JP5673375B2 - Fiber resin composite structure, method for producing molded body, and molded body - Google Patents

Fiber resin composite structure, method for producing molded body, and molded body Download PDF

Info

Publication number
JP5673375B2
JP5673375B2 JP2011132459A JP2011132459A JP5673375B2 JP 5673375 B2 JP5673375 B2 JP 5673375B2 JP 2011132459 A JP2011132459 A JP 2011132459A JP 2011132459 A JP2011132459 A JP 2011132459A JP 5673375 B2 JP5673375 B2 JP 5673375B2
Authority
JP
Japan
Prior art keywords
fiber
resin
composite structure
composite
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011132459A
Other languages
Japanese (ja)
Other versions
JP2013001764A (en
Inventor
伊東 寿
寿 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2011132459A priority Critical patent/JP5673375B2/en
Publication of JP2013001764A publication Critical patent/JP2013001764A/en
Application granted granted Critical
Publication of JP5673375B2 publication Critical patent/JP5673375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、繊維複合構造体、成形体の製造方法及び成形体に関する。   The present invention relates to a fiber composite structure, a method for producing a molded body, and a molded body.

プラスチック繊維、炭素繊維、ガラス繊維などの強化繊維と樹脂マトリックスからなる繊維強化複合材料は、強度、剛性に優れているため、電気・電子用途、土木・建築用途、自動車用途、航空機用途等に広く用いられている。なかでも強化繊維が均一に分散した基材を用いた複合材料は、力学特性が等方的になり、さらには高強度を発現する材料であれば適用可能な用途は非常に多くなる。   Fiber reinforced composite materials consisting of plastic fibers, carbon fibers, glass fibers and other reinforcing fibers and resin matrices are excellent in strength and rigidity, so they are widely used in electrical / electronic applications, civil engineering / architecture applications, automotive applications, aircraft applications, etc. It is used. Among them, a composite material using a base material in which reinforcing fibers are uniformly dispersed has isotropic mechanical properties, and furthermore, if it is a material that develops high strength, the applicable applications are greatly increased.

強化繊維を均一かつ等方的に分散し、繊維強化複合材料を作製する方法として、湿式抄造法が検討されている。例えば特許文献1には、フェノール樹脂粉末と強化繊維としてガラス繊維とアラミド繊維を水中に分散し抄造したウェブ状の成形材料を、成形金型にて加熱加圧成形(圧縮成形)して繊維強化のフェノール樹脂成形品を作製している。また、特許文献2には、ガラス繊維とビニロン繊維をフェノール樹脂の微粒子と共に水中に分散させ、これらを抄造し乾燥してシート状の成形材料を得た後に、金型内で加熱加圧成形して板状成形品を作製することが記載されており、抄造する強化繊維及び分散混抄する樹脂を選定することで、機械的特性を中心とした成形品特性の改良検討が行われている。   As a method for producing a fiber-reinforced composite material by uniformly and isotropically dispersing reinforcing fibers, a wet papermaking method has been studied. For example, in Patent Document 1, a web-like molding material prepared by dispersing and making glass fiber and aramid fiber in water as a reinforcing resin and making paper is heated and pressure-molded (compression-molded) in a molding die to strengthen the fiber. Of phenolic resin molded products. Patent Document 2 discloses that glass fibers and vinylon fibers are dispersed in water together with phenol resin fine particles, and these are made and dried to obtain a sheet-like molding material, which is then heated and pressed in a mold. The production of plate-shaped molded products is described, and improvement of molded product characteristics centering on mechanical properties is being studied by selecting reinforcing fibers to be made and resin to be dispersed and mixed.

湿式抄造法は、マトリックス樹脂粒子と強化繊維を水中に分散し、漉きとることによって均一に分散混合した繊維複合材料あり、強化繊維が絡み合うことで加熱加圧成形後の成形体に高強度な特性を付与出来ている。しかし、繊維が強固に絡み合っているために、流動性が乏しく、3次元的な絞り成形では成形体表面に皺が出たり地割れが生じたりするため、板状成形体や極浅い凸形状を有する成形体にしか使われていなかった。また、抄造後の繊維複合材料は樹脂粒子が取扱時に脱落が生じ易く、取扱いが難しかった。   The wet papermaking method is a fiber composite material in which matrix resin particles and reinforcing fibers are dispersed in water and dispersed uniformly by rolling, and the reinforcing fibers are entangled with each other to give high strength properties to the molded body after heat and pressure molding Has been granted. However, since the fibers are intertwined strongly, the fluidity is poor, and in the three-dimensional drawing, the surface of the molded body is wrinkled or ground cracks occur, so that it has a plate-shaped molded body or an extremely shallow convex shape. It was only used for molded bodies. In addition, the fiber composite material after papermaking is difficult to handle because the resin particles easily fall off during handling.

立体的な成形容器を製造する方法として、目的とする成形体の外形に合致する窪みを有する網型を作製しておき、その網型によって抄紙原料を湿式抄紙した後に、乾燥して立体的な成形容器製造する方法が一般に知られている。しかし、湿式成形法は成形容器の製造に時間と手間がかかり、極めて生産性が低いといった課題があり、湿式抄造法により作製した抄紙シートの絞り加工が検討されている。   As a method of manufacturing a three-dimensional molded container, a net mold having a depression that matches the outer shape of the target molded article is prepared, and after the papermaking raw material is wet-made by the net mold, it is dried and three-dimensional. Methods for manufacturing molded containers are generally known. However, the wet molding method takes time and labor to manufacture a molded container and has a problem that the productivity is extremely low, and drawing processing of a paper sheet produced by the wet papermaking method has been studied.

湿式抄造法により作製した複合シートの絞り加工について、特許文献3には、天然パルプと熱接着性を有し適度な繊維伸度を有する熱可塑性繊維を含むプレス成形用紙が記載されており、特許文献4には、熱可塑性繊維を主成分とする紙層とセルロースパルプを主成分とする紙層の積層構造による熱成形用の板紙が記載されているが、抄造した複合シートの絞り成形性は良いものの、成形体の機械強度については高強度と言えるものではなく、適用可能な用途が電気・電子部品の包装容器、その他の工業用部品の包装容器、各種食品の包装容器や、トレイ、使い捨て食器(弁当箱、折り箱など)、車輌内装材、包装用緩衝材などに限定されるものであった。   Regarding drawing processing of a composite sheet produced by a wet papermaking method, Patent Document 3 describes a press-formed paper containing thermoplastic fibers having natural fiber and thermal adhesiveness and appropriate fiber elongation. Reference 4 describes a paperboard for thermoforming with a laminated structure of a paper layer mainly composed of thermoplastic fibers and a paper layer mainly composed of cellulose pulp. Although good, the mechanical strength of the molded product is not high, and applicable applications include packaging containers for electrical and electronic parts, packaging containers for other industrial parts, packaging containers for various foods, trays, and disposables. It was limited to tableware (lunch boxes, folding boxes, etc.), vehicle interior materials, and cushioning materials for packaging.

特開平10−95024号公報JP 10-95024 A 特開平10−166361号公報JP-A-10-166361 特開平10−8393号公報Japanese Patent Laid-Open No. 10-8393 特開2000−265400公報JP 2000-265400 A

本発明の目的は、外観の良好な機械的特性に優れた3次元成形体、及び成形することにより成形体を容易に製造することができ、材料脱落の無い取扱性の良好な繊維樹脂複合構造体を提供することにある。   An object of the present invention is to provide a three-dimensional molded article having a good appearance and excellent mechanical characteristics, and a fiber resin composite structure capable of easily producing a molded article by molding and having a good handleability without material dropping. To provide a body.

このような目的は、下記(1)〜(15)の本発明により達成される。
(1)(A)熱可塑性樹脂及び熱硬化性樹脂から選ばれる少なくとも1種の樹脂と、(B)融点が異なる2成分以上の熱可塑性樹脂の繊維から構成される複合繊維と、(C)前記(B)複合繊維を除く有機繊維及び無機繊維から選ばれる少なくとも1種の繊維と、を含み、前記(B)複合繊維を構成する1成分の熱可塑性樹脂の繊維が少なくとも2本以上の複合繊維間を結着していることを特徴とする繊維樹脂複合構造体。
Such an object is achieved by the present inventions (1) to (15) below.
(1) (A) at least one resin selected from thermoplastic resins and thermosetting resins; (B) a composite fiber composed of two or more thermoplastic resin fibers having different melting points; and (C). (B) at least one fiber selected from organic fibers and inorganic fibers excluding the composite fiber, and (B) a composite of at least two fibers of one component thermoplastic resin constituting the composite fiber A fiber-resin composite structure characterized by binding between fibers.

(2)前記(B)複合繊維の横断面における最も低融点の成分の占有面積をS、他の成分の占有面積をSとした時、それらの占有面積の比S/Sが2/8〜8/2であることを特徴とする第(1)項に記載の繊維樹脂複合構造体。 (2) the (B) when the area occupied by the component having the lowest melting point S l in the cross section of the composite fiber, the area occupied by the other components were the S h, the ratio of their occupied area S l / S h is The fiber-resin composite structure according to item (1), which is 2/8 to 8/2.

(3)前記(B)複合繊維が当該繊維複合構造体中に1質量%以上、30質量%以下の割合で含まれることを特徴とする第(1)項又は第(2)項に記載の繊維樹脂複合構造体。 (3) The (B) composite fiber is contained in the fiber composite structure in a proportion of 1% by mass or more and 30% by mass or less, according to item (1) or item (2) Fiber resin composite structure.

(4)前記(B)複合繊維が、2成分以上が貼り合わされている積層型の構造を有することを特徴とする第(1)項から第(3)項のいずれか1項に記載の繊維樹脂複合構造体。 (4) The fiber according to any one of items (1) to (3), wherein the composite fiber (B) has a laminated structure in which two or more components are bonded together. Resin composite structure.

(5)前記(B)複合繊維が、最も低融点の成分が鞘部を構成し、他の成分が芯部を構成する芯鞘型の構造を有することを特徴とする第(1)項から第(3)項のいずれか1項に記載の繊維樹脂複合構造体。 (5) From the item (1), the composite fiber (B) has a core-sheath structure in which the component having the lowest melting point constitutes the sheath and the other components constitute the core. The fiber resin composite structure according to any one of items (3).

(6)前記(B)複合繊維の室温における伸度が10〜200%であることを特徴とする第(1)項から第(5)項のいずれか1項に記載の繊維樹脂複合構造体。 (6) The fiber resin composite structure according to any one of items (1) to (5), wherein the elongation of the composite fiber (B) at room temperature is 10 to 200%. .

(7)前記(B)複合繊維を構成する最も低融点の成分を除く他の成分の融点が、前記(A)樹脂に含まれてもよい前記熱可塑性樹脂の融点及び前記(C)繊維に含まれてもよい有機繊維を構成する樹脂の融点よりも低いことを特徴とする第(1)項から第(6)項のいずれか1項に記載の繊維樹脂複合構造体。 (7) The melting point of the component other than the lowest melting point component constituting the (B) composite fiber is the melting point of the thermoplastic resin that may be contained in the (A) resin and the (C) fiber. Item 6. The fiber-resin composite structure according to any one of Items (1) to (6), which is lower than the melting point of the resin constituting the organic fiber that may be included.

(8)前記(B)複合繊維を構成する最も低融点の成分の融点が、前記(A)樹脂に含まれてもよい前記熱硬化性樹脂の硬化温度よりも低いことを特徴とする第(1)項から第(6)項のいずれか1項に記載の繊維樹脂複合構造体。 (8) The melting point of the lowest melting point component constituting the (B) composite fiber is lower than the curing temperature of the thermosetting resin that may be contained in the (A) resin. The fiber resin composite structure according to any one of items 1) to (6).

(9)前記(C)繊維が、アラミド繊維、ガラス繊維及び炭素繊維から選ばれる少なくとも1種を含むことを特徴とする第(1)項から第(8)項のいずれか1項に記載の繊維樹脂複合構造体。 (9) Said (C) fiber contains at least 1 sort (s) chosen from an aramid fiber, glass fiber, and carbon fiber, Any one of (1) to (8) term | claim characterized by the above-mentioned. Fiber resin composite structure.

(10)前記(C)繊維が、有機繊維をフィブリル化したパルプ繊維をさらに含むことを特徴とする第(1)項から第(9)項のいずれか1項に記載の繊維樹脂複合構造体。 (10) The fiber-resin composite structure according to any one of (1) to (9), wherein the (C) fiber further includes pulp fiber obtained by fibrillating organic fiber. .

