JP2017133131A - Recycled carbon short fiber nonwoven fabric, and composite body - Google Patents

Recycled carbon short fiber nonwoven fabric, and composite body Download PDF

Info

Publication number
JP2017133131A
JP2017133131A JP2016015161A JP2016015161A JP2017133131A JP 2017133131 A JP2017133131 A JP 2017133131A JP 2016015161 A JP2016015161 A JP 2016015161A JP 2016015161 A JP2016015161 A JP 2016015161A JP 2017133131 A JP2017133131 A JP 2017133131A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
recycled carbon
fibers
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016015161A
Other languages
Japanese (ja)
Other versions
JP6718244B2 (en
Inventor
高岡 和千代
Kazuchiyo Takaoka
和千代 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2016015161A priority Critical patent/JP6718244B2/en
Publication of JP2017133131A publication Critical patent/JP2017133131A/en
Application granted granted Critical
Publication of JP6718244B2 publication Critical patent/JP6718244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a recycled carbon short fiber nonwoven fabric in which the dispersibility of a recycled carbon short fiber does not deteriorate and the processability is excellent when subjecting to heating or heating and compressing treatment in a production process of a recycled carbon fiber reinforced thermoplastic resin composite body, and when subjecting to heat press processing in a production process of a molded article from the recycled carbon fiber reinforced thermoplastic resin composite body, and a composite body obtained by laminating the recycled carbon short fiber nonwoven fabric and a thermoplastic resin film.SOLUTION: The recycled carbon short fiber nonwoven fabric includes a recycled carbon short fiber, a thermoplastic resin fiber, and a fibrillated cellulose fiber. The composite body is obtained by laminating the recycled carbon short fiber nonwoven fabric and a thermoplastic resin film.SELECTED DRAWING: None

Description

本発明は、リサイクル炭素短繊維不織布及びリサイクル炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体に関する。   The present invention relates to a recycled carbon short fiber nonwoven fabric and a composite formed by laminating a recycled carbon short fiber nonwoven fabric and a thermoplastic resin film.

炭素繊維と樹脂を複合化してなる炭素繊維強化樹脂複合体は、長繊維織布、開繊織物、一方向性ウェブ、長繊維不織布、短繊維不織布等の炭素繊維布帛と、熱硬化性樹脂、熱可塑性樹脂等の樹脂とを複合させた複合体である。最も一般的な炭素繊維強化樹脂複合体は、炭素長繊維布帛と熱硬化性樹脂とを複合させた複合体である。炭素繊維強化樹脂複合体は、金属材料に匹敵する強度・弾性率を有しながら、金属材料よりも比重が小さいため、部材の軽量化を図ることができ、また、発錆の問題もなく、酸やアルカリにも強いという性質を有していることから、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等で使用されている。しかし、その一方で、年間数万トンという規模での廃棄物の問題が生じており、炭素繊維強化樹脂複合体の廃材をリサイクルする技術が必要となっている。   A carbon fiber reinforced resin composite formed by combining carbon fibers and a resin is a carbon fiber fabric such as a long fiber woven fabric, a spread fabric, a unidirectional web, a long fiber nonwoven fabric, and a short fiber nonwoven fabric, a thermosetting resin, It is a composite in which a resin such as a thermoplastic resin is combined. The most common carbon fiber reinforced resin composite is a composite comprising a carbon long fiber fabric and a thermosetting resin. The carbon fiber reinforced resin composite has a strength and elastic modulus comparable to that of a metal material, but has a specific gravity smaller than that of a metal material, so the weight of the member can be reduced, and there is no problem of rusting. Because it is resistant to acids and alkalis, electronic parts, electrical equipment materials, civil engineering materials, building materials, automotive materials, aircraft materials, robots and rolls used in various manufacturing parts Etc. are used. However, on the other hand, there is a problem of waste on the scale of several tens of thousands of tons per year, and a technique for recycling the waste material of the carbon fiber reinforced resin composite is required.

炭素繊維強化樹脂複合体のリサイクル方法として、複合体を粉砕することによって、所定粒径の粉体を得、新たに樹脂と混合して利用する方法が提案されている(例えば、特許文献1参照)。しかし、この方法では、高いアスペクト比を有する炭素繊維が含有されているものの、粉砕物として単なる充填剤として利用されているので、炭素繊維の特性が充分発揮されているとは言い難い。そこで、複合体を裁断した後、500℃から900℃で焼結することにより、樹脂を除き、炭素繊維を短繊維の状態で取り出し、新たにポリプロピレンなどの熱可塑性樹脂と複合化して利用する方法が提案されている(例えば、特許文献2参照)。しかし、焼結温度と焼結時間の兼ね合いが難しく、炭素繊維自体も熱損傷を受けやすいという問題があった。   As a recycling method of a carbon fiber reinforced resin composite, a method has been proposed in which a powder having a predetermined particle size is obtained by pulverizing the composite and is newly mixed with a resin (see, for example, Patent Document 1). ). However, in this method, although carbon fibers having a high aspect ratio are contained, it is difficult to say that the characteristics of carbon fibers are sufficiently exhibited because they are used as a pulverized product as a simple filler. Therefore, after the composite is cut, the resin is removed by sintering at 500 ° C. to 900 ° C., and the carbon fiber is taken out in a short fiber state and newly combined with a thermoplastic resin such as polypropylene and used. Has been proposed (see, for example, Patent Document 2). However, there is a problem that it is difficult to balance the sintering temperature and the sintering time, and the carbon fiber itself is easily damaged by heat.

一方、炭素繊維強化樹脂複合体の廃材から得られたリサイクル炭素繊維の利用技術も検討されていて、短繊維状のリサイクル炭素繊維(リサイクル炭素短繊維)を含有するリサイクル炭素繊維強化樹脂複合体を製造することが試みられている。上述したように、炭素長繊維布帛と熱硬化性樹脂とを複合させた複合体が一般的であるが、設計が難しい、均質材料ではない、成形加工時間が長い、高価等の課題があるため、最近では、炭素短繊維不織布と熱可塑性樹脂とが複合された炭素繊維強化熱可塑性樹脂複合体が検討されている(例えば、特許文献3〜8参照)。   On the other hand, the utilization technology of the recycled carbon fiber obtained from the waste material of the carbon fiber reinforced resin composite is also examined, and the recycled carbon fiber reinforced resin composite containing the short carbon fiber (recycled carbon short fiber) is used. Attempts have been made to manufacture. As described above, composites in which carbon long fiber fabrics and thermosetting resins are combined are common, but there are problems such as difficult design, non-homogeneous materials, long molding time, and high costs. Recently, a carbon fiber reinforced thermoplastic resin composite in which a carbon short fiber nonwoven fabric and a thermoplastic resin are combined has been studied (for example, see Patent Documents 3 to 8).

炭素短繊維不織布を用いた炭素繊維強化熱可塑性樹脂複合体としては、炭素短繊維と熱可塑性樹脂粉末又は繊維とを含む炭素短繊維不織布を積層してなる複合体、炭素短繊維不織布に溶融した熱可塑性樹脂又は熱可塑性樹脂の溶液・分散液とを複合してなる複合体、炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体等が知られている。これらの炭素繊維強化熱可塑性樹脂複合体を製造する場合には、加熱又は加熱加圧処理が施される。また、炭素繊維強化熱可塑性樹脂複合体は、そのままで、又は他の材料と組み合わせて、加熱加圧加工(熱プレス加工)が施されることによって、成型品となる。よって、リサイクル炭素短繊維を用いた炭素強化熱可塑性樹脂複合体(リサイクル炭素繊維強化熱可塑性樹脂複合体)を製造するにあたっては、リサイクル炭素短繊維を含有する不織布(リサイクル炭素短繊維不織布)が必要である。   As a carbon fiber reinforced thermoplastic resin composite using a carbon short fiber nonwoven fabric, a carbon short fiber nonwoven fabric containing carbon short fibers and thermoplastic resin powder or fiber is laminated, and the carbon short fiber nonwoven fabric is melted. A composite formed by combining a thermoplastic resin or a solution / dispersion of a thermoplastic resin, a composite formed by laminating a carbon short fiber nonwoven fabric and a thermoplastic resin film, and the like are known. When manufacturing these carbon fiber reinforced thermoplastic resin composites, a heating or heating and pressing treatment is performed. In addition, the carbon fiber reinforced thermoplastic resin composite is formed into a molded product by being subjected to heat and pressure processing (hot press processing) as it is or in combination with other materials. Therefore, when manufacturing carbon reinforced thermoplastic resin composites (recycled carbon fiber reinforced thermoplastic resin composites) using recycled carbon short fibers, a nonwoven fabric containing recycled carbon short fibers (recycled carbon short fiber nonwoven fabric) is required. It is.

