JP7005223B2 - Fiber complex - Google Patents

Fiber complex Download PDF

Info

Publication number
JP7005223B2
JP7005223B2 JP2017157981A JP2017157981A JP7005223B2 JP 7005223 B2 JP7005223 B2 JP 7005223B2 JP 2017157981 A JP2017157981 A JP 2017157981A JP 2017157981 A JP2017157981 A JP 2017157981A JP 7005223 B2 JP7005223 B2 JP 7005223B2
Authority
JP
Japan
Prior art keywords
sheet
fiber
fiber composite
shaped
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017157981A
Other languages
Japanese (ja)
Other versions
JP2019035045A (en
Inventor
雅彦 板倉
大 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Polymer Ltd
Original Assignee
Daicel Polymer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Polymer Ltd filed Critical Daicel Polymer Ltd
Priority to JP2017157981A priority Critical patent/JP7005223B2/en
Publication of JP2019035045A publication Critical patent/JP2019035045A/en
Application granted granted Critical
Publication of JP7005223B2 publication Critical patent/JP7005223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、炭素繊維とセルロースナノファイバーを含む繊維複合体、その製造方法、前記繊維複合体を使用した繊維複合樹脂材料の製造方法に関する。 The present invention relates to a fiber composite containing carbon fibers and cellulose nanofibers, a method for producing the same, and a method for producing a fiber composite resin material using the fiber composite.

セルロースナノファイーバーは平均繊維径がnmオーダーの微細繊維で、製品としても市販されており、各種技術分野において添加剤としても使用されている。 Cellulose nanofiber is a fine fiber having an average fiber diameter on the order of nm, and is commercially available as a product, and is also used as an additive in various technical fields.

特許文献1~4は樹脂用添加剤として使用されており、特許文献5はスピーカー振動板の材料として使用されている。
特許文献6は、アクリロニトリル系重合体に対して、平均直径が1~500nmであるセルロースナノファイバーを0.1~5.0重量%配合し、溶液紡糸することを特徴とする炭素繊維製造用プリカーサーの製造方法の発明であり、炭素繊維の耐炎化速度を向上させることにより、炭素繊維の生産性の向上をはかったプリカーサーの製造方法に関するものであることが記載されている。
Patent Documents 1 to 4 are used as additives for a resin, and Patent Document 5 is used as a material for a speaker diaphragm.
Patent Document 6 is a carbon fiber manufacturing precursor characterized by blending 0.1 to 5.0% by weight of cellulose nanofibers having an average diameter of 1 to 500 nm with an acrylonitrile-based polymer and spinning the solution. It is described that the present invention relates to a method for producing a precursor, which is intended to improve the productivity of carbon fibers by improving the flame resistance rate of the carbon fibers.

特開2017-115047号公報Japanese Unexamined Patent Publication No. 2017-11504 特開2016-94541号公報Japanese Unexamined Patent Publication No. 2016-94541 特開2017-122177号公報Japanese Unexamined Patent Publication No. 2017-122177 特開2016-20446号公報Japanese Unexamined Patent Publication No. 2016-20446 特開2017-103632号公報Japanese Unexamined Patent Publication No. 2017-103632 特開2011-26731号公報Japanese Unexamined Patent Publication No. 2011-26731

本発明は、形状保持性の良い炭素繊維とセルロースナノファーバー(CNF)の繊維複合体、その製造方法、前記繊維複合体を使用した繊維複合樹脂材料の製造方法を提供することを課題とする。 An object of the present invention is to provide a fiber composite of carbon fiber and cellulose nanofiber (CNF) having good shape retention, a method for producing the same, and a method for producing a fiber composite resin material using the fiber composite.

