JP2018009504A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2018009504A
JP2018009504A JP2016138618A JP2016138618A JP2018009504A JP 2018009504 A JP2018009504 A JP 2018009504A JP 2016138618 A JP2016138618 A JP 2016138618A JP 2016138618 A JP2016138618 A JP 2016138618A JP 2018009504 A JP2018009504 A JP 2018009504A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
target
charging efficiency
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016138618A
Other languages
English (en)
Inventor
加藤 直人
Naoto Kato
直人 加藤
郁 大塚
Iku Otsuka
郁 大塚
成広 杉平
Shigehiro Sugihira
成広 杉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016138618A priority Critical patent/JP2018009504A/ja
Publication of JP2018009504A publication Critical patent/JP2018009504A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関において、その過渡運転時、空燃比が過度にリーン化することによる失火を回避できるようにする。【解決手段】許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比、充填効率の増大量、及びトルクの増大量の間に成立する関係を規定したリーン限界空燃比マップを用いて、目標トルクの増大量に対応する充填効率の増大量とリーン限界空燃比とを算出する。そして、算出した充填効率の増大量に基づいて目標充填効率を算出するとともに、算出したリーン限界空燃比を目標空燃比に設定し、目標充填効率と目標空燃比とに基づいて内燃機関を制御する。【選択図】図1

Description

本発明は、内燃機関の制御装置に関し、特に、理論空燃比よりも燃料リーンなリーン空燃比による運転が可能な内燃機関の制御装置に関する。
特開平07−119512号公報には、エンジン回転速度と吸入空気流量とに基づいて目標空燃比を設定する装置において、理論空燃比からリーン空燃比へ、或いは、リーン空燃比から理論空燃比へ内燃機関の目標空燃比を変更する場合、車両の加速度に応じて目標空燃比の変化割合を変更することが開示されている。
特開平07−119512号公報
しかし、上記公報には、内燃機関がリーン空燃比で運転している場合において、充填効率が変化する過渡運転時に空燃比をどのように設定するかについては開示されていない。過渡運転時には、センサの信号やアクチュエータの操作量等から推定される充填効率と実際の充填効率との間にずれが生じる可能性がある。燃料量の計算には推定した充填効率が用いられるが、推定した充填効率よりも実際の充填効率が多かった場合、計算した量の燃料の噴射によって実現される空燃比は目標空燃比よりもリーンになる。空燃比が過度にリーン化した場合には、燃焼が不安定となって失火に至るおそれがある。
本発明は、上述の課題に鑑みてなされたものであり、理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関において、その過渡運転時、空燃比が過度にリーン化することによる失火を回避できるようにすることを目的とする。
第1の発明に係る内燃機関の制御装置は、理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関の制御装置であって、
許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比、充填効率の増大量、及びトルクの増大量の間に成立する関係を用いて、目標トルクの増大量に対応する充填効率の増大量とリーン限界空燃比とを算出する手段と、
前記算出した充填効率の増大量に基づいて目標充填効率を算出する手段と、
前記算出したリーン限界空燃比を目標空燃比に設定する手段と、を備え、
前記目標充填効率と前記目標空燃比とに基づいて前記内燃機関を制御することを特徴とする。
第2の発明に係る内燃機関の制御装置は、理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関の制御装置であって、
許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比のもとで充填効率の増大量とトルクの増大量との間に成立する関係を用いて、目標トルクの増大量に対応する充填効率の増大量を算出する手段と、