例えば、リサイクル炭素短繊維不織布としてリサイクル炭素繊維を用いた炭素繊維紙が提案されている(例えば、特許文献9参照)。しかし、この炭素繊維紙は、焼結等で得られたリサイクル炭素繊維を用いており、炭素繊維が粉末状のミルド糸や、長くても数mm程度のチョップド糸(短繊維)であるため、新品の炭素繊維からなるシート状物と、リサイクル炭素繊維含有シート状物を積層していて、リサイクル炭素繊維を有効活用する技術とは言い難い。   For example, carbon fiber paper using recycled carbon fiber as a recycled carbon short fiber nonwoven fabric has been proposed (see, for example, Patent Document 9). However, this carbon fiber paper uses a recycled carbon fiber obtained by sintering or the like, and the carbon fiber is a powdered milled yarn or a chopped yarn (short fiber) of about several mm at the longest. It is difficult to say that this is a technology for effectively using recycled carbon fibers by laminating sheet-like materials made of new carbon fibers and recycled carbon fiber-containing sheets.

また、別のリサイクル炭素短繊維不織布として、焼結等で得られたリサイクル炭素短繊維と、他の短繊維状の熱可塑性樹脂繊維とを混合して、乾式法によりウェッブを形成させ、これを熱圧で圧縮し、リサイクル炭素短繊維を含有するリサイクル炭素短繊維シートを得る方法が提案されている(例えば、特許文献10参照)。しかし、この方法では、リサイクル炭素短繊維と熱可塑性樹脂繊維との密着性まで考慮されておらず、リサイクル炭素短繊維不織布の強度が不足するなどの問題を残していた。   In addition, as another recycled short carbon fiber nonwoven fabric, a recycled carbon short fiber obtained by sintering or the like and another short fiber-like thermoplastic resin fiber are mixed to form a web by a dry method. A method of compressing with hot pressure to obtain a recycled carbon short fiber sheet containing recycled carbon short fibers has been proposed (see, for example, Patent Document 10). However, this method does not take into account the adhesiveness between the recycled short carbon fiber and the thermoplastic resin fiber, and has left problems such as insufficient strength of the recycled short carbon fiber nonwoven fabric.

そして、特許文献3及び4に提案されているリサイクル炭素短繊維不織布を用いて、リサイクル炭素繊維強化樹脂複合体を製造する際に、加熱又は加熱加圧処理及び加熱加圧加工等を行うと、熱可塑性樹脂が流動することによって、リサイクル炭素短繊維の分散性が崩れ、均一なリサイクル炭素繊維強化熱可塑性樹脂複合体又は成型品が得られないという問題があった。   And when manufacturing a recycled carbon fiber reinforced resin composite using the recycled carbon short fiber nonwoven fabric proposed in Patent Documents 3 and 4, when performing heating or heating and pressing treatment and heating and pressing processing, Due to the flow of the thermoplastic resin, the dispersibility of the recycled short carbon fibers is lost, and there is a problem that a uniform recycled carbon fiber reinforced thermoplastic resin composite or molded product cannot be obtained.

特許第4565461号公報Japanese Patent No. 4565461 特許第4452740号公報Japanese Patent No. 4454740 特開2013−208791号公報JP 2013-208791 A 特開2013−202891号公報JP 2013-202891 A 特開2011−21303号公報JP 2011-21303 A 特開2004−43985号公報JP 2004-43985 A 特開2011−194852号公報JP 2011-194852 A 特開2014−224333号公報JP 2014-224333 A 特開2013−249555号公報JP2013-249555A 特表2013−519546号公報Special table 2013-519546 gazette

本発明の課題は、リサイクル炭素繊維強化熱可塑性樹脂複合体製造時の加熱又は加熱加圧処理時及びリサイクル炭素繊維強化熱可塑性樹脂複合体から成型品を製造する熱プレス加工時において、リサイクル炭素短繊維の分散性が崩れ難く、加工性に優れたリサイクル炭素短繊維不織布と、該リサイクル炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体を提供することである。   The object of the present invention is to provide a recycled carbon fiber short during heating or heat-pressure treatment during the production of a recycled carbon fiber reinforced thermoplastic resin composite and during hot press processing for producing a molded product from the recycled carbon fiber reinforced thermoplastic resin composite. An object of the present invention is to provide a recycled carbon short fiber nonwoven fabric excellent in processability, in which the dispersibility of the fibers is not easily lost, and a composite formed by laminating the recycled carbon short fiber nonwoven fabric and a thermoplastic resin film.

上記課題は、下記発明によって解決することができる。   The above problems can be solved by the following invention.

(1)リサイクル炭素短繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有してなるリサイクル炭素短繊維不織布。 (1) A recycled carbon short fiber nonwoven fabric comprising recycled carbon short fibers, thermoplastic resin fibers, and fibrillated cellulose fibers.

(2)フィブリル化セルロース繊維の配合率が、不織布中の全繊維に対して、2〜20質量%であることを特徴とする(1)記載のリサイクル炭素短繊維不織布。 (2) The recycled carbon short fiber nonwoven fabric according to (1), wherein the blending ratio of the fibrillated cellulose fibers is 2 to 20% by mass with respect to all the fibers in the nonwoven fabric.

(3)(1)又は(2)記載のリサイクル炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体。 (3) A composite formed by laminating the recycled carbon short fiber nonwoven fabric according to (1) or (2) and a thermoplastic resin film.

本発明によれば、リサイクル炭素繊維強化熱可塑性樹脂複合体製造時の加熱又は加熱加圧処理時及びリサイクル炭素繊維強化熱可塑性樹脂複合体から成型品を製造する熱プレス加工時において、リサイクル炭素短繊維の分散性が崩れ難く、加工性に優れたリサイクル炭素短繊維不織布を得ることができる。本発明のリサイクル炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体は、加熱又は加熱加圧処理及び熱プレス加工において、リサイクル炭素短繊維不織布の炭素短繊維の均一性が保持されるため、均一なリサイクル炭素繊維強化熱可塑性樹脂複合体を得ることができる。   According to the present invention, when the recycled carbon fiber reinforced thermoplastic resin composite is heated or heated and pressed, and during the hot press process for producing a molded product from the recycled carbon fiber reinforced thermoplastic resin composite, the recycled carbon short It is possible to obtain a recycled short carbon fiber non-woven fabric that is less likely to lose the dispersibility of the fiber and has excellent processability. In the composite formed by laminating the recycled carbon short fiber nonwoven fabric and the thermoplastic resin film of the present invention, the uniformity of the carbon short fibers of the recycled carbon short fiber nonwoven fabric is maintained in heating or heat-pressing treatment and hot press processing. Therefore, a uniform recycled carbon fiber reinforced thermoplastic resin composite can be obtained.

本発明のリサイクル炭素短繊維不織布は、リサイクル炭素短繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有してなる不織布である。   The recycled carbon short fiber nonwoven fabric of the present invention is a nonwoven fabric containing recycled carbon short fibers, thermoplastic resin fibers, and fibrillated cellulose fibers.

