JP2018028151A - Method for producing carbon short fiber nonwoven fabric - Google Patents

Method for producing carbon short fiber nonwoven fabric Download PDF

Info

Publication number
JP2018028151A
JP2018028151A JP2016159225A JP2016159225A JP2018028151A JP 2018028151 A JP2018028151 A JP 2018028151A JP 2016159225 A JP2016159225 A JP 2016159225A JP 2016159225 A JP2016159225 A JP 2016159225A JP 2018028151 A JP2018028151 A JP 2018028151A
Authority
JP
Japan
Prior art keywords
carbon short
nonwoven fabric
short fiber
fiber nonwoven
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016159225A
Other languages
Japanese (ja)
Other versions
JP6603185B2 (en
Inventor
鍛治 裕夫
Hiroo Kaji
裕夫 鍛治
研史 津田
Kenji Tsuda
研史 津田
憲司 門間
Kenji Kadoma
憲司 門間
吉田 光男
Mitsuo Yoshida
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2016159225A priority Critical patent/JP6603185B2/en
Publication of JP2018028151A publication Critical patent/JP2018028151A/en
Application granted granted Critical
Publication of JP6603185B2 publication Critical patent/JP6603185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Abstract

PROBLEM TO BE SOLVED: To provide a carbon short fiber nonwoven fabric containing regenerated carbon short fibers having excellent uniformity and excellent workability.SOLUTION: A method for producing a carbon short fiber nonwoven fabric is characterized in that: a slurry is obtained by dispersing regenerated carbon short fibers underwater with a high-speed-rotation shearing dispersing machine, and the slurry is used to produce a carbon short fiber nonwoven fabric by a wet paper-making method. More preferably, the high-speed-rotation shearing dispersing machine has a ring-like cutter having fine slits that rotate at high speed in part of the structure.SELECTED DRAWING: None

Description

本発明は、再生炭素短繊維を含む炭素短繊維不織布の製造方法に関する。   The present invention relates to a method for producing a carbon short fiber nonwoven fabric containing regenerated carbon short fibers.

炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastic、「CFRP」と記す場合がある)は、炭素繊維(Carbon Fiber、「CF」と記す場合がある)が母材樹脂中に分散されている。CFRPは、軽量である上に、比強度や比剛性が高いため、ゴルフシャフト、テニスラケット、釣竿などに利用されている。また、最近では、翼や胴体などの大型航空機の主要構造部材にも使用されていて、市場規模が拡大している。   Carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastic, sometimes referred to as “CFRP”) has carbon fiber (Carbon Fiber, sometimes referred to as “CF”) dispersed in a base resin. CFRP is lightweight and has high specific strength and specific rigidity, so it is used for golf shafts, tennis rackets, fishing rods and the like. Recently, it is also used for main structural members of large aircraft such as wings and fuselage, and the market size is expanding.

この市場規模の拡大に伴い、廃棄されるCFRPの量も増大している。例えば、航空機の場合、安全性が非常に重要であるため、特に品質が第一に考えられ、CFRPの歩留まりは50%と言われる。すなわち、トリミングのため、廃棄される部位も少なくない。また、型に合わせて切断されたプリプレグ、期限切れの未硬化状態、半硬化状態又は硬化状態のプリプレグも、廃棄されるCFRPの一種であり、大量に廃棄されている。   With the expansion of the market scale, the amount of CFRP that is discarded is also increasing. For example, in the case of aircraft, since safety is very important, quality is considered first, and the yield of CFRP is said to be 50%. That is, many parts are discarded for trimming. Further, a prepreg cut in accordance with a mold, an expired uncured state, a semi-cured state, or a cured prepreg are also a kind of CFRP to be discarded, and are discarded in large quantities.

炭素繊維が通常の状態では不燃であるため、廃棄されるCFRPの最終廃棄処理は極めて面倒である。したがって、これまでは、廃棄されるCFRPは破砕され、埋め立て処分されていた。しかし、炭素繊維はその製造時に多くのエネルギーを消費するだけに、埋め立て処分することは、非常に無駄が多く、再利用が望まれている。   Since carbon fibers are non-combustible under normal conditions, the final disposal process of CFRP to be discarded is extremely troublesome. Thus, until now, discarded CFRP has been crushed and disposed of in landfills. However, since carbon fiber consumes a lot of energy during its production, it is very wasteful to dispose of it in landfills, and reuse is desired.

そこで、廃棄されるCFRPから炭素繊維をリサイクルする方法として、焼結処理、過熱水蒸気による処理等によって、廃棄されるCFRPの母材樹脂を分解させて、不燃である炭素繊維を再生炭素短繊維として回収する方法が提案されている(例えば、特許文献1〜4参照)。   Therefore, as a method for recycling carbon fiber from discarded CFRP, the CFRP base resin is decomposed by sintering treatment, treatment with superheated steam, etc., and non-combustible carbon fiber is used as recycled carbon short fiber. A method of collecting has been proposed (see, for example, Patent Documents 1 to 4).