前記算出した充填効率の増大量に基づいて目標充填効率を算出する手段と、
トルク、充填効率、及び空燃比の間に成立する関係を用いて、前記目標トルクを実充填効率のもとで実現するための目標空燃比を算出する手段と、を備え、
前記目標充填効率と前記目標空燃比とに基づいて前記内燃機関を制御することを特徴とする。
第3の発明に係る内燃機関の制御装置は、理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関の制御装置であって、
許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比と充填効率の増大量との間に成立する関係を用いて、実充填効率の増大量に対応するリーン限界空燃比を算出する手段と、
前記算出したリーン限界空燃比を目標空燃比に設定する手段と、
トルク、充填効率、及び空燃比の間に成立する関係を用いて、目標トルクを前記目標空燃比のもとで実現するための目標充填効率を算出する手段と、を備え、
前記目標充填効率と前記目標空燃比とに基づいて前記内燃機関を制御することを特徴とする。
第4の発明に係る内燃機関の制御装置は、理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関の制御装置であって、
許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比と充填効率の増大量との間に成立する関係を用いて、実充填効率の増大量に対応するリーン限界空燃比を算出する手段と、
トルク、充填効率、及び空燃比の間に成立する関係を用いて、目標トルクを前記リーン限界空燃比のもとで実現するための目標充填効率を算出する手段と、
トルク、充填効率、及び空燃比の間に成立する関係を用いて、前記目標トルクを実充填効率のもとで実現するための目標空燃比を算出する手段と、を備え、
前記目標充填効率と前記目標空燃比とに基づいて前記内燃機関を制御することを特徴とする。
本発明に係る内燃機関の制御装置によれば、充填効率が増大する過渡運転時は、空燃比と充填効率の増大量との関係が、リーン限界空燃比と充填効率の増大量との関係に重なるように内燃機関を制御することが行われるので、空燃比が過度にリーン化することによる失火を回避することができる。
実施の形態1の内燃機関の制御装置の構成を示すブロック図である。 過渡運転において充填効率の増大量と目標空燃比の決定に用いるマップの構成のイメージを示す図である。 図2に示すマップの構成を説明するための図である。 エンジン回転速度と充填効率と定常リーン限界空燃比との関係の一例を示す図である。 空燃比と充填効率の増大量とで定義される領域上での推定精度補償限界空燃比線の位置及び形状と、空燃比と充填効率との関係の一例を示す図である。 空燃比と充填効率の増大量とで定義される領域上でのリーン限界空燃比線の位置及び形状と、空燃比と充填効率との関係の一例を示す図である。 図1に示す構成による目標空燃比と目標充填効率の計算結果の一例を示す図である。 実施の形態2の内燃機関の制御装置の構成を示すブロック図である。 目標空燃比の決定に用いるマップの構成のイメージを示す図である。 実施の形態3の内燃機関の制御装置の構成を示すブロック図である。 図10に示す構成による目標空燃比と目標充填効率の計算結果の一例を示す図である。 実施の形態4の内燃機関の制御装置の構成を示すブロック図である。 実施の形態5の内燃機関の制御装置の構成を示すブロック図である。 過渡運転において目標空燃比の決定に用いるマップの構成のイメージを示す図である。 実施の形態6の内燃機関の制御装置の構成を示すブロック図である。
実施の形態1.
本発明の実施の形態1について図を参照して説明する。
各実施の形態おいて制御対象とされる内燃機関は、火花点火式の4サイクルレシプロエンジンであり、且つ、リーン空燃比による運転が可能なリーン燃焼エンジンである。リーン燃焼の形態は、筒内に均質な燃料濃度の混合気を形成する均質リーン燃焼である。制御装置は、内燃機関に備えられるアクチュエータを操作することで内燃機関の運転を制御する。制御装置が操作可能なアクチュエータには、少なくとも、スロットル、燃料噴射装置、点火装置が含まれる。ただし、以下の各実施の形態において言及する操作はスロットルと燃料噴射装置の操作である。点火装置については、何れの実施の形態においても、点火時期がMBTとなるように操作が行われているものとする。
また、各実施の形態の制御装置は、少なくとも1つのCPU、少なくとも1つのROM、少なくとも1つのRAMを有するECU(Electronic Control Unit)である。ただし、制御装置は、複数のECUから構成されていてもよい。制御装置では、ROMに記憶されているプログラムをRAMにロードし、CPUで実行することで、エンジン制御に係る様々な機能が実現される。
