオリゴマ−を添加したものを用いることもできる。特にポリイミド、ポリエ−テルイミド、ポリスルホン、ポリエ−テルスルホン、ポリエ−テルエ−テルケトン等所謂エンジニアリングプラスチックが耐熱性の点から好ましく、多官能性マレイミド系樹脂と反応しうる官能基を分子末端あるいは分子鎖中に有するものがさらに好ましい。これらの熱可塑性樹脂は、多官能性マレイミド系樹脂に溶解しても良いし、微粉末として混合しても良い。
熱可塑性樹脂成分の添加量は30重量%以下が好ましく、15重量%以下がより好ましい。熱可塑性樹脂成分の添加量が30重量%を越えると系の粘度が高くなり過ぎてプリプレグ化時の含浸不良の原因となるだけでなく、プリプレグのタック特性、ドレ−プ特性が大幅に低下する原因ともなる。
【0023】
また微粉末シリカなどの無機微粒子やブタジエン/アクリロニトリル共重合体等のエラストマ−成分をプリプレグ特性、加工特性、機械的特性、熱的特性等を犠牲にしない範囲で少量添加することも可能である。
【0024】
本発明において、多官能性マレイミド系樹脂を調製する方法としては、通常の公知の方法が採用される。たとえば、液状のアルケニルフェノ−ル及び/又はアルケニルフェノ−ルエ−テルに多官能性マレイミド化合物Aの固形の微粒子を撹拌器あるいは3本ロ−ルを用いて分散混合する。場合によってその後多官能性マレイミド化合物B(Bの量は、Aの量未満の量)及びその他の成分、添加剤等を多官能性マレイミド化合物Aの固形の微粒子の溶融温度以下の温度で多官能性マレイミド化合物Bの溶融温度以上の温度で混合し調製する。本発明の炭素繊維強化多官能性マレイミド系樹脂プリプレグにおける炭素繊維と多官能性マレイミド系樹脂との比率はその目的に応じて適宜設定することが可能であるが、重量比で60/40 〜75/25 の範囲が特に好ましい。
【0025】
また、本発明においては、プリプレグの表面に、熱可塑性樹脂成形物を存在させる。この熱可塑性樹脂成形物は、プリプレグの片面に存在させても、両面に存在させてもよい。この熱可塑性樹脂成形物の熱可塑性樹脂としては、ポリアミド、ポリエステル、ポリイミド、ポリエ−テルイミド、ポリアミドイミド、ポリベンズイミダゾ−ル、ポリアリ−ルスルホン、ポリエ−テルエ−テルケトンなど所謂エンジニアリングプラスチック、ス−パ−エンジニアリングプラスチックあるいはポリマ−アロイ化したものなどが挙げられる。分子鎖中にアミノ基、フェノ−ル性水酸基、アミド基、アリル基、ビニル基等多官能性マレイミド系樹脂と反応しうる官能基を有するものが好ましく、これらは共重合などの手段により官能基を末端あるいは分子鎖中に導入したエンジニアリングプラスチックあるいはス−パ−エンジニアリングプラスチックあるいはポリマ−アロイ化したもの等である。
【0026】
その中でも、多官能性マレイミド系樹脂に溶解可能であり、成形硬化過程で溶解し相分離して、硬化後熱可塑性樹脂がリッチな相が海、熱硬化性樹脂がリッチな相が島となる海島構造を呈する、例えばポリイミド及びポリエ−テルイミドが特に好ましい。
【0027】
また、熱可塑性樹脂成形物の形態としては、繊維状、粒子状、フィルム状などが挙げられる。粒子状の熱可塑性樹脂成形体としては、前記エンジニアリングプラスチック、ス−パ−エンジニアリングプラスチックの微粒子として市販されているものが使用でき、また微粒子として市販されていないものは、粉砕するなど公知の方法により微粒子化して使用する。微粒子の粒径は、100μm以下が好ましく、更に好ましくは、2〜60μmである。
【0028】
繊維状の熱可塑性樹脂成形体としては、前記エンジニアリングプラスチック、ス−パ−エンジニアリングプラスチックの溶融紡糸あるいは溶液紡糸など公知の方法により得ることができる。繊維状物の形態としては、モノフィラメント、マルチフィラメント、短繊維など特に限定されない。繊維状物の直径としては、100μm以下が好ましく、50μm以下が特に好ましい。更に、前記繊維状物から作られた織物の組織としては、平織り、朱子織り、からめ織りなど特に限定されず、不織布も使用できる。織物は、その織物目付(単位面積当たりの重さ)が1〜25g/m のものが好ましい。
【0029】
これらの熱可塑性樹脂成形体のなかでも、繊維状物の形態で使用すると、次のような利点がある。
(1)少量の熱可塑性樹脂をプリプレグ表面に配置することができる。
(2)プリプレグのタックレベルのコントロ−ルが可能である。
(3)高粘度物を取り扱う必要がなく、従来のプリプレグ製造プロセスがそのまま利用できる。
(4)品質管理が容易である。
【0030】
また、熱可塑性樹脂成形物は、例えば繊維状のものと粒子状のものをプリプレグ表面に配置するなど組み合わせて用いてもよい。熱可塑性樹脂成形物は、多官能性マレイミド系樹脂100重量部に対し0.5〜50重量部の比率で用いる。0.5重量部未満では、十分な靱性改良効果は得られず、また50重量部を越えると靱性改良効果は頭打ちになるばかりか表面タックの減少あるいは用いる樹脂の種類によっては、耐熱性、耐溶剤性が低下する場合もあり好ましくない。
【0031】
本発明のプリプレグは、例えば次のような方法で製造することができる。 (1)炭素繊維と多官能性マレイミド系樹脂とから通常の方法でプリプレグを作成し、その表面に粒子状熱可塑性樹脂又は短繊維状熱可塑性樹脂を振りかけて一体化するか、或いは熱可塑性樹脂のモノフィラメント又はマルチフィラメントを引きそろえて一体化する方法。
(2)引きそろえた繊維状熱可塑性樹脂に多官能性マレイミド系樹脂を含浸させ樹脂フィルム状にしたものと、炭素繊維とから製造する方法。
【0032】
【実施例】
以下実施例により本発明を更に具体的に説明する。
(実施例1)
γ−アミノプロピルトリエトキシシランの0.1重量%水溶液に高強度中弾性炭素繊維(三菱レイヨン社製、MR−50K、引張強度5600MPa、弾性率300GPa:表面は酸化処理されており表面サイジング剤は付着していないもの)を浸漬、通過させた。その後130℃で2分間熱風乾燥し巻き取った。さらに80℃で12時間15mmHg以下の減圧下で十分乾燥した。処理後炭素繊維は未処理のものと同様の外観を示した。
【0033】
4,4’− ビスマレイミドジフェニルメタン(三井東圧社製)を微粉砕し、平均粒子径が15ミクロンの微粒子を得、ジアリルビスフェノ−ルA(チバガイギ−社製)を表1の組成比率で、30℃で3本ロ−ルにより、4,4’− ビスマレイミドジフェニルメタンの微粒子を均一に分散混合した。さらに60℃でエポキシ成分としてタクチックス742(ダウ社製)を混合することにより多官能製マレイミド系樹脂を調製した。
【0034】
次に、上記炭素繊維と多官能製マレイミド系樹脂から一方向プリプレグをホットメルト法により製造した。プリプレグ目付は145g/m 、樹脂含有率は30重量%であった。
【0035】