(11)前記(A)樹脂、前記(B)複合繊維、前記(C)繊維を含む構成材料を溶媒に分散させた後、抄造薬剤を添加して構成材料を凝集させ、その凝集物を溶媒と分離させた
後、その溶媒を除去して得られる複合材料組成物であって、前記溶媒の除去後に、前記(B)複合繊維中の最も低融点の成分の融点よりも高い温度にて熱処理を行うことで得られることを特徴とする第(1)項から第(10)項のいずれか1項に記載の繊維樹脂複合構
造体。
(11) After the constituent material containing the (A) resin, the (B) composite fiber, and the (C) fiber is dispersed in a solvent, a papermaking agent is added to aggregate the constituent material, and the aggregate is used as a solvent. And then, after removing the solvent, heat treatment at a temperature higher than the melting point of the lowest melting component in the composite fiber (B) The fiber resin composite structure according to any one of items (1) to (10), wherein the fiber resin composite structure is obtained by performing

(12)前記熱処理を行う温度が、前記(B)複合繊維を構成する最も低融点の成分を除く他の成分の融点、前記(A)樹脂に含まれてもよい前記熱可塑性樹脂の融点、及び前記(C)繊維に含まれてもよい有機繊維を構成する樹脂の融点、ならびに、前記(A)樹脂に含まれてもよい前記熱硬化性樹脂の硬化温度よりも低い温度であることを特徴とする第(11)項に記載の繊維樹脂複合構造体。 (12) The temperature at which the heat treatment is performed is (B) the melting point of other components excluding the lowest melting point component constituting the composite fiber, (A) the melting point of the thermoplastic resin that may be included in the resin, And (C) the melting point of the resin constituting the organic fiber that may be contained in the fiber, and the curing temperature of the thermosetting resin that may be contained in the (A) resin. The fiber-resin composite structure according to item (11), which is characterized.

(13)第(1)項から第(12)項のいずれか1項に記載の繊維樹脂複合構造体を裁断して所定の形状にする過程を経た後、加熱加圧成形することを特徴とする成形体の製造方法。 (13) The fiber-resin composite structure according to any one of items (1) to (12) is cut and formed into a predetermined shape, followed by heat and pressure molding. The manufacturing method of the molded object to do.

(14)凹凸形状を有する成形体の製造方法であって、第(1)項から第(12)項のいずれか1項に記載の繊維樹脂複合構造体を、コールドプレスにより最終成形体に類似した凹凸を賦形した後に所定の形状にする過程を経て、加熱加圧プレスすることを特徴とする成形体の製造方法。 (14) A method for producing a molded body having a concavo-convex shape, wherein the fiber resin composite structure according to any one of items (1) to (12) is similar to a final molded body by cold pressing. A method for producing a molded body, characterized by forming a predetermined shape after forming the irregularities, and then performing heat and pressure pressing.

(15)第(13)項又は第(14)項に記載の成形体の製造方法によって得られることを特徴とする成形体。 (15) A molded article obtained by the method for producing a molded article according to (13) or (14).

本発明によれば、外観が良好で機械的特性に優れた絞り成形体が得られる。特に、軽くて高強度な3次元成形体が得られるので、携帯性を有する電子機器の筐体の様な構造体に好適に利用することができる。   According to the present invention, it is possible to obtain a drawn product having a good appearance and excellent mechanical properties. In particular, since a light and high-strength three-dimensional molded body can be obtained, it can be suitably used for a structure such as a casing of a portable electronic device.

また、本発明によれば、成形することにより、成形体を容易に製造することができる繊維樹脂複合構造体が得られる。   Moreover, according to this invention, the fiber resin composite structure which can manufacture a molded object easily is obtained by shape | molding.

以下に、本発明の好ましい実施形態に基づき説明する。
本発明の繊維樹脂複合構造体は、(A)熱可塑性樹脂及び熱硬化性樹脂から選ばれる少なくとも1種の樹脂と、(B)融点が異なる2成分以上の熱可塑性樹脂の繊維から構成される複合繊維と、(C)(B)複合繊維を除く有機繊維及び無機繊維から選ばれる少なくとも1種の繊維と、を含み、(B)複合繊維を構成する1成分の熱可塑性樹脂の繊維が少なくとも2本以上の複合繊維間を結着していることを特徴とする。また、本発明の成形体は、上述の繊維樹脂複合構造体を裁断して所定の形状にする過程を経た後、加熱加圧成形することを特徴とする本発明の成形体の製造方法によって得られる。これにより、繊維樹脂複合構造体を加熱加圧成形する過程において、結着した(B)複合繊維が弾性変形することによって、絞り等の立体的なへの充填性が向上することで、外観が良好で機械的特性に優れた絞り成形体、特に、軽くて高強度な3次元成形体を得ることが可能となる。なお、成形体の外観とは、表面に見られる地割れ等の構造欠陥の有無を示し、成形体の機械的特性とは、表面の変形し難さといった機械的強度、疲労強度、衝撃強度等の物理的特性の総称である。
Below, it demonstrates based on preferable embodiment of this invention.
The fiber resin composite structure of the present invention is composed of (A) at least one resin selected from thermoplastic resins and thermosetting resins, and (B) fibers of two or more thermoplastic resins having different melting points. (C) (B) at least one fiber selected from organic fibers and inorganic fibers excluding the composite fiber, and (B) at least one component thermoplastic resin fiber constituting the composite fiber It is characterized in that two or more composite fibers are bound. In addition, the molded body of the present invention is obtained by the method for manufacturing a molded body of the present invention, wherein the above-mentioned fiber resin composite structure is cut and formed into a predetermined shape, and then subjected to heat and pressure molding. It is done. As a result, in the process of heat-press molding the fiber resin composite structure, the bound (B) composite fiber is elastically deformed, thereby improving the three-dimensional fillability such as drawing and the appearance. It is possible to obtain a drawn molded article having excellent mechanical properties, in particular, a light and high-strength three-dimensional molded article. The appearance of the molded body indicates the presence or absence of structural defects such as ground cracks seen on the surface, and the mechanical properties of the molded body include mechanical strength such as difficulty of deformation of the surface, fatigue strength, impact strength, etc. A general term for physical properties.

まず、本発明の繊維樹脂複合構造体について説明する。本発明の繊維樹脂複合構造体には、(A)熱可塑性樹脂及び熱硬化性樹脂から選ばれる少なくとも1種の樹脂を用いることができる。このような(A)樹脂としては、特に限定されるものではなく、各種熱可塑
性樹脂、各種熱硬化性樹脂が挙げられ、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体(EVA)等のポリオレフィン、環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド(例:ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6−12、ナイロン6−66)、ポリイミド、ポリアミドイミド、ポリカーボネート(PC)、ポリ−(4−メチルペンテン−1)、アイオノマー、アクリル系樹脂、ポリメチルメタクリレート、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、アクリロニトリル−スチレン共重合体(AS樹脂)、ブタジエン−スチレン共重合体、ポリオキシメチレン、ポリビニルアルコール(PVA)、エチレン−ビニルアルコール共重合体(EVOH)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンテレフタレート(PCT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド、ポリアセタール(POM)、ポリフェニレンオキシド、変性ポリフェニレンオキシド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、その他フッ素系樹脂、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、シリコーン樹脂、ウレタン樹脂、又はこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いることができる。樹脂は湿式抄造により繊維等と複合化することから、常温で粒子状又は繊維状であり、水に不溶であるものが好ましい。これらのなかでも熱可塑性樹脂としては、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリサルフォン、ポリフェニレンスルフィドから選ばれる少なくとも一種の樹脂が、成形体の耐熱性を高めることができる点、更に高融点であるため併用する(B)複合繊維の選択幅が広くできる点で特に好ましい。また、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレタン樹脂から選ばれる少なくとも一種の樹脂が、成形体の耐熱性を高めることができる点、更に硬化温度が比較的高いため併用する(B)複合繊維の選択幅が広くできる点で特に好ましい。
First, the fiber resin composite structure of the present invention will be described. In the fiber resin composite structure of the present invention, at least one resin selected from (A) a thermoplastic resin and a thermosetting resin can be used. Such (A) resin is not particularly limited, and examples thereof include various thermoplastic resins and various thermosetting resins, such as polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer. Polyolefin such as polymer (EVA), cyclic polyolefin, modified polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide (eg, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, Nylon 6-12, nylon 6-66), polyimide, polyamideimide, polycarbonate (PC), poly- (4-methylpentene-1), ionomer, acrylic resin, polymethyl methacrylate, acrylonitrile-butadiene-styrene copolymer ABS resin), acrylonitrile-styrene copolymer (AS resin), butadiene-styrene copolymer, polyoxymethylene, polyvinyl alcohol (PVA), ethylene-vinyl alcohol copolymer (EVOH), polyethylene terephthalate (PET), poly Polyester such as butylene terephthalate (PBT), polycyclohexane terephthalate (PCT), polyethylene naphthalate (PEN), polyether, polyether ketone (PEK), polyether ether ketone (PEEK), polyether imide, polyacetal (POM), Polyphenylene oxide, modified polyphenylene oxide, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, aromatic polyester (liquid crystal polymer) Polytetrafluoroethylene, polyvinylidene fluoride, other fluororesins, styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, trans polyisoprene, fluoro rubber, chlorinated polyethylene Various thermoplastic elastomers such as, epoxy resins, phenol resins, urea resins, melamine resins, unsaturated polyesters, silicone resins, urethane resins, or copolymers mainly containing these, blends, polymer alloys, etc. 1 type or 2 types or more can be used in combination. Since the resin is compounded with fibers and the like by wet papermaking, it is preferably in the form of particles or fibers at room temperature and insoluble in water. Among these, as the thermoplastic resin, at least one resin selected from polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyamide, polyether ketone, polyether ether ketone, polysulfone, and polyphenylene sulfide is used as the molded body. It is particularly preferable in that the heat resistance can be enhanced and the selection range of the composite fiber (B) to be used together can be widened because it has a high melting point. In addition, as the thermosetting resin, at least one resin selected from an epoxy resin, a phenol resin, a melamine resin, and a urethane resin can increase the heat resistance of the molded body, and is further used because the curing temperature is relatively high. (B) It is particularly preferable in that the selection range of the composite fiber can be widened.

(A)樹脂の配合量としては、繊維樹脂複合構造体全体に対して、好ましくは10〜80質量%、さらに好ましくは20〜70質量%、特に好ましくは30〜60質量%である。これにより、繊維樹脂複合構造体を加熱加圧成形した場合に、外観が良好で且つ樹脂偏在の少ない成形体を作製することができる。   (A) As a compounding quantity of resin, Preferably it is 10-80 mass% with respect to the whole fiber resin composite structure, More preferably, it is 20-70 mass%, Most preferably, it is 30-60 mass%. Thereby, when a fiber-resin composite structure is heat-press molded, a molded body having a good appearance and less resin uneven distribution can be produced.

本発明の繊維樹脂複合構造体には、(B)融点が異なる2成分以上の熱可塑性樹脂の繊維から構成される複合繊維を用いることができる。このような(B)複合繊維としては、特に限定されるものではないが、例えば、2成分以上が貼り合わされている積層型の構造を有する複合繊維や、最も低融点の成分が鞘部を構成し、他の成分が芯部を構成する芯鞘型の構造を有する複合繊維などが挙げられるが、これらは1種を単独で用いても、2種以上を併用してもよい。(B)融点が異なる2成分以上の熱可塑性樹脂の繊維から構成される複合繊維は、最も低融点の成分の融点より高い温度熱処理するなどして、最も低融点の成分を溶融させることによって、(B)複合繊維間や、繊維樹脂複合構造体の各構成成分間を結着することができ、繊維樹脂複合構造体の構成成分の脱落を抑制することができ、更には、加熱成形により得られる成形体の衝撃強度を向上させることができる。これらの中でも、最も低融点の成分が鞘部を構成し、他の成分が芯部を構成する芯鞘型の構造を有する複合繊維が、熱結着性の点から好ましい。芯鞘型の構造を有する複合繊維は、芯部分
と鞘部分とは同心でもよく、偏心していてもよい。
In the fiber resin composite structure of the present invention, (B) a composite fiber composed of two or more thermoplastic resin fibers having different melting points can be used. Such (B) composite fiber is not particularly limited. For example, a composite fiber having a laminated structure in which two or more components are bonded together, or a component having the lowest melting point constitutes the sheath. And the composite fiber etc. which have the core-sheath type | mold structure in which another component comprises a core part are mentioned, These may be used individually by 1 type, or may use 2 or more types together. (B) A composite fiber composed of two or more thermoplastic resin fibers having different melting points is subjected to a heat treatment at a temperature higher than the melting point of the lowest melting point component, such as by melting the lowest melting point component, (B) It is possible to bind between the composite fibers and between the constituent components of the fiber-resin composite structure, and to prevent the constituent components of the fiber-resin composite structure from falling off. The impact strength of the molded product obtained can be improved. Among these, a composite fiber having a core-sheath structure in which the component having the lowest melting point constitutes the sheath and the other components constitute the core is preferable from the viewpoint of thermal binding. In the conjugate fiber having a core-sheath structure, the core part and the sheath part may be concentric or eccentric.