図1は、実施の形態1の内燃機関の制御装置の構成を示すブロック図である。本制御装置は、それが有する機能別に、複数の演算ユニット2,4,6,8,10,12,20に分けることができる。ただし、図1は、本制御装置がこれらの演算ユニットのみで構成されていることを意味するものではない。以下、各演算ユニット2,4,6,8,10,12,20の機能を中心に本制御装置の構成について説明する。なお、図1を含む各図では、トルクをTQと表記し、充填効率をKLと表記し、空燃比をA/Fと表記し、スロットル開度をTAと表記している。また、ECUの一制御周期でのトルクの増大量をΔTQと表記し、ECUの一制御周期での充填効率の増大量をΔKLと表記している。
本制御装置は、図示しない別の演算ユニットにおいて、内燃機関の目標トルクを決定している。目標トルクは、運転者によるアクセルペダルの操作量及び操作速度に基づいて決定される駆動要求トルクと、トラクション制御システムや横滑り防止システムや電子制御式トランスミッション等の車両の制御システムからの信号に基づいて決定されるシステム要求トルクとに基づいて決定される。また、車両が自動運転車両の場合には、自動運転装置の制御システムから要求されるトルクに基づいて目標トルクが決定される。
目標トルクは演算ユニット6に入力される。演算ユニット6は、充填効率変換マップを用いて目標トルクを充填効率に変換する(ただし、充填効率の代わりに筒内に吸入される空気量でもよい)。充填効率変換マップのパラメータには、空燃比が含まれる。空燃比には、定常状態でのリーン限界空燃比(以下、定常リーン限界空燃比と表記する)が用いられる。定常リーン限界空燃比は、定常状態において安定した燃焼が得られる空燃比の範囲の燃料リーン側の限界値(例えば、25)であり、定常状態での目標空燃比でもある。演算ユニット6で計算された充填効率は、目標充填効率のベース値として出力される。
また、目標トルクは演算ユニット12にも入力される。演算ユニット12は、目標トルクが増大している場合、すなわち、内燃機関が加速状態にある場合、目標トルクの前回からの増大量(ECUの一制御周期での増大量)から、充填効率の上限増大量と目標空燃比とを算出する。この計算には、後述するリーン限界空燃比マップが用いられる。一方、目標トルクが減少している場合、すなわち、内燃機関が減速状態にある場合、演算ユニット12は、充填効率の上限増大量としてゼロ値を出力し、目標空燃比として定常リーン限界空燃比を出力する。
図2は、演算ユニット12が用いるリーン限界空燃比マップの構成のイメージを示す図である。リーン限界空燃比マップでは、図2に示すように、空燃比(A/F)と充填効率の増大量(ΔKL)とトルクの増大量(ΔTQ)との関係が規定されている。図2において、点線で引かれた斜めの直線は、空燃比と充填効率の増大量とで定まる動作点のうち、トルクの増大量が等しい動作点を結んだ線である。空燃比が一定の場合、より右側に位置する線ほど、その線上の動作点におけるトルクの増大量は大きくなる。図2において、太い実線で引かれた折れ線が、このマップにおいて選択される動作点を結んだ線(以下、リーン限界空燃比線と表記する)である。リーン限界空燃比線は、許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比と充填効率の増大量との関係を示す線である。
図2には、定常リーン限界空燃比を示す直線と、NOx許容限界空燃比を示す直線とが描かれている。NOx許容限界空燃比とは、NOxの発生量が許容範囲内に収まる空燃比の範囲の燃料リッチ側の限界値(例えば、20)を意味する。リーン限界空燃比線は、充填効率の増大量が所定値α以下の場合、定常リーン限界空燃比を示す直線と一致する。充填効率の増大量が所定値αより大きい場合、リーン限界空燃比線は、充填効率の増大量が大きくなるにつれて次第に低下し、充填効率の増大量が一定以上ではNOx許容限界空燃比を示す直線と一致する。
リーン限界空燃比マップによれば、目標トルクの増大量から決まる等ΔTQ線と、リーン限界空燃比線との交点における空燃比が目標空燃比として算出され、同交点における充填効率の増大量が充填効率の上限増大量として算出される。充填効率の増大量が所定値α以下である場合、交点(図中において白丸で示す)は定常リーン限界空燃比を示す直線上に位置することから、定常リーン限界空燃比が目標空燃比として設定される。しかし、充填効率の増大量が所定値αよりも大きい場合、交点(図中において黒丸で示す)は等ΔTQ線上を定常リーン限界空燃比よりもリッチ側にずれることから、目標空燃比はNOx許容限界空燃比を限度として定常リーン限界空燃比よりもリッチ化されることになる。また、目標空燃比が定常リーン限界空燃比よりもリッチ化されることで、充填効率の上限増大量は、定常リーン限界空燃比に対応する増大量よりも小さくなる。