本発明は、炭素繊維とセルロースナノファーバーを含有するシート状の繊維複合体であって、前記セルロースナノファイバーの含有割合が0.01~5.0質量%である、シート状の繊維複合体を提供する。
また本発明は、上記のシート状の繊維複合体の製造方法であって、
炭素繊維と濃度0.005~1質量%のセルロースナノファイバー水溶液を接触させて、シート状の複合物を得る工程と、
前工程で得られたシート状の複合物を加熱プレス成形する工程を有している、シート状の繊維複合体の製造方法を提供する。
さらに本発明は、熱可塑性樹脂と上記のシート状の繊維複合体を加熱混合する工程を含んでいる、繊維複合樹脂材料の製造方法を提供する。
The present invention is a sheet-shaped fiber composite containing carbon fibers and cellulose nanofibers, wherein the content ratio of the cellulose nanofibers is 0.01 to 5.0% by mass. offer.
Further, the present invention is a method for producing the above-mentioned sheet-shaped fiber composite.
A step of contacting carbon fibers with an aqueous solution of cellulose nanofibers having a concentration of 0.005 to 1% by mass to obtain a sheet-like composite, and
Provided is a method for producing a sheet-shaped fiber composite, which comprises a step of heat-press molding the sheet-shaped composite obtained in the previous step.
Further, the present invention provides a method for producing a fiber composite resin material, which comprises a step of heating and mixing the thermoplastic resin and the above-mentioned sheet-shaped fiber composite.

リサイクル炭素繊維は、通常は綿状で非常に嵩高く、非常に取り扱い難い。熱可塑性などの樹脂と混合する場合も、押出機ホッパーから直接供給できなかったり、供給が不安定となり、安定供給できなかったりなどの問題がある。
しかし、本発明のシート状の繊維複合体は、リサイクル炭素繊維と比べると嵩高さがなくなり、保管、運搬および使用時における取り扱い性が優れており、成形加工機への安定供給ができるようになるという効果が得られる。
このように、本発明のシート状の繊維複合体は、リサイクル炭素繊維の再利用を促進することができるため、資源の有効活用に寄与できるものである。
Recycled carbon fiber is usually cotton-like, very bulky and very difficult to handle. Even when mixed with a resin such as thermoplastic, there are problems that it cannot be directly supplied from the extruder hopper, or that the supply becomes unstable and stable supply cannot be achieved.
However, the sheet-shaped fiber composite of the present invention is less bulky than the recycled carbon fiber, has excellent handleability during storage, transportation, and use, and can be stably supplied to the molding machine. The effect is obtained.
As described above, the sheet-shaped fiber complex of the present invention can promote the reuse of recycled carbon fibers, and thus can contribute to the effective utilization of resources.

実施例1のシート状の繊維複合体の外観写真。Photograph of the appearance of the sheet-shaped fiber complex of Example 1. 実施例2のシート状の繊維複合体の外観写真。Photograph of the appearance of the sheet-shaped fiber complex of Example 2. 実施例3のシート状の繊維複合体の外観写真。Photograph of the appearance of the sheet-shaped fiber complex of Example 3. 実施例4のシート状の繊維複合体の外観写真。Photograph of the appearance of the sheet-shaped fiber complex of Example 4. 比較例1のシート状の繊維複合体の外観写真。Photograph of the appearance of the sheet-shaped fiber complex of Comparative Example 1.

<シート状の繊維複合体>
炭素繊維は公知のものであり、収束剤で表面処理されたポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系などの炭素繊維を使用することができる。
また本発明では、特にリサイクル炭素繊維を使用することが好ましい。
リサイクル炭素繊維としては、例えば、炭素繊維を構成材料として使用している航空機、自動車などを解体するときに生じる炭素繊維、廃棄処分される各種樹脂成形品、各種ゴム成形品などに強化繊維として含まれている炭素繊維、炭素繊維を使用する製造工程において生じた炭素繊維の端材、その他、不要物に含まれる炭素繊維全般を挙げることができる。
CNFは上記した従来技術にも記載のとおり公知のものであり、本発明では市販品を使用することができる。
<Sheet-like fiber complex>
The carbon fibers are known, and polyacrylonitrile (PAN) -based, pitch-based, rayon-based, and other carbon fibers surface-treated with a converging agent can be used.
Further, in the present invention, it is particularly preferable to use recycled carbon fiber.
Recycled carbon fiber is included as reinforcing fiber in, for example, carbon fiber generated when dismantling aircraft, automobiles, etc. that use carbon fiber as a constituent material, various resin molded products to be disposed of, and various rubber molded products. Examples thereof include carbon fibers, scraps of carbon fibers produced in a manufacturing process using carbon fibers, and other carbon fibers contained in unnecessary substances in general.
The CNF is known as described in the above-mentioned prior art, and a commercially available product can be used in the present invention.