本発明におけるリサイクル炭素短繊維とは、炭素繊維と樹脂を複合化してなる炭素繊維強化樹脂複合体から得られるリサイクル品である。炭素繊維強化樹脂複合体は、長繊維織布、開繊織物、一方向性ウェブ、長繊維不織布、短繊維不織布等の炭素繊維布帛と、熱硬化性樹脂、熱可塑性樹脂等の樹脂とを複合させた複合体である。最も一般的な炭素繊維強化樹脂複合体は、炭素長繊維布帛と熱硬化性樹脂とを複合させた複合体である。炭素繊維としては、アクリル繊維を用いたPAN系やピッチを用いたピッチ系炭素繊維が挙げられる。炭素繊維強化樹脂複合体から、熱処理法、焼結法、過熱法、過熱水蒸気法等のリサイクル処理方法により、樹脂が除去されることによって得られる、短繊維状の炭素繊維がリサイクル炭素短繊維である。   The recycled carbon short fiber in the present invention is a recycled product obtained from a carbon fiber reinforced resin composite formed by combining carbon fiber and resin. A carbon fiber reinforced resin composite is a composite of carbon fiber fabrics such as long fiber woven fabrics, spread fabrics, unidirectional webs, long fiber nonwoven fabrics and short fiber nonwoven fabrics, and resins such as thermosetting resins and thermoplastic resins. This is a complex. The most common carbon fiber reinforced resin composite is a composite comprising a carbon long fiber fabric and a thermosetting resin. Examples of the carbon fiber include a PAN system using acrylic fiber and a pitch system carbon fiber using pitch. The short fiber-like carbon fiber obtained by removing the resin from the carbon fiber reinforced resin composite by a heat treatment method, a sintering method, a superheating method, a superheated steam method or the like is a recycled carbon short fiber. is there.

本発明では、リサイクル炭素短繊維が大気下など酸素を含む気体中で熱処理されると、炭素短繊維自体の損傷を伴うので、窒素、アルゴン、水蒸気などの気体中で熱処理されるのが好ましい。熱処理温度としては、好ましくは400℃から800℃であり、更に好ましくは450℃から600℃である。   In the present invention, when the recycled short carbon fiber is heat-treated in a gas containing oxygen such as in the atmosphere, the short carbon fiber itself is damaged. Therefore, it is preferable to heat-treat in a gas such as nitrogen, argon, or water vapor. The heat treatment temperature is preferably 400 ° C to 800 ° C, more preferably 450 ° C to 600 ° C.

リサイクル炭素短繊維の繊維長は、原料である複合体の製造方法に依存する。例えば、炭素長繊維布帛と熱硬化性樹脂とを複合させた複合体は、熱硬化性樹脂を含浸した炭素長繊維布帛であるプリプレグを複数枚積層し、加熱して熱硬化性樹脂を硬化させることによって製造される。プリプレグの積層構成には、複合体全体の炭素長繊維が一方向に配向した配向角θが0°である一方向プライ、配向角θが0°と90°の二方向である直交プライ、配向角+θと−θ(0°<θ<90°)が組み合わせて積層されているアングルプライ等がある。リサイクル処理では、原料である複合体を小さく裁断するため、裁断方向に対して垂直に配向する炭素繊維、水平に配向する炭素繊維、斜めに配向する繊維は、それぞれ、裁断後の繊維長が異なるので、リサイクル炭素短繊維の繊維長は、このプリプレグの積層構成に依存する。本発明において、リサイクル炭素短繊維の好ましい繊維長は3mmから500mmであり、より好ましくは6mmから150mmである。   The fiber length of the recycled carbon short fiber depends on the production method of the composite as a raw material. For example, in a composite in which a carbon long fiber fabric and a thermosetting resin are combined, a plurality of prepregs, which are carbon long fiber fabrics impregnated with a thermosetting resin, are laminated and heated to cure the thermosetting resin. Manufactured by. The prepreg laminate structure includes a unidirectional ply in which the carbon long fibers of the entire composite are oriented in one direction and an orientation angle θ of 0 °, an orthogonal ply in which the orientation angles θ are in two directions of 0 ° and 90 °, and orientation There is an angle ply in which angles + θ and −θ (0 ° <θ <90 °) are stacked in combination. In the recycling process, since the composite as a raw material is cut into small pieces, the carbon fiber oriented perpendicular to the cutting direction, the carbon fiber oriented horizontally, and the fiber oriented obliquely have different fiber lengths after cutting. Therefore, the fiber length of the recycled carbon short fiber depends on the laminated configuration of the prepreg. In the present invention, the preferred fiber length of the recycled short carbon fiber is 3 mm to 500 mm, more preferably 6 mm to 150 mm.

熱可塑性樹脂繊維は、リサイクル炭素短繊維が不織布から脱離することを防止し、リサイクル炭素短繊維不織布に強度を付与ために添加される。熱可塑性樹脂繊維としては、非結晶性のポリビニルアルコール(ビニロン)短繊維、表面が低融点化されているポリエステル芯鞘繊維、未延伸ポリエステル繊維、ポリカーボネート(PC)繊維、ポリオレフィン繊維、表面が低融点化されているポリオレフィン芯鞘繊維、表面が酸変性ポリオレフィンよりなるポリオレフィン繊維、脂肪族ポリアミド繊維、未延伸ポリフェニレンスルフィド繊維、ポリエーテルケトンケトン繊維等が挙げられる。   The thermoplastic resin fibers are added to prevent the recycled carbon short fibers from being detached from the nonwoven fabric and to impart strength to the recycled carbon short fiber nonwoven fabric. Thermoplastic resin fibers include non-crystalline polyvinyl alcohol (vinylon) short fibers, polyester core-sheath fibers whose surfaces have a low melting point, unstretched polyester fibers, polycarbonate (PC) fibers, polyolefin fibers, and low melting points on the surface. Polyolefin core-sheath fibers that have been formed, polyolefin fibers whose surface is made of acid-modified polyolefin, aliphatic polyamide fibers, unstretched polyphenylene sulfide fibers, polyether ketone ketone fibers, and the like.

熱可塑性樹脂繊維の融点は60〜260℃であることが好ましく、60〜230℃であることがより好ましく、60〜180℃であることが更に好ましく、80〜160℃であることが特に好ましい。熱可塑性樹脂繊維の融点がこの温度範囲であることによって、不織布製造工程における加熱処理によって、結着性が付与され、リサイクル炭素短繊維不織布に強度が付与される。   The melting point of the thermoplastic resin fiber is preferably 60 to 260 ° C, more preferably 60 to 230 ° C, still more preferably 60 to 180 ° C, and particularly preferably 80 to 160 ° C. When the melting point of the thermoplastic resin fiber is within this temperature range, the heat treatment in the nonwoven fabric manufacturing process imparts binding properties and imparts strength to the recycled carbon short fiber nonwoven fabric.

熱可塑性樹脂繊維の繊維径は3〜40μmであることが好ましく、5〜20μmであることがより好ましい。また、熱可塑性樹脂繊維の繊維長は1〜20mmであることが好ましく、3〜12mmであることがより好ましい。   The fiber diameter of the thermoplastic resin fiber is preferably 3 to 40 μm, and more preferably 5 to 20 μm. Moreover, it is preferable that the fiber length of a thermoplastic resin fiber is 1-20 mm, and it is more preferable that it is 3-12 mm.

本発明において、リサイクル炭素短繊維不織布に、リサイクル炭素短繊維に加えて、フィブリル化セルロース繊維と熱可塑性樹脂繊維とを併用することによって、加熱又は加熱加圧処理時及び熱プレス加工時において、リサイクル炭素短繊維の分散性が崩れない、加工性に優れたリサイクル炭素短繊維不織布を得ることができる。   In the present invention, recycled carbon short fiber nonwoven fabric is recycled in combination with fibrillated cellulose fiber and thermoplastic resin fiber in addition to recycled carbon short fiber, at the time of heating or heat press treatment and hot press processing. It is possible to obtain a recycled carbon short fiber nonwoven fabric excellent in processability, in which the dispersibility of the carbon short fibers is not lost.