リーン限界空燃比マップは、リーン限界空燃比線が充填効率の増大量と空燃比との関係に関する3つの制約条件を満たすように作成されている。以下、この3つの制約条件について図3を用いて説明する。図3のグラフ(a)は、定常リーン限界空燃比と定常状態で安定的に燃焼させることができる空燃比の範囲とを示している。失火を生じさせないように、空燃比をこの範囲に制御することが第1の制約条件である。グラフ(b)は、NOx許容限界空燃比とNOxの発生量が許容範囲内に収まる空燃比の範囲とを示している。エミッション(特にNOx)を悪化させないように、空燃比をこの範囲に制御することが第2の制約条件である。グラフ(c)は、過渡運転時に生じる空燃比の誤差を考慮した場合のリーン限界空燃比を示している。過渡運転時の空燃比の誤差は、筒内に吸入された空気量をエアモデルにより推定する場合の推定誤差や、吸気ポート等に付着する燃料量を燃料モデルにより推定する場合の推定誤差等の要因によって生じるものであるので、ここでは上記のリーン限界空燃比を推定精度補償限界空燃比と表記する。推定精度補償限界空燃比をリーン側に超えないように空燃比を制御することが第3の制約条件である。なお、グラフ(c)では充填効率の増大量がある一定以上になると推定精度補償限界空燃比は一定値になっているが、このときの推定精度補償限界空燃比の値はNOx許容限界空燃比と等しい。
そして、これら3つの制約条件を満たす空燃比の範囲がグラフ(d)において斜線で示す範囲であり、その範囲において燃費を最良にすることができる動作点を結んだ線が、前述のリーン限界空燃比線である。ゆえに、リーン限界空燃比は、定常リーン限界空燃比線と推定精度補償限界空燃比線との交点よりも左側(充填効率の増大量が小さい側)ではリーン限界空燃比に等しく、同交点よりも右側(充填効率の増大量が大きい側)では推定精度補償限界空燃比に等しい。つまり、定常リーン限界空燃比と推定精度補償限界空燃比のうちよりリッチな方が、リーン限界空燃比として設定されている。
なお、図2に示すリーン限界空燃比線の位置と形状はあくまでも一例である。図4に示すように、充填効率とエンジン回転速度とで定義される領域上での動作点の位置により、空燃比と充填効率の増大量とで定義される領域上でのリーン限界空燃比線の位置と形状は異なったものとなる。これは、充填効率とエンジン回転速度が違えば、定常リーン限界空燃比も違ったものとなることによる。定常リーン限界空燃比と充填効率とエンジン回転速度との関係の一例を図5に示す。また、充填効率とエンジン回転速度が違えば、空気量や燃料付着量の推定誤差も違ったものになるので、充填効率の増大量に対する推定精度補償限界空燃比線の関係も違ったものになる。空燃比と充填効率の増大量とで定義される領域上での推定精度補償限界空燃比線の位置及び形状と、空燃比と充填効率との関係の一例を図6に示す。この例では、エンジン回転速度が低く充填効率が高いほど、空気量の推定誤差が大きくなることが想定されている。
再び図1に戻って制御装置の構成についての説明を続ける。演算ユニット12が計算した充填効率の上限増大量と目標空燃比のうち、充填効率の上限増大量は、演算ユニット10に入力される。演算ユニット10には、充填効率の上限増大量とともに、演算ユニット8で遅延処理された前回の目標充填効率が入力されている。演算ユニット10は、演算ユニット12から入力された充填効率の上限増大量と、演算ユニット10から入力された前回の目標充填効率とを足し合わせて上限目標充填効率を生成する。
演算ユニット10が計算した上限目標充填効率は、演算ユニット4に入力される。演算ユニット4には、上限目標充填効率とともに、演算ユニット6で計算された目標充填効率のベース値が入力されている。演算ユニット10は、目標充填効率のベース値を上限目標充填効率で制限することによって最終的な目標充填効率を得る。この処理により、目標充填効率の前回の目標充填効率からの増大量は、目標空燃比と合わせて決定された上限増大量で制限される。
演算ユニット4が計算した目標充填効率は、演算ユニット2に入力される。演算ユニット2は、エアモデルの逆モデルを用いて目標充填効率を目標スロットル開度に変換する。エアモデルはスロットルの動作に対する充填効率の応答特性をモデル化した物理モデルである。その逆モデルを用いれば、目標充填効率の実現に必要なスロットル開度を目標充填効率から求めることができる。本制御装置は、演算ユニット2で算出された目標スロットル開度に従ってスロットルの操作を行う。
また、演算ユニット12が計算した目標空燃比は、演算ユニット20に入力される。演算ユニット20は、目標空燃比と実充填効率とに基づいて燃料量を計算する。実充填効率は、エアモデルを用いてエアフローメータの信号及びスロットル開度から推定される。本制御装置は、演算ユニット20で算出された燃料量に従って燃料噴射装置の操作を行う。
図7は、以上のように構成された本制御装置による目標空燃比と目標充填効率の計算結果の一例を示す図である。図7中の各タイムチャートは、上から順に、目標トルク、目標トルクの増大量、目標空燃比、目標充填効率の時刻による変化を示している。目標空燃比のタイムチャートにおいて、破線は定常リーン限界空燃比を示している。また、目標充填効率のタイムチャートにおいて、破線は目標空燃比を定常リーン限界空燃比とした場合の目標充填効率を示している。
目標トルクが増大する過渡運転時は、空燃比と充填効率の増大量との関係が、図2に示すリーン限界空燃比と充填効率の増大量との関係に重なるように目標空燃比及び目標充填効率が設定される。本制御装置は、このように設定された目標空燃比及び目標充填効率に基づいて内燃機関を制御するので、空燃比が過度にリーン化することによる失火を回避しつつ目標トルクを実現することができる。
実施の形態2.