(B)複合繊維は、その平均繊維長が1〜30mmであるのが好ましく、より好ましくは1.5〜20mm、更に好ましくは2〜15mmである。(B)複合繊維の平均繊維長が上記下限値未満であると、(B)複合繊維同士の網目状構造の形成が不十分となり、絞り加工した成形体の地割れを抑制する効果が充分に得られない恐れがある。一方、(B)複合繊維の平均繊維長が上記上限値を超える場合、繊維樹脂複合構造体中において(B)複合繊維を均一に分散させることができず、機械的特性が不均一になる恐れがある。   (B) The composite fiber preferably has an average fiber length of 1 to 30 mm, more preferably 1.5 to 20 mm, and still more preferably 2 to 15 mm. (B) When the average fiber length of the composite fiber is less than the above lower limit, (B) the formation of a network structure between the composite fibers becomes insufficient, and the effect of suppressing the ground cracking of the drawn product is sufficiently obtained. There is a fear that it is not possible. On the other hand, when the average fiber length of the (B) composite fiber exceeds the above upper limit, the (B) composite fiber cannot be uniformly dispersed in the fiber-resin composite structure, and the mechanical properties may be uneven. There is.

また、(B)複合繊維の繊維径は、5〜60μmであるのが好ましく、10〜30μmであるのがより好ましい。(B)複合繊維の平均繊維径が上記範囲内であれば、低(B)複合繊維が結着した網目状構造の形成が十分であり、更に、繊維樹脂複合構造体中の均一な分散性が付与される。(B)複合繊維の繊維径が上記下限値を下回る場合には、(B)複合繊維同士、及び(B)複合繊維と(C)繊維とを結着する拘束力が低下してしまう恐れがある。また、(B)複合繊維の繊維径が上記上限値を超える場合には、繊維樹脂複合構造体中において(B)複合繊維が偏在し易くなり分散性が低下するため、結着力が低下してしまう恐れがある。   Moreover, it is preferable that the fiber diameter of (B) composite fiber is 5-60 micrometers, and it is more preferable that it is 10-30 micrometers. (B) If the average fiber diameter of the composite fiber is within the above range, the formation of a network structure in which the low (B) composite fiber is bound is sufficient, and further, uniform dispersibility in the fiber-resin composite structure Is granted. When the fiber diameter of the (B) composite fiber is below the lower limit, the binding force for binding the (B) composite fibers and (B) the composite fibers and the (C) fibers may be reduced. is there. In addition, when the fiber diameter of the (B) composite fiber exceeds the upper limit, the (B) composite fiber is likely to be unevenly distributed in the fiber-resin composite structure, and the dispersibility is lowered. There is a risk.

(B)複合繊維における最も低融点の成分は、その融点Tmlが繊維樹脂複合構造体を構成する(A)樹脂に含まれてもよい熱可塑性樹脂の融点及び(C)繊維に含まれてもよい有機繊維を構成する樹脂の融点よりも低いことが好ましい。また、(B)複合繊維における最も低融点の成分は、その融点Tmlが(A)樹脂に含まれてもよい熱硬化性樹脂の硬化温度よりも低いことが好ましい。より具体的には、融点Tmlは80〜200℃であることが好ましく、90〜160℃であることが特に好ましい。これにより、繊維樹脂複合構造体を構成する(A)樹脂や(C)繊維に支障をきたすことなく、(B)複合繊維における最も低融点の成分を溶融して網目状構造を形成することができるため、(B)複合繊維同士の接点の結着性、ならびに、(B)複合繊維と繊維樹脂複合構造体の他の構成成分である(A)樹脂、(C)繊維などとの接点の結着性が良好となり、網目状構造を十分に形成することが可能となる。一方、(B)複合繊維における最も低融点の成分を除く他の成分は、その融点Tmhが繊維樹脂複合構造体を構成する(A)樹脂に含まれてもよい熱可塑性樹脂の融点及び(C)繊維に含まれてもよい有機繊維を構成する樹脂の融点よりも低いことが好ましい。また、(B)複合繊維における最も低融点の成分を除く他の成分は、その融点Tmhが繊維樹脂複合構造体を構成する(A)樹脂に含まれてもよい熱硬化性樹脂の硬化温度よりも低いことが好ましい。より具体的には、融点Tmhは150〜250℃であることが好ましく、160〜200℃であることが特に好ましい。これにより、最終成形体の成形時において、Tmhよりも低い温度域に留まるプレス成形初期の加熱段階では、(B)複合繊維の網目状構造体が弾性変形することで繊維樹脂複合構造体の地割れを抑制し、Tmhを越えて成形設定温度近傍まで到達した段階では、(B)複合繊維の網目状構造が消失し、繊維樹脂複合構造体が成形体形状を成す際の(A)樹脂や(C)繊維の局所的な再配向を促すことが可能となる。このため、プレス成形初期の加熱段階の弾性変形を効果的に活用でき、特に、(A)樹脂として熱硬化樹脂を用いた場合は、(B)複合繊維の溶融固化成分がマトリックス樹脂中に分散しているため、成形体の衝撃強度等の機械的特性を向上させることが可能となる。 (B) The component having the lowest melting point in the composite fiber includes the melting point T ml of the thermoplastic resin that may be included in the resin (A) constituting the fiber resin composite structure and (C) the fiber. It is preferable that the melting point of the resin constituting the good organic fiber is lower. In addition, the component (B) having the lowest melting point in the composite fiber preferably has a melting point T ml lower than the curing temperature of the thermosetting resin that may be contained in the (A) resin. More specifically, the melting point T ml is preferably 80 to 200 ° C, particularly preferably 90 to 160 ° C. Thereby, (B) the component having the lowest melting point in the composite fiber can be melted to form a network structure without causing any trouble to the (A) resin and (C) fiber constituting the fiber resin composite structure. Therefore, (B) the binding property of the contact points between the composite fibers, and (B) the contact points between the composite fibers and other constituent components of the fiber resin composite structure (A) resin, (C) fibers, etc. The binding property is improved, and a sufficient network structure can be formed. On the other hand, (B) the other components excluding the lowest melting point component in the composite fiber have the melting point T mh constituting the fiber resin composite structure (A) the melting point of the thermoplastic resin that may be contained in the resin, and ( C) It is preferable that it is lower than melting | fusing point of resin which comprises the organic fiber which may be contained in a fiber. In addition, (B) other components excluding the lowest melting point component in the composite fiber, the melting temperature T mh of which constitutes the fiber resin composite structure (A) The curing temperature of the thermosetting resin that may be included in the resin Is preferably lower. More specifically, the melting point T mh is preferably 150 to 250 ° C, and particularly preferably 160 to 200 ° C. As a result, at the time of heating the initial press forming that remains in a temperature range lower than T mh at the time of forming the final formed body, (B) the fibrous structure of the fiber-resin composite structure is elastically deformed. In the stage where the cracking is suppressed and T mh is reached to the vicinity of the molding set temperature, (B) the network structure of the composite fiber disappears, and the fiber resin composite structure forms the molded body (A) resin. (C) It becomes possible to promote local reorientation of the fiber. For this reason, it is possible to effectively utilize the elastic deformation in the heating stage at the initial stage of press molding. In particular, when (A) a thermosetting resin is used as the resin, (B) the melt-solidified component of the composite fiber is dispersed in the matrix resin. Therefore, it is possible to improve mechanical properties such as impact strength of the molded body.

(B)複合繊維の最も低融点の成分を除く他の成分の融点Tmhと、最も低融点の成分の融点Tmlとの温度差、即ち、ΔT=Tmh−Tmlは、10〜150℃であることが好ましく、20〜100℃であることが特に好ましい。これにより、(B)複合繊維の最も低融点の成分を除く他の成分の強度を保持したままで、最も低融点の成分が溶融して網目状構造が形成され、凹凸賦形時の弾性変形が効果的に発現でき、更には、外観が良好で機械的特性が良好な成形体を得ることが可能となる。 (B) The temperature difference between the melting point T mh of the other components excluding the lowest melting point component of the composite fiber and the melting point T ml of the lowest melting point component, that is, ΔT m = T mh −T ml is 10 to 10 It is preferable that it is 150 degreeC, and it is especially preferable that it is 20-100 degreeC. As a result, (B) while maintaining the strength of the other components except the lowest melting point component of the composite fiber, the lowest melting point component melts to form a network structure, and elastic deformation during uneven shaping Can be effectively expressed, and further, it is possible to obtain a molded article having a good appearance and good mechanical properties.

また、(B)複合繊維の横断面において、最も低融点の成分の占有面積Sと最も低融点の成分を除く他の成分の占有面積Sとの面積比S/Sは、複合繊維同士の接点の結着性の点から、2/8〜8/2であることが好ましく、3/7〜7/3であることが特に好ましい。S/Sが、上記下限値未満の場合、繊維同士の結着性が不十分となるため、繊維樹脂複合構造体の構成成分の脱落を抑制できなくなる恐れがある。また、上記上限値を超える場合は、結着性は良いものの、成形体に地割れ等の外観不良が生じる恐れがある。 Also, (B) in the transverse plane of the composite fibers, the area ratio S l / S h of the occupied area S h of the other ingredients except the lowest melting point component and the occupied area S l component of the lowest melting point, the composite From the viewpoint of the binding property between the contacts of the fibers, it is preferably 2/8 to 8/2, and particularly preferably 3/7 to 7/3. When S 1 / S h is less than the above lower limit value, the binding property between the fibers becomes insufficient, so that there is a possibility that dropping of the constituent components of the fiber resin composite structure cannot be suppressed. Moreover, when the said upper limit is exceeded, although binding property is good, there exists a possibility that appearance defects, such as a ground crack, may arise in a molded object.

また、(B)複合繊維の室温における伸度は、10〜200%であることが好ましく、50〜150%であることがより好ましい。これにより、繊維樹脂複合構造体中に形成される網目状構造の弾性変形により、(B)複合繊維や(C)繊維の絡み合い構造を保持しながら立体的な形状賦形を行う点ことが可能となる。(B)複合繊維の室温における伸度が上記下限値未満の場合は、網目状構造が変形により破壊し易いため、成形体に地割れが生じる恐れがある。また、(B)複合繊維の室温における伸度が上記上限値を超える場合は、網目状構造は保持されているものの弾性率が低いため、成形体の地割れを抑制する効果が低下する恐れがある。   Further, the elongation at room temperature of the (B) composite fiber is preferably 10 to 200%, more preferably 50 to 150%. This makes it possible to perform three-dimensional shape shaping while maintaining the entangled structure of (B) composite fiber and (C) fiber by elastic deformation of the network structure formed in the fiber resin composite structure It becomes. (B) When the elongation at room temperature of the composite fiber is less than the above lower limit value, the network structure is likely to be broken by deformation, so that there is a possibility that a ground crack may occur in the molded body. Moreover, when the elongation at room temperature of the (B) composite fiber exceeds the above upper limit, the network structure is retained, but the elastic modulus is low, so the effect of suppressing the cracking of the molded body may be reduced. .

このような(B)複合繊維として、例えば、ダイワボウポリテック(株)製のNBF(E)、NBF(H)(いずれも芯鞘型の構造を有する複合繊維)、宇部日東化成(株)製のUNKチョップ(REC)((芯鞘型の構造を有する複合繊維)などが市販品として入手可能であるが、これらに限定されるものではない。   As such (B) composite fiber, for example, NBF (E), NBF (H) (both composite fibers having a core-sheath structure) manufactured by Daiwabo Polytech Co., Ltd., manufactured by Ube Nitto Kasei Co., Ltd. UNK chop (REC) ((composite fiber having a core-sheath structure) and the like are available as commercial products, but are not limited thereto.

また、(B)複合繊維の配合量としては、繊維樹脂複合構造体に対して、1〜30質量%であるのが好ましく、5〜20質量%であるのがより好ましい。これにより、成形体の機械的特性を高く維持したまま、立体的な成形加工性も付与することができる。   Moreover, as a compounding quantity of (B) composite fiber, it is preferable that it is 1-30 mass% with respect to a fiber resin composite structure, and it is more preferable that it is 5-20 mass%. Thereby, three-dimensional molding processability can also be provided, maintaining the mechanical characteristics of a molded object high.

本発明の繊維樹脂複合構造体には、(C)(B)複合繊維を除く有機繊維及び無機繊維から選ばれる少なくとも1種の繊維を用いることができる。このような(C)繊維としては、いかなる材料で構成されたものでもよいが、例えば、ポリエステル繊維、ポリアリレート繊維、ポリアミド繊維、パラ型全芳香族ポリアミド繊維やその共重合体、メタ型アラミド繊維やその共重合体、ポリフェニレンサルファイド繊維、アリル繊維、ポリイミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ポリパラフェニレンベンゾビスチアゾール繊維、ポリエーテルエーテルケトン繊維、ポリテトラフルオロエチレン繊維、セルロース繊維のような樹脂繊維の他、ガラス繊維、炭素繊維、金属繊維、セラミック繊維、ロックウール、綿繊維、絹繊維、木質繊維等が挙げられるが、これらは1種を単独で用いても、2種以上を併用してもよい。   In the fiber resin composite structure of the present invention, at least one fiber selected from organic fibers and inorganic fibers excluding (C) and (B) composite fibers can be used. Such (C) fiber may be composed of any material, for example, polyester fiber, polyarylate fiber, polyamide fiber, para-type wholly aromatic polyamide fiber or copolymer thereof, meta-type aramid fiber And its copolymers, polyphenylene sulfide fibers, allyl fibers, polyimide fibers, polyparaphenylene benzobisoxazole fibers, polyparaphenylene benzobisthiazole fibers, polyetheretherketone fibers, polytetrafluoroethylene fibers, cellulose fibers In addition to fiber, glass fiber, carbon fiber, metal fiber, ceramic fiber, rock wool, cotton fiber, silk fiber, wood fiber and the like can be mentioned. These can be used alone or in combination of two or more. May be.