フィブリル化セルロース繊維とは、フィルム状ではなく、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部が繊維径1μm以下であるセルロース繊維である。長さと幅のアスペクト比が20〜100000であることが好ましい。また、変法濾水度が0〜770mlであることが好ましく、0〜600mlであることがより好ましい。さらに、質量平均繊維長が0.1〜2mmであることが好ましい。本発明における変法濾水度は、ふるい板として線径0.14mm、目開き0.18mmの金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を用い、試料濃度を0.1%にした以外はJIS P8121(1995年版)に準拠して測定した濾水度である。   The fibrillated cellulose fiber is not a film shape, but a fiber shape having a portion finely divided mainly in a direction parallel to the fiber axis, and at least a part thereof is a cellulose fiber having a fiber diameter of 1 μm or less. The aspect ratio of length to width is preferably 20 to 100,000. Moreover, it is preferable that modified drainage is 0-770 ml, and it is more preferable that it is 0-600 ml. Furthermore, the mass average fiber length is preferably 0.1 to 2 mm. The modified freeness in the present invention is that a wire mesh (made by PULP AND PAPER RESEARCH INSTITUTE OF CANADA) having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. It is a freeness measured in accordance with JIS P8121 (1995 edition).

フィブリル化セルロースのフィブリル化度合いは、低濃度での分散液粘度で把握することも可能である。粘度が高くなるほど、フィブリル化が進行しているが、粘度が高過ぎる場合は、繊維長が短くなり過ぎている可能性がある。フィブリル化セルロースの分散液(濃度0.5質量%)の粘度が、B型粘度計(ローターNo.2、ローター回転数60rpm、温度23〜25℃)を用いた場合、50〜200cpであることが好ましい。   The degree of fibrillation of fibrillated cellulose can also be grasped by the dispersion viscosity at a low concentration. As the viscosity increases, fibrillation progresses, but if the viscosity is too high, the fiber length may be too short. The viscosity of the fibrillated cellulose dispersion (concentration 0.5% by mass) is 50 to 200 cp when a B-type viscometer (rotor No. 2, rotor rotation speed 60 rpm, temperature 23 to 25 ° C.) is used. Is preferred.

フィブリル化セルロース繊維の配合率が少な過ぎると、加熱又は加熱加圧処理時及び熱プレス加工時において、加熱温度が高過ぎた場合に、リサイクル炭素短繊維の分散性が崩れることがある。逆に、フィブリル化セルロース繊維の配合率が多過ぎると、不織布製造時に脱水された後、フィブリル化セルロース同士が密な構造を形成して、フィルム状となり、熱プレス加工時にリサイクル炭素短繊維不織布内へ熱可塑性樹脂フィルムが進入し難くなる。また、リサイクル炭素短繊維不織布と熱可塑性樹脂繊維とを積層してなる複合体に、ボイドが見られる場合がある。フィブリル化セルロース繊維の配合率は、不織布中の全繊維に対して、2〜20質量%であることが好ましく、2〜15質量%であることがより好ましく、5〜15質量%であることが更に好ましい。   When the blending ratio of the fibrillated cellulose fibers is too small, the dispersibility of the recycled short carbon fibers may be lost when the heating temperature is too high during the heating or heating and pressurizing treatment and the hot pressing process. On the other hand, if the blending ratio of fibrillated cellulose fibers is too large, the fibrillated celluloses form a dense structure after dehydration during the production of the nonwoven fabric, forming a film, and inside the recycled carbon short fiber nonwoven fabric during hot press processing It becomes difficult for the thermoplastic resin film to enter. Moreover, a void may be seen in the composite body which laminates | stacks a recycled carbon short fiber nonwoven fabric and a thermoplastic resin fiber. The blending ratio of the fibrillated cellulose fiber is preferably 2 to 20% by mass, more preferably 2 to 15% by mass, and 5 to 15% by mass with respect to all the fibers in the nonwoven fabric. Further preferred.

フィブリル化セルロース繊維用のセルロース材料としては、植物パルプ、溶剤紡糸セルロース、半合成セルロース等が挙げられる。植物パルプとしては、広葉樹材(L材)や針葉樹材(N材)を用いたクラフトパルプ(KP)、溶解パルプ(DP)、溶解クラフトパルプ(DKP)などの木質系パルプが挙げられる。また、藁、麻、コットン、コットンリンターなどの非木質系パルプも挙げられる。市販品としては、セリッシュ(登録商標、ダイセルファインケム社製)が挙げられる。なお、セルロース材料の結晶形には、I型、II型、III型、IV型等があるが、耐熱性の観点から、I型、II型が好ましく、I型がより好ましい。I型のセルロース材料源としては、コットンパルプ、コットンリンターパルプ、麻パルプ、ケナフパルプなどの非木質系パルプで、リグニン及びヘミセルロースの含有量が低減されたパルプ、L材又はN材から得られる、リグニン及びヘミセルロースの含有量が低減されたKP、DP、DKPなどの木質系パルプが挙げられる。特に、コットン系材料が好ましい。   Cellulose materials for fibrillated cellulose fibers include vegetable pulp, solvent-spun cellulose, semi-synthetic cellulose and the like. Examples of plant pulp include woody pulp such as kraft pulp (KP), dissolved pulp (DP), and dissolved kraft pulp (DKP) using hardwood (L material) and softwood (N material). Moreover, non-woody pulps such as straw, hemp, cotton, and cotton linter are also included. As a commercially available product, serisch (registered trademark, manufactured by Daicel FineChem) can be mentioned. The crystal form of the cellulose material includes type I, type II, type III, type IV, and the like. From the viewpoint of heat resistance, type I and type II are preferable, and type I is more preferable. As the type I cellulose material source, non-woody pulp such as cotton pulp, cotton linter pulp, hemp pulp, kenaf pulp, etc., which is obtained from pulp with reduced lignin and hemicellulose content, L material or N material, And wood pulps such as KP, DP and DKP with a reduced content of hemicellulose. In particular, a cotton material is preferable.

フィブリル化セルロースを得るためには、セルロース材料が、まず、水中で分散され、機械的に粉砕される。そして、セルロース材料の繊維が解繊されてミクロフィブリルが形成される。セルロース材料を解繊する装置としては、ディスクリファイナー、石臼型磨砕機、高圧ホモジナイザー、ボールミル、水中カウンターコリジョン法用装置、超音波破砕器等が挙げられる。これらの装置を適宜組み合わせて使用することもできる。   To obtain fibrillated cellulose, the cellulosic material is first dispersed in water and mechanically ground. And the fiber of a cellulose material is defibrated and a microfibril is formed. Examples of the device for defibrating the cellulose material include a disc refiner, a stone mill type grinder, a high-pressure homogenizer, a ball mill, an underwater counter collision method device, and an ultrasonic crusher. These devices can be used in appropriate combination.

リサイクル炭素短繊維と熱可塑性樹脂繊維の含有比率(質量基準)は、8.5:0.5〜5:4であることが好ましく、8:1〜6:3であることがより好ましい。リサイクル炭素短繊維と熱可塑性樹脂の含有比率を上記範囲内とすることにより、リサイクル炭素短繊維不織布及び複合体並びに成型品の強度を高めることができる。   The content ratio (mass basis) of the recycled short carbon fiber and the thermoplastic resin fiber is preferably 8.5: 0.5 to 5: 4, and more preferably 8: 1 to 6: 3. By setting the content ratio of the recycled short carbon fiber and the thermoplastic resin within the above range, the strength of the recycled short carbon fiber nonwoven fabric, the composite, and the molded product can be increased.