次に、本発明の実施の形態2について図を参照して説明する。
図8は、実施の形態2の内燃機関の制御装置の構成を示すブロック図である。本制御装置は、それが有する機能別に、複数の演算ユニット2,4,6,8,10,14,20,24に分けることができる。これらの演算ユニット2,4,6,8,10,14,20,24のうち、実施の形態1と共通する符号が付せられた演算ユニット2,4,6,8,10,20については、機能においても共通していることから、その説明は省略するか簡略化して説明する。以下では、本実施の形態で新たに設けられた演算ユニット14,24の機能を中心に本制御装置の構成について説明する。
本制御装置では、目標トルクは、演算ユニット6と演算ユニット14と演算ユニット24とに入力される。演算ユニット14は、目標トルクが増大している場合、すなわち、内燃機関が加速状態にある場合、目標トルクの前回からの増大量(ECUの一制御周期での増大量)から、充填効率の上限増大量を算出する。この計算には、前掲の図2に示すリーン限界空燃比マップが用いられる。目標トルクの増大量から決まる等ΔTQ線と、リーン限界空燃比線との交点における充填効率の増大量が充填効率の上限増大量として算出される。すなわち、本制御装置では、リーン限界空燃比マップから直接算出されるパラメータは充填効率の上限増大量のみであり、目標空燃比は演算ユニット14では算出されない。一方、目標トルクが減少している場合、すなわち、内燃機関が減速状態にある場合、演算ユニット14は、充填効率の上限増大量としてゼロ値を出力する。本制御装置では、演算ユニット14で算出された充填効率の上限増大量が演算ユニット10に入力され、演算ユニット10において上限目標充填効率の計算に用いられる。
演算ユニット24は、目標トルクと実充填効率とに基づいて目標空燃比を決定する。実充填効率は、エアモデルを用いてエアフローメータの信号及びスロットル開度から推定される。目標空燃比の決定には、空燃比変換マップが用いられる。図9は、空燃比変換マップの構成のイメージを示す図である。図9に示すように、空燃比変換マップでは、トルクと充填効率と定常リーン限界空燃比との関係が規定されている。ここに規定されている関係は、演算ユニット6で使用される充填効率変換マップで規定されている関係に対応している。演算ユニット24は、空燃比変換マップにおいて目標トルクと実充填効率との組み合わせから空燃比を特定し、特定した空燃比を目標空燃比として算出する。なお、空燃比変換マップは、過渡運転における目標空燃比の算出だけでなく、定常運転における目標空燃比の算出にも用いられる。本制御装置では、演算ユニット24で決定された目標空燃比が演算ユニット20に入力され、演算ユニット20において燃料量の計算に用いられる。
このように構成された本制御装置によれば、目標トルクと実充填効率とに基づいて目標空燃比が決定されるので、目標充填効率と実充填効率との間に差が生じた場合でも、目標トルクを精度よく実現することができる。なお、本制御装置では、過渡運転における目標空燃比は必ずしもリーン限界空燃比に一致しないが、実充填効率は目標充填効率に追従して変化しているため、目標空燃比もリーン限界空燃比に追従して変化する。ゆえに、過渡運転における空燃比と充填効率の増大量との関係は、リーン限界空燃比と充填効率の増大量との関係に実質的には重なっているものと考えてよい。ゆえに、本制御装置によれば、空燃比が過度にリーン化することによる失火を回避しつつ、実施の形態1に比べてより高い精度で目標トルクを実現することができる。
実施の形態3.