回収された再生炭素繊維を使って不織布を製造する方法として、カード機に通して、再生炭素繊維と他の繊維とを絡ませてウエッブを形成させる乾式法が主流であった(例えば、特許文献5参照)。しかし、これら方法によって形成された不織布は、均一性が充分でなく、緻密性に劣るものであった。また、不織布を後工程において加工する際に、不織布の強度が充分でなく、不織布の切断、割れが生じ、加工性に劣るものであった。   As a method for producing a nonwoven fabric using the recovered recycled carbon fiber, a dry method in which a web is formed by passing the recycled carbon fiber and other fibers through a card machine (for example, Patent Document 5). reference). However, the nonwoven fabrics formed by these methods are not sufficiently uniform and inferior in denseness. Moreover, when processing a nonwoven fabric in the post process, the strength of the nonwoven fabric was not sufficient, and the nonwoven fabric was cut and cracked, resulting in poor processability.

特開2005−307121号公報JP-A-2005-307121 特開2008−285600号公報JP 2008-285600 A 特開2008−285601号公報JP 2008-285601 A 特開2013−147545号公報JP2013-147545A 特開2014−025175号公報JP 2014-025175 A

本発明の課題は、均一性に優れ、加工性に優れた再生炭素短繊維を含む炭素短繊維不織布を提供することである。   The subject of this invention is providing the carbon short fiber nonwoven fabric containing the regenerated carbon short fiber excellent in uniformity and excellent in workability.

上記課題は、下記発明によって解決することができる。   The above problems can be solved by the following invention.

(1)再生炭素短繊維を水中で、高速回転せん断型分散機を使って分散したスラリーを用いて、湿式抄紙法によって炭素短繊維不織布を製造することを特徴とする炭素短繊維不織布の製造方法。 (1) A method for producing a carbon short fiber nonwoven fabric, comprising producing a carbon short fiber nonwoven fabric by a wet papermaking method using a slurry in which regenerated carbon short fibers are dispersed in water using a high-speed rotary shearing disperser. .

(2)高速回転せん断型分散機が、高速回転する細かなスリットを持つリング状刃物を構造の一部に有する分散機である上記(1)記載の炭素短繊維不織布の製造方法。 (2) The method for producing a carbon short fiber nonwoven fabric according to the above (1), wherein the high-speed rotating shear type disperser is a disperser having a ring-shaped blade having a fine slit rotating at a high speed as a part of the structure.

本発明によれば、均一性に優れ、加工性に優れた炭素短繊維不織布を提供することができる。   According to the present invention, it is possible to provide a carbon short fiber nonwoven fabric excellent in uniformity and excellent in processability.

本発明の炭素短繊維不織布の製造方法は、再生炭素短繊維を水中で、高速回転せん断型分散機を使って分散したスラリーを用いて、湿式抄紙法によって炭素短繊維不織布を製造することを特徴としている。   The method for producing a carbon short fiber nonwoven fabric of the present invention is characterized in that a carbon short fiber nonwoven fabric is produced by a wet papermaking method using a slurry in which regenerated carbon short fibers are dispersed in water using a high-speed rotary shear disperser. It is said.

本発明では、再生炭素短繊維を用いる。再生炭素短繊維は、廃棄されるCFRPを、アルゴン、窒素などの不活性ガス中又は水蒸気中で処理して、母材樹脂を焼結除去して得られる炭素短繊維である。特に過熱水蒸気による焼結方法は、大気下で熱を奪うと水に戻ることから、安価で環境を汚染しない有効な方法である。廃棄されるCFRPは、アングルプライ積層体など多様な形態をしており、通常は一定サイズに落としてから、焼結処理し、未硬化状態、半硬化状態又は硬化状態の熱硬化性樹脂である母材樹脂を除去して、裁断する。この場合、繊維長の異なる再生炭素短繊維が得られる。本発明において、再生炭素短繊維を用いる場合の好ましい繊維長は3〜500mmであり、より好ましい繊維長は6〜150mmである。   In the present invention, regenerated carbon short fibers are used. The recycled carbon short fiber is a carbon short fiber obtained by treating CFRP to be discarded in an inert gas such as argon or nitrogen or in water vapor, and sintering and removing the base resin. In particular, the sintering method using superheated steam is an effective method that is inexpensive and does not pollute the environment because it returns to water when heat is removed in the atmosphere. The CFRP to be discarded has various forms such as an angle ply laminate, and is usually a thermosetting resin that is uncured, semi-cured or cured after being reduced to a certain size and then sintered. Remove the base resin and cut. In this case, regenerated carbon short fibers having different fiber lengths are obtained. In the present invention, when the regenerated carbon short fiber is used, a preferable fiber length is 3 to 500 mm, and a more preferable fiber length is 6 to 150 mm.