本発明におけるリサイクル炭素短繊維不織布は、湿式抄造法で製造された湿式抄造不織布であることが好ましい。湿式抄造法では、まず、リサイクル炭素短繊維、熱可塑性樹脂繊維、フィブリル化セルロース繊維を均一に水中に分散させ、その後、スクリーン(異物、塊等除去)等の工程を通り、最終の繊維濃度を0.01〜0.50質量%に調整されたスラリーが抄紙機で抄き上げられ、湿紙が得られる。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。   The recycled carbon short fiber nonwoven fabric in the present invention is preferably a wet papermaking nonwoven fabric produced by a wet papermaking method. In the wet papermaking method, first, recycled carbon short fibers, thermoplastic resin fibers, and fibrillated cellulose fibers are uniformly dispersed in water, and then passed through processes such as screen (removal of foreign matter, lumps, etc.) to obtain the final fiber concentration. The slurry adjusted to 0.01 to 0.50 mass% is made up by a paper machine to obtain a wet paper. In order to make the dispersibility of the fibers uniform, chemicals such as dispersants, antifoaming agents, hydrophilic agents, antistatic agents, polymer thickeners, mold release agents, antibacterial agents, bactericides, etc. may be added during the process. is there.

抄紙機としては、例えば、長網、円網、傾斜ワイヤー等の抄紙網を単独で使用した抄紙機、同種又は異種の2以上の抄紙網がオンラインで設置されているコンビネーション抄紙機等を使用することができる。また、不織布が2層以上の多層構造の場合には、各々の抄紙機で抄き上げた湿紙を積層する抄き合わせ法や、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して積層とする流延法等で、不織布を製造することができる。繊維を分散したスラリーを流延する際に、先に形成した層は湿紙状態であっても、乾燥状態であってもいずれでも良い。また、2枚以上の乾燥状態の層を熱融着させて、多層構造の不織布とすることもできる。   As the paper machine, for example, a paper machine using a paper net such as a long net, a circular net, or an inclined wire alone, or a combination paper machine in which two or more paper nets of the same type or different types are installed online is used. be able to. In addition, when the nonwoven fabric has a multilayer structure of two or more layers, a paper making method in which wet papers made by each paper machine are laminated, or after one layer is formed, fibers are dispersed on the layer. The nonwoven fabric can be produced by a casting method in which the slurry is cast to form a laminate. When casting the slurry in which the fibers are dispersed, the previously formed layer may be either a wet paper state or a dry state. In addition, two or more dry layers can be heat-sealed to form a multilayered nonwoven fabric.

本発明において、不織布が多層構造である場合、各層の繊維配合が同一である多層構造であっても良く、各層の繊維配合が異なっている多層構造であっても良い。多層構造である場合、各層の坪量が下がることにより、スラリーの繊維濃度を下げることができるため、不織布の地合が良くなり、その結果、不織布の地合の均一性が向上する。また、各層の地合が不均一であった場合でも、積層することで補填できる。さらに、抄紙速度を上げることができ、操業性が向上するという効果も得られる。   In the present invention, when the nonwoven fabric has a multilayer structure, it may have a multilayer structure in which the fiber blend of each layer is the same, or may have a multilayer structure in which the fiber blend of each layer is different. In the case of a multilayer structure, since the fiber concentration of the slurry can be lowered by lowering the basis weight of each layer, the formation of the nonwoven fabric is improved, and as a result, the uniformity of the formation of the nonwoven fabric is improved. Moreover, even when the formation of each layer is non-uniform | heterogenous, it can compensate by laminating | stacking. Furthermore, the papermaking speed can be increased, and the operability can be improved.

湿式抄造法では、抄紙網で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することによって、シート状の湿式抄造不織布が得られる。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることを言う。熱ロールの表面温度は、100〜180℃が好ましく、100〜160℃がより好ましく、110〜160℃が更に好ましい。圧力は、好ましくは50〜1000N/cmであり、より好ましくは100〜800N/cmである。   In the wet papermaking method, a wet papermaking nonwoven fabric in sheet form is obtained by drying wet paper produced by a papermaking net with a Yankee dryer, air dryer, cylinder dryer, suction drum dryer, infrared dryer, or the like. When the wet paper is dried, it is brought into close contact with a hot roll such as a Yankee dryer and dried by heat and pressure to improve the smoothness of the contacted surface. Hot-pressure drying means that wet paper is pressed against a hot roll with a touch roll or the like and dried. The surface temperature of the hot roll is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and still more preferably 110 to 160 ° C. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.

本発明の複合体は、リサイクル炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体である。複合体は、リサイクル炭素短繊維不織布と熱可塑性樹脂フィルムとを重ね合わせて、加熱処理又は加熱加圧処理することによって、製造することができる。この複合体を熱圧加工(熱プレス加工)することによって、成型品を製造することができる。   The composite of the present invention is a composite formed by laminating a recycled carbon short fiber nonwoven fabric and a thermoplastic resin film. The composite can be produced by superposing a recycled carbon short fiber nonwoven fabric and a thermoplastic resin film and subjecting the resultant to heat treatment or heat pressure treatment. A molded product can be produced by subjecting this composite to hot pressing (hot pressing).

熱可塑性樹脂フィルムの熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂等のポリオレフィン系樹脂;ポリメチルメタクリレート樹脂等のメタクリル系樹脂;ポリスチレン樹脂、ABS樹脂、AS樹脂等のポリスチレン系樹脂;ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリ1,4−シクロヘキシルジメチレンテレフタレート(PCT)樹脂等のポリエステル系樹脂;6−ナイロン樹脂、6,6−ナイロン樹脂等のポリアミド(PA)樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン(POM)樹脂;ポリカーボネート(PC)樹脂;ポリフェニレンサルファイド(PPS)樹脂;変性ポリフェニレンエーテル(PPE)樹脂;ポリエーテルイミド(PEI)樹脂;ポリスルホン(PSF)樹脂;ポリエーテルスルホン(PES)樹脂;ポリケトン樹脂;ポリアリレート(PAR)樹脂;ポリエーテルニトリル(PEN)樹脂;ポリエーテルケトン(PEK)樹脂;ポリエーテルエーテルケトン(PEEK)樹脂;ポリエーテルケトンケトン(PEKK)樹脂;ポリイミド(PI)樹脂;ポリアミドイミド(PAI)樹脂;フッ素(F)樹脂;液晶ポリエステル樹脂等の液晶ポリマー樹脂;ポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系又はフッ素系等の熱可塑性エラストマー;又はこれらの共重合体樹脂や変性樹脂;アイオノマー樹脂等が挙げられる。これらの樹脂の中から、1種又は2種以上を用いることができる。燃焼性の観点から、PC、PPS、PEEK、PEI等が好ましい。   Examples of the thermoplastic resin of the thermoplastic resin film include polyolefin resins such as polyethylene resin, polypropylene resin and polybutylene resin; methacrylic resins such as polymethyl methacrylate resin; polystyrene resins such as polystyrene resin, ABS resin and AS resin; polyethylene Polyester resins such as terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate resin, polyethylene naphthalate (PEN) resin, poly 1,4-cyclohexyldimethylene terephthalate (PCT) resin; 6-nylon Polyamide (PA) resin such as resin, 6,6-nylon resin; polyvinyl chloride resin; polyoxymethylene (POM) resin; polycarbonate (PC) resin; polyphenylene sulfide (PP Modified polyphenylene ether (PPE) resin; polyetherimide (PEI) resin; polysulfone (PSF) resin; polyethersulfone (PES) resin; polyketone resin; polyarylate (PAR) resin; polyether nitrile (PEN) resin Polyetherketone (PEK) resin; Polyetheretherketone (PEEK) resin; Polyetherketoneketone (PEKK) resin; Polyimide (PI) resin; Polyamideimide (PAI) resin; Fluorine (F) resin; Liquid crystalline polymer resin: polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, or fluorine-based thermoplastic elastomer; or a copolymer resin or modified resin thereof; ionomer Resins. Among these resins, one type or two or more types can be used. From the viewpoint of combustibility, PC, PPS, PEEK, PEI and the like are preferable.