次に、本発明の実施の形態3について図を参照して説明する。
図10は、実施の形態3の内燃機関の制御装置の構成を示すブロック図である。本制御装置は、それが有する機能別に、複数の演算ユニット2,4,6,8,10,14,20,24,26に分けることができる。これらの演算ユニット2,4,6,8,10,14,20,24,26のうち、実施の形態2と共通する符号が付せられた演算ユニット2,4,6,8,10,14,20,24については、機能においても共通していることから、その説明は省略するか簡略化して説明する。以下では、本実施の形態で新たに設けられた演算ユニット26の機能を中心に本制御装置の構成について説明する。
本制御装置では、目標トルクは、演算ユニット6と演算ユニット14と演算ユニット26とに入力される。演算ユニット26は、目標トルクを一次遅れフィルタで処理する。一次遅れフィルタの時定数は、スロットルの動作に対する充填効率の応答遅れ相当の値に設定されている。本制御装置では、演算ユニット26でフィルタ処理された目標トルクが演算ユニット24に入力され、演算ユニット24による目標空燃比の決定に用いられる。
図11は、以上のように構成された本制御装置による目標空燃比と目標充填効率の計算結果の一例を示す図である。図11中の各タイムチャートは、上から順に、目標トルク、目標トルクの増大量、目標空燃比、目標充填効率の時刻による変化を示している。目標空燃比のタイムチャートにおいて、破線は定常リーン限界空燃比を示し、点線は実充填効率において目標トルクを実現できる空燃比を示している。また、目標充填効率のタイムチャートにおいて、破線は目標空燃比を定常リーン限界空燃比とした場合の目標充填効率を示し、点線は実充填効率を示している。
目標トルクが急峻に増大した場合、それに応じて目標充填効率も急峻に増大するが、空気の応答遅れによって実充填効率は急峻には増大せず、目標充填効率と実充填効率との間には大きな差が生じる。この場合において目標トルクを実現できる空燃比(点線で示す)は、リーン限界空燃比(実線で示す)よりもさらにリッチなものとなる。目標トルクの実現性よりも燃費を最優先に考えるのであれば、過渡運転における空燃比はリーン限界空燃比に近いほうがよい。本制御装置によれば、目標空燃比の計算に用いる目標トルクは、一次遅れフィルタによって変化速度を抑えられているので、目標トルクをそのまま目標空燃比の計算に用いる場合に比較して、目標空燃比のリッチ化は抑えられ、目標空燃比はリーン限界空燃比に近づけられる。
実施の形態4.
次に、本発明の実施の形態4について図を参照して説明する。
図12は、実施の形態4の内燃機関の制御装置の構成を示すブロック図である。本制御装置は、それが有する機能別に、複数の演算ユニット2,4,6,8,10,14,20,22,24,26に分けることができる。これらの演算ユニット2,4,6,8,10,14,20,22,24,26のうち、実施の形態3と共通する符号が付せられた演算ユニット2,4,6,8,10,14,20,24,26については、機能においても共通していることから、その説明は省略するか簡略化して説明する。以下では、本実施の形態で新たに設けられた演算ユニット22の機能を中心に本制御装置の構成について説明する。
本制御装置では、演算ユニット24で決定された目標空燃比は、演算ユニット22に入力される。演算ユニット22には、目標空燃比とともに、リーン限界空燃比とリッチ限界空燃比が入力されている。リーン限界空燃比は、定常リーン限界空燃比と推定精度補償限界空燃比のうちよりリッチな方である。リッチ限界空燃比は、NOx許容限界空燃比を意味する。演算ユニット22は、リーン限界空燃比を上限としリッチ限界空燃比を下限とする空燃比の範囲に目標空燃比を制限する。本制御装置では、演算ユニット22で制限された目標空燃比が演算ユニット20に入力され、演算ユニット20において燃料量の計算に用いられる。
このように構成された本制御装置によれば、空燃比が過度にリーン化されることによる失火を抑えつつ、空燃比が過度にリッチ化されることによるNOxの発生量の増大も抑えることができる。
実施の形態5.
次に、本発明の実施の形態5について図を参照して説明する。
図13は、実施の形態5の内燃機関の制御装置の構成を示すブロック図である。本制御装置は、それが有する機能別に、複数の演算ユニット2,6,20,32,34に分けることができる。これらの演算ユニット2,6,20,32,34のうち、実施の形態1と共通する符号が付せられた演算ユニット2,6,20については、機能においても共通していることから、その説明は省略するか簡略化して説明する。以下では、本実施の形態で新たに設けられた演算ユニット32,34の機能を中心に本制御装置の構成について説明する。
本制御装置では、実充填効率が演算ユニット34に入力される。演算ユニット34は、入力された実充填効率の前回からの増大量を算出する。算出した実充填効率の増大量は演算ユニット32に入力される。演算ユニット32は、入力された実充填効率の増大量に基づいて目標空燃比を決定する。目標空燃比の決定には、図14に構成のイメージを示す空燃比設定マップが用いられる。この空燃比設定マップでは、実充填効率の増大量と目標空燃比との関係が規定されている。ここに規定されている関係は、リーン限界空燃比マップにおけるリーン限界空燃比と充填効率の増大量との関係に対応している。すなわち、演算ユニット32では、実充填効率の増大量に対応するリーン限界空燃比が目標空燃比として決定される。なお、内燃機関が減速状態にある場合、演算ユニット32は、目標空燃比として定常リーン限界空燃比を出力する。本制御装置では、演算ユニット32で決定された目標空燃比が演算ユニット20に入力され、演算ユニット20において燃料量の計算に用いられる。
演算ユニット32で決定された目標空燃比は演算ユニット6にも入力される。演算ユニット6には、目標空燃比とともに、目標トルクが入力されている。演算ユニット6は、充填効率変換マップを用いて目標トルクを充填効率に変換する。充填効率変換マップのパラメータである空燃比には、演算ユニット32から入力された目標空燃比が用いられる。これにより、目標空燃比であるリーン限界空燃比のもとで目標トルクを実現することができる充填効率が算出される。本制御装置では、演算ユニット6で算出された充填効率が目標充填効率として演算ユニット2に入力され、演算ユニット2において目標スロットル開度の計算に用いられる。
このように構成された本制御装置によれば、充填効率が増大する過渡運転においては、実充填効率の増大量に対応するリーン限界空燃比が目標空燃比として決定されるので、空燃比が過度にリーン化することによる失火を回避することができる。
実施の形態6.