上記に述べた再生炭素短繊維は、数本の再生炭素短繊維が束になった状態となり、この状態のまま、水中にゆるやかに分散しても、再生炭素短繊維の束は解けず、湿式抄紙法で炭素短繊維不織布を製造した場合には、大きな欠点となり、炭素短繊維不織布の均一性を損ねる。また、後工程において、炭素短繊維不織布をスリット加工する際に、スリット刃で再生炭素短繊維の束を切断した場合、再生炭素短繊維の部分が核となって、炭素短繊維不織布に亀裂が入る場合があり、後加工の加工性を著しく損なう場合がある。   The regenerated carbon short fibers described above are in a state in which several regenerated carbon short fibers are bundled, and even if gently dispersed in this state, the bundle of regenerated carbon short fibers cannot be unwound and wet. When a carbon short fiber nonwoven fabric is produced by the papermaking method, it becomes a major drawback, and the uniformity of the carbon short fiber nonwoven fabric is impaired. In addition, when slitting a carbon short fiber nonwoven fabric in a subsequent process, if a bundle of regenerated carbon short fibers is cut with a slit blade, the regenerated carbon short fiber portion serves as a nucleus, and the carbon short fiber nonwoven fabric has cracks. In some cases, the workability of post-processing may be significantly impaired.

本発明では、炭素短繊維不織布を製造する場合、再生炭素短繊維を水中で、高速回転せん断型分散機を使って分散したスラリーを用いる。本発明において、「高速回転せん断型分散機」とは、分散刃を有して回転するローターと分散刃を有したステーターとの間に、炭素短繊維を含むスラリーを通過させ、スラリー中の炭素短繊維にせん断力を与えて分散させる分散機である。具体的な装置としては、シングルディスクリファイナー、ダブルディスクリファイナー、コニカルリファイナー等が挙げられる。   In this invention, when manufacturing a carbon short fiber nonwoven fabric, the slurry which disperse | distributed the regenerated carbon short fiber in water using the high-speed rotation shear type | mold disperser is used. In the present invention, the “high-speed rotary shearing disperser” means that a slurry containing carbon short fibers is passed between a rotor rotating with a dispersing blade and a stator having a dispersing blade, and the carbon in the slurry is passed through. It is a disperser that applies shear force to short fibers to disperse them. Specific examples of the apparatus include a single disk refiner, a double disk refiner, and a conical refiner.

さらに、均一に効率良く、再生炭素短繊維の束を分散させたスラリーを得るためには、高速回転せん断型分散機が、高速回転する細かなスリットを持つリング状刃物を構造の一部に有する高速回転せん断分散機であることが有効である。高速回転する細かなスリットを持つリング状刃物を構造の一部に有する高速回転せん断分散機においては、スリット間で発生する流体力学的な衝撃波が、再生炭素短繊維の束に有効に作用する。具体的な装置としては、トップファイナー(相川鉄工製)、VFポンプ(新浜ポンプ製)、マイルダー(太平洋機工製)等が挙げられる。   Furthermore, in order to obtain a slurry in which a bundle of regenerated carbon short fibers is dispersed uniformly and efficiently, a high-speed rotary shear type disperser has a ring-shaped blade having a fine slit that rotates at a high speed as a part of the structure. It is effective to be a high-speed rotary shear disperser. In a high-speed rotary shear disperser having a ring-shaped blade having a fine slit that rotates at a high speed as a part of the structure, a hydrodynamic shock wave generated between the slits effectively acts on a bundle of regenerated carbon short fibers. Specific devices include a top finaler (manufactured by Aikawa Tekko), a VF pump (manufactured by Niihama Pump), a milder (manufactured by Taiheiyo Kiko), and the like.

上記分散機を使って、再生炭素短繊維の束を分散させたスラリーを得る際には、スラリー濃度、処理時間、分散機のローターの回転数、ステーターとローターとのクリアランス等を調整することによって、炭素短繊維の分散性を適宜調整することができる。   When obtaining a slurry in which a bundle of regenerated carbon short fibers is dispersed using the above disperser, by adjusting the slurry concentration, processing time, rotation speed of the rotor of the disperser, clearance between the stator and the rotor, etc. In addition, the dispersibility of the short carbon fibers can be appropriately adjusted.

本発明では、再生炭素短繊維とバージンの炭素短繊維とを併用することができる。バージンの炭素短繊維としては、ポリアクリロニトリルを原料とするPAN系炭素短繊維、ピッチ類を原料とするピッチ系炭素短繊維が挙げられる。バージンの炭素短繊維の繊維径は3〜20μmであることが好ましく、5〜15μmであることがより好ましい。また、バージンの炭素短繊維の繊維長は1〜30mmであることが好ましく、3〜12mmであることがより好ましい。   In the present invention, regenerated carbon short fibers and virgin carbon short fibers can be used in combination. Examples of virgin carbon short fibers include PAN-based carbon short fibers made from polyacrylonitrile and pitch-based carbon short fibers made from pitches. The fiber diameter of the short carbon fiber of virgin is preferably 3 to 20 μm, and more preferably 5 to 15 μm. The fiber length of the virgin short carbon fibers is preferably 1 to 30 mm, more preferably 3 to 12 mm.