本発明のシート状の繊維複合体中のCNFの含有割合は0.01~5.0質量%、好ましくは0.01~2.0質量%、より好ましくは0.01~1.0質量%であり、残部が炭素繊維の含有割合である。
本発明のシート状の繊維複合体は、保管、運搬および使用時において振動が加えられたときでも製造当初の形態を維持することができるため、使いやすい。
また繊維複合体中のCNF含有割合が少ないため、各種製品または各種材料の製造過程において繊維複合体を実質的に炭素繊維として使用した場合でも、各種製品または各種材料の物理的性質や機械的性質に悪影響を及ぼすことがないと考えられる。
The content of CNF in the sheet-shaped fiber composite of the present invention is 0.01 to 5.0% by mass, preferably 0.01 to 2.0% by mass, and more preferably 0.01 to 1.0% by mass. The balance is the carbon fiber content.
The sheet-shaped fiber composite of the present invention is easy to use because it can maintain its original form even when vibration is applied during storage, transportation, and use.
In addition, since the CNF content in the fiber composite is low, the physical and mechanical properties of the various products or materials even when the fiber composite is substantially used as carbon fiber in the manufacturing process of various products or materials. It is considered that there is no adverse effect on.

<シート状の繊維複合体の製造方法>
第1工程にて、炭素繊維とCNF水溶液を接触させて、シート状の複合物を得る。
CNF水溶液は、濃度0.005~1質量%の水溶液であり、好ましくは0.008~0.5質量%の水溶液であり、より好ましくは0.01~0.2質量%の水溶液である。
<Manufacturing method of sheet-shaped fiber complex>
In the first step, the carbon fiber and the CNF aqueous solution are brought into contact with each other to obtain a sheet-like composite.
The CNF aqueous solution is an aqueous solution having a concentration of 0.005 to 1% by mass, preferably an aqueous solution of 0.008 to 0.5% by mass, and more preferably an aqueous solution of 0.01 to 0.2% by mass.

炭素繊維とCNF水溶液を接触させる方法は、CNF水溶液中に炭素繊維を浸漬する方法、または炭素繊維にCNF水溶液を噴霧する方法などを使用することができる。
なお、第1工程から次の第2工程に移行する間において、必要に応じて乾燥工程を設けることができる。乾燥工程を設けることで第2工程の処理時間を短縮することができる。
As a method of bringing the carbon fiber into contact with the CNF aqueous solution, a method of immersing the carbon fiber in the CNF aqueous solution, a method of spraying the CNF aqueous solution on the carbon fiber, or the like can be used.
A drying step can be provided as needed during the transition from the first step to the next second step. By providing the drying step, the processing time of the second step can be shortened.

第2工程では、第1工程で得られたシート状の複合物を加熱プレス成形する。
加熱温度は、炭素繊維やCNFに悪影響を与えない温度であればよく、例えば110℃以下程度で実施することができる。
加圧は、同じ圧力で実施してもよいし、複数段階で圧力を上昇させてもよい。圧力は0.5~10MPa、好ましくは1~5MPaの範囲にする。
なお、第2工程終了後、繊維複合体が室温(20~30℃)まで冷却されたあと、冷間プレスする工程を付加することもできる。冷間プレスの圧力は1~5MPaの範囲が好ましい。
このようにしてシート状の繊維複合体を得ることができる。シート状の繊維複合体の厚さは特に制限されるものではないが、保管および運搬時の便宜、取り扱い性などの観点から、3mm以下が好ましく、1mm以下がより好ましく、0.5mm以下がさらに好ましく、0.3mm以下がさらに好ましい。
In the second step, the sheet-shaped composite obtained in the first step is heat-press molded.
The heating temperature may be any temperature as long as it does not adversely affect the carbon fibers and CNF, and can be carried out at, for example, about 110 ° C. or lower.
Pressurization may be performed at the same pressure, or the pressure may be increased in a plurality of steps. The pressure should be in the range of 0.5 to 10 MPa, preferably 1 to 5 MPa.
After the completion of the second step, the fiber composite may be cooled to room temperature (20 to 30 ° C.), and then a cold pressing step may be added. The pressure of the cold press is preferably in the range of 1 to 5 MPa.
In this way, a sheet-shaped fiber complex can be obtained. The thickness of the sheet-shaped fiber complex is not particularly limited, but is preferably 3 mm or less, more preferably 1 mm or less, and further preferably 0.5 mm or less, from the viewpoint of convenience during storage and transportation, handleability, and the like. It is preferably 0.3 mm or less, and more preferably 0.3 mm or less.