次に、本発明の実施の形態6について図を参照して説明する。
図15は、実施の形態6の内燃機関の制御装置の構成を示すブロック図である。本制御装置は、それが有する機能別に、複数の演算ユニット2,6,20,32,34に分けることができる。これらの演算ユニット2,6,20,24,32,34の個別の機能については先に述べた通りである。以下では、演算ユニット2,6,20,24,32,34間の信号の流れを中心に本制御装置の構成について説明する。
本制御装置では、目標トルクは、演算ユニット6と演算ユニット24とに入力される。演算ユニット24は、目標トルクと実充填効率とに基づいて目標空燃比を決定する。目標空燃比の決定には、空燃比変換マップが用いられる。本制御装置では、演算ユニット24で決定された目標空燃比が演算ユニット20に入力され、演算ユニット20において燃料量の計算に用いられる。
演算ユニット34は、実充填効率の前回からの増大量を算出する。算出した実充填効率の増大量は演算ユニット32に入力される。演算ユニット32は、空燃比設定マップを用いて、入力された実充填効率の増大量に対応するリーン限界空燃比を算出する。実施の形態5では演算ユニット32で算出されたリーン限界空燃比が目標空燃比として決定されていたが、この実施の形態では目標空燃比の決定は演算ユニット24で行われる。
演算ユニット32で算出されたリーン限界空燃比は演算ユニット6に入力される。演算ユニット6は、充填効率変換マップを用いて目標トルクを充填効率に変換する。充填効率変換マップのパラメータである空燃比には、演算ユニット32から入力されたリーン限界空燃比が用いられる。これにより、リーン限界空燃比のもとで目標トルクを実現することができる充填効率が算出される。本制御装置では、演算ユニット6で算出された充填効率が目標充填効率として演算ユニット2に入力され、演算ユニット2において目標スロットル開度の計算に用いられる。
このように構成された本制御装置によれば、目標トルクと実充填効率とに基づいて目標空燃比が決定されるので、目標充填効率と実充填効率との間に差が生じた場合でも、目標トルクを精度よく実現することができる。なお、本制御装置では、過渡運転における目標空燃比は必ずしもリーン限界空燃比に一致しないが、実充填効率は目標充填効率に追従して変化しているため、目標空燃比もリーン限界空燃比に追従して変化する。ゆえに、過渡運転における空燃比と充填効率の増大量との関係は、リーン限界空燃比と充填効率の増大量との関係に実質的には重なっているものと考えてよい。ゆえに、本制御装置によれば、空燃比が過度にリーン化することによる失火を回避しつつ、実施の形態5に比べてより高い精度で目標トルクを実現することができる。
なお、本制御装置は、実施の形態3のように、演算ユニット24に入力される目標トルクをフィルタ処理する演算ユニット26(図10参照)をさらに備えてもよい。また、実施の形態4のように、演算ユニット24で決定した目標空燃比の範囲を制限する演算ユニット22(図22参照)をさらに備えてもよい。
その他実施の形態.