これらの(C)繊維のうち、アラミド繊維、ガラス繊維及び炭素繊維から選ばれる少なくとも1種であるのが好ましい。これらの繊維は、十分な引張強度を有するとともに、優れた耐候性を有するものとなるため、成形体を補強する繊維として有用である。   Among these (C) fibers, at least one selected from aramid fibers, glass fibers, and carbon fibers is preferable. Since these fibers have sufficient tensile strength and excellent weather resistance, they are useful as fibers for reinforcing the molded body.

(C)繊維の平均繊維長としては、好ましくは0.5〜20mm、より好ましくは1〜15mmのものが用いられる。(C)繊維の平均繊維長が上記範囲内であれば、(C)繊維の分散状態が均一になるので、成形体の機械的特性をムラなく均一に高めることができる。なお、(C)繊維の平均繊維長が上記下限値未満である場合、(C)繊維同士が絡まる確率が低下し、成形体の機械的特性を十分に高めることができない恐れがある。一方、(C)繊維の平均繊維長が上記上限値を超える場合、多数の繊維が絡まり合う確率が高くなり、繊維を均一に分散させることができない恐れがある。   (C) The average fiber length of the fibers is preferably 0.5 to 20 mm, more preferably 1 to 15 mm. (C) If the average fiber length of the fibers is within the above range, (C) the dispersion state of the fibers becomes uniform, so that the mechanical properties of the molded body can be improved uniformly. In addition, when the average fiber length of (C) fiber is less than the said lower limit, the probability that (C) fibers will be entangled with each other decreases, and the mechanical properties of the molded article may not be sufficiently improved. On the other hand, when the average fiber length of (C) fibers exceeds the above upper limit, there is a possibility that a large number of fibers are entangled and the fibers cannot be uniformly dispersed.

また、(C)繊維の繊維径は、0.5〜60μmであるのが好ましく、1〜30μmであるのがより好ましい。(C)繊維の繊維径が上記範囲内であれば、繊維に十分な引張強度と均一な分散性とが付与される。なお、(C)繊維の繊維径が上記下限値未満である場合、(C)繊維の構成材料によっては(C)繊維の引張強度が低下する恐れがある。一方、(C)繊維の繊維径が上記上限値を超える場合、成形体中において(C)繊維を均一に分散させることができず、機械的特性が不均一になる恐れがある。   Moreover, it is preferable that the fiber diameter of (C) fiber is 0.5-60 micrometers, and it is more preferable that it is 1-30 micrometers. (C) If the fiber diameter of the fiber is within the above range, sufficient tensile strength and uniform dispersibility are imparted to the fiber. In addition, when the fiber diameter of (C) fiber is less than the said lower limit, depending on the constituent material of (C) fiber, there exists a possibility that the tensile strength of (C) fiber may fall. On the other hand, when the fiber diameter of the (C) fiber exceeds the above upper limit, the (C) fiber cannot be uniformly dispersed in the molded body, and the mechanical characteristics may be non-uniform.

また、(C)繊維の配合量としては、繊維樹脂複合構造体に対して、10〜90質量%であるのが好ましく、20〜80質量%であるのがより好ましい。これにより、成形体の機械的特性を高めることができる。   Moreover, (C) As a compounding quantity of a fiber, it is preferable that it is 10-90 mass% with respect to a fiber resin composite structure, and it is more preferable that it is 20-80 mass%. Thereby, the mechanical characteristic of a molded object can be improved.

また、(C)繊維には、(A)樹脂との密着性、親和性を高める表面処理をあらかじめ施してもよい。表面処理方法としては、例えば、紫外線照射処理、電子線照射処理、プラズマ照射処理、表面層形成処理等が挙げられる。   In addition, the (C) fiber may be subjected in advance to a surface treatment for improving the adhesion and affinity with the (A) resin. Examples of the surface treatment method include ultraviolet irradiation treatment, electron beam irradiation treatment, plasma irradiation treatment, surface layer formation treatment, and the like.

このうち、表面層としては、例えば、シランカップリング剤、チタンカップリング剤のようなカップリング剤、各種界面活性剤、各種油剤等が挙げられる。   Among these, examples of the surface layer include coupling agents such as silane coupling agents and titanium coupling agents, various surfactants, and various oil agents.

本発明に用いられる(C)繊維には、有機繊維をフィブリル化したパルプ繊維をさらに含むことができる。パルプ繊維としては、特に限定されるものではないが、例えば、リンターパルプや木材パルプ等のセルロース繊維、ケナフ、ジュート、竹などの天然繊維、パラ型全芳香族ポリアミド繊維やその共重合体、芳香族ポリエステル繊維、ポリベンザゾール繊維、メタ型アラミド繊維やその共重合体、アクリル繊維、アクリロニトリル繊維、ポリイミド繊維、ポリアミド繊維などの有機繊維をフィブリル化したパルプ状繊維が挙げられる。   The (C) fiber used in the present invention can further include pulp fiber obtained by fibrillating organic fiber. The pulp fiber is not particularly limited, but examples thereof include cellulose fibers such as linter pulp and wood pulp, natural fibers such as kenaf, jute and bamboo, para-type wholly aromatic polyamide fibers and copolymers thereof, aromatic Examples include pulp fibers obtained by fibrillating organic fibers such as group polyester fibers, polybenzazole fibers, meta-type aramid fibers and copolymers thereof, acrylic fibers, acrylonitrile fibers, polyimide fibers, and polyamide fibers.

有機繊維のフィブリル化方法については特に限定されないが、有機繊維を水に分散させたスラリーとしてビーターもしくはリファイナーなどで叩解することにより、フィブリル化処理有機繊維を作製することができる。叩解時のスラリー濃度は任意であるが、固形分濃度0.1〜10質量%が好ましい。   The method for fibrillation of the organic fiber is not particularly limited, but the fibrillated organic fiber can be produced by beating with a beater or a refiner as a slurry in which the organic fiber is dispersed in water. Although the slurry concentration at the time of beating is arbitrary, solid content concentration of 0.1-10 mass% is preferable.

また、パルプ繊維の配合量としては、繊維樹脂複合構造体に対して、好ましくは1〜50質量%、さらに好ましくは3〜30質量%、特に好ましくは5〜20質量%である。これにより、樹脂粒子の歩留りが高く、樹脂粒子脱落を抑えた取り扱い性の良い繊維樹脂複合構造体を得ることができ、加熱加圧成形した成形体の機械的特性を高めることができる。   Moreover, as a compounding quantity of a pulp fiber, Preferably it is 1-50 mass% with respect to a fiber resin composite structure, More preferably, it is 3-30 mass%, Most preferably, it is 5-20 mass%. Thereby, the yield of the resin particles is high, a fiber resin composite structure with good handleability in which resin particle dropping is suppressed can be obtained, and the mechanical properties of the molded body formed by heating and pressing can be improved.

本発明の繊維樹脂複合構造体には、材料歩留まり等の向上を目的として抄造薬剤を添加することができる。抄造薬剤としては、特に限定されるものではないが、例えば、アクリル系重合体、ビニル系重合体、ポリウレタン、ポリアミド、ポリエステル、ポリエチレンオキシド等の熱可塑性樹脂が挙げられ、これらより選ばれる1種、又は2種以上が用いられる。また、抄造薬剤として用いられる熱可塑性樹脂は、アミノ基、エポキシ基、カルボキシル基、オキサゾリン基、カルボン酸塩基及び酸無水物基から選択される少なくとも1種の官能基を有することが好ましく、2種以上の官能基を有していてもよい。中でも、アミノ基を有する熱可塑性樹脂がより好ましい。   A paper making agent can be added to the fiber resin composite structure of the present invention for the purpose of improving the material yield and the like. The paper making agent is not particularly limited, and examples thereof include thermoplastic resins such as acrylic polymers, vinyl polymers, polyurethanes, polyamides, polyesters, and polyethylene oxides. Or 2 or more types are used. The thermoplastic resin used as the papermaking agent preferably has at least one functional group selected from an amino group, an epoxy group, a carboxyl group, an oxazoline group, a carboxylate group and an acid anhydride group. You may have the above functional groups. Among these, a thermoplastic resin having an amino group is more preferable.

本発明の繊維樹脂複合構造体には、さらに添加剤を添加することができる。添加剤としては、充填剤、導電性付与剤、難燃剤、難燃助剤、顔料、染料、滑剤、離型剤、相溶化剤、分散剤、結晶核剤、可塑剤、熱安定剤、酸化防止剤、着色防止剤、紫外線吸収剤、流動性改質剤、発泡剤、抗菌剤、制震剤、防臭剤、摺動性改質剤、帯電防止剤などが例示され
る。
An additive can be further added to the fiber resin composite structure of the present invention. Additives include fillers, conductivity enhancers, flame retardants, flame retardant aids, pigments, dyes, lubricants, mold release agents, compatibilizers, dispersants, crystal nucleating agents, plasticizers, heat stabilizers, oxidation Examples thereof include an inhibitor, an anti-coloring agent, an ultraviolet absorber, a fluidity modifier, a foaming agent, an antibacterial agent, a vibration control agent, a deodorant, a slidability modifier, and an antistatic agent.

充填剤としては、破砕ガラス、マイカ、タルク、カオリン、セリサイト、ベントナイト、ゾノトライト、セピオライト、スメクタイト、モンモリロナイト、ワラステナイト、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、クレー、二硫化モリブデン、酸化チタン、酸化亜鉛、酸化アンチモン、酸化アルミ、酸化亜鉛、ポリリン酸カルシウム、グラファイト、硫酸バリウム、硫酸マグネシウム、ホウ酸亜鉛、ホウ酸亜カルシウム、ホウ酸アルミニウムウィスカ、チタン酸カリウムウィスカが例示される。   Fillers include crushed glass, mica, talc, kaolin, sericite, bentonite, zonotolite, sepiolite, smectite, montmorillonite, wollastonite, silica, calcium carbonate, glass beads, glass flakes, glass microballoons, clay, molybdenum disulfide Examples thereof include titanium oxide, zinc oxide, antimony oxide, aluminum oxide, zinc oxide, calcium polyphosphate, graphite, barium sulfate, magnesium sulfate, zinc borate, calcium borate, aluminum borate whisker, and potassium titanate whisker.

次に、本発明の繊維樹脂複合構造体の製造方法について、一例を挙げて説明するが、この方法に限定されるものではない。まず、(A)樹脂、(B)複合繊維、及び(C)繊維を含む構成材料を、水、アルコール等の溶媒に分散させたスラリー組成物を調製する。スラリー組成物を調製する際の溶媒への各構成材料の投入順序等は、特に限定されず、(A)樹脂、(B)複合繊維、及び(C)繊維の分散状態を確認しながら順次溶媒中に投入することができる。また、このスラリー組成物の調整工程で添加剤、充填剤を混合することができる。スラリー組成物の混合は、パルパーなどの公知のミキサーを用いることができる。構成材料を均一に攪拌混合した後に、抄造薬剤を添加して構成材料を凝集させ、抄造用のスラリー組成物(凝集物)を作製する。これらの工程で、混合の際、気泡の発生を抑制する目的で、一般の抄造の際に用いられる公知の消泡剤を用いることができる。   Next, an example is given and demonstrated about the manufacturing method of the fiber resin composite structure of this invention, However, It is not limited to this method. First, a slurry composition is prepared by dispersing constituent materials including (A) resin, (B) composite fiber, and (C) fiber in a solvent such as water or alcohol. The order of charging the constituent materials into the solvent when preparing the slurry composition is not particularly limited, and the solvent is sequentially checked while confirming the dispersion state of (A) resin, (B) composite fiber, and (C) fiber. Can be thrown in. Moreover, an additive and a filler can be mixed in the adjustment process of this slurry composition. A known mixer such as a pulper can be used for mixing the slurry composition. After the constituent materials are uniformly stirred and mixed, a papermaking agent is added to agglomerate the constituent materials to produce a slurry composition (aggregate) for papermaking. In these steps, a known antifoaming agent used in general papermaking can be used for the purpose of suppressing the generation of bubbles during mixing.