一方、マトリミド5218(チバガイギ−社製)のポリイミドを塩化メチレン/メタノ−ル混合溶媒(塩化メチレン/メタノ−ル=90/10重量比)に溶解し所定の粘度(約1200ポイズ)に調整した溶液を繊維状に押し出し、乾燥して巻き取り200デニ−ル/52フィラメントのポリイミドマルチフィラメントを製造した。
【0036】
上記ポリイミドマルチフィラメントを、上記プリプレグの両面に且つ炭素繊維と同方向に、2mm間隔で片面当たり目付11g/m となるように配置し、軽く含浸した。このプリプレグをすぐに、所定の寸法、枚数に切断し、炭素繊維の方向が+45°、0°、−45°、90°に4層、4回積層し次に90°、−45°、0°、+45°にて4層、4回積層後、オ−トクレ−ブにて昇温速度+2℃/分で180℃まで昇温しさらに180℃で6時間、硬化成形した。さらに232℃で6時間後硬化して衝撃後圧縮強度測定用試験片を作成した。この試験片を用いてSACMA(Supplier of Advanced Composites Materials Asociation)Recommended Method SRM2−88に準拠して1500in−lb/in衝撃後の圧縮強度を測定した。結果を表1に示した。断面の顕微鏡観察の結果、層間でポリイミドは溶解し繊維形状を保持していなかった。
【0037】
本プリプレグを、50日間室温で放置した後同様にして衝撃後圧縮強度試験片を作成し評価した結果も表1に示した。断面の顕微鏡観察の結果、層間でポリイミドは溶解し繊維形状を保持していなかった。
【0038】
本プリプレグを、オ−トクレ−ブで昇温速度10℃/時間で180℃まで昇温し、さらに180℃で6時間硬化成形し(以下スロ−成形と略す)、さらに232℃で6時間後硬化して衝撃後圧縮強度測定用試験片を作成し同様に評価した結果も表1に示した。断面の顕微鏡観察の結果、層間でポリイミドは溶解し繊維形状を保持していなかった。
【0039】
(比較例1)
多官能性マレイミド系樹脂として、実施例1と同様の比率で4,4’− ビスマレイミドジフェニルメタンをすべて155℃でジアリルビスフェノ−ルAに溶融し均一に混合したものを用いる以外は実施例1と同様にして炭素繊維強化多官能性マレイミド系樹脂プリプレグを得、衝撃後圧縮強度を測定評価した。結果を表1に示した。本プリプレグを50日室温で放置したものを用いた成形品及びスロ−成形品は断面の顕微鏡観察の結果、層間でポリイミドは繊維形状を保持しており溶解していなかった。
【0040】
(実施例2)
多官能性マレイミド系樹脂として表1の組成比率で、まず実施例1と同様に微粉砕した4,4’−ビスマレイミドジフェニルメタンをジアリルビスフェノ−ルAを室温で3本ロ−ルを用いて分散混合したのち、70℃でコンピミド353(シュル社製のビスマレイミドの共融混合物)とタクティクス742を溶融し混合したものを用いる以外は、実施例1と同様に評価した結果を表1に示す。すべての試験片で層間のポリイミドは溶解し繊維形状を保持していなかった。
【0041】
(比較例2)
多官能性マレイミド系樹脂として表1の組成比率で4,4’−ビスマレイミドジフェニルメタンを全て155℃でジアリルビスフェノ−ルAに溶融し均一混合する以外は実施例2と同様にして評価した結果を表1に示した。50日放置プリプレグを用いた成形品及びスロ−成形品では、層間でポリイミドは溶解せず繊維形状を保持していた。
【0042】
(比較例3)
多官能性マレイミド系樹脂として表1の組成比率とする以外は、実施例2と同様にして評価した結果を表1に示した。50日放置プリプレグを用いた成形品及びスロ−成形品では、層間でポリイミドは溶解が不完全で繊維形状を保持していた。
【0043】
【表1】

Figure 0003571776
【0044】
【発明の効果】
本発明の炭素繊維強化多官能性マレイミド系樹脂プリプレグは、マトリックス樹脂の耐熱性を損なうことなく複合材料に優れた靱性を安定に付与することができるので、航空宇宙用構造材料などに極めて有用である。[0001]
[Industrial applications]
The present invention relates to an improvement of a carbon fiber reinforced polyfunctional maleimide-based resin prepreg.
[0002]
[Prior art]
The carbon fiber reinforced composite material has been widely used for various applications mainly for sporting goods, taking advantage of its characteristics of being excellent in specific strength and specific elasticity. At present, epoxy resin is the mainstream matrix resin, but epoxy resin does not have sufficient heat resistance, so carbon fiber reinforced epoxy resin composite material is a heat-resistant material that is increasing mainly in aerospace applications. It has become difficult to satisfy the requirements sufficiently.
[0003]
As the heat-resistant resin, thermosetting polyimide, bismaleimide, bismaleimide-triazine, cyanate resin, and the like are well known. Generally, a heat-resistant resin has a very brittle cured product and a composite material thereof. Has poor toughness and impact resistance, and its use is considerably restricted. In order to remedy this drawback, a method of blending a rubber component or a thermoplastic resin, a method of copolymerizing other monomer components, and the like have been proposed. There have been problems such as insufficient improvement, and improvement in the toughness of a composite material even if the fracture toughness of the resin alone is improved.