<繊維複合樹脂材料の製造方法>
繊維複合樹脂材料は、熱可塑性樹脂または熱硬化性樹脂(プレポリマー)と上記のシート状の繊維複合体を加熱混合して得ることができる。
熱可塑性樹脂や熱硬化性樹脂は用途に応じて選択されるものであり、公知の熱可塑性樹脂、熱硬化性樹脂を使用することができる。
加熱混合方法は、加熱機能を備えた短軸押出機、二軸押出機、ニーダー、ミキサーなどの加熱機能を備えた各種混合装置を使用して、熱可塑性樹脂またはプレポリマーの融点以上にまで加熱して溶融混合する方法を適用することができる。
<Manufacturing method of fiber composite resin material>
The fiber composite resin material can be obtained by heating and mixing the above-mentioned sheet-shaped fiber composite with a thermoplastic resin or a thermosetting resin (prepolymer).
The thermoplastic resin and the thermosetting resin are selected according to the intended use, and known thermoplastic resins and thermosetting resins can be used.
The heating and mixing method uses a short-screw extruder with a heating function, a twin-screw extruder, a kneader, a mixer, and various other mixing devices with a heating function to heat the thermoplastic resin or prepolymer to the melting point or higher. The method of melting and mixing can be applied.

熱可塑性樹脂またはプレポリマーと上記のシート状の繊維複合体を押出機などで加熱混合するときは、シート状の繊維複合体として、前記シート状の繊維複合体に対して水を添加したものを使用することが好ましく、例えば、シート状の繊維複合体に水を噴霧したあとで使用することが好ましい。
また、シート状の繊維複合体は、混合前に適当な大きさ(例えば、10mm2~1000mm2)に切断して使用することが好ましい。
このようにシート状の繊維複合体に水を添加したものを使用すると、加熱混合時にシート状の繊維複合体が解れやすくなるので好ましい。
When the thermoplastic resin or prepolymer and the above-mentioned sheet-shaped fiber composite are heated and mixed by an extruder or the like, the sheet-shaped fiber composite obtained by adding water to the sheet-shaped fiber composite is used. It is preferable to use it, for example, it is preferable to use it after spraying water on the sheet-shaped fiber composite.
Further, it is preferable to cut the sheet-shaped fiber complex into an appropriate size (for example, 10 mm 2 to 1000 mm 2 ) before mixing and use it.
It is preferable to use a sheet-shaped fiber complex to which water is added because the sheet-shaped fiber complex is easily unraveled during heating and mixing.

本発明の製造方法で得られる繊維複合樹脂材料は、用途に応じて公知の各種樹脂添加剤を含有することができる。
各種樹脂添加剤としては、安定化剤(例えば、酸化防止剤、紫外線吸収剤、耐光安定剤など)、着色剤(染料、顔料など)、帯電防止剤、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、架橋剤、補強材、核剤、カップリング剤、分散剤、消泡剤、流動化剤、ドリッピング防止剤、抗菌剤、防腐剤、粘度調整剤、増粘剤などを挙げることができる。
The fiber composite resin material obtained by the production method of the present invention can contain various known resin additives depending on the intended use.
Various resin additives include stabilizers (for example, antioxidants, ultraviolet absorbers, light-resistant stabilizers, etc.), colorants (dye, pigment, etc.), antistatic agents, flame retardants (phosphorus flame retardants, halogen-based agents, etc.). Flame Retardants, Inorganic Flame Retardants, etc.), Flame Retardants, Crosslinkers, Reinforcing Materials, Nuclear Agents, Coupling Agents, Dispersants, Defoamers, Fluidizers, Antistatic Agents, Antibacterial Agents, Preservatives, Examples thereof include a viscosity modifier and a thickener.