次に、このスラリー組成物(凝集物)を抄造し、繊維樹脂複合構造体を得る。抄造は、長網抄紙機や丸網抄紙機といった連続抄紙機や、箱型抄紙機など公知の抄造装置を用いて抄造することができ、また抄造後、連続抄紙機の場合はそのまま乾燥工程((B)複合繊維の最も低融点の成分の融点よりも低い温度)を経てローラーへ巻き取る。箱型抄紙機などのバッチ式での抄紙機の場合は、抄造後の紙状物を金枠等に保持し、乾燥機などで(B)複合繊維の最も低融点の成分の融点よりも低い温度で適宜時間を調整し乾燥する。次いで、(B)複合繊維の最も低融点の成分の融点より高い温度にて熱処理することにより、(B)複合繊維における最も低融点の成分を溶融させて、(B)複合繊維を構成する1成分の熱可塑性樹脂の繊維が少なくとも2本以上の複合繊維間を結着している状態とする。これらの操作により、(B)複合繊維同士間や、繊維樹脂複合構造体の各構成成分間が結着して網目状構造が十分に形成された、本発明の繊維樹脂複合構造体を製造することができる。なお、熱処理行う温度としては、(B)複合繊維の最も低融点の成分の融点よりも高い温度であって、且つ、(B)複合繊維の最も低融点の成分を除く他の成分の融点、(C)繊維に含まれてもよい有機繊維を構成する樹脂の融点、及び、(A)樹脂に含まれてもよい熱可塑性樹脂の融点よりも低い温度、あるいは、(A)樹脂に含まれてもよい熱硬化性樹脂の硬化温度よりも低い温度であることがより好ましい。これにより、繊維樹脂複合構造体の成形性を損なうことなく、強化用に使う(C)繊維は繊維形状のまま残し、さらには、(A)樹脂として熱硬化樹脂を用いる場合は、その部分的なゲル化を生じさせずに、(B)複合繊維の網目状構造を生成することができることで、樹脂粒子の脱落が無く、破断や崩れの無い、取扱い性の良好な繊維樹脂複合構造体を得ることができる。   Next, the slurry composition (aggregate) is made to obtain a fiber resin composite structure. Paper making can be carried out using a continuous paper machine such as a long paper machine or a round paper machine, or using a known paper machine such as a box-type paper machine. (B) The temperature is lower than the melting point of the lowest melting point component of the composite fiber) and is wound on a roller. In the case of a batch type paper machine such as a box type paper machine, the paper-like material after paper making is held in a metal frame or the like, and is lower than the melting point of the lowest melting point component of the composite fiber (B) with a dryer or the like Adjust the time appropriately according to the temperature and dry. Next, (B) the component having the lowest melting point in the composite fiber is melted by heat treatment at a temperature higher than the melting point of the component having the lowest melting point of the composite fiber (B). It is set as the state which the fiber of the thermoplastic resin of a component has couple | bonded between at least 2 or more composite fibers. By these operations, (B) the fiber-resin composite structure of the present invention in which the network structure is sufficiently formed by binding between the composite fibers or between the constituent components of the fiber-resin composite structure is manufactured. be able to. The heat treatment temperature is higher than the melting point of the component (B) having the lowest melting point of the composite fiber, and (B) the melting point of other components excluding the component having the lowest melting point of the composite fiber, (C) the melting point of the resin constituting the organic fiber that may be contained in the fiber, and (A) a temperature lower than the melting point of the thermoplastic resin that may be contained in the resin, or (A) contained in the resin It is more preferable that the temperature is lower than the curing temperature of the thermosetting resin that may be used. Thereby, without impairing the moldability of the fiber-resin composite structure, (C) the fibers used for reinforcement remain in the fiber shape, and (A) when a thermosetting resin is used as the resin, partially (B) A fiber-resin composite structure with good handleability that does not drop off, breaks, or collapses by being able to generate a network structure of composite fibers without causing gelation. Can be obtained.

本発明の成形体は、本発明の繊維樹脂複合構造体を加熱加圧成形してなるものである。以下に、本発明の成形体の製造方法について、一例を挙げて説明するが、この方法に限定されるものではない。成形体を作製する準備として、繊維樹脂複合構造体を、(B)複合繊維における最も低融点の成分の融点よりも低い温度にて成形体に類似した凹凸形状に賦形する予備成形(コールドプレス)と、成形に供しない部分を除く裁断を行うことが好ましい。予備成形無しに、繊維樹脂複合構造体中の(B)複合繊維による網目状構造の弾性的な形状保持力を利用できる温度と時間を調整しながら加圧型締めすることで、繊維樹脂複合構造体中の(B)複合繊維や(C)繊維の絡み合いを保持しながら絞り形状を賦形し
成形体を得ることもできるが、予備成形を経ることで成形型への配置作業が容易になり、成形型締め時の繊維樹脂複合構造体のズレ防止、成形型による予熱効率の向上、更に、繊維樹脂複合構造体中の(B)複合繊維で形成された網目状構造の弾性変形を有効に活用できるため、成形体の地割れ抑制を確実に行うことができる。また、予備成形した繊維樹脂複合構造体を裁断することで、不要な部分のトリミング作業が削減でき、不要部分を除くことで加圧加熱時の型締めの均一性が向上し良好な成形体を得ることができる。
The molded body of the present invention is formed by heating and pressing the fiber resin composite structure of the present invention. Below, although an example is given and demonstrated about the manufacturing method of the molded object of this invention, it is not limited to this method. As a preparation for producing a molded body, preforming (cold press) is performed to shape the fiber-resin composite structure into an uneven shape similar to the molded body at a temperature lower than the melting point of the component (B) having the lowest melting point in the composite fiber. It is preferable to perform cutting except for portions not subjected to molding. The fiber resin composite structure can be obtained by performing pressure-clamping while adjusting the temperature and time in which the elastic shape retention force of the network structure by the (B) composite fiber in the fiber resin composite structure can be used without preforming. While holding the entanglement of the (B) composite fiber and (C) fiber in the inside, it is possible to obtain a molded body by shaping the drawn shape, but it becomes easy to place it in the molding die through pre-molding, Prevention of misalignment of fiber-resin composite structure during mold clamping, improvement of preheating efficiency by mold, and effective use of elastic deformation of network structure formed of (B) composite fiber in fiber-resin composite structure Therefore, it is possible to reliably suppress the cracking of the molded body. Also, by cutting the preformed fiber resin composite structure, trimming of unnecessary parts can be reduced, and by removing unnecessary parts, the uniformity of mold clamping during pressure heating is improved and a good molded body is obtained. Can be obtained.

繊維樹脂複合構造体を、成形体に類似した凹凸形状を賦形する予備成形する方法としては、成形体となる基準面を固体表面で固定し、基準面と対向する面を加圧圧縮でき、成形体の厚みの150〜600%の厚みまで圧縮できる方法であれば特に限定されない。例えば、2つの型で繊維樹脂複合構造体を加圧圧縮するプレス法が挙げられる。プレス法の場合、基準面となる面側は成形体と同様の形状を有する型を用い、対向する面側を賦形する型は、型締めした時のクリアランスが、成形体厚みより150〜600%になるように型の凹凸深さを調整すると良い。予備成形型のクリアランスが上記下限値未満の場合は、繊維樹脂複合構造体を立体的に変形圧縮する時に、構造体に部分的なシワやヨレが生じる恐れがある。また、上記上限値を超える場合は、予備成形による圧縮が不十分となり、成形体を得る加圧加熱成形の型締め時に、構造体に部分的なシワやヨレが生じ成形体の外観も低下してしまう恐れがある。   As a method of pre-molding the fiber resin composite structure to form a concavo-convex shape similar to the molded body, the reference surface to be the molded body can be fixed with a solid surface, and the surface facing the reference surface can be compressed by pressure. There is no particular limitation as long as it is a method capable of compressing to a thickness of 150 to 600% of the thickness of the molded body. For example, the press method which pressurizes and compresses a fiber resin composite structure with two types is mentioned. In the case of the pressing method, a mold having the same shape as that of the molded body is used on the surface side serving as the reference surface, and the mold that shapes the opposite surface side has a clearance of 150 to 600 from the thickness of the molded body when the mold is clamped. It is better to adjust the unevenness depth of the mold so that it becomes%. When the clearance of the preform is less than the lower limit, when the fiber-resin composite structure is three-dimensionally deformed and compressed, the structure may be partially wrinkled or twisted. In addition, when the above upper limit is exceeded, compression by preliminary molding becomes insufficient, and partial wrinkles and warpage are generated in the structure when the pressure-heating molding is performed to obtain a molded body, and the appearance of the molded body is also deteriorated. There is a risk that.

また、プレス法による予備成形の工程において、形状賦形性と型外しの点から、繊維樹脂複合構造体の両面にセパレータを配置しても良く、賦形する絞り形状によってはセパレータの種類を変えても良い。例えば、箱の様な基準面を外側凸面とする凸面と凹面を有する成形体形状の場合、引張せん断歪が生じる凸面側は、スパンボンドシート、プラスチックネット及びプラスチック織布の伸縮率が200〜400%であって剛性のあるセパレータを用いることが好ましい。また、圧縮せん断歪が生じる凹面側は、繊維樹脂複合構造体の圧縮による厚み変化も大きいため、薄めのスパンボンドシート、ストッキングなどナイロン織布の伸縮率が300〜500%であって剛性の低いセパレータを用いることが好ましい。   In addition, in the pre-molding process using the press method, separators may be placed on both sides of the fiber-resin composite structure from the viewpoint of shape shaping and mold removal. Depending on the shape of the drawn shape, the type of separator can be changed. May be. For example, in the case of a molded body shape having a convex surface and a concave surface with a reference surface as an outer convex surface, such as a box, the stretch rate of the spunbond sheet, plastic net, and plastic woven fabric is 200 to 400 on the convex surface side where tensile shear strain occurs. %, And it is preferable to use a rigid separator. Moreover, since the thickness change due to compression of the fiber-resin composite structure is large on the concave side where compression shear strain occurs, the stretch rate of nylon woven fabrics such as thin spunbond sheets and stockings is 300 to 500% and the rigidity is low. It is preferable to use a separator.

繊維樹脂複合構造体を裁断する方法としては、トムソン刃等による打ち抜き加工、ウォータージェット加工、エアージェット加工、サンドブラスト加工、ショットブラスト加工のような加工媒体を吹き付ける加工方法、レーザー加工による方法等を用いることができる。中でも、ウォータージェット加工が、熱ダメージなく立体形状を賦形した繊維樹脂複合構造体の高さ方向の制約も無い点から好ましい。   As a method of cutting the fiber-resin composite structure, a punching process using a Thomson blade, a water jet process, an air jet process, a sand blast process, a process method of spraying a processing medium such as a shot blast process, a laser process method, or the like is used. be able to. Especially, water jet processing is preferable from the point which does not have the restriction | limiting of the height direction of the fiber resin composite structure which shape | molded the solid shape without the heat damage.

繊維樹脂複合構造体の加熱加圧成形方法としては特に限定されないが、加熱プレスや金型による加熱圧縮成形等により成形することができる。加熱プレスの方法としては、特に規定はなく、公知のプレス機などを用いることにより行うことができる。このときの、プレス温度やプレス圧、加圧・加熱時間については特に規定はなく、(A)樹脂の組成や融点(熱可塑性樹脂を主な樹脂成分とする場合)又は硬化温度(熱硬化性樹脂を主な樹脂成分とする場合)、また成形体の厚みや密度を考慮した条件で行えば特に問題はないが、(A)樹脂が熱可塑性樹脂を主な樹脂成分とする場合は、主な樹脂成分である熱可塑性樹脂の融点よりも高温であり、(B)複合繊維の低融点を除く成分の融点Tmhよりも高温であり、かつ、(C)繊維中の有機繊維の融点よりも低温となるようにプレス温度を調整することが好ましい。また、(A)樹脂が熱硬化性樹脂を主な樹脂成分とする場合は、その硬化温度と同等の温度であり、(B)複合繊維の低融点を除く成分の融点Tmhよりも高温であり、かつ、(C)繊維中の有機繊維の融点よりも低温となるようにプレス温度を調整することが好ましい。このようなプレス温度に調整することにより、加熱加圧成形時において、Tmhよりも低い温度域に留まる成形初期の加熱段階では、(B)複合繊維の網目状構造体が弾性変形することで繊維樹脂複合構造体の地割れを抑制し、熱可塑性樹脂の
融点やTmhを越えて成形設定温度近傍まで到達した段階では、(B)複合繊維の網目状構造が消失し、繊維樹脂複合構造体が成形体形状を成す際の(A)樹脂や(C)繊維の局所的な再配向を促すことが可能となる。
Although it does not specifically limit as a heat press molding method of a fiber resin composite structure, It can shape | mold by a heat press, the heat compression molding by a metal mold | die, etc. The method for the hot press is not particularly limited, and can be performed by using a known press machine. At this time, there are no particular restrictions on the pressing temperature, pressing pressure, and pressurization / heating time. (A) Resin composition and melting point (when thermoplastic resin is the main resin component) or curing temperature (thermosetting If the resin is the main resin component), and if it is performed under conditions that take into account the thickness and density of the molded article, there is no particular problem. Higher than the melting point of the thermoplastic resin, which is a resin component, (B) higher than the melting point T mh of the component excluding the low melting point of the composite fiber, and (C) from the melting point of the organic fiber in the fiber It is preferable to adjust the press temperature so that the temperature is low. Moreover, when (A) resin uses thermosetting resin as the main resin component, it is a temperature equivalent to its curing temperature, and (B) at a temperature higher than the melting point T mh of the component excluding the low melting point of the composite fiber. And (C) It is preferable to adjust the press temperature so that the temperature is lower than the melting point of the organic fiber in the fiber. By adjusting to such a press temperature, at the time of heating and pressure molding, in the heating stage of the initial stage of molding that remains in a temperature range lower than T mh , (B) the network structure of the composite fiber is elastically deformed. In the stage where the ground cracking of the fiber resin composite structure is suppressed and the melting point and Tmh of the thermoplastic resin are reached to reach the molding set temperature, (B) the network structure of the composite fiber disappears, and the fiber resin composite structure It becomes possible to promote local reorientation of (A) resin and (C) fiber when forming a molded body shape.