[0004]
In addition, as a concept of imparting toughness to the entire composite material, from the knowledge that it is effective to selectively reinforce the layers of the laminated body and to suppress delamination at the time of impact, a type of so-called interleaf is considered. Although a method of inserting an adhesive layer or an impact absorbing layer between layers has been proposed, it has not been generally used because of the drawbacks such as an inability to increase the reinforcing fiber content and poor handling properties as a prepreg. Further, a method has also been proposed in which rubber particles or high-toughness thermoplastic resin fine particles are localized on the surface of an epoxy resin prepreg to reinforce the interlayer of the laminate.
[0005]
On the other hand, it is thought that the same interlayer reinforcement technique can be used to improve the toughness of the composite material in a polyfunctional maleimide-based (bismaleimide) resin prepreg, but in this case, simply introducing a tough resin between the layers is considered. Is not enough. In particular, as an interlayer-introduced resin having a remarkably high toughness-improving effect when a polyfunctional maleimide-based resin is used as a matrix resin, it is obvious that the toughness of the introduced resin is high, and it is compatible with the polyfunctional maleimide-based resin, A resin (thermoplastic resin) that forms a sea-island structure in which a polyfunctional maleimide-based resin-rich phase is an island and a high-toughness resin-rich phase to be introduced is a sea at a predetermined amount of the cured resin. Is raised.
[0006]
The curing behavior and the properties after curing in a multi-component system composed of these thermosetting resins and thermoplastic resins fluctuate due to various factors, and the resulting composite material performance fluctuates greatly. There is a problem that no improvement can be obtained at all. One of the fluctuation factors is that the degree of B-staging (the degree of reaction progress) of the polyfunctional maleimide resin, which is a base matrix resin, depends on the compatibility with the high toughness thermoplastic resin to be introduced. And consequently adversely affect composite material performance, particularly toughness. In particular, in a situation where a small amount of a thermoplastic resin molded product is dissolved in a polyfunctional maleimide resin between layers of the prepreg laminated material, the B-stage of the polyfunctional maleimide resin as a base is formed. Variations in the performance of composite materials with the progress of the process have been a major issue.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a carbon fiber reinforced polyfunctional maleimide-based resin prepreg that can stably impart excellent toughness without impairing heat resistance to a carbon fiber reinforced multifunctional maleimide-based composite material. I do.