実施例1~4
セルロースナノファーバー(品名:BiNFi-S cellulose WMa-10002,2質量%水溶液,株式会社スギノマシン製)を純水で希釈して、それぞれ表1に示す濃度のCNF水溶液を得た。
Examples 1 to 4
Cellulose nanocellulose (product name: BiNFi-S cellulose WMa-10002, 2% by mass aqueous solution, manufactured by Sugino Machine Limited) was diluted with pure water to obtain CNF aqueous solutions having the concentrations shown in Table 1.

次に200×150mmで高さ30mmの容器にCNF水溶液450g(CNF9g)を入れた後、容器の底に20メッシュの金網を沈めた。
次に容器の中にリサイクル炭素繊維約1g(80℃で5分間乾燥、105℃、圧力1MPaで5分間プレス、および105℃、圧力5MPaで10分間プレス後、温度25℃、相対湿度50%の雰囲気で168時間調湿した後の質量)を入れて完全に浸漬した後、ピンセットを使用して約50mm×約50mmの大きさに拡げた。
その状態で30秒放置した後、金網を引き上げることでCNFが付着した炭素繊維を取り出した。
次にろ紙を押し当てて水分を吸収させたあと、金網と共に乾燥機に入れ、80℃で5分間乾燥させた。
Next, 450 g (CNF 9 g) of a CNF aqueous solution was placed in a container measuring 200 × 150 mm and having a height of 30 mm, and then a 20-mesh wire mesh was submerged in the bottom of the container.
Next, in a container, about 1 g of recycled carbon fiber (dried at 80 ° C. for 5 minutes, pressed at 105 ° C. and pressure 1 MPa for 5 minutes, and pressed at 105 ° C. and pressure 5 MPa for 10 minutes, then at a temperature of 25 ° C. and a relative humidity of 50%. After immersing completely in the atmosphere after adjusting the humidity for 168 hours, the fibers were expanded to a size of about 50 mm × about 50 mm using tweezers.
After leaving it in that state for 30 seconds, the carbon fiber to which the CNF was attached was taken out by pulling up the wire mesh.
Next, after pressing the filter paper to absorb the moisture, it was placed in a dryer together with a wire mesh and dried at 80 ° C. for 5 minutes.

乾燥後、金網と分離したCNFが付着した炭素繊維を60mm角の2枚のアルミニウム箔の間に挟み込んだ状態でプレスした。
プレスは、105℃で5分間プレス(圧力1MPa)、加熱を停止した状態でさらに10分間プレス(5MPa)、さらに室温(25℃)まで冷却したあとで5分間冷間プレス(5MPa)して、シート状の繊維複合体を得た。
繊維複合体中のCNF含有割合は、次式から求めた。
調湿後のCNF質量(g)=調湿後の繊維複合体の質量(g)-調湿後の炭素繊維質量(g)
CNF含有割合(質量%)
=調湿後のCNF量〔g〕/(調湿後の炭素繊維量〔g〕+調湿後のCNF量〔g〕)×100
調湿後の繊維複合体の質量〔g〕:80℃で5分間乾燥、105℃、圧力1MPaで5分間プレス、および105℃、圧力5MPaで10分間プレス後、温度25℃、相対湿度50%の雰囲気で168時間調湿した後の質量。
調湿後の炭素繊維の質量〔g〕:80℃で5分間乾燥、105℃、圧力1MPaで5分間プレス、および105℃、圧力5MPaで10分間プレス後、温度25℃、相対湿度50%の雰囲気で168時間調湿した後の質量。炭素繊維は吸湿し易いため、前記条件で吸湿し難い状態にした上で測定した。
After drying, the carbon fiber to which the CNF separated from the wire mesh was attached was pressed in a state of being sandwiched between two 60 mm square aluminum foils.
The press is pressed at 105 ° C. for 5 minutes (pressure 1 MPa), pressed for another 10 minutes with heating stopped (5 MPa), cooled to room temperature (25 ° C.), and then cold pressed (5 MPa) for 5 minutes. A sheet-shaped fiber complex was obtained.
The CNF content ratio in the fiber complex was calculated from the following formula.
CNF mass after humidity control (g) = mass of fiber composite after humidity control (g) -carbon fiber mass after humidity control (g)
CNF content ratio (mass%)
= CNF amount after humidity control [g] / (Carbon fiber amount after humidity control [g] + CNF amount after humidity control [g]) x 100
Mass of fiber composite after humidity control [g]: Dry at 80 ° C. for 5 minutes, press at 105 ° C. and pressure 1 MPa for 5 minutes, and press at 105 ° C. and pressure 5 MPa for 10 minutes, then temperature 25 ° C. and relative humidity 50%. Mass after humidity control for 168 hours in the atmosphere of.
Mass of carbon fiber after humidity control [g]: Dry at 80 ° C. for 5 minutes, press at 105 ° C. and pressure 1 MPa for 5 minutes, and press at 105 ° C. and pressure 5 MPa for 10 minutes, then temperature 25 ° C. and relative humidity 50%. Mass after 168 hours humidity control in the atmosphere. Since carbon fiber easily absorbs moisture, the measurement was made after making it difficult to absorb moisture under the above conditions.