本発明の炭素短繊維不織布の製造方法では、炭素短繊維以外の繊維を併用することができる。木材パルプ、再生セルロース繊維、ミクロフィブリル化セルロース繊維、熱可塑性樹脂繊維等を、単独、又は、組み合わせて併用することができる。炭素短繊維:炭素短繊維以外の繊維の含有比率(質量基準)が8.5:1.5〜5:4であることが好ましく、8:2〜6:4であることがより好ましい。   In the method for producing a carbon short fiber nonwoven fabric of the present invention, fibers other than carbon short fibers can be used in combination. Wood pulp, regenerated cellulose fiber, microfibrillated cellulose fiber, thermoplastic resin fiber, and the like can be used alone or in combination. It is preferable that the content ratio (mass basis) of fibers other than carbon short fibers: carbon short fibers is 8.5: 1.5 to 5: 4, and more preferably 8: 2 to 6: 4.

熱可塑性樹脂繊維を併用した場合、炭素短繊維が不織布から脱離することを防止し、炭素短繊維不織布に強度を付与することができる。熱可塑性樹脂繊維としては、非結晶性のポリビニルアルコール(ビニロン)短繊維、表面が低融点化されているポリエステル芯鞘繊維、未延伸ポリエステル繊維、ポリカーボネート(PC)繊維、ポリオレフィン繊維、表面が低融点化されているポリオレフィン芯鞘繊維、表面が酸変性ポリオレフィンよりなるポリオレフィン繊維、脂肪族ポリアミド繊維、未延伸ポリフェニレンスルフィド繊維、ポリエーテルケトンケトン繊維等が挙げられる。   When a thermoplastic resin fiber is used in combination, it is possible to prevent the carbon short fibers from being detached from the nonwoven fabric and to impart strength to the carbon short fiber nonwoven fabric. Thermoplastic resin fibers include non-crystalline polyvinyl alcohol (vinylon) short fibers, polyester core-sheath fibers whose surfaces have a low melting point, unstretched polyester fibers, polycarbonate (PC) fibers, polyolefin fibers, and low melting points on the surface. Polyolefin core-sheath fibers that have been formed, polyolefin fibers whose surface is made of acid-modified polyolefin, aliphatic polyamide fibers, unstretched polyphenylene sulfide fibers, polyether ketone ketone fibers, and the like.

熱可塑性樹脂繊維の融点は60〜260℃であることが好ましく、60〜230℃であることがより好ましく、60〜180℃であることがさらに好ましく、80〜160℃であることが特に好ましい。熱可塑性樹脂繊維の融点がこの温度範囲であることによって、不織布製造工程における加熱処理によって、結着性が付与され、炭素短繊維不織布に強度が付与される。   The melting point of the thermoplastic resin fiber is preferably 60 to 260 ° C, more preferably 60 to 230 ° C, still more preferably 60 to 180 ° C, and particularly preferably 80 to 160 ° C. When the melting point of the thermoplastic resin fiber is within this temperature range, the heat treatment in the nonwoven fabric manufacturing process imparts binding properties and imparts strength to the carbon short fiber nonwoven fabric.

熱可塑性樹脂繊維の繊維径は3〜40μmであることが好ましく、5〜20μmであることがより好ましい。また、熱可塑性樹脂繊維の繊維長は1〜20mmであることが好ましく、3〜12mmであることがより好ましい。   The fiber diameter of the thermoplastic resin fiber is preferably 3 to 40 μm, and more preferably 5 to 20 μm. Moreover, it is preferable that the fiber length of a thermoplastic resin fiber is 1-20 mm, and it is more preferable that it is 3-12 mm.

本発明における炭素短繊維不織布は、湿式抄紙法で製造された湿式抄紙不織布である。湿式抄紙法では、まず、再生炭素短繊維と、場合によって他の併用する繊維とを均一に水中に混合分散させてスラリーとし、その後、スクリーン(異物、塊等除去)等の工程を経て、最終の繊維濃度が0.01〜0.50質量%に調整されたスラリーを得る。該スラリーが抄紙機で抄き上げられ、湿紙が得られる。繊維の分散性を均一にするために、工程中で分散剤、消泡剤、親水剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤等の薬品を添加する場合もある。   The carbon short fiber nonwoven fabric in the present invention is a wet papermaking nonwoven fabric produced by a wet papermaking method. In the wet papermaking method, first, recycled carbon short fibers and other fibers that are used in some cases are uniformly mixed and dispersed in water to form a slurry, and then subjected to processes such as screen (removal of foreign matter, lump, etc.) A slurry having a fiber concentration of 0.01 to 0.50% by mass is obtained. The slurry is made up with a paper machine to obtain wet paper. In order to make the dispersibility of the fibers uniform, chemicals such as dispersants, antifoaming agents, hydrophilic agents, antistatic agents, polymer thickeners, mold release agents, antibacterial agents, bactericides, etc. may be added during the process. is there.