更に、(A)樹脂が熱硬化樹脂を主な樹脂成分とする場合は、熱硬化樹脂を完全に硬化させる目的で、後硬化を行うこともできる。この後硬化条件については、特に規定はなく用いたマトリックス樹脂の硬化温度、(C)繊維中の有機繊維の融点、又は使用環境から求められる耐熱温度等を考慮して適宜決定できるが、例えば、硬化温度±50℃程度とすることができる。   Further, when the resin (A) contains a thermosetting resin as a main resin component, post-curing can be performed for the purpose of completely curing the thermosetting resin. The post-curing conditions are not particularly defined and can be appropriately determined in consideration of the curing temperature of the used matrix resin, the melting point of the organic fibers in the fiber (C), the heat-resistant temperature required from the use environment, etc. The curing temperature can be about ± 50 ° C.

以上、本発明について説明したが、本発明はこれに限定されるものではなく、例えば成形体には、その表面に任意の構成物(例えば被覆層等)が付加されていてもよい。   Although the present invention has been described above, the present invention is not limited to this. For example, an arbitrary component (for example, a coating layer) may be added to the surface of the molded body.

次に、本発明を実施例に基いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例に使用した物性項目の測定法は下記の通りで行った。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. The measurement method of physical property items used in this example was as follows.

1)成形体の引張強度
下記試験方法・条件により引張強度を測定した。
準拠規格:JIS K7113 プラスチックの引張試験方法
温度:室温
試験機:島津オートグラフ AG−5kNUS MS ((株)島津製作所製)
試験片:JIS K7113 ダンベル1(1/2)号
試験速度:1mm/min
つかみ具間距離:58mm
測定結果は表1に示す。
1) Tensile strength of molded article Tensile strength was measured according to the following test methods and conditions.
Standards: JIS K7113 Tensile testing method for plastics Temperature: Room temperature Testing machine: Shimadzu Autograph AG-5kNUS MS (manufactured by Shimadzu Corporation)
Test piece: JIS K7113 Dumbbell No. 1 (1/2) Test speed: 1 mm / min
Distance between grips: 58mm
The measurement results are shown in Table 1.

(実施例1)
まず、平均繊維長3mm、繊維径12μmのパラ型アラミド繊維(帝人テクノプロダクツ(株)製「テクノーラ(登録商標) T32PNW 3−12」)と、平均粒径15μm、軟化点75℃のフェノール樹脂粉末(住友ベークライト(株)製の、PR−50731、PR−51723、PR−53529を1:1:1の質量比で混合したフェノール樹脂粉末)と、濾水度が417mlCSFのアラミドパルプ(東レ・デュポン(株)製「Kevlar(登録商標)パルプ1F303」)と、平均繊維長5mm、繊維径18μm、鞘成分の融点が100℃、芯成分の融点が165℃で、鞘成分の面積Sと、芯成分の面積Sの面積比S/Sが62/48、伸度100%の芯鞘型複合繊維1(ダイワボウポリテック(株)製NBF(E))とを、31:45:15:9の質量比で混合し、固形分の濃度が0.5質量%になるように水に分散させて分散液を調製した。
次いで、固形分に対して800ppmのポリエチレンオキシドを抄造薬剤として、分散液に添加して分散スラリー組成物を調製し、これを抄造、脱水、80℃で2時間乾燥した後に、105℃で30分熱処理して厚み5mmの繊維樹脂複合構造体を得た。作製した繊維樹脂複合構造体は樹脂成分の脱落も無く取扱いが良好であった。
次いで、内径が縦×横×深さ=60×120×10mmで各辺が2Rの曲率のある雌型と、雌型とクリアランス3mmにした雄型を用いて、室温(25℃)で30秒間、面圧4.8MPaでプレスし予備成形した。その後成形に不要な部分をトムソン刃で打ち抜き、地割れの無い絞り賦形した繊維樹脂複合構造体を作製した。
次いで、この絞り賦形繊維樹脂複合構造体を、熱プレス機を用いて200℃で10分間、面圧300MPaで熱プレスを行って、縦×横×深さ=60×120×10mmで各辺が2Rの曲率のある壁部分の平均厚さが1mmの箱状の成形体を作製した。得られた成形体は、底面や底部の4つの隅部分や直角に折曲る部分に全くシワ、ヨレ及び地割れが生じ
ておらず、良好な外観であった。
この箱状成形体の底面からの打ち抜き(ダンベル形状に作製したトムソン刃を使用)で引張試験用の試験片を作製して、引張強度を測定した結果、引張強度は200MPaであった。
また、平板状の繊維樹脂複合構造体を200℃で10分間、面圧300MPaで加熱加圧成形し1mm厚さの平板成形体を作製したのち、平板成形体からの打ち抜き(ダンベル形状に作製したトムソン刃を使用)で同様に引張試験用の試験片を作製して、引張強度を測定した結果、引張強度は203MPaであり箱状の成形体からの打ち抜き品と同様の結果であった。
箱状の成形体からの打ち抜き品の引張強度と平板成形体からの打ち抜き品の引張強度の結果から、立体形状を賦形しても繊維やパルプ繊維の絡み合いを維持したまま成形されたことにより、地割れが無く外観の良好な機械的特性の優れた成形体を得ることができたと推察される。
Example 1
First, para type aramid fiber (“Technora (registered trademark) T32PNW 3-12” manufactured by Teijin Techno Products Co., Ltd.) having an average fiber length of 3 mm and a fiber diameter of 12 μm, a phenol resin powder having an average particle diameter of 15 μm and a softening point of 75 ° C. (Phenol resin powder made by Sumitomo Bakelite Co., Ltd. mixed with PR-50731, PR-51723, PR-53529 at a mass ratio of 1: 1: 1) and aramid pulp (Toray Dupont with a freeness of 417 ml CSF) "Kevlar (registered trademark) Pulp 1F303"), an average fiber length of 5 mm, a fiber diameter of 18 µm, a melting point of the sheath component of 100 ° C, a melting point of the core component of 165 ° C, an area S 1 of the sheath component, area ratio S l / S h of the area S h of the core component is 62/48, elongation of 100% of the core-sheath type composite fiber 1 (Daiwabo Polytec Co. NBF (E) ) Was mixed at a mass ratio of 31: 45: 15: 9 and dispersed in water so that the solids concentration was 0.5% by mass to prepare a dispersion.
Subsequently, 800 ppm of polyethylene oxide based on the solid content is added to the dispersion as a papermaking agent to prepare a dispersion slurry composition, which is made, dehydrated, dried at 80 ° C. for 2 hours, and then at 105 ° C. for 30 minutes. A heat-treated fiber resin composite structure having a thickness of 5 mm was obtained. The produced fiber-resin composite structure was good in handling without any loss of resin components.
Next, using a female mold with an inner diameter of length × width × depth = 60 × 120 × 10 mm and a curvature of 2R on each side, and a male mold with a female mold and a clearance of 3 mm, room temperature (25 ° C.) for 30 seconds. The sample was pressed at a surface pressure of 4.8 MPa and preformed. Thereafter, a portion unnecessary for molding was punched out with a Thomson blade, and a fiber-resin composite structure was drawn and formed without cracking.
Next, this draw-shaped fiber resin composite structure was hot-pressed at 200 ° C. for 10 minutes at a surface pressure of 300 MPa using a hot press machine, and the length × width × depth = 60 × 120 × 10 mm for each side. Produced a box-shaped molded article having an average thickness of 1 mm of the wall portion having a curvature of 2R. The obtained molded article had a good appearance with no wrinkles, creases and cracks at the four corners of the bottom and bottom and at a right angle.
As a result of producing a test piece for a tensile test by punching from the bottom surface of this box-shaped molded body (using a Thomson blade produced in a dumbbell shape) and measuring the tensile strength, the tensile strength was 200 MPa.
Further, a flat fiber resin composite structure was heated and pressed at 200 ° C. for 10 minutes at a surface pressure of 300 MPa to produce a 1 mm-thick flat plate, and then punched from the flat plate (made into a dumbbell shape). Using a Thomson blade), a test piece for a tensile test was similarly prepared and the tensile strength was measured. As a result, the tensile strength was 203 MPa, which was the same result as that of a punched product from a box-shaped molded body.
From the results of the tensile strength of the punched product from the box-shaped molded product and the tensile strength of the punched product from the flat plate molded product, it was molded while maintaining the entanglement of fibers and pulp fibers even when the three-dimensional shape was formed Thus, it is presumed that a molded article having no mechanical cracking and excellent mechanical properties was obtained.

(実施例2)
繊維樹脂複合構造体に用いる、パラ型アラミド繊維、フェノール樹脂粉末、アラミドパルプ、芯鞘型複合繊維1の質量比を、40:36:15:9として混合した以外は、実施例1と同様にして、縦×横×深さ=60×120×10mmで平均厚さが1mmの成形体を得た。作製した繊維樹脂複合構造体は樹脂成分の脱落も無く取扱いが良好であった。また、作製した成形体は、底面や底部の4つの隅部分や直角に折曲る部分に全くシワ、ヨレ及び地割れが生じておらず、良好な外観であった。
また、実施例1と同様に、実施例2の繊維樹脂複合構造体から、箱状成形体と板状成形体を作製し、それぞれからの打ち抜き試験片で引張強度を評価した結果、箱状成形体の試験片引張強度は261MPaで、板状成形体の試験片引張強度は258MPaであり、成形体の形状によらず良好な強度特性を維持していた。
(Example 2)
The same as in Example 1 except that the mass ratio of the para-type aramid fiber, phenol resin powder, aramid pulp, and core-sheath type composite fiber 1 used in the fiber-resin composite structure was 40: 36: 15: 9. Thus, a molded body having a length × width × depth = 60 × 120 × 10 mm and an average thickness of 1 mm was obtained. The produced fiber-resin composite structure was good in handling without any loss of resin components. Further, the produced molded body had a good appearance with no wrinkles, twists or ground cracks occurring at the four corners of the bottom and bottom and at the right angle.
Similarly to Example 1, a box-shaped molded body and a plate-shaped molded body were produced from the fiber-resin composite structure of Example 2, and the tensile strength was evaluated with a punched test piece from each. The test piece tensile strength of the body was 261 MPa, and the test piece tensile strength of the plate-like molded body was 258 MPa, and good strength characteristics were maintained regardless of the shape of the molded body.

(比較例1)
実施例1の配合から芯鞘型複合繊維1を除き、パラ型アラミド繊維、フェノール樹脂粉末、アラミドパルプの質量比を、40:45:15として混合した以外は、実施例1と同様にして、繊維樹脂複合構造体を得た。縦×横×深さ=60×120×10mmで平均厚さが1mmの成形体を得た。作製した繊維樹脂複合構造体は、実施例1よりも樹脂成分の脱落が見られ、取扱い性が低下していた。
次いで、実施例1と同様に予備成形を行った結果、絞り賦形した繊維樹脂複合構造体の底面に地割れが生じ、繊維やパルプ繊維の絡み合いが崩れてしまっていたため、箱状成形体を作製することができなかった。
(Comparative Example 1)
Except for the core-sheath type composite fiber 1 from the formulation of Example 1, except that the para-aramid fiber, the phenol resin powder, and the aramid pulp were mixed at a mass ratio of 40:45:15, the same as in Example 1, A fiber resin composite structure was obtained. A molded body having a length × width × depth = 60 × 120 × 10 mm and an average thickness of 1 mm was obtained. In the produced fiber-resin composite structure, the resin component was removed more than in Example 1, and the handleability was lowered.
Next, as a result of preforming in the same manner as in Example 1, ground cracks occurred on the bottom surface of the squeeze-shaped fiber resin composite structure, and the entanglement of fibers and pulp fibers was broken. I couldn't.