比較例1
CNF水溶液に代えて純水を使用したほかは実施例1~4と同様にして比較例の繊維複合体を得た。
Comparative Example 1
A fiber composite of Comparative Example was obtained in the same manner as in Examples 1 to 4 except that pure water was used instead of the CNF aqueous solution.

試験例1(外観写真)
実施例1~4、比較例1の繊維複合体を平坦な台上に置いた状態で、UK-03((株)ミヨシ製 USB顕微鏡)を用いて、225倍の倍率設定で、前記顕微鏡のレンズフードを繊維複合体に接触させた状態でオートフォーカスボタンを押して自動でピントを合わせた後、シャッターボタンを押して写真撮影を行った。
前記顕微鏡のピントは繊維複合体の表面に合わせたため、繊維複合体の高さ方向の厚み変動が大きいほど、全体の写真は不鮮明になった。
Test Example 1 (appearance photograph)
With the fiber composites of Examples 1 to 4 and Comparative Example 1 placed on a flat table, UK-03 (USB microscope manufactured by Miyoshi Co., Ltd.) was used to set the magnification at 225 times, and the microscope was used. With the lens hood in contact with the fiber composite, the autofocus button was pressed to automatically focus, and then the shutter button was pressed to take a picture.
Since the focus of the microscope was on the surface of the fiber complex, the larger the variation in the thickness of the fiber complex in the height direction, the more unclear the whole photograph.

試験例2(厚さ範囲)
実施例1~4、比較例1の繊維複合体を平坦な台上に置き、台の表面からの厚さ(mm)を計測した。5箇所の厚さの数値範囲を厚さ範囲とした。
Test Example 2 (thickness range)
The fiber complexes of Examples 1 to 4 and Comparative Example 1 were placed on a flat table, and the thickness (mm) from the surface of the table was measured. The numerical range of the thickness at 5 points was defined as the thickness range.

試験例3(形状保持試験)
実施例1~4、比較例1の繊維複合体(50mm×50mm)を指で摘まんだ状態で、振り幅約10cmで10回振ったあとの繊維複合体の外観を観察して、次の基準で判定した。
○:外観には全く変化がない。
×:指で摘まんだだけで崩壊して数個の小片になった。
Test Example 3 (Shape retention test)
In the state where the fiber complexes (50 mm × 50 mm) of Examples 1 to 4 and Comparative Example 1 were picked with fingers, the appearance of the fiber complex after shaking 10 times with a swing width of about 10 cm was observed, and the following was observed. Judgment was made by criteria.
◯: There is no change in appearance.
×: Just picked with a finger, it collapsed into several small pieces.