アイオノマー樹脂としては、エチレン−不飽和カルボン酸共重合樹脂のカルボキシル基の一部を金属イオンで中和してなるエチレン系アイオノマー樹脂が挙げられる。カルボキシル基の10モル%以上、好ましくは10〜90モル%を金属イオンで中和したものが使用される。金属イオンとしては、リチウム、ナトリウムなどのアルカリ金属、亜鉛、マグネシウム、カルシウムなどのアルカリ土類金属のような多価金属イオンを挙げることができる。   Examples of the ionomer resin include an ethylene ionomer resin obtained by neutralizing a part of the carboxyl group of the ethylene-unsaturated carboxylic acid copolymer resin with a metal ion. A product obtained by neutralizing 10 mol% or more, preferably 10 to 90 mol%, of a carboxyl group with a metal ion is used. Examples of the metal ions include polyvalent metal ions such as alkali metals such as lithium and sodium, and alkaline earth metals such as zinc, magnesium and calcium.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。なお、実施例中における部や百分率は断りのない限り、すべて質量によるものである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. In the examples, all parts and percentages are by mass unless otherwise specified.

(フィブリル化セルロースの作製)
リンターパルプ(質量平均繊維長1.2mm)を、増幸産業社製マスコロイダー(登録商標、装置名:MKZA12)を用いて、磨砕処理を行い、フィブリル化セルロースを作製した。フィブリル化セルロースの分散液(濃度0.5質量%)での粘度をB型粘度計(ローターNo.2、ローター回転数60rpm、温度23〜25℃)で測定したところ、80cpであった。
(Production of fibrillated cellulose)
The linter pulp (mass average fiber length: 1.2 mm) was subjected to a grinding treatment using a mascolloider (registered trademark, apparatus name: MKZA12) manufactured by Masuko Sangyo Co., Ltd. to produce fibrillated cellulose. The viscosity of the fibrillated cellulose dispersion (concentration: 0.5 mass%) was measured with a B-type viscometer (rotor No. 2, rotor rotational speed 60 rpm, temperature 23 to 25 ° C.), and was 80 cp.

(リサイクル炭素短繊維の作製)
炭素繊維強化樹脂複合体(樹脂:エポキシ樹脂、θ=45°のアングルプライ積層板、厚み:30mm、炭素繊維の繊維径:7μm)を100mmの幅で裁断し、さらに、長さ方向に6mm間隔で裁断した。裁断後の積層板を、窒素雰囲気下で、電気炉を用いて、580℃で2時間処理して、リサイクル炭素短繊維を作製した。得られたリサイクル炭素短繊維の繊維長は、6mmから80mmであった。
(Production of recycled carbon short fibers)
Carbon fiber reinforced resin composite (resin: epoxy resin, θ = 45 ° angle ply laminate, thickness: 30 mm, carbon fiber fiber diameter: 7 μm) is cut to a width of 100 mm, and further 6 mm apart in the length direction Cut with The laminated sheet after cutting was treated at 580 ° C. for 2 hours in a nitrogen atmosphere using an electric furnace to produce recycled carbon short fibers. The fiber length of the obtained recycled carbon short fiber was 6 mm to 80 mm.

(熱可塑性樹脂繊維)
熱可塑性樹脂繊維:繊維径4.5μm、繊維長3mm、未延伸PET繊維
(Thermoplastic fiber)
Thermoplastic resin fiber: Fiber diameter 4.5 μm, fiber length 3 mm, unstretched PET fiber

(不織布製造)
表1の繊維配合率で、分散濃度0.2質量%で5分間、繊維を水に分散して、90メッシュの金属ワイヤーで、25cm×25cmサイズの湿紙を形成し、その後、表面温度150℃のヤンキードライヤーにて乾燥し、坪量27g/mのリサイクル炭素短繊維不織布を得た。
(Nonwoven fabric manufacturing)
With the fiber blending ratio shown in Table 1, the fiber is dispersed in water for 5 minutes at a dispersion concentration of 0.2% by mass to form a wet paper having a size of 25 cm × 25 cm with a 90 mesh metal wire. Drying was performed with a Yankee dryer at 0 ° C. to obtain a recycled carbon short fiber nonwoven fabric having a basis weight of 27 g / m 2 .

Figure 2017133131
Figure 2017133131

(複合体1の製造)
実施例及び比較例で作製したリサイクル炭素短繊維不織布の表裏を、熱可塑性樹脂(酸変性ポリプロピレン(PP)を含有したPP、融点160℃)フィルムで挟み、熱ブレス機で、温度160℃、5MPa、2分間加熱加圧した後、室温に冷却し、複合体1を製造した。
(Manufacture of composite 1)
The front and back sides of the recycled carbon short fiber nonwoven fabrics produced in the examples and comparative examples are sandwiched between thermoplastic resin (PP containing acid-modified polypropylene (PP), melting point 160 ° C.) film, and the temperature is 160 ° C. and 5 MPa using a thermal breathing machine. After heating and pressurizing for 2 minutes, the mixture was cooled to room temperature to produce a composite 1.

(複合体2の製造)
実施例及び比較例で製造したリサイクル炭素短繊維不織布の表裏を、熱可塑性樹脂(PEEK)フィルムで挟み、熱プレス機で、温度360℃、10MPa、5分間加熱加圧加工した後、室温に冷却し、複合体2を製造した
(Manufacture of composite 2)
The recycled carbon short fiber nonwoven fabrics manufactured in Examples and Comparative Examples were sandwiched between thermoplastic resin (PEEK) films, heated and pressed with a hot press machine at a temperature of 360 ° C., 10 MPa, and then cooled to room temperature. And composite 2 was produced.

実施例及び比較例で製造したリサイクル炭素短繊維不織布、複合体に対して、以下の評価を行い、結果を表2に示した。   The following evaluation was performed on the recycled short carbon fiber nonwoven fabrics and composites produced in Examples and Comparative Examples, and the results are shown in Table 2.

(複合体の曲げ弾性率)
複合体1及び2より、長さ80mm、幅10mm、厚み4mmの試験片を5本切り出し、万能材料試験機(株式会社 ティー・エス・イー、装置名:オートコム(登録商標、AutoCOM)AC−100)でその曲げ弾性率を測定した。平均値の結果を表2に示した。
(Flexural modulus of composite)
Five test pieces having a length of 80 mm, a width of 10 mm, and a thickness of 4 mm were cut out from the composites 1 and 2, and a universal material testing machine (TSE Co., Ltd., device name: Autocom (registered trademark, AutoCOM) AC- 100) and the flexural modulus was measured. The average results are shown in Table 2.

(不織布製造時の状態)
金属ワイヤー面上で、リサイクル炭素短繊維の分散性を確認したところ、一部に20μmから40μm程度の繊維の結束した状態が観察された。また、ヤンキードライヤーで乾燥した後のリサイクル炭素短繊維の脱離の有無を確認した。
(State when manufacturing non-woven fabric)
When the dispersibility of the recycled carbon short fibers was confirmed on the surface of the metal wire, a state in which fibers of about 20 μm to 40 μm were partially bound was observed. Moreover, the presence or absence of detachment | desorption of the recycled carbon short fiber after drying with a Yankee dryer was confirmed.

(複合体1及び2の状態)
複合体1及び2を製造した後に、不織布の周辺において、リサイクル炭素短繊維の流れ(流動)が発生しているかを確認した。また、複合体のそりの有無やボイドの発生状態も観察した。
(State of composites 1 and 2)
After the composites 1 and 2 were produced, it was confirmed whether or not a flow (flow) of recycled carbon short fibers occurred around the nonwoven fabric. In addition, the presence or absence of warpage of the composite and the occurrence of voids were also observed.