[0008]
[Means for Solving the Problems]
The present inventors have conducted various studies on a carbon fiber reinforced polyfunctional maleimide resin prepreg having a thermoplastic resin molded product on the surface, and found that the polyfunctional maleimide resin constituting the prepreg is a polyfunctional maleimide resin. By using a maleimide compound in which 50% by weight or more of the maleimide compound is present as solid fine particles in the resin and the solid fine particles are melted at a temperature not higher than the curing temperature, the toughness of the composite material formed by the prepreg is improved. Have been found to be able to be stably increased, and the present invention has been completed.
[0009]
That is, the present invention relates to a prepreg in which a carbon fiber is a reinforcing fiber, a polyfunctional maleimide resin is a matrix resin, and a thermoplastic resin molding is present on the surface. A resin containing a maleimide compound and (2) an alkenylphenol and / or an alkenylphenol ether compound as essential components. 50% by weight or more of the component (1) is present in the resin as solid fine particles and is cured. A prepreg characterized by being melted at a temperature not higher than the temperature.
[0010]
The term "carbon fiber" used in the present invention means both carbon fiber and graphite fiber. This carbon fiber is obtained by carbonizing a fibrous material such as polyacrylonitrile or pitch, which is usually referred to as a "precursor", or by heating it to a graphite temperature. High strength and high elongation carbon fibers having a degree of 1.7% or more are preferably used.
[0011]
Further, those obtained by introducing a functional group such as a hydroxyl group or a carboxylic acid group into the carbon fiber surface by subjecting the surface of the carbon fiber to electrolytic oxidation or ozone oxidation are preferably used. More preferably, carbon fibers obtained by further treating the carbon fiber surface with an aminosilane, an epoxysilane, a vinylsilane coupling agent or a metal coupling agent such as an amino titanate or amino zirconate after the oxidation treatment are more preferably used. Is done.
[0012]
The polyfunctional maleimide resin used in the present invention is a resin containing a polyfunctional maleimide compound and alkenylphenol and / or alkenylphenol ether as essential components. It is characterized in that at least a percentage by weight is present as solid fine particles in the resin and melts in the polyfunctional maleimide resin at a temperature below the curing temperature.
[0013]
As described above, a matrix resin in which 50% by weight or more of the polyfunctional maleimide compound is present as solid fine particles, and the fine particles are melted and mixed with the polyfunctional maleimide resin at a temperature equal to or lower than the curing temperature. By using this, it is possible to suppress the thermal history in the prepreg production step or the B-stage formation reaction of the polyfunctional maleimide resin due to storage of the resin or prepreg. Furthermore, it is possible to suppress fluctuations in the progress of curing due to differences in the rate of temperature rise during molding as much as possible.
[0014]
Therefore, it is possible to suppress a decrease in the solubility of the thermoplastic resin molded product in the polyfunctional maleimide resin, which is caused by the progress of the reaction of the polyfunctional maleimide resin, and to stably dissolve the thermoplastic resin molded product. Not only is it possible to obtain impact resistance with excellent stability as a composite material, but also eliminates the hassle of mixing the resin at a temperature higher than the melting temperature of the polyfunctional maleimide compound, which has been performed in the conventional resin preparation, and reduces the resin The progress of the B-staging reaction associated with such high-temperature mixing in the preparation step can also be suppressed, resulting in more favorable results in terms of stabilizing the performance of the composite material.
[0015]
In the present invention, melting of the fine particles of the polyfunctional maleimide compound into the polyfunctional maleimide resin means dissolving and / or melting. Examples of the polyfunctional maleimide compound to be used include the following compounds.
1,2-Bismaleimideethane, 1,6-Bismaleimidehexane, 1,12-Bismaleimidedodecane, 1,6-Bismaleimide- (2,2,4-trimethyl) hexane, 1,6-Bismaleimide- ( 2,4,4-trimethyl) hexane, 1,3-bismaleimidebenzene, 1,4-bismaleimidebenzene, 3,3′- or 4,4′-bismaleimidediphenylmethane, 3,3′- or 4,4 '-Bismaleimide diphenyl sulfone, 3,3'- or 4,4'-Bismaleimide diphenyl ether, 2,4-, 2,6- or 3,4-Bismaleimide toluene, 4,4'-Bismaleimide Diphenyl sulfide, 4,4'-bismaleimidodicyclohexylmethane, 4,4'-bismaleimidodicyclohexylhexene, N, N'-m- Or -p-xylylenebismaleimide, N, N'-m-phenylenebis-citraconimide, 2,2'-bis [4- (4-maleimitophenoxy) phenyl] furohan, bis [4- (4- Maleimitophenoxy) phenyl] sulfone, bis [4- (3-maleimitophenoxy) phenyl] sulfone, 1,3′-bis (4-maleimidophenoxy) benzene, 1,3′-bis (3-maleimidophenoxy) benzene , N, N '-[1,3-phenylene-cy- (2,2-furohiriten) -cy-p-phenylene] hismaleimit and the like, and mixtures thereof, and prepolymers comprising maleimide and diamine. As the diamine used for the prepolymer, an aromatic diamine such as diaminodiphenylmethane is preferable. Eutectic mixtures of 4,4'-bismaleimidediphenylmethane and this compound with 1,6-bismaleimide- (2,2,4-trimethyl) hexane and / or bismaleimidetoluene are also preferably used.