抄紙機としては、例えば、長網、円網、傾斜ワイヤー等の抄紙網を単独で使用した抄紙機、同種又は異種の2以上の抄紙網がオンラインで設置されているコンビネーション抄紙機等を使用することができる。また、炭素短繊維不織布が2層以上の多層構造の場合には、各々の抄紙機で抄き上げた湿紙を積層する抄き合わせ法や、一方の層を形成した後に、該層上に繊維を分散したスラリーを流延して積層とする流延法等で、炭素短繊維不織布を製造することができる。繊維を分散したスラリーを流延する際に、先に形成した層は湿紙状態であっても、乾燥状態であってもいずれでも良い。また、2枚以上の乾燥状態の層を熱融着させて、多層構造の炭素短繊維不織布とすることもできる。   As the paper machine, for example, a paper machine using a paper net such as a long net, a circular net, or an inclined wire alone, or a combination paper machine in which two or more paper nets of the same type or different types are installed online is used. be able to. In addition, when the carbon short fiber nonwoven fabric has a multilayer structure of two or more layers, a wet paper made by each paper machine is laminated, or after one layer is formed, A carbon short fiber nonwoven fabric can be produced by a casting method in which a slurry in which fibers are dispersed is cast to form a laminate. When casting the slurry in which the fibers are dispersed, the previously formed layer may be either a wet paper state or a dry state. Moreover, the carbon short fiber nonwoven fabric of a multilayer structure can also be made by heat-sealing two or more dry layers.

本発明において、炭素短繊維不織布が多層構造である場合、各層の繊維配合が同一である多層構造であっても良く、各層の繊維配合が異なっている多層構造であっても良い。多層構造である場合、各層の坪量が下がることにより、スラリーの繊維濃度を下げることができるため、炭素短繊維不織布の地合が良くなり、その結果、炭素短繊維不織布の地合の均一性が向上する。また、各層の地合が不均一であった場合でも、積層することで補填できる。さらに、抄紙速度を上げることができ、操業性が向上するという効果も得られる。   In the present invention, when the carbon short fiber nonwoven fabric has a multilayer structure, it may have a multilayer structure in which the fiber blend of each layer is the same, or may have a multilayer structure in which the fiber blend of each layer is different. In the case of a multilayer structure, since the fiber concentration of the slurry can be lowered by lowering the basis weight of each layer, the formation of the carbon short fiber nonwoven fabric is improved. As a result, the uniformity of the formation of the carbon short fiber nonwoven fabric is improved. Will improve. Moreover, even when the formation of each layer is non-uniform | heterogenous, it can compensate by laminating | stacking. Furthermore, the papermaking speed can be increased, and the operability can be improved.

湿式抄紙法では、抄紙網で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することによって、シート状の湿式抄紙不織布が得られる。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることを言う。熱ロールの表面温度は、100〜180℃が好ましく、100〜160℃がより好ましく、110〜160℃がさらに好ましい。圧力は、好ましくは50〜1000N/cmであり、より好ましくは100〜800N/cmである。   In the wet papermaking method, a wet papermaking nonwoven fabric in sheet form is obtained by drying wet paper produced by a papermaking net with a Yankee dryer, air dryer, cylinder dryer, suction drum dryer, infrared dryer, or the like. When the wet paper is dried, it is brought into close contact with a hot roll such as a Yankee dryer and dried by heat and pressure to improve the smoothness of the contacted surface. Hot-pressure drying means that wet paper is pressed against a hot roll with a touch roll or the like and dried. The surface temperature of the hot roll is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and still more preferably 110 to 160 ° C. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。なお、実施例中における部や百分率は断りのない限り、すべて質量によるものである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. In the examples, all parts and percentages are by mass unless otherwise specified.

実施例1〜6及び比較例1
(再生炭素繊維の分散処理)
焼結処理によってCFRPから回収された再生炭素短繊維(5mm幅カット品)を表1記載の条件、装置で分散処理を行い、再生炭素短繊維のスラリーを得た。
Examples 1 to 6 and Comparative Example 1
(Dispersion treatment of recycled carbon fiber)
The regenerated carbon short fibers (5 mm width cut product) recovered from the CFRP by the sintering treatment were subjected to a dispersion treatment with the conditions and apparatus described in Table 1 to obtain a regenerated carbon short fiber slurry.

Figure 2018028151
Figure 2018028151

表1記載の条件で分散処理してスラリーとした再生炭素短繊維と熱可塑性樹脂繊維(芯鞘ポリエステル繊維、繊維径1.7デニール、繊維長5mm)を固形分基準の質量比で95:5になるように混合し、分散濃度0.2質量%、分散時間5分間で分散した後、90メッシュの金属ワイヤーを有した円網抄紙機で、湿紙を形成し、その後、表面温度140℃のヤンキードライヤーで乾燥し、坪量25g/mの実施例1〜6と比較例1の炭素短繊維不織布を得た。 Recycled carbon short fibers and thermoplastic resin fibers (core-sheathed polyester fibers, fiber diameter 1.7 denier, fiber length 5 mm) dispersed and treated under the conditions shown in Table 1 in a mass ratio based on solid content of 95: 5 After mixing with a dispersion concentration of 0.2% by mass and a dispersion time of 5 minutes, wet paper is formed on a circular net paper machine having a 90 mesh metal wire, and then a surface temperature of 140 ° C. The carbon short fiber nonwoven fabrics of Examples 1 to 6 and Comparative Example 1 having a basis weight of 25 g / m 2 were obtained.