Figure 0007005223000001
Figure 0007005223000001

外観写真と厚さ範囲から明らかなとおり、実施例1~4の繊維複合体は、1mm以下のほぼ均一厚さのものであったが、比較例1の繊維複合体は全体として嵩高い状態のものであった。このため、比較例1の外観写真はピントがあっておらず、少し不鮮明になっていた。
形状保持試験の結果から、実施例1~4と比較例1の形状保持性の違いが確認された。
なお、実施例1~4の繊維複合体は、繊維複合体を手でしっかりと握った状態で、1m程度の振り幅で約1分間激しく振り回したあとでも、当初の形状がそのまま維持されていた。
As is clear from the external photographs and the thickness range, the fiber complexes of Examples 1 to 4 had a substantially uniform thickness of 1 mm or less, but the fiber complex of Comparative Example 1 was in a bulky state as a whole. It was a thing. Therefore, the external photograph of Comparative Example 1 was out of focus and was a little unclear.
From the results of the shape retention test, the difference in shape retention between Examples 1 to 4 and Comparative Example 1 was confirmed.
The fiber composites of Examples 1 to 4 maintained their original shapes even after being vigorously swung for about 1 minute with a swing width of about 1 m in a state where the fiber complex was firmly held by hand. ..

本発明のシート状の繊維複合体は、熱可塑性樹脂、熱硬化性樹脂などの強化用繊維として利用することができる。 The sheet-shaped fiber composite of the present invention can be used as a reinforcing fiber for a thermoplastic resin, a thermosetting resin, or the like.

Claims (6)

シート状の繊維複合体の製造方法であって、
前記シート状の繊維複合体が、炭素繊維とセルロースナノファバーを含有し、熱可塑性樹脂繊維を含有しておらず、前記セルロースナノファイバーの含有割合が0.01~2.0質量%のものであり、
炭素繊維と濃度0.005~1質量%のセルロースナノファイバー水溶液を接触させて、シート状の複合物を得る工程と、
前工程で得られたシート状の複合物のみを加熱プレス成形する工程を有している、シート状の繊維複合体の製造方法。
A method for manufacturing a sheet-shaped fiber complex.
The sheet-shaped fiber composite contains carbon fibers and cellulose nanofibers , does not contain thermoplastic resin fibers, and the content ratio of the cellulose nanofibers is 0.01 to 2.0% by mass. It is a thing
A step of contacting carbon fibers with an aqueous solution of cellulose nanofibers having a concentration of 0.005 to 1% by mass to obtain a sheet-like composite, and
A method for producing a sheet-shaped fiber composite, which comprises a step of heat-press molding only the sheet-shaped composite obtained in the previous step.
前記炭素繊維がリサイクル品である、請求項1記載のシート状の繊維複合体の製造方法。 The method for producing a sheet-shaped fiber complex according to claim 1, wherein the carbon fiber is a recycled product. 炭素繊維とセルロースナノファイバー水溶液を接触させる方法が、セルロースナノファイバー水溶液中に炭素繊維を浸漬する方法、または炭素繊維にセルロースナノファイバー水溶液を噴霧する方法である、請求項1または2記載のシート状の繊維複合体の製造方法。 The sheet shape according to claim 1 or 2 , wherein the method of bringing the carbon fiber into contact with the aqueous solution of the cellulose nanofiber is a method of immersing the carbon fiber in the aqueous solution of the cellulose nanofiber or a method of spraying the aqueous solution of the cellulose nanofiber on the carbon fiber. How to make a fiber composite. 請求項1~3のいずれか1項記載のシート状の繊維複合体に水を添加した後で、熱可塑性樹脂または熱硬化性樹脂のプレポリマーと加熱混合する工程を含んでいる、繊維複合樹脂材料の製造方法。 A fiber composite resin comprising a step of adding water to the sheet-shaped fiber composite according to any one of claims 1 to 3 and then heating and mixing with a prepolymer of a thermoplastic resin or a thermosetting resin. Material manufacturing method. 前記シート状の繊維複合体に水を添加する前に、前記シート状の繊維複合体を10mm2~1000mm2の範囲に切断する、請求項4記載の繊維複合樹脂材料の製造方法。 The method for producing a fiber composite resin material according to claim 4, wherein the sheet-shaped fiber composite is cut into a range of 10 mm 2 to 1000 mm 2 before water is added to the sheet-shaped fiber composite. 前記加熱混合する工程が、前記熱可塑性樹脂または前記熱硬化性樹脂のプレポリマーの融点以上に加熱する工程である、請求項4または5記載の繊維複合樹脂材料の製造方法。 The method for producing a fiber composite resin material according to claim 4 or 5, wherein the heating and mixing step is a step of heating to a temperature equal to or higher than the melting point of the thermoplastic resin or the prepolymer of the thermosetting resin.
JP2017157981A 2017-08-18 2017-08-18 Fiber complex Active JP7005223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017157981A JP7005223B2 (en) 2017-08-18 2017-08-18 Fiber complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017157981A JP7005223B2 (en) 2017-08-18 2017-08-18 Fiber complex