[0016]
The method for obtaining fine particles of the polyfunctional maleimide compound is usually obtained as it is as fine particles at the final stage of the synthesis, or thereafter, by pulverization by a known method. The particle size is usually on average 100 microns or less, preferably 50 microns or less. More preferably, it is 20 microns or less. If the particles are too large, it is difficult to obtain a prepreg uniformly dispersed in a matrix resin of a carbon fiber reinforced polyfunctional maleimide-based resin prepreg from which a polyfunctional maleimide compound can be obtained, and a uniform composite material cannot be obtained. Not preferred.
[0017]
In the present invention, it is necessary that 50% by weight or more of the polyfunctional maleimide compound is present as solid fine particles in the resin. If the amount is less than 50% by weight, the stability of the resin cannot be sufficiently obtained, which is not preferable. Further, in the present invention, the solid fine particles of the polyfunctional maleimide compound used need to be melted in the resin at a temperature lower than the curing temperature. Although an appropriate curing temperature may be set based on the type of the polyfunctional maleimide compound, usually, a curing temperature of 150 ° C. to 300 ° C. is suitably used, and the polyfunctional maleimide that melts in the resin at a temperature lower than this temperature is used. Fine particles of the compound are used. Most preferably used are fine particles of 3,3'- or 4,4'-bismaleimidodiphenylmethane, at which time the curing temperature is 180 ° C.
[0018]
The alkenylphenol and / or alkenylphenol ether compound is obtained by subjecting an alkenylphenol ether obtained by a reaction of a phenol compound to an alkenyl halide to a Claisen rearrangement of the alkenylphenol ether. The alkenylphenol obtained can be mentioned.
For example, alkenylphenol compounds such as o, o'-diallylbisphenol A and diallylbisphenol F, and bisphenol A as alkenylphenol ether before Claisen rearrangement reaction of these alkenylphenols. Examples include diallyl ether, bisphenol F diallyl ether, and allyl bisphenol A allyl ether and allyl bisphenol F allyl ether, which can be isolated during the Claisen reaction.
[0019]
Further, oligomeric allyl or propenyl terminal aryl ether sulfone or aryl ether terketone described in JP-A-62-201916 are also suitable. These alkenyl phenols and / or alkenyl phenol ether compounds can be used alone or as a mixture of two or more. Further, in the present invention, as the alkenylphenol and / or alkenylphenol ether compound, those which are liquids having a low viscosity at a temperature of 80 ° C. or lower, preferably at room temperature are preferably used.
[0020]
The mixing ratio of the polyfunctional maleimide compound to the alkenylphenol and / or alkenylphenol ether compound may be determined as desired. The range is preferable in terms of material properties. Further, it is possible to add an epoxy resin or the like for the purpose of improving desired properties, in particular, the adhesiveness when formed into a prepreg, and the adhesiveness to carbon fiber as a reinforcing material. The addition amount may be determined in consideration of a decrease in heat resistance and the like, but is preferably 20% by weight or less of the polyfunctional maleimide resin.
[0021]
Further, a catalyst may be added for the purpose of imparting desired properties to the cured product or adjusting the curing properties. Examples of the catalyst include organophosphines, organophosphonium salts, or complexes thereof, imidazoles, tertiary amines, quaternary ammonium salts, boron trifluoride amine complexes and organic peroxides, azobisisobutyro. A radical polymerization catalyst such as nitrile can be used. The amount of the catalyst to be added may be determined according to the purpose, but is preferably 0.01 to 5% by weight based on the total amount of the resin components from the viewpoint of stability.
[0022]
Further, a thermoplastic resin or an oligomer thereof may be used. In particular, so-called engineering plastics such as polyimide, polyetherimide, polysulfone, polyethersulfone, and polyetheretheroketone are preferable from the viewpoint of heat resistance. Are more preferred. These thermoplastic resins may be dissolved in a polyfunctional maleimide resin or may be mixed as fine powder.
The addition amount of the thermoplastic resin component is preferably 30% by weight or less, more preferably 15% by weight or less. If the addition amount of the thermoplastic resin component exceeds 30% by weight, the viscosity of the system becomes too high, which causes impregnation failure at the time of prepreg formation, and also significantly reduces the tack and drape properties of the prepreg. It also causes.
[0023]
It is also possible to add a small amount of inorganic fine particles such as finely divided silica or an elastomer component such as butadiene / acrylonitrile copolymer within a range not sacrificing prepreg characteristics, processing characteristics, mechanical characteristics, thermal characteristics and the like.