実施例及び比較例で製造した炭素短繊維不織布に対して、以下の評価を行い、結果を表2に示した。   The following evaluation was performed on the carbon short fiber nonwoven fabrics produced in the examples and comparative examples, and the results are shown in Table 2.

(欠点数評価)
25cm×25cmの炭素短繊維不織布を透過光で観察し、サンプル中に存在する未離解繊維(束になった状態の繊維)の数をカウントし、単位平米当たりの欠点数に換算した。
(Defect number evaluation)
A carbon short fiber nonwoven fabric of 25 cm × 25 cm was observed with transmitted light, and the number of undissolved fibers (fibers in a bundle) present in the sample was counted and converted into the number of defects per unit square meter.

(比強度評価)
幅方向15mm×流れ方向240mmの炭素短繊維不織布を採取して、縦強度測定紙片とし、幅方向240mm×流れ方向15mmの炭素短繊維不織布を採取して、横強度測定紙片とした。得られた縦・横強度測定紙片の引張強度を、JIS P8113(1976)に準拠して、引っ張り速度20mm/minで測定した。縦横強度(単位:N/15m)の平均値を坪量で除した値を「比強度」とした。
(Specific strength evaluation)
A carbon short fiber nonwoven fabric having a width direction of 15 mm and a flow direction of 240 mm was collected to obtain a longitudinal strength measurement paper piece, and a carbon short fiber nonwoven fabric having a width direction of 240 mm and a flow direction of 15 mm was collected to obtain a transverse strength measurement paper piece. The tensile strength of the obtained longitudinal / lateral strength measuring paper piece was measured at a pulling speed of 20 mm / min according to JIS P8113 (1976). A value obtained by dividing an average value of longitudinal and transverse strength (unit: N / 15 m) by basis weight was defined as “specific strength”.

Figure 2018028151
Figure 2018028151

実施例1及び2と比較例1とを比較することで、再生炭素短繊維を水中で、高速回転せん断型分散機を使って分散したスラリーを用いて、湿式抄紙法によって炭素短繊維不織布を製造することにより、欠点数が少なく、均一性に優れ、比強度が高く、加工性に優れた再生炭素短繊維を含む炭素短繊維不織布を提供することできることがわかる。   By comparing Examples 1 and 2 with Comparative Example 1, a short carbon fiber nonwoven fabric is produced by a wet papermaking method using a slurry in which regenerated carbon short fibers are dispersed in water using a high-speed rotary shear type disperser. By doing so, it can be seen that it is possible to provide a carbon short fiber nonwoven fabric including regenerated carbon short fibers having a small number of defects, excellent uniformity, high specific strength, and excellent workability.

実施例1及び2と実施例3及び4とを比較することで、高速回転せん断型分散機が、高速回転する細かなスリットを持つリング状刃物を構造の一部に有する分散機であることで、再生炭素短繊維の束をより効率良く、より均一に分散することができる。そして、欠点数がより少なく、均一性により優れ、比強度がより高く、加工性により優れた再生炭素短繊維を含む炭素短繊維不織布を提供することができることがわかる。   By comparing Examples 1 and 2 with Examples 3 and 4, the high-speed rotating shear type disperser is a disperser having a ring-shaped blade having a fine slit that rotates at a high speed as a part of the structure. The bundle of regenerated carbon short fibers can be dispersed more efficiently and more uniformly. And it turns out that the carbon short fiber nonwoven fabric containing the regenerated carbon short fiber with fewer defects, excellent uniformity, higher specific strength, and excellent workability can be provided.

実施例3及び4と実施例5及び6とを比較することで、高速回転せん断型分散機が、高速回転する細かなスリットを持つリング状刃物を構造の一部に有する分散機であることで、処理濃度が高い場合においても、再生炭素短繊維を分散することができる。そして、欠点数が少なく、均一性に優れ、比強度が高く、加工性に優れた再生炭素短繊維を含む炭素短繊維不織布を提供することができることがわかる。   By comparing Examples 3 and 4 with Examples 5 and 6, the high-speed rotating shear type disperser is a disperser having a ring-shaped blade having a fine slit that rotates at a high speed as a part of the structure. Even when the treatment concentration is high, the regenerated carbon short fibers can be dispersed. And it turns out that the carbon short fiber nonwoven fabric containing the regenerated carbon short fiber with few defects, excellent uniformity, high specific strength, and excellent workability can be provided.

本発明の炭素短繊維不織布の製造方法で得られた炭素短繊維不織布は、電子機器材料、電気機器材料、土木材料、建築材料、自動車材料、航空機材料、各種製造業で使用されるロボット、ロール等の製造部品等に利用可能である。   The carbon short fiber nonwoven fabric obtained by the method for producing a carbon short fiber nonwoven fabric of the present invention is an electronic equipment material, an electrical equipment material, a civil engineering material, a building material, an automobile material, an aircraft material, a robot used in various manufacturing industries, and a roll. It can be used for manufacturing parts.