(実施例3)
成形体に類似した凹凸形状を繊維樹脂複合構造体に賦形する予備成形を除く以外は、実施例1と同様に、縦×横×深さ=60×120×10mmで平均厚さが1mmの成形体を得た。成形体は、底面や底部の4つの隅部分や直角に折曲る部分に全くシワ、ヨレ及び地割れが生じておらず、良好な外観であり、箱状成形体及び平板成形体からの打ち抜き(ダンベル形状に作製したトムソン刃を使用)で試験片を作製して測定した引張強度特性は、箱状成形体の試験片引張強度が197MPaで、板状成形体の試験片引張強度が200MPaであり、共に良好であった。
成形体を作製する加熱加圧成形温度は200℃であり、網目状構造体を形成する複合繊維である芯鞘型複合繊維1の低融点成分(鞘成分)及び高融点成分(芯成分)のいずれよりも高温であるが、凹凸形状を賦形する型締めの初期段階では、室温から200℃の成形温度へ昇温される過程のため、複合繊維により形成されている網目状構造体は部分的に融解されず構造を保ち、繊維及びパルプ繊維の絡み合いを維持しながら弾性変形をすることで、成形体の地割れを抑制できたものと推察される。
Example 3
Except for the pre-molding that gives the fiber-resin composite structure a concavo-convex shape similar to the molded body, the length x width x depth = 60 x 120 x 10 mm and the average thickness is 1 mm, as in Example 1. A molded body was obtained. The molded body is free of wrinkles, creases and cracks at the four corners of the bottom and bottom and at right angles, and has a good appearance, and is punched from a box-shaped molded body and a flat molded body ( The tensile strength characteristics measured by producing a test piece with a dumbbell-shaped Thomson blade) are 197 MPa for the box-shaped molded body and 200 MPa for the plate-shaped molded body. Both were good.
The heat and pressure molding temperature for producing the molded body is 200 ° C., and the low melting point component (sheath component) and the high melting point component (core component) of the core-sheath type composite fiber 1 which is a composite fiber forming a network structure. Although the temperature is higher than any of the above, in the initial stage of mold clamping for shaping the concavo-convex shape, the network structure formed by the composite fiber is partially due to the process of raising the temperature from room temperature to a molding temperature of 200 ° C. It is presumed that the ground cracking of the molded product could be suppressed by elastically deforming while maintaining the structure without being melted and maintaining the entanglement of fibers and pulp fibers.

(比較例2)
実施例1の配合から芯鞘型複合繊維1を除き、パラ型アラミド繊維、フェノール樹脂粉末、アラミドパルプの質量比を、40:45:15として混合したことと、熱処理を行わない以外は、実施例1と同様にして、繊維樹脂複合構造体を得た後に、実施例3と同様に、予備成形を行わずに箱状成形体を得た。成形体は、底部の4つの隅部分にシワ、ヨレがあり、底面や底面から立ち上がる直角部分に部分的な地割れが生じていた。比較例2の繊維樹脂複合構造体から箱状成形体と板状成形体を作製し、その成形体からの打ち抜き(ダンベル形状に作製したトムソン刃を使用)で試験片を作製して測定した引張強度を評価した結果、板状成形体の引張強度は258MPaと良好であったが、箱状成形体の底面から加工した試験片の引張強度は80MPaであった。機械的強度の低下は繊維及びパルプ繊維の絡み合いが解けた部分(地割れ)が生じてしまい、その部分で樹脂体積の比率が高まったことによるものと推察される。
(Comparative Example 2)
Except that the core-sheath type composite fiber 1 was removed from the blending of Example 1 and the mass ratio of para-type aramid fiber, phenol resin powder, and aramid pulp was mixed as 40:45:15, and heat treatment was not performed. After obtaining the fiber-resin composite structure in the same manner as in Example 1, a box-like molded product was obtained without performing preforming in the same manner as in Example 3. The molded body had wrinkles and twists at the four corners of the bottom, and partial ground cracks occurred at the bottom and the right-angled parts rising from the bottom. Tensile strength was measured by preparing a box-shaped molded body and a plate-shaped molded body from the fiber-resin composite structure of Comparative Example 2, punching out the molded body (using a Thomson blade fabricated in a dumbbell shape), and measuring As a result of evaluating the strength, the tensile strength of the plate-shaped molded body was as good as 258 MPa, but the tensile strength of the test piece processed from the bottom surface of the box-shaped molded body was 80 MPa. The decrease in mechanical strength is presumed to be caused by the occurrence of a portion (ground crack) in which the fibers and pulp fibers are entangled and the ratio of the resin volume increased at that portion.

(実施例4)
繊維樹脂複合構造体に用いる、パラ型アラミド繊維、フェノール樹脂粉末、アラミドパルプ、芯鞘型複合繊維1の質量比を、24:45:15:16として混合し、実施例1と同様にして繊維樹脂複合構造体を作製した。次いで、内径が縦×横×深さ=60×120×35mmで各辺が2Rの曲率のある雌型と、雌型とクリアランス2mmにした雄型を用いて、室温で30秒間、面圧4.8MPaでプレスし予備成形した。その後成形に不要な部分をウォータージェット(水圧=200MPa、加工媒体=水道水、ノズル口径=100μm)にてトリミングし、地割れの無い絞り賦形した繊維樹脂複合構造体を作製した。その後、この絞り賦形繊維樹脂複合構造体を、熱プレス機を用いて200℃で10分間、面圧300MPaで熱プレスを行って、縦×横×深さ=60×120×35mmで各辺が2Rの曲率のある壁部分の平均厚さが1mmの箱状の成形体を作製した。成形体は、底面や底部の4つの隅部分や直角に折曲る部分に全くシワ、ヨレ及び地割れが生じておらず、良好な外観であった。
また、実施例1と同様に、実施例4の繊維樹脂複合構造体から箱状成形体と板状成形体を作製し、その成形体からの打ち抜き(ダンベル形状に作製したトムソン刃を使用)で試験片を作製して測定した引張強度を評価した結果、箱状成形体の試験片引張強度は153MPaで、板状成形体の試験片引張強度は151MPaであり、成形体の形状によらず良好な強度特性を維持していた。
Example 4
The mass ratio of the para-type aramid fiber, phenol resin powder, aramid pulp, and core-sheath type composite fiber 1 used for the fiber-resin composite structure is mixed as 24: 45: 15: 16, and the fiber is formed in the same manner as in Example 1. A resin composite structure was produced. Next, using a female mold having an inner diameter of length × width × depth = 60 × 120 × 35 mm and a curvature of 2R on each side and a male mold with a female mold and a clearance of 2 mm, a surface pressure of 4 for 30 seconds at room temperature. Pressed at 8 MPa and preformed. Thereafter, a portion unnecessary for molding was trimmed with a water jet (water pressure = 200 MPa, processing medium = tap water, nozzle diameter = 100 μm), and a fiber-resin composite structure formed by drawing without a crack was produced. Then, this draw-shaped fiber resin composite structure was subjected to hot pressing at 200 ° C. for 10 minutes at a surface pressure of 300 MPa using a hot press machine, and the length × width × depth = 60 × 120 × 35 mm for each side. Produced a box-shaped molded article having an average thickness of 1 mm of the wall portion having a curvature of 2R. The molded body had a good appearance with no wrinkles, creases and cracks at the four corners of the bottom and bottom and at the right angle.
Further, similarly to Example 1, a box-shaped molded body and a plate-shaped molded body were produced from the fiber-resin composite structure of Example 4, and punched from the molded body (using a Thomson blade produced in a dumbbell shape). As a result of producing a test piece and evaluating the measured tensile strength, the test piece tensile strength of the box-shaped formed body is 153 MPa, and the test piece tensile strength of the plate-shaped formed body is 151 MPa, which is good regardless of the shape of the formed body. The strength characteristics were maintained.

(実施例5)
実施例1で用いたものと同じパラ型アラミド繊維、フェノール樹脂粉末、アラミドパルプを用い、(B)複合繊維として芯鞘型複合繊維1を用いる代わりに、平均繊維長5mm、繊維径15μm、鞘成分の融点が130℃、芯成分の融点が165℃で、鞘成分の面積Sと、芯成分の面積Sの面積比S/Sが46/54、伸度40%の芯鞘型複合繊維2(宇部日東化成(株)製UNKチョップ(REC))を用い、それらを31:45:15:9の質量比で混合し、固形分の濃度が0.5質量%になるように水に分散させて分散液を調製した。
次いで、固形分に対して800ppmのポリエチレンオキシドを抄造薬剤として、分散液に添加して分散スラリー組成物を調製し、これを抄造、脱水、80℃で2時間乾燥した後に、135℃で5分熱処理して厚み4.5mmの繊維樹脂複合構造体を得た。作製した繊維樹脂複合構造体は樹脂成分の脱落も無く取扱いが良好であった。
次いで、実施例1と同様に予備成形をした後に、実施例1と同様に加熱加圧成形して縦×横×深さ=60×120×10mmで平均厚さが1mmの成形体を得た。成形体は、底面や底部の4つの隅部分や直角に折曲る部分に全くシワ、ヨレ及び地割れが無く、良好な外観であった。また、実施例1と同様に、実施例5の繊維樹脂複合構造体から箱状成形体と板状成形体を作製し、その成形体からの打ち抜き(ダンベル形状に作製したトムソン刃
を使用)で試験片を作製して測定した引張強度を評価した結果、箱状成形体の試験片引張強度は210MPaで、板状成形体の試験片引張強度は215MPaであり、成形体の形状によらず良好な強度特性を維持していた。
(Example 5)
The same para-aramid fiber, phenol resin powder, and aramid pulp used in Example 1 were used. (B) Instead of using the core-sheath-type composite fiber 1 as the composite fiber, the average fiber length was 5 mm, the fiber diameter was 15 μm, and the sheath melting point 130 ° C. components, a melting point of 165 ° C. of the core component, the area S l of the sheath component, the area ratio S l / S h of the area S h of the core component is 46/54, elongation 40% core-sheath Type composite fiber 2 (UNK chop (REC) manufactured by Ube Nitto Kasei Co., Ltd.) is mixed at a mass ratio of 31: 45: 15: 9 so that the solids concentration is 0.5% by mass. A dispersion was prepared by dispersing in water.
Next, 800 ppm of polyethylene oxide based on the solid content is added to the dispersion as a papermaking agent to prepare a dispersion slurry composition, which is papermaking, dewatered and dried at 80 ° C. for 2 hours, and then at 135 ° C. for 5 minutes. It heat-processed and the fiber resin composite structure of thickness 4.5mm was obtained. The produced fiber-resin composite structure was good in handling without any loss of resin components.
Next, after preforming in the same manner as in Example 1, heat and pressure molding was performed in the same manner as in Example 1 to obtain a molded body having a length × width × depth = 60 × 120 × 10 mm and an average thickness of 1 mm. . The molded body had a good appearance with no wrinkles, creases and cracks at the four corners of the bottom and bottom and at the right angle. Further, similarly to Example 1, a box-shaped molded body and a plate-shaped molded body were produced from the fiber-resin composite structure of Example 5, and punched from the molded body (using a Thomson blade produced in a dumbbell shape). As a result of producing a test piece and evaluating the measured tensile strength, the test piece tensile strength of the box-shaped molded product is 210 MPa, and the test piece tensile strength of the plate-shaped molded product is 215 MPa, which is good regardless of the shape of the molded product. The strength characteristics were maintained.

(実施例6)
実施例1で用いたものと同じパラ型アラミド繊維、フェノール樹脂粉末、アラミドパルプを用い、(B)複合繊維として芯鞘型複合繊維1を用いる代わりに、平均繊維長5mm、繊維径18μm、鞘成分の融点が128℃、芯成分の融点が165℃で、鞘成分の面積Sと、芯成分の面積Sの面積比S/Sが40/60、伸度70%の芯鞘型複合繊維3(ダイワボウポリテック(株)製NBF(H))を用い、それらを34:45:15:6の質量比で混合し、固形分の濃度が0.5質量%になるように水に分散させて分散液を調製した。
次いで、固形分に対して800ppmのポリエチレンオキシドを抄造薬剤として、分散液に添加して分散スラリー組成物を調製し、これを抄造、脱水、80℃で2時間乾燥した後に、133℃で5分熱処理して厚み5mmの繊維樹脂複合構造体を得た。作製した繊維樹脂複合構造体は樹脂成分の脱落も無く取扱いが良好であった。
次いで、実施例1と同様に予備成形をした後に、実施例1と同様に加熱加圧成形して縦×横×深さ=60×120×10mmで平均厚さが1mmの成形体を得た。成形体は、底面や底部の4つの隅部分や直角に折曲る部分に全くシワ、ヨレ及び地割れが無く良好な外観であった。また、実施例1と同様に、実施例6の繊維樹脂複合構造体から、箱状成形体と板状成形体を作製し、その成形体からの打ち抜き(ダンベル形状に作製したトムソン刃を使用)で試験片を作製して測定した引張強度を評価した結果、箱状成形体の試験片引張強度は235MPaで、板状成形体の試験片引張強度は230MPaであり、成形体の形状によらず良好な強度特性を維持していた。
(Example 6)
The same para-aramid fiber, phenol resin powder, and aramid pulp used in Example 1 were used. (B) Instead of using the core-sheath type composite fiber 1 as the composite fiber, the average fiber length was 5 mm, the fiber diameter was 18 μm, and the sheath melting point 128 ° C. components, a melting point of 165 ° C. of the core component, the area S l of the sheath component, the area ratio S l / S h of the area S h of the core component is 40/60, 70% elongation of the core-sheath Type composite fibers 3 (NBF (H) manufactured by Daiwabo Polytech Co., Ltd.) are mixed at a mass ratio of 34: 45: 15: 6, and water is added so that the solid concentration is 0.5 mass%. To prepare a dispersion.
Next, 800 ppm of polyethylene oxide based on the solid content is added to the dispersion as a papermaking agent to prepare a dispersion slurry composition, which is papermaking, dehydrated, dried at 80 ° C. for 2 hours, and then at 133 ° C. for 5 minutes. A heat-treated fiber resin composite structure having a thickness of 5 mm was obtained. The produced fiber-resin composite structure was good in handling without any loss of resin components.
Next, after preforming in the same manner as in Example 1, heat and pressure molding was performed in the same manner as in Example 1 to obtain a molded body having a length × width × depth = 60 × 120 × 10 mm and an average thickness of 1 mm. . The molded body had a good appearance with no wrinkles, creases and cracks at the four corners of the bottom and bottom and at the right angle. Further, similarly to Example 1, a box-shaped molded body and a plate-shaped molded body were produced from the fiber-resin composite structure of Example 6, and punched from the molded body (using a Thomson blade produced in a dumbbell shape). As a result of evaluating the tensile strength measured by preparing the test piece in Fig. 5, the test piece tensile strength of the box-shaped molded body was 235 MPa, and the test piece tensile strength of the plate-shaped molded body was 230 MPa, regardless of the shape of the molded body. Good strength characteristics were maintained.