以上、本発明の実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、上述の実施の形態においてリーン限界空燃比マップのパラメータとして用いているトルクの増大量は、トルクに相関するトルク関連パラメータ、例えば、アクセル開度の増大量に代えることができる。また、同じくリーン限界空燃比マップのパラメータとして用いている充填効率の増大量は、充填効率に相関する充填効率関連パラメータ、例えば、スロットル開度の増大量に代えることができる。内燃機関は、空気量を制御するアクチュエータとして、スロットルに代えて或いはスロットルに加えて、吸気弁のリフト量を変更できる可変動弁装置を備えてもよい。
2,4,6,8,10,12,14,20,22,24,26,32,34 演算ユニット

Claims (4)

  1. 理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関の制御装置であって、
    許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比、充填効率の増大量、及びトルクの増大量の間に成立する関係を用いて、目標トルクの増大量に対応する充填効率の増大量とリーン限界空燃比とを算出する手段と、
    前記算出した充填効率の増大量に基づいて目標充填効率を算出する手段と、
    前記算出したリーン限界空燃比を目標空燃比に設定する手段と、を備え、
    前記目標充填効率と前記目標空燃比とに基づいて前記内燃機関を制御することを特徴とする内燃機関の制御装置。
  2. 理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関の制御装置であって、
    許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比のもとで充填効率の増大量とトルクの増大量との間に成立する関係を用いて、目標トルクの増大量に対応する充填効率の増大量を算出する手段と、
    前記算出した充填効率の増大量に基づいて目標充填効率を算出する手段と、
    トルク、充填効率、及び空燃比の間に成立する関係を用いて、前記目標トルクを実充填効率のもとで実現するための目標空燃比を算出する手段と、を備え、
    前記目標充填効率と前記目標空燃比とに基づいて前記内燃機関を制御することを特徴とする内燃機関の制御装置。
  3. 理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関の制御装置であって、
    許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比と充填効率の増大量との間に成立する関係を用いて、実充填効率の増大量に対応するリーン限界空燃比を算出する手段と、
    前記算出したリーン限界空燃比を目標空燃比に設定する手段と、
    トルク、充填効率、及び空燃比の間に成立する関係を用いて、目標トルクを前記目標空燃比のもとで実現するための目標充填効率を算出する手段と、を備え、
    前記目標充填効率と前記目標空燃比とに基づいて前記内燃機関を制御することを特徴とする内燃機関の制御装置。
  4. 理論空燃比よりも燃料リーンなリーン空燃比で運転することが可能な内燃機関の制御装置であって、
    許容される空燃比の範囲の燃料リーン側の限界値であるリーン限界空燃比と充填効率の増大量との間に成立する関係を用いて、実充填効率の増大量に対応するリーン限界空燃比を算出する手段と、
    トルク、充填効率、及び空燃比の間に成立する関係を用いて、目標トルクを前記リーン限界空燃比のもとで実現するための目標充填効率を算出する手段と、
    トルク、充填効率、及び空燃比の間に成立する関係を用いて、前記目標トルクを実充填効率のもとで実現するための目標空燃比を算出する手段と、を備え、
    前記目標充填効率と前記目標空燃比とに基づいて前記内燃機関を制御することを特徴とする内燃機関の制御装置。
JP2016138618A 2016-07-13 2016-07-13 内燃機関の制御装置 Pending JP2018009504A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016138618A JP2018009504A (ja) 2016-07-13 2016-07-13 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016138618A JP2018009504A (ja) 2016-07-13 2016-07-13 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2018009504A true JP2018009504A (ja) 2018-01-18

Family

ID=60994182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016138618A Pending JP2018009504A (ja) 2016-07-13 2016-07-13 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2018009504A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169593A (ja) * 2019-04-02 2020-10-15 マツダ株式会社 内燃機関の制御装置および制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169593A (ja) * 2019-04-02 2020-10-15 マツダ株式会社 内燃機関の制御装置および制御方法
JP7234749B2 (ja) 2019-04-02 2023-03-08 マツダ株式会社 内燃機関の制御装置および制御方法

Similar Documents

Publication Publication Date Title
JP4442704B2 (ja) 内燃機関の制御装置
JP2009068403A (ja) 内燃機関の制御装置
JP2005282419A (ja) 内燃機関の制御装置
US9976497B2 (en) Control device for internal combustion engine
JP2007100575A (ja) 内燃機関の制御装置
JP4483907B2 (ja) 車両制御方法および車両制御装置
JPWO2008044390A1 (ja) 多気筒内燃機関の空燃比制御装置
JP5637222B2 (ja) 内燃機関の制御装置
JP2018009504A (ja) 内燃機関の制御装置
JP6335432B2 (ja) エンジンの制御装置
JP2013087673A (ja) エンジンの制御装置
JP6468212B2 (ja) 内燃機関の制御装置
JP2009197655A (ja) エンジンの診断装置
US11028748B2 (en) Controller and control method for internal combustion engine
US20090084351A1 (en) Idle speed control method for controlling the idle speed of an engine with a continuous variable event and lift system and a fuel control system using the method
JP5376171B2 (ja) 車両の出力制御装置
JP2005344604A (ja) 内燃機関制御装置
JP6326949B2 (ja) 内燃機関の制御装置
JP2014234757A (ja) Mbt点火時期演算装置及びこれを用いたエンジンの制御装置
JP2013253564A (ja) 動力システムの制御装置
JP2017193968A (ja) 内燃機関の制御装置
JP5757728B2 (ja) 内燃機関の制御装置
JP6408925B2 (ja) エンジン予測装置
JP4910941B2 (ja) 内燃機関の制御方法および制御装置
JP2004286037A (ja) 内燃機関の燃料噴射制御装置