Claims (2)

再生炭素短繊維を水中で、高速回転せん断型分散機を使って分散したスラリーを用いて、湿式抄紙法によって炭素短繊維不織布を製造することを特徴とする炭素短繊維不織布の製造方法。   A method for producing a carbon short fiber nonwoven fabric, comprising producing a carbon short fiber nonwoven fabric by a wet papermaking method using a slurry in which regenerated carbon short fibers are dispersed in water using a high-speed rotary shearing disperser. 高速回転せん断型分散機が、高速回転する細かなスリットを持つリング状刃物を構造の一部に有する分散機である請求項1記載の炭素短繊維不織布の製造方法。   2. The method for producing a carbon short fiber nonwoven fabric according to claim 1, wherein the high-speed rotating shear type disperser is a disperser having a ring-shaped blade having a fine slit rotating at a high speed as a part of the structure.
JP2016159225A 2016-08-15 2016-08-15 Method for producing carbon short fiber nonwoven fabric Active JP6603185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016159225A JP6603185B2 (en) 2016-08-15 2016-08-15 Method for producing carbon short fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016159225A JP6603185B2 (en) 2016-08-15 2016-08-15 Method for producing carbon short fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2018028151A true JP2018028151A (en) 2018-02-22
JP6603185B2 JP6603185B2 (en) 2019-11-06

Family

ID=61247778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016159225A Active JP6603185B2 (en) 2016-08-15 2016-08-15 Method for producing carbon short fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP6603185B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040289A1 (en) * 2018-08-24 2020-02-27 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
JP2020029021A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Carbon fiber unwoven fabric composite
WO2020040287A1 (en) * 2018-08-24 2020-02-27 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
JP2020040268A (en) * 2018-09-10 2020-03-19 三菱製紙株式会社 Carbon fiber non-woven fabric composite
JP2021058873A (en) * 2019-10-07 2021-04-15 株式会社フジテクノ Water quality improvement member capable of removing trace harmful substances in water
JP7406849B2 (en) 2022-05-19 2023-12-28 國立高雄科技大學 Leveling device and method for carbon fiber recycled material
TWI828774B (en) * 2019-09-27 2024-01-11 日商阿波製紙股份有限公司 Carbon fiber sheet material, prepreg, molded body, method of producing carbon fiber sheet material, method of producing prepreg and method of producing molded body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077410U (en) * 2000-10-31 2001-05-18 林 京子 Carbon fiber mixed sheet heating element
JP2011001081A (en) * 2009-06-17 2011-01-06 Oji Paper Co Ltd Mount for storing chip-type electronic component, and method for manufacturing the same
JP2012162835A (en) * 2011-02-09 2012-08-30 Mitsubishi Rayon Co Ltd Method for producing carbon fiber-containing nonwoven fabric
WO2013176033A1 (en) * 2012-05-21 2013-11-28 王子ホールディングス株式会社 Method for producing fine fiber, fine fiber, non-woven fabric, and fine fibrous cellulose
JP2013249555A (en) * 2012-05-31 2013-12-12 Mitsubishi Rayon Co Ltd Carbon fiber paper, porous electrode substrate, method for producing them, membrane-electrode assembly and solid polymer fuel cell
WO2014014055A1 (en) * 2012-07-20 2014-01-23 三菱レイヨン株式会社 Porous electrode substrate, method for manufacturing same, membrane-electrode assembly, and solid-polymer fuel cell
JP2014025175A (en) * 2012-07-27 2014-02-06 Ohtsuka Co Ltd Method for producing carbon fiber nonwoven fabric, and carbon fiber nonwoven fabric
DE102013226921A1 (en) * 2013-12-20 2015-06-25 Sgl Automotive Carbon Fibers Gmbh & Co. Kg Nonwoven fabric made of carbon fibers and thermoplastic fibers
WO2017057393A1 (en) * 2015-09-29 2017-04-06 株式会社クラレ Dispersant for carbon fibers, carbon fiber dispersion composition, and method for manufacturing carbon fiber sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077410U (en) * 2000-10-31 2001-05-18 林 京子 Carbon fiber mixed sheet heating element
JP2011001081A (en) * 2009-06-17 2011-01-06 Oji Paper Co Ltd Mount for storing chip-type electronic component, and method for manufacturing the same
JP2012162835A (en) * 2011-02-09 2012-08-30 Mitsubishi Rayon Co Ltd Method for producing carbon fiber-containing nonwoven fabric
WO2013176033A1 (en) * 2012-05-21 2013-11-28 王子ホールディングス株式会社 Method for producing fine fiber, fine fiber, non-woven fabric, and fine fibrous cellulose
JP2013249555A (en) * 2012-05-31 2013-12-12 Mitsubishi Rayon Co Ltd Carbon fiber paper, porous electrode substrate, method for producing them, membrane-electrode assembly and solid polymer fuel cell
WO2014014055A1 (en) * 2012-07-20 2014-01-23 三菱レイヨン株式会社 Porous electrode substrate, method for manufacturing same, membrane-electrode assembly, and solid-polymer fuel cell
US20150155568A1 (en) * 2012-07-20 2015-06-04 Mitsubishi Rayon Co., Ltd. Porous electrode substrate, method for manufacturing same, membrane-electrode assembly, and solid polymer fuel cell
JP2014025175A (en) * 2012-07-27 2014-02-06 Ohtsuka Co Ltd Method for producing carbon fiber nonwoven fabric, and carbon fiber nonwoven fabric
DE102013226921A1 (en) * 2013-12-20 2015-06-25 Sgl Automotive Carbon Fibers Gmbh & Co. Kg Nonwoven fabric made of carbon fibers and thermoplastic fibers
WO2017057393A1 (en) * 2015-09-29 2017-04-06 株式会社クラレ Dispersant for carbon fibers, carbon fiber dispersion composition, and method for manufacturing carbon fiber sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029021A (en) * 2018-08-22 2020-02-27 三菱製紙株式会社 Carbon fiber unwoven fabric composite
JP7019534B2 (en) 2018-08-22 2022-02-15 三菱製紙株式会社 Carbon fiber non-woven fabric complex
JP7425732B2 (en) 2018-08-24 2024-01-31 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
WO2020040287A1 (en) * 2018-08-24 2020-02-27 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
WO2020040289A1 (en) * 2018-08-24 2020-02-27 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
CN112601780A (en) * 2018-08-24 2021-04-02 阿波制纸株式会社 Carbon fiber sheet, prepreg, molded body, method for producing carbon fiber sheet, method for producing prepreg, and method for producing molded body
CN112638998A (en) * 2018-08-24 2021-04-09 阿波制纸株式会社 Carbon fiber sheet, prepreg, molded body, method for producing carbon fiber sheet, method for producing prepreg, and method for producing molded body
JP7425731B2 (en) 2018-08-24 2024-01-31 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, method for manufacturing carbon fiber sheet material, method for manufacturing prepreg, and method for manufacturing molded body
JPWO2020040289A1 (en) * 2018-08-24 2021-08-10 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, carbon fiber sheet material manufacturing method, prepreg manufacturing method and molded body manufacturing method
JPWO2020040287A1 (en) * 2018-08-24 2021-08-26 阿波製紙株式会社 Carbon fiber sheet material, prepreg, molded body, carbon fiber sheet material manufacturing method, prepreg manufacturing method and molded body manufacturing method
JP2020040268A (en) * 2018-09-10 2020-03-19 三菱製紙株式会社 Carbon fiber non-woven fabric composite
TWI828774B (en) * 2019-09-27 2024-01-11 日商阿波製紙股份有限公司 Carbon fiber sheet material, prepreg, molded body, method of producing carbon fiber sheet material, method of producing prepreg and method of producing molded body
JP7077502B2 (en) 2019-10-07 2022-05-31 株式会社フジテクノ Water quality improvement member that removes trace harmful substances in water
JP2021058873A (en) * 2019-10-07 2021-04-15 株式会社フジテクノ Water quality improvement member capable of removing trace harmful substances in water
JP7406849B2 (en) 2022-05-19 2023-12-28 國立高雄科技大學 Leveling device and method for carbon fiber recycled material