本発明によれば、外観が良好で機械的特性に優れた絞り成形体、特に軽くて高強度な3次元成形体が得られるので、携帯性を有する電子機器の筐体の様な構造体に好適に利用することができる。
According to the present invention, a drawn article having a good appearance and excellent mechanical properties, particularly a light and high-strength three-dimensional article can be obtained. It can be suitably used.

Claims (8)

(A)フェノール樹脂と、
(B)融点が異なる2成分以上の熱可塑性樹脂の繊維から構成される複合繊維であって、最も低融点の成分が鞘部を構成し、他の成分が芯部を構成する芯鞘型の構造を有する複合繊維と、
(C)アラミド繊維と、
を含み、
前記(B)複合繊維を構成する1成分の熱可塑性樹脂の繊維が少なくとも2本以上の複合繊維間を結着していることを特徴とする繊維樹脂複合構造体であって、
前記(B)複合繊維の横断面における最も低融点の成分の占有面積をSl、他の成分の占有面積をShとした時、それらの占有面積の比Sl/Shが2/8〜8/2であり、
(A)フェノール樹脂の配合量が、繊維樹脂複合構造体全体に対して、30〜60質量%であり、
(B)複合繊維の配合量が、繊維樹脂複合構造体に対して、5〜20質量%であり、
(C)繊維の配合量とが、繊維樹脂複合構造体に対して、20〜80質量%である繊維樹脂複合構造体。
(A) a phenolic resin ;
(B) A composite fiber composed of two or more thermoplastic resin fibers having different melting points , wherein the lowest melting point component constitutes the sheath portion, and the other components constitute the core portion. A composite fiber having a structure ;
(C) an aramid fiber ;
Including
(B) A fiber-resin composite structure characterized in that at least two or more composite fibers are bound by one component thermoplastic resin fiber constituting the composite fiber ,
When the occupied area of the component having the lowest melting point in the cross section of the (B) composite fiber is S1 and the occupied area of the other components is Sh, the ratio S1 / Sh of these occupied areas is 2/8 to 8/2. And
(A) The compounding quantity of a phenol resin is 30-60 mass% with respect to the whole fiber resin composite structure,
(B) The compounding amount of the composite fiber is 5 to 20% by mass with respect to the fiber resin composite structure,
(C) The fiber resin composite structure whose fiber compounding quantity is 20-80 mass% with respect to the fiber resin composite structure.
前記(B)複合繊維を構成する最も低融点の成分を除く他の成分の融点が、前記(A)樹脂に含まれてもよい前記熱可塑性樹脂の融点及び前記(C)繊維に含まれてもよい有機繊維を構成する樹脂の融点よりも低いことを特徴とする請求項1に記載の繊維樹脂複合構造体。 The (B) melting point of the other components excluding the lowest melting point component constituting the composite fiber may be contained in the (A) resin and contained in the (C) fiber. 2. The fiber-resin composite structure according to claim 1, wherein the fiber-resin composite structure is lower than the melting point of the resin constituting the good organic fiber. 前記(B)複合繊維を構成する最も低融点の成分の融点が、前記(A)樹脂に含まれてもよい前記熱硬化性樹脂の硬化温度よりも低いことを特徴とする請求項1に記載の繊維樹脂複合構造体。 (B) the melting point of the lowest-melting component constituting the composite fibers, the (A) according to claim 1, wherein the lower than the curing temperature of the thermosetting resin which may be contained in the resin Fiber resin composite structure. 前記(C)繊維が、有機繊維をフィブリル化したパルプ繊維をさらに含むことを特徴とする請求項1からのいずれか1項に記載の繊維樹脂複合構造体。 The fiber resin composite structure according to any one of claims 1 to 3 , wherein the (C) fiber further includes a pulp fiber obtained by fibrillating an organic fiber. 前記(A)樹脂、前記(B)複合繊維、前記(C)繊維を含む構成材料を溶媒に分散させた後、抄造薬剤を添加して構成材料を凝集させ、その凝集物を溶媒と分離させた後、その溶媒を除去して得られる複合材料組成物であって、
前記溶媒の除去後に、前記(B)複合繊維中の最も低融点の成分の融点よりも高い温度にて熱処理を行うことで得られることを特徴とする請求項1からのいずれか1項に記載の繊維樹脂複合構造体。
After the constituent material containing the (A) resin, the (B) composite fiber, and the (C) fiber is dispersed in a solvent, a papermaking agent is added to aggregate the constituent material, and the aggregate is separated from the solvent. Then, a composite material composition obtained by removing the solvent,
After removal of the solvent, the (B) in any one of the preceding claims, characterized in that it is obtained by performing heat treatment at a temperature higher than the melting point of the component having the lowest melting point in the composite fibers 4 The fiber-resin composite structure described.
請求項1からのいずれか1項に記載の繊維樹脂複合構造体を裁断して所定の形状にする過程を経た後、加熱加圧成形することを特徴とする成形体の製造方法。 A method for producing a molded body, comprising: heating and pressing after the process of cutting the fiber-resin composite structure according to any one of claims 1 to 5 into a predetermined shape. 凹凸形状を有する成形体の製造方法であって、
請求項1からのいずれか1項に記載の繊維樹脂複合構造体を、コールドプレスにより最終成形体に類似した凹凸を賦形した後に所定の形状にする過程を経て、加熱加圧プレスすることを特徴とする成形体の製造方法。
A method for producing a molded article having an uneven shape,
The fiber-resin composite structure according to any one of claims 1 to 5 is subjected to heat and pressure pressing through a process of forming irregularities similar to the final molded body by cold pressing and then forming into a predetermined shape. The manufacturing method of the molded object characterized by these.
請求項又はに記載の成形体の製造方法によって得られることを特徴とする成形体。


A molded article obtained by the method for producing a molded article according to claim 6 or 7 .


JP2011132459A 2011-06-14 2011-06-14 Fiber resin composite structure, method for producing molded body, and molded body Active JP5673375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132459A JP5673375B2 (en) 2011-06-14 2011-06-14 Fiber resin composite structure, method for producing molded body, and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132459A JP5673375B2 (en) 2011-06-14 2011-06-14 Fiber resin composite structure, method for producing molded body, and molded body

Publications (2)

Publication Number Publication Date
JP2013001764A JP2013001764A (en) 2013-01-07
JP5673375B2 true JP5673375B2 (en) 2015-02-18

Family

ID=47670683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132459A Active JP5673375B2 (en) 2011-06-14 2011-06-14 Fiber resin composite structure, method for producing molded body, and molded body

Country Status (1)

Country Link
JP (1) JP5673375B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738800B2 (en) 2011-04-28 2017-08-22 Seiko Epson Corporation Photocurable ink composition, recording method, recording apparatus, photocurable ink jet recording ink composition, and ink jet recording method
EP2543707B2 (en) 2011-07-08 2020-09-02 Seiko Epson Corporation Photocurable ink composition for ink jet recording and ink jet recording method
JP6340761B2 (en) * 2013-07-31 2018-06-13 住友ベークライト株式会社 Laminate and housing
JP6286963B2 (en) * 2013-09-17 2018-03-07 住友ベークライト株式会社 Laminate and housing
JP6609898B2 (en) 2013-10-01 2019-11-27 セイコーエプソン株式会社 Sheet manufacturing apparatus, sheet manufacturing method, sheet manufactured by these, composite used for these, container for the same, and method for manufacturing composite
JP6354138B2 (en) * 2013-11-26 2018-07-11 住友ベークライト株式会社 Fiber reinforced composite material and casing using the same
JP2016044281A (en) * 2014-08-26 2016-04-04 住友ベークライト株式会社 Fiber-reinforced composite material and housing
JP6611421B2 (en) * 2014-09-25 2019-11-27 住友ベークライト株式会社 Resin sheet, article, and method for producing resin sheet
CN104690979B (en) * 2015-02-16 2019-09-03 长春博超汽车零部件股份有限公司 A kind of low VOC natural-fiber composite material, preparation method and applications
KR101646455B1 (en) * 2015-04-03 2016-08-08 (주)엘지하우시스 Porous fiber reinforced composite material and method for preparing the same
KR101923379B1 (en) * 2015-06-29 2018-11-30 (주)엘지하우시스 Porous fiber reinforced composite material and method for preparing the same
JP2017024243A (en) * 2015-07-21 2017-02-02 達 喜岡 Method for manufacturing fiber-reinforced plastic plate
JP2017206493A (en) * 2016-05-17 2017-11-24 アース製薬株式会社 Pest repellent for stretchable cloth
KR20180030313A (en) * 2016-09-12 2018-03-22 (주)엘지하우시스 Porous fiber reinforced composite material
JP7385814B2 (en) 2020-01-29 2023-11-24 トヨタ紡織株式会社 Method for manufacturing molded bodies

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535129B2 (en) * 1993-07-07 1996-09-18 ヤマウチ株式会社 Cushion material for molding press and method of manufacturing the same
JP3514903B2 (en) * 1995-08-03 2004-04-05 帝人テクノプロダクツ株式会社 Fluoro-resin-based sheet, sheet laminated composite, method for producing the same and use thereof
JP2003127156A (en) * 2001-10-26 2003-05-08 Matsushita Electric Works Ltd Method for producing fibrous building plate
JP4580704B2 (en) * 2004-07-08 2010-11-17 株式会社巴川製紙所 Base material for electrical insulation, method for producing the same, and prepreg and printed wiring board using the base material
WO2009104760A1 (en) * 2008-02-20 2009-08-27 大和紡績株式会社 Antiviral substance, antiviral fiber, and antiviral fiber structure
JP5332733B2 (en) * 2009-03-03 2013-11-06 沖電気工業株式会社 Echo canceller

Also Published As

Publication number Publication date
JP2013001764A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5673375B2 (en) Fiber resin composite structure, method for producing molded body, and molded body
EP3279249B1 (en) Method for preparing a porous fiber-reinforced composite
KR20150100607A (en) Fiber-reinforced resin sheet, integrated molded product and process for producing same
JP6245362B2 (en) Fiber-reinforced composite material molded article and method for producing the same
WO2018052080A1 (en) Layered substrate and method for manufacturing same
TWI617603B (en) Porous single polymer fibre composite and method for preparing porous single polymer fibre composite
JP7425731B2 (en) Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
JP2017160559A (en) Manufacturing method of sheet making body and manufacturing method of molded body
CN113306502A (en) Vehicle undercover and method for manufacturing same
JP2011190549A (en) Fiber-mixed mat-shaped molded product and fiber-reinforced molded product
JP5895380B2 (en) Fiber resin composite structure, method for manufacturing fiber resin composite structure, and method for manufacturing molded body
WO2018049537A1 (en) In-plane isotropic, binderless products of cellulosic filament based compositions by compression molding
WO2019189582A1 (en) Method for manufacturing molded article
JP5956150B2 (en) Carbon fiber reinforced thermoplastic resin and method for producing molded article thereof
JP3032584B2 (en) Method for improving appearance of fiber-reinforced thermoplastic resin molded product
KR102009811B1 (en) Composite material preform board and method for preparing the same
JP2013010255A (en) Thermoplastic resin composite material
JP6439487B2 (en) Substrate for fiber reinforced plastic molding and fiber reinforced plastic molding
JP6493147B2 (en) Nonwoven fabric, method for producing nonwoven fabric, and fiber-reinforced plastic molded body
Julkapli et al. Bio-nanocomposites from natural fibre derivatives: manufacturing and properties
JP2013049750A (en) Organic fiber random mat and fiber composite material using the same
KR20180030313A (en) Porous fiber reinforced composite material
JP2014118426A (en) Method for producing carbon fiber composite material
WO2020040289A1 (en) Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
KR101919373B1 (en) Porous fiber reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5673375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150