[0024]
In the present invention, as a method for preparing a polyfunctional maleimide-based resin, an ordinary known method is employed. For example, solid fine particles of the polyfunctional maleimide compound A are dispersed and mixed in a liquid alkenylphenol and / or alkenylphenol ether using a stirrer or a triple roll. In some cases, the polyfunctional maleimide compound B (the amount of B is less than the amount of A) and other components, additives, and the like may be polyfunctional at a temperature lower than the melting temperature of the solid fine particles of the polyfunctional maleimide compound A. And mixed at a temperature equal to or higher than the melting temperature of the maleimide compound B. The ratio between the carbon fibers and the polyfunctional maleimide resin in the carbon fiber reinforced polyfunctional maleimide resin prepreg of the present invention can be appropriately set according to the purpose, but the weight ratio is 60/40 to 75. The range of / 25 is particularly preferred.
[0025]
Further, in the present invention, a thermoplastic resin molded product is present on the surface of the prepreg. This thermoplastic resin molded article may be present on one side of the prepreg or on both sides thereof. Examples of the thermoplastic resin of the thermoplastic resin molded product include so-called engineering plastics such as polyamide, polyester, polyimide, polyetherimide, polyamideimide, polybenzimidazole, polyarylsulfone, and polyetheretheroketone; Examples include engineering plastics and polymer alloys. Those having a functional group capable of reacting with a polyfunctional maleimide resin such as an amino group, a phenolic hydroxyl group, an amide group, an allyl group, or a vinyl group in a molecular chain are preferable. , Engineering plastics, super engineering plastics, or polymer alloys in which is introduced into the terminal or in the molecular chain.
[0026]
Among them, it is soluble in polyfunctional maleimide resin, dissolves and separates during the molding and curing process, and after curing, the thermoplastic resin-rich phase becomes sea, and the thermosetting resin-rich phase becomes islands. Particularly preferred are, for example, polyimides and polyetherimides which exhibit a sea-island structure.
[0027]
Examples of the form of the thermoplastic resin molded product include a fiber form, a particle form, and a film form. As the particulate thermoplastic resin molded product, those which are commercially available as fine particles of the engineering plastic and super engineering plastic can be used, and those which are not commercially available as fine particles can be obtained by a known method such as grinding. Use in the form of fine particles. The particle size of the fine particles is preferably 100 μm or less, more preferably 2 to 60 μm.
[0028]
The fibrous thermoplastic resin molded article can be obtained by a known method such as melt spinning or solution spinning of the engineering plastic or super engineering plastic. The form of the fibrous material is not particularly limited, such as a monofilament, a multifilament, and a short fiber. The diameter of the fibrous material is preferably 100 μm or less, particularly preferably 50 μm or less. Furthermore, the structure of the woven fabric made from the fibrous material is not particularly limited, such as plain weave, satin weave, and knitted weave, and a nonwoven fabric can also be used. The woven fabric preferably has a woven fabric weight (weight per unit area) of 1 to 25 g / m 2 .
[0029]
Among these thermoplastic resin molded articles, the use of a fibrous material has the following advantages.
(1) A small amount of thermoplastic resin can be arranged on the prepreg surface.
(2) Tack level control of prepreg is possible.
(3) It is not necessary to handle a high-viscosity material, and the conventional prepreg manufacturing process can be used as it is.
(4) Quality control is easy.
[0030]
The thermoplastic resin molded article may be used in combination, for example, by arranging a fibrous article and a particulate article on the prepreg surface. The thermoplastic resin molding is used in a ratio of 0.5 to 50 parts by weight based on 100 parts by weight of the polyfunctional maleimide resin. If the amount is less than 0.5 part by weight, sufficient toughness improving effect cannot be obtained. If the amount exceeds 50 parts by weight, the toughness improving effect not only reaches a plateau but also decreases the surface tack or the type of resin used. It is not preferable because the solvent properties may decrease.
[0031]
The prepreg of the present invention can be manufactured, for example, by the following method. (1) A prepreg is prepared from a carbon fiber and a polyfunctional maleimide resin by an ordinary method, and a particulate thermoplastic resin or a short fibrous thermoplastic resin is sprinkled on the surface of the prepreg to be integrated, or a thermoplastic resin is formed. A method of bringing monofilaments or multifilaments together and integrating them.
(2) A method in which a prepared fibrous thermoplastic resin is impregnated with a polyfunctional maleimide-based resin to form a resin film and carbon fibers.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
(Example 1)
High strength medium elastic carbon fiber (Mitsubishi Rayon Co., MR-50K, tensile strength 5600MPa, elastic modulus 300GPa: 0.1% by weight aqueous solution of γ-aminopropyltriethoxysilane; surface oxidized, surface sizing agent is (Not adhered) was immersed and passed. Thereafter, it was dried with hot air at 130 ° C. for 2 minutes and wound up. Further, it was dried sufficiently at 80 ° C. for 12 hours under a reduced pressure of 15 mmHg or less. After the treatment, the carbon fiber showed the same appearance as that of the untreated carbon fiber.