Figure 2017133131
Figure 2017133131

比較例1のリサイクル炭素短繊維不織布は、フィブリル化セルロース繊維を含有せず、リサイクル炭素短繊維と熱可塑性樹脂繊維とを含有してなることから、比較例1の複合体の状態を観察したところ、不織布周辺にリサイクル炭素短繊維の流れが発生していた。これに対し、実施例1〜9のリサイクル炭素短繊維不織布は、リサイクル炭素短繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有していることから、実施例1〜9の複合体では、リサイクル炭素短繊維の流れが抑制されていた。そして、複合体の曲げ弾性率も、実施例1〜9の複合体の方が比較例1の複合体よりも向上していた。   The recycled carbon short fiber nonwoven fabric of Comparative Example 1 does not contain fibrillated cellulose fibers, but contains recycled carbon short fibers and thermoplastic resin fibers, and the state of the composite of Comparative Example 1 was observed. The flow of recycled carbon short fibers occurred around the nonwoven fabric. On the other hand, the recycled carbon short fiber nonwoven fabrics of Examples 1 to 9 contain recycled carbon short fibers, thermoplastic resin fibers, and fibrillated cellulose fibers. Therefore, in the composites of Examples 1 to 9, The flow of recycled short carbon fibers was suppressed. The flexural modulus of the composite was also improved in the composites of Examples 1 to 9 compared to the composite of Comparative Example 1.

実施例1〜9を比較すると、フィブリル化セルロース繊維の配合率が不織布の全繊維中に対して5質量%未満である実施例1及び実施例2では、複合体の曲げ弾性率が実施例3及び実施例4と比較して若干低く、複合体の状態を観察したところ、炭素短繊維の流れがややあることが確認された。また、フィブリル化セルロース繊維の配合率が不織布の全繊維中に対して15質量%超である実施例6では、複合体の状態を観察したところ、リサイクル炭素短繊維の流れはなかったが、使用可レベルではあるものの、少量のボイドが確認された。   Comparing Examples 1 to 9, in Example 1 and Example 2 in which the blending ratio of fibrillated cellulose fibers is less than 5% by mass with respect to the total fibers of the nonwoven fabric, the flexural modulus of the composite is Example 3. When the state of the composite was observed slightly lower than that of Example 4, it was confirmed that there was a slight flow of short carbon fibers. Further, in Example 6 in which the blending ratio of the fibrillated cellulose fibers is more than 15% by mass with respect to the total fibers of the nonwoven fabric, the state of the composite was observed, but there was no flow of recycled carbon short fibers. Although it was acceptable, a small amount of void was confirmed.

実施例4、7〜9を比較すると、熱可塑性樹脂繊維の配合率が少なくなっていくと、乾燥後のリサイクル炭素短繊維の脱離がやや発生しやすくなる傾向が見られたが、使用可レベルであった。また、熱可塑性樹脂繊維の配合率が多くなっていくと、乾燥後の繊維の脱離は抑制されるが、リサイクル炭素短繊維の配合率が低下するため、曲げ弾性率が低くなる傾向が見られ、使用可レベルではあるものの、複合体にそりが発生しやすくなった。   When Example 4 and 7-9 were compared, when the compounding rate of the thermoplastic resin fiber decreased, there was a tendency that detachment of the recycled carbon short fiber after drying was somewhat likely to occur. It was a level. Moreover, as the blending ratio of the thermoplastic resin fibers increases, the detachment of the fibers after drying is suppressed, but the blending ratio of the recycled carbon short fibers decreases, so that the flexural modulus tends to decrease. Although it is at a usable level, warpage is likely to occur in the composite.

実施例4と比較例2との比較から、セルロース繊維がフィブリル化されることによって、リサイクル炭素短繊維の脱離が抑制され、複合体においてリサイクル炭素短繊維の流れが発生しないとともに、曲げ弾性率も向上することが確認された。   From the comparison between Example 4 and Comparative Example 2, the cellulose fibers are fibrillated to suppress the detachment of the recycled short carbon fibers, and the flow of the recycled short carbon fibers does not occur in the composite, and the flexural modulus is Was also confirmed to improve.

熱可塑性樹脂繊維を含有せず、リサイクル炭素短繊維とフィブリル化セルロース繊維とを含有する比較例3の不織布では、複合体において、繊維の流れはなく、曲げ弾性率も良好であったが、不織布製造時における繊維の脱離が多く、使用不可レベルであった。   In the nonwoven fabric of Comparative Example 3 that does not contain thermoplastic resin fibers and contains recycled carbon short fibers and fibrillated cellulose fibers, there was no fiber flow and the flexural modulus was good in the composite. There were many detachment | leaves of the fiber at the time of manufacture, and it was a useless level.

本発明の炭素短繊維不織布及び複合体は、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等に利用可能である。   The carbon short fiber nonwoven fabric and composite of the present invention can be used for manufacturing parts such as electronic equipment materials, electrical equipment materials, civil engineering materials, building materials, automobile materials, aircraft materials, robots and rolls used in various manufacturing industries, etc. It is.

Claims (3)

リサイクル炭素短繊維と熱可塑性樹脂繊維とフィブリル化セルロース繊維とを含有してなるリサイクル炭素短繊維不織布。   A recycled carbon short fiber nonwoven fabric comprising recycled carbon short fibers, thermoplastic resin fibers, and fibrillated cellulose fibers. フィブリル化セルロース繊維の配合率が、不織布中の全繊維に対して、2〜20質量%であることを特徴とする請求項1記載のリサイクル炭素短繊維不織布。   The recycled carbon short fiber nonwoven fabric according to claim 1, wherein the blending ratio of the fibrillated cellulose fibers is 2 to 20% by mass with respect to all the fibers in the nonwoven fabric. 請求項1又は請求項2記載のリサイクル炭素短繊維不織布と熱可塑性樹脂フィルムとを積層してなる複合体。   A composite formed by laminating the recycled carbon short fiber nonwoven fabric according to claim 1 or 2 and a thermoplastic resin film.
JP2016015161A 2016-01-29 2016-01-29 Recycled carbon fiber reinforced thermoplastic resin composite Active JP6718244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015161A JP6718244B2 (en) 2016-01-29 2016-01-29 Recycled carbon fiber reinforced thermoplastic resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015161A JP6718244B2 (en) 2016-01-29 2016-01-29 Recycled carbon fiber reinforced thermoplastic resin composite

Publications (2)

Publication Number Publication Date
JP2017133131A true JP2017133131A (en) 2017-08-03
JP6718244B2 JP6718244B2 (en) 2020-07-08

Family

ID=59502212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015161A Active JP6718244B2 (en) 2016-01-29 2016-01-29 Recycled carbon fiber reinforced thermoplastic resin composite

Country Status (1)