Publications (2)

Publication Number Publication Date
JP2019035045A JP2019035045A (en) 2019-03-07
JP7005223B2 true JP7005223B2 (en) 2022-02-04

Family

ID=65636965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017157981A Active JP7005223B2 (en) 2017-08-18 2017-08-18 Fiber complex

Country Status (1)

Country Link
JP (1) JP7005223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6784958B2 (en) * 2018-07-03 2020-11-18 株式会社三五 A method for producing the surface coating reinforcing fiber and the surface coating reinforcing fiber, and an intermediate base material, a composite material and a molded product containing the surface coating reinforcing fiber and a resin.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122285A (en) 2016-01-05 2017-07-13 三菱製紙株式会社 Carbon staple fiber nonwoven fabric and composite body
JP2017133131A (en) 2016-01-29 2017-08-03 三菱製紙株式会社 Recycled carbon short fiber nonwoven fabric, and composite body
JP2018131693A (en) 2017-02-13 2018-08-23 日立化成株式会社 Nonwoven fabric and resin molding comprising the nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122285A (en) 2016-01-05 2017-07-13 三菱製紙株式会社 Carbon staple fiber nonwoven fabric and composite body
JP2017133131A (en) 2016-01-29 2017-08-03 三菱製紙株式会社 Recycled carbon short fiber nonwoven fabric, and composite body
JP2018131693A (en) 2017-02-13 2018-08-23 日立化成株式会社 Nonwoven fabric and resin molding comprising the nonwoven fabric

Also Published As

Publication number Publication date
JP2019035045A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
Wang et al. Super‐strong, super‐stiff macrofibers with aligned, long bacterial cellulose nanofibers
JP5673375B2 (en) Fiber resin composite structure, method for producing molded body, and molded body
JP2010195996A (en) Cellulose/resin composite and method for producing the same
KR101430556B1 (en) Fabrication method of thermoplastic nanofiber composites using cellulose nanofibers and thermoplastic synthetic polymeric fibers
JP7005223B2 (en) Fiber complex
JP2012192645A (en) Method for manufacturing molded article
WO2016084824A1 (en) Carbon fiber mat, preform, sheet material, and molded article
JPWO2015098470A1 (en) Preform, sheet material and integrated sheet material
Awada et al. The development of a composite based on cellulose fibres and polyvinyl alcohol in the presence of boric acid
JP2015532344A (en) Composite materials containing renewable raw materials and methods for producing them
CN105839218A (en) Novel composite material fiber, and preparation method and melt-blowing spinning method thereof
JP2019001938A (en) Manufacturing method of fibrillated cellulose fiber, and manufacturing method of resin composition
JP2018131693A (en) Nonwoven fabric and resin molding comprising the nonwoven fabric
JP2015140353A (en) Fiber-reinforced thermoplastic resin composition, method for producing the same, and method for producing fiber-reinforced thermoplastic resin molding
JP2017066274A (en) Fine fibrous cellulose-containing material
JP5908765B2 (en) Manufacturing method of composite material
JP2014234427A (en) Fiber assembly for fiber-reinforced resin, fiber-reinforced resin sheet, and fiber-reinforced resin molded body
CN103862797A (en) Producing method of degradable nonwoven fabric
JP6493147B2 (en) Nonwoven fabric, method for producing nonwoven fabric, and fiber-reinforced plastic molded body
CN109206898B (en) 3D printing material and preparation method and application thereof
KR101268925B1 (en) Kapok Nonwoven Using Bicomponent Fiber and Manufacturing Method Thereof
CN112376130B (en) Regenerated plastic yarn and preparation method and fabric thereof
JP7268338B2 (en) Molded body manufacturing method
JP6483333B1 (en) Microfibrillated cellulose-containing composition, prepreg, molded article, and method for producing prepreg
KR200372999Y1 (en) Manufacturing method of master batch chip for synthetic fiber with anti-bacterial property

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150