[0033]
4,4′-Bismaleimidodiphenylmethane (manufactured by Mitsui Toatsu Co., Ltd.) is finely pulverized to obtain fine particles having an average particle size of 15 μm. The fine particles of 4,4′-bismaleimidodiphenylmethane were uniformly dispersed and mixed by three rolls at 30 ° C. Further, a polyfunctional maleimide resin was prepared by mixing Tactix 742 (manufactured by Dow) as an epoxy component at 60 ° C.
[0034]
Next, a unidirectional prepreg was produced from the carbon fiber and the polyfunctional maleimide resin by a hot melt method. The prepreg basis weight was 145 g / m 2 , and the resin content was 30% by weight.
[0035]
On the other hand, a solution prepared by dissolving a polyimide of matrimid 5218 (manufactured by Ciba Geigy) in a mixed solvent of methylene chloride / methanol (methylene chloride / methanol = 90/10 weight ratio) and adjusting to a predetermined viscosity (about 1200 poise). Was extruded into a fibrous form and dried to produce a polyimide multifilament of 200 denier / 52 filament.
[0036]
The polyimide multifilament was arranged on both surfaces of the prepreg and in the same direction as the carbon fibers at an interval of 2 mm so as to have a basis weight of 11 g / m 2 per one surface, and was lightly impregnated. The prepreg was immediately cut into a predetermined size and number of sheets, and four layers were laminated four times with carbon fiber directions of + 45 °, 0 °, −45 °, and 90 °, and then 90 °, −45 °, and 0 °. After laminating 4 layers at 4 ° and + 45 °, four times, the temperature was raised to 180 ° C. by an autoclave at a rate of 2 ° C./min, followed by curing at 180 ° C. for 6 hours. Further, it was post-cured at 232 ° C. for 6 hours to prepare a test piece for measuring compression strength after impact. Using this test piece, the compressive strength after impact of 1500 in-lb / in was measured in accordance with SACMA (Supplier of Advanced Materials Materials Association) Recommended Method SRM2-88. The results are shown in Table 1. As a result of microscopic observation of the cross section, the polyimide was dissolved between the layers and did not retain the fiber shape.
[0037]
The prepreg was allowed to stand at room temperature for 50 days, and a compression strength test piece after impact was prepared and evaluated in the same manner. As a result of microscopic observation of the cross section, the polyimide was dissolved between the layers and did not retain the fiber shape.
[0038]
The prepreg is heated to 180 ° C. at an autoclave at a rate of 10 ° C./hour, cured and molded at 180 ° C. for 6 hours (hereinafter abbreviated as slow molding), and further heated at 232 ° C. for 6 hours. Table 1 also shows the results of preparing a test piece for measuring compressive strength after impact after curing and evaluating the same. As a result of microscopic observation of the cross section, the polyimide was dissolved between the layers and did not retain the fiber shape.
[0039]
(Comparative Example 1)
Example 1 Example 1 was repeated except that 4,4′-bismaleimidodiphenylmethane was melted at 155 ° C. in diallyl bisphenol A at 155 ° C. and mixed uniformly as a polyfunctional maleimide resin. In the same manner as in the above, a carbon fiber reinforced polyfunctional maleimide resin prepreg was obtained, and the compression strength after impact was measured and evaluated. The results are shown in Table 1. As a result of microscopic observation of the cross section of the molded product and the molded product obtained by leaving the prepreg left at room temperature for 50 days, the polyimide between the layers retained the fiber shape and was not dissolved.
[0040]
(Example 2)
First, 4,4′-bismaleimidodiphenylmethane finely pulverized in the same manner as in Example 1 was used as a polyfunctional maleimide-based resin at the composition ratio shown in Table 1, and diallyl bisphenol A was used at room temperature using three rolls. After dispersion-mixing, Table 1 shows the results of evaluation in the same manner as in Example 1 except that a mixture obtained by melting and mixing Compimide 353 (a eutectic mixture of bismaleimide manufactured by Schul) and tactics 742 at 70 ° C. was used. . In all the test pieces, the polyimide between the layers dissolved and did not maintain the fiber shape.
[0041]
(Comparative Example 2)
The results were evaluated in the same manner as in Example 2 except that 4,4′-bismaleimidediphenylmethane was melted in diallyl bisphenol A at 155 ° C. and mixed uniformly at 155 ° C. as a polyfunctional maleimide resin. Are shown in Table 1. In the molded article and the slow molded article using the prepreg left for 50 days, the polyimide did not dissolve between the layers, and the fiber shape was maintained.
[0042]
(Comparative Example 3)
Table 1 shows the results of the evaluation performed in the same manner as in Example 2 except that the composition ratio of the polyfunctional maleimide-based resin was as shown in Table 1. In the molded article and the slow molded article using the prepreg left for 50 days, the polyimide was incompletely dissolved between the layers and retained the fiber shape.
[0043]
[Table 1]
Figure 0003571776
[0044]
【The invention's effect】
The carbon fiber-reinforced polyfunctional maleimide-based resin prepreg of the present invention can stably impart excellent toughness to the composite material without impairing the heat resistance of the matrix resin, and thus is extremely useful for structural materials for aerospace and the like. is there.