Also Published As

Publication number Publication date
JP6603185B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
JP6603185B2 (en) Method for producing carbon short fiber nonwoven fabric
JP7368923B2 (en) Method for producing carbon fibers from recycled cotton and use of the fibers obtained by this method for forming articles from composite materials
JP2009019330A (en) Polytetrafluoroethylene fiber
JP2017133131A (en) Recycled carbon short fiber nonwoven fabric, and composite body
US20110281080A1 (en) Folded Core Based on Carbon Fiber Paper and Articles Made from Same
JP2020165048A (en) Carbon fiber nonwoven fabric and carbon fiber-reinforced resin composite
JP6791467B2 (en) Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure
JP6702536B2 (en) Short carbon fiber reinforced film and short carbon fiber reinforced structure manufacturing method
JP2021155553A (en) Continuous manufacturing method of nonwoven fabric-like prepreg
JP7030868B2 (en) Manufacturing method of carbon fiber non-woven fabric
JP2019167662A (en) Carbon short fiber non-woven fabric
JP6829174B2 (en) Carbon fiber non-woven fabric
JP2020040268A (en) Carbon fiber non-woven fabric composite
JP2017172083A (en) Carbon short fiber nonwoven fabric and composite
JP2008248907A (en) Method of manufacturing fiber reinforcement material for fiber-reinforced resin gear
JP2019157315A (en) Carbon fiber non-woven fabric and composite
JP7030472B2 (en) Carbon staple fiber wet non-woven fabric
JP6963954B2 (en) Wet non-woven fabric manufacturing method
JP7019534B2 (en) Carbon fiber non-woven fabric complex
JP2020158912A (en) Wet nonwoven fabric of short carbon fiber, and carbon fiber reinforced resin
JP6625941B2 (en) Method for producing carbon fiber sheet
JP2020050999A (en) Manufacturing method of carbon fiber unwoven fabric
JP2019167654A (en) Method for producing carbon short fiber non-woven fabric
JP7386776B2 (en) Carbon fiber-containing wet-laid nonwoven fabric
JP2020051000A (en) Manufacturing method of carbon fiber unwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191010

R150 Certificate of patent or registration of utility model

Ref document number: 6603185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250