Country Link
JP (1) JP6718244B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012312A (en) * 2016-07-22 2018-01-25 三菱製紙株式会社 Carbon short fiber reinforcement film and method for producing carbon short fiber reinforcement structure
JP2018131693A (en) * 2017-02-13 2018-08-23 日立化成株式会社 Nonwoven fabric and resin molding comprising the nonwoven fabric
JPWO2017154103A1 (en) * 2016-03-08 2018-12-27 日立化成株式会社 Carbon fiber nonwoven fabric, carbon fiber nonwoven fabric manufacturing method, carbon fiber multilayer fabric, and composite material
JP2019031749A (en) * 2017-08-04 2019-02-28 三菱製紙株式会社 Carbon short fiber wet type nonwoven fabric and carbon short fiber-reinforced resin composition
JP2019035045A (en) * 2017-08-18 2019-03-07 ダイセルポリマー株式会社 Fiber composite
JP2019508292A (en) * 2016-02-19 2019-03-28 カーボン コンバージョンズ インコーポレイテッド Thermoplastic bonded preform and thermosetting matrix formed using the same
WO2020040289A1 (en) * 2018-08-24 2020-02-27 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
WO2020040287A1 (en) * 2018-08-24 2020-02-27 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
JP2020029021A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Carbon fiber unwoven fabric composite
JP2020040268A (en) * 2018-09-10 2020-03-19 三菱製紙株式会社 Carbon fiber non-woven fabric composite
JP2020151969A (en) * 2019-03-20 2020-09-24 株式会社三五 Method for producing intermediate base material and molded product made of composite material containing thermoplastic resin and reinforcing fiber, and intermediate base material and molded product
WO2022040546A1 (en) * 2020-08-21 2022-02-24 Basf Se Materials, compositions, and methods for the formation of composite articles
CN114908610A (en) * 2022-04-29 2022-08-16 上海交通大学 Regenerated carbon fiber paper and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167390A (en) * 1989-11-27 1991-07-19 Mitsubishi Paper Mills Ltd Activated carbon fiber sheet and filter therefrom
JPH0824637A (en) * 1994-07-13 1996-01-30 Toho Rayon Co Ltd Adsorbing material
JPH08257360A (en) * 1995-03-24 1996-10-08 Mitsubishi Paper Mills Ltd Photoreactive material for removing harmful substance
JP2004353124A (en) * 2003-05-29 2004-12-16 Mitsubishi Paper Mills Ltd Nonwoven fabric of carbon fiber and method for producing the same
JP2007059789A (en) * 2005-08-26 2007-03-08 Mitsubishi Paper Mills Ltd Separator for solid electrolytic capacitor
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2011088124A (en) * 2009-10-26 2011-05-06 Mitsubishi Heavy Ind Ltd Activated carbon fiber activation treatment method for exhaust gas treatment and activated carbon fiber for exhaust gas treatment
JP2014051023A (en) * 2012-09-07 2014-03-20 Toray Ind Inc Stampable sheet, and method for manufacturing the same
JP2015048571A (en) * 2013-08-29 2015-03-16 インターナショナル オートモーティヴ コンポーネンツ グループ ノース アメリカ,インク. Molding including carbon fiber and natural fiber, and manufacturing method and use of the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167390A (en) * 1989-11-27 1991-07-19 Mitsubishi Paper Mills Ltd Activated carbon fiber sheet and filter therefrom
JPH0824637A (en) * 1994-07-13 1996-01-30 Toho Rayon Co Ltd Adsorbing material
JPH08257360A (en) * 1995-03-24 1996-10-08 Mitsubishi Paper Mills Ltd Photoreactive material for removing harmful substance
JP2004353124A (en) * 2003-05-29 2004-12-16 Mitsubishi Paper Mills Ltd Nonwoven fabric of carbon fiber and method for producing the same
JP2007059789A (en) * 2005-08-26 2007-03-08 Mitsubishi Paper Mills Ltd Separator for solid electrolytic capacitor
WO2007097436A1 (en) * 2006-02-24 2007-08-30 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article
JP2011088124A (en) * 2009-10-26 2011-05-06 Mitsubishi Heavy Ind Ltd Activated carbon fiber activation treatment method for exhaust gas treatment and activated carbon fiber for exhaust gas treatment
JP2014051023A (en) * 2012-09-07 2014-03-20 Toray Ind Inc Stampable sheet, and method for manufacturing the same
JP2015048571A (en) * 2013-08-29 2015-03-16 インターナショナル オートモーティヴ コンポーネンツ グループ ノース アメリカ,インク. Molding including carbon fiber and natural fiber, and manufacturing method and use of the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019508292A (en) * 2016-02-19 2019-03-28 カーボン コンバージョンズ インコーポレイテッド Thermoplastic bonded preform and thermosetting matrix formed using the same
JPWO2017154103A1 (en) * 2016-03-08 2018-12-27 日立化成株式会社 Carbon fiber nonwoven fabric, carbon fiber nonwoven fabric manufacturing method, carbon fiber multilayer fabric, and composite material
JP2018012312A (en) * 2016-07-22 2018-01-25 三菱製紙株式会社 Carbon short fiber reinforcement film and method for producing carbon short fiber reinforcement structure
JP2018131693A (en) * 2017-02-13 2018-08-23 日立化成株式会社 Nonwoven fabric and resin molding comprising the nonwoven fabric
JP2019031749A (en) * 2017-08-04 2019-02-28 三菱製紙株式会社 Carbon short fiber wet type nonwoven fabric and carbon short fiber-reinforced resin composition
JP2019035045A (en) * 2017-08-18 2019-03-07 ダイセルポリマー株式会社 Fiber composite
JP7005223B2 (en) 2017-08-18 2022-02-04 ダイセルポリマー株式会社 Fiber complex
JP2020029021A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Carbon fiber unwoven fabric composite
JP7019534B2 (en) 2018-08-22 2022-02-15 三菱製紙株式会社 Carbon fiber non-woven fabric complex
JP7425731B2 (en) 2018-08-24 2024-01-31 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
WO2020040287A1 (en) * 2018-08-24 2020-02-27 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
JPWO2020040289A1 (en) * 2018-08-24 2021-08-10 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, carbon fiber sheet material manufacturing method, prepreg manufacturing method and molded body manufacturing method
JPWO2020040287A1 (en) * 2018-08-24 2021-08-26 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, carbon fiber sheet material manufacturing method, prepreg manufacturing method and molded body manufacturing method
WO2020040289A1 (en) * 2018-08-24 2020-02-27 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
JP7425732B2 (en) 2018-08-24 2024-01-31 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
JP2020040268A (en) * 2018-09-10 2020-03-19 三菱製紙株式会社 Carbon fiber non-woven fabric composite
JP2020151969A (en) * 2019-03-20 2020-09-24 株式会社三五 Method for producing intermediate base material and molded product made of composite material containing thermoplastic resin and reinforcing fiber, and intermediate base material and molded product
JP7113432B2 (en) 2019-03-20 2022-08-05 株式会社三五 Method for producing intermediate base material and molded article made of composite material containing thermoplastic resin and reinforcing fiber, and said intermediate base material and said molded article
WO2022040546A1 (en) * 2020-08-21 2022-02-24 Basf Se Materials, compositions, and methods for the formation of composite articles
CN114908610A (en) * 2022-04-29 2022-08-16 上海交通大学 Regenerated carbon fiber paper and preparation method thereof

Also Published As

Publication number Publication date
JP6718244B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6718244B2 (en) Recycled carbon fiber reinforced thermoplastic resin composite
JP6785547B2 (en) Carbon fiber reinforced thermoplastic resin composite
EP3347180B1 (en) Composite products of paper and cellulose nanofibrils and process of making
TWI556262B (en) Heat resistant electrical insulating sheet and manufacturing method thereof
JP6702536B2 (en) Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method
EP2925517A1 (en) Sandwich material
TWI576485B (en) A method for producing a raw material for papermaking, a raw material for papermaking, and a heat-resistant electrical insulating sheet using the raw material
JP6791467B2 (en) Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure
JP2020165048A (en) Carbon fiber nonwoven fabric and carbon fiber-reinforced resin composite
JP6718235B2 (en) Carbon fiber reinforced thermoplastic resin composite
Zhang et al. Effect of electrospun PPENK nanofiber loaded with ZnO nanowires on the mode Ⅱ fracture toughness, flexural properties and ILSS of CF/poly (phthalazinone ether ketone) composites
JP2020040268A (en) Carbon fiber non-woven fabric composite
Wang et al. Facile preparation of nanofiller-paper using mixed office paper without deinking
JP2017172083A (en) Carbon short fiber nonwoven fabric and composite
Rol et al. Production of 100% cellulose nanofibril objects using the molded cellulose process: a feasibility study
JP6829174B2 (en) Carbon fiber non-woven fabric
JP2019157315A (en) Carbon fiber non-woven fabric and composite
JP7019534B2 (en) Carbon fiber non-woven fabric complex
CN110914343A (en) Fiber-reinforced body and member using same
JP7077292B2 (en) Carbon staple fiber non-woven fabric
JP7030472B2 (en) Carbon staple fiber wet non-woven fabric
JP2020051000A (en) Manufacturing method of carbon fiber unwoven fabric
JP2019035163A (en) Production method of carbon staple fiber nonwoven fabric
WO2023074841A1 (en) Fiber aggregate for molding
JP7386776B2 (en) Carbon fiber-containing wet-laid nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250