Claims (3)

炭素繊維を強化繊維とし、多官能性マレイミド系樹脂をマトリックス樹脂とし、且つ表面に熱可塑性樹脂成形物が存在するプリプレグにおいて、多官能性マレイミド系樹脂が(1)多官能性マレイミド化合物並びに(2)アルケニルフェノ−ル及び/又はアルケニルフェノ−ルエ−テル化合物を必須成分とする樹脂であり、成分(1)の50重量%以上が固形の微粒子として樹脂中に存在すると共に硬化温度以下の温度で溶融するものであることを特徴とするプリプレグ。In a prepreg having carbon fibers as reinforcing fibers, a polyfunctional maleimide-based resin as a matrix resin, and a thermoplastic resin molded product on the surface, the polyfunctional maleimide-based resin is composed of (1) a polyfunctional maleimide compound and (2) A) a resin containing an alkenylphenol and / or an alkenylphenol ether compound as an essential component, wherein at least 50% by weight of the component (1) is present as solid fine particles in the resin and at a temperature below the curing temperature. A prepreg characterized by being melted. 熱可塑性樹脂成形物が繊維状物である請求項1記載のプリプレグ。The prepreg according to claim 1, wherein the thermoplastic resin molded product is a fibrous material. 熱可塑性樹脂成形物が繊維状物であり、且つ多官能性マレイミド系樹脂に溶解可能なものである請求項1記載のプリプレグ。The prepreg according to claim 1, wherein the thermoplastic resin molded product is a fibrous material and is soluble in a polyfunctional maleimide-based resin.
JP26563294A 1994-10-28 1994-10-28 Prepreg Expired - Lifetime JP3571776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26563294A JP3571776B2 (en) 1994-10-28 1994-10-28 Prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26563294A JP3571776B2 (en) 1994-10-28 1994-10-28 Prepreg

Publications (2)

Publication Number Publication Date
JPH08127663A JPH08127663A (en) 1996-05-21
JP3571776B2 true JP3571776B2 (en) 2004-09-29

Family

ID=17419839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26563294A Expired - Lifetime JP3571776B2 (en) 1994-10-28 1994-10-28 Prepreg

Country Status (1)

Country Link
JP (1) JP3571776B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100561297B1 (en) 2004-09-09 2006-03-15 삼성에스디아이 주식회사 Lithium secondary battery
US8034442B2 (en) 2007-03-29 2011-10-11 Toho Tenax Co., Ltd. Fiber-reinforced prepreg and composite material obtained from the same
CN107200859B (en) * 2011-01-18 2021-02-05 昭和电工材料株式会社 Prepreg, and laminate and printed wiring board using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037689A (en) * 1989-02-17 1991-08-06 Basf Aktiengesellschaft Toughened thermosetting structural materials
US4957801A (en) * 1989-05-17 1990-09-18 American Cyanamid Company Advance composites with thermoplastic particles at the interface between layers
JPH05170952A (en) * 1991-12-25 1993-07-09 Mitsubishi Rayon Co Ltd Prepreg for carbon fiber-reinforced multifunctional maleimide-based resin composite material
DE69326059T2 (en) * 1993-01-14 2000-01-27 Toray Industries PREPREGS, METHOD FOR PRODUCING AND COMPOSITE COATING

Also Published As

Publication number Publication date
JPH08127663A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
US5037689A (en) Toughened thermosetting structural materials
JP5081812B2 (en) Resin soluble thermoplastic veil for composite materials
KR101648604B1 (en) Particle-toughened fiber-reinforced polymer composites
JP3359037B2 (en) "Prepreg and fiber-reinforced composite materials"
US5230956A (en) Polyamide-imide sized fibers
KR101727763B1 (en) Particle-toughened polymer compositions
JP2958911B2 (en) Reinforced thermosetting structural material
EP0488389B1 (en) Prepregs, process for producing the same and laminates produced with the same
EP0175484A2 (en) Sized fibres
JPS63170428A (en) Production of prepreg
JP5451379B2 (en) Fiber reinforced prepreg and composite material obtained therefrom
JP3571776B2 (en) Prepreg
JP3312470B2 (en) Prepreg and laminate
US5120823A (en) Toughened thermosetting structural materials
JPH04292634A (en) Prepreg
JPH05170952A (en) Prepreg for carbon fiber-reinforced multifunctional maleimide-based resin composite material
JP3593367B2 (en) Carbon fiber reinforced thermosetting resin prepreg
NL9101120A (en) FIBER-REINFORCED COMPOSITIONS TURNED WITH POROUS RESIN PARTICLES.
JPH07157578A (en) Tow prepreg
JPH0381342A (en) Manufacture of prepreg
JP3065684B2 (en) Prepreg
EP2196490A1 (en) Fiber-reinforced prepreg and composite material obtained therefrom
US20110130059A1 (en) Fiber-reinforced prepreg and composite material obtained therefrom
JP4817919B2 (en) Fiber reinforced prepreg and composite material obtained therefrom
JPH06207035A (en) Prepreg for carbon fiber reinforced polyfunctional maleimide resin composite material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term