JP2018006083A - 導電材料、接続構造体及び接続構造体の製造方法 - Google Patents

導電材料、接続構造体及び接続構造体の製造方法 Download PDF

Info

Publication number
JP2018006083A
JP2018006083A JP2016129104A JP2016129104A JP2018006083A JP 2018006083 A JP2018006083 A JP 2018006083A JP 2016129104 A JP2016129104 A JP 2016129104A JP 2016129104 A JP2016129104 A JP 2016129104A JP 2018006083 A JP2018006083 A JP 2018006083A
Authority
JP
Japan
Prior art keywords
electrode
solder
conductive material
connection
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016129104A
Other languages
English (en)
Inventor
将大 伊藤
Masahiro Ito
将大 伊藤
周治郎 定永
Shujiro Sadanaga
周治郎 定永
石澤 英亮
Hideaki Ishizawa
英亮 石澤
宏 夏井
Hiroshi Natsui
宏 夏井
秀文 保井
Hidefumi Yasui
秀文 保井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2016129104A priority Critical patent/JP2018006083A/ja
Publication of JP2018006083A publication Critical patent/JP2018006083A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

【課題】導電材料の硬化物のTgを高めることができ、かつ、電極間の導通信頼性及び絶縁信頼性を高めることができる導電材料を提供する。【解決手段】本発明に係る導電材料は、熱硬化性成分と、複数のはんだ粒子を含み、上記熱硬化性成分が、25℃で固形である第1の熱硬化性化合物と、25℃で固形である第2の熱硬化性化合物とを含み、上記第2の熱硬化性化合物の融点は、上記第1の熱硬化性化合物の融点よりも高く、導電材料中で、上記第1の熱硬化性化合物と、上記第2の熱硬化性化合物とが粒子状に分散している。【選択図】図1

Description

本発明は、はんだ粒子を含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体及び接続構造体の製造方法に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。
上記異方性導電材料の一例として、下記の特許文献1には、熱硬化性樹脂を含む樹脂層と、はんだ粉と、硬化剤とを含み、上記はんだ粉と上記硬化剤とが上記樹脂層中に存在する接着テープが開示されている。この接着テープは、フィルム状であり、ペースト状ではない。
また、特許文献1では、上記接着テープを用いた接着方法が開示されている。具体的には、第一基板、接着テープ、第二基板、接着テープ、及び第三基板を下からこの順に積層して、積層体を得る。このとき、第一基板の表面に設けられた第一電極と、第二基板の表面に設けられた第二電極とを対向させる。また、第二基板の表面に設けられた第二電極と第三基板の表面に設けられた第三電極とを対向させる。そして、積層体を所定の温度で加熱して接着する。これにより、接続構造体を得る。
また、特許文献2には、熱硬化性成分、及び、複数の導電性粒子を含み、前記熱硬化性成分が、25℃で固形である熱硬化性化合物と、熱硬化剤とを含有し、導電ペースト中で、前記25℃で固形である熱硬化性化合物が粒子状に分散している、導電ペーストが開示されている。
WO2008/023452A1 WO2015/174299A1
特許文献1,2に記載のような従来の導電材料では、導電材料の硬化物のTgを十分に高めることができない場合がある。更に、特許文献1に記載のような従来の導電材料では、はんだ粒子が、接続されるべき電極間に効率的に配置することができない場合がある。特に、導電材料を加熱硬化させる際に、はんだ粒子が電極上に十分に移動する前に、導電材料の粘度が上昇してしまい、はんだ粒子が電極がない領域に残存してしまう場合がある。結果として、接続されるべき電極間の導通信頼性及び接続されてはならない隣接する電極間の絶縁信頼性を十分に高めることができない場合がある。
本発明の目的は、導電材料の硬化物のTgを高めることができ、かつ、電極間の導通信頼性及び絶縁信頼性を高めることができる導電材料を提供することである。また、本発明は、上記導電材料を用いた接続構造体及び接続構造体の製造方法を提供することである。
本発明の広い局面によれば、熱硬化性成分と、複数のはんだ粒子を含み、前記熱硬化性成分が、25℃で固形である第1の熱硬化性化合物と、25℃で固形である第2の熱硬化性化合物とを含み、前記第2の熱硬化性化合物の融点は、前記第1の熱硬化性化合物の融点よりも高く、導電材料中で、前記第1の熱硬化性化合物と、前記第2の熱硬化性化合物とが粒子状に分散している、導電材料が提供される。
本発明に係る導電材料のある特定の局面では、前記はんだ粒子の融点と前記第2の熱硬化性化合物の融点との差の絶対値が、20℃以下である。
本発明に係る導電材料のある特定の局面では、前記第1の熱硬化性化合物と前記第2の熱硬化性化合物との融点の差が、20℃以上である。
本発明に係る導電材料のある特定の局面では、前記第1の熱硬化性化合物の粒子径の、前記第2の熱硬化性化合物の粒子径に対する比が、1以上、20以下である。
本発明に係る導電材料のある特定の局面では、導電材料100重量%中の前記第1の熱硬化性化合物の含有量の、導電材料100重量%中の前記第2の熱硬化性化合物の含有量に対する比が、0.1以上、2以下である。
本発明に係る導電材料のある特定の局面では、前記熱硬化性成分が、ジアステレオマーの関係にある熱硬化性化合物を含む。
本発明に係る導電材料のある特定の局面では、前記第1の熱硬化性化合物と前記第2の熱硬化性化合物とが、ジアステレオマーの関係にある。
本発明に係る導電材料のある特定の局面では、前記熱硬化性成分が、エポキシ化合物と、硬化剤とを含む。
本発明に係る導電材料のある特定の局面では、前記第1の熱硬化性化合物と前記第2の熱硬化性化合物とが、エポキシ化合物である。
本発明に係る導電材料のある特定の局面では、前記導電材料が、導電ペーストである。
本発明の広い局面によれば、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、請求項1〜10のいずれか1項に記載の導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。
本発明に係る接続構造体のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている。
本発明の広い局面によれば、上述した導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、前記導電材料の前記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記はんだ粒子の融点以上かつ前記熱硬化性成分の硬化温度以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法が提供される。
本発明に係る接続構造体の製造方法のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている接続構造体を得る。
本発明に係る導電材料は、熱硬化性成分と、複数のはんだ粒子を含み、上記熱硬化性成分が、25℃で固形である第1の熱硬化性化合物と、25℃で固形である第2の熱硬化性化合物とを含み、上記第2の熱硬化性化合物の融点は、上記第1の熱硬化性化合物の融点よりも高く、導電材料中で、上記第1の熱硬化性化合物と、上記第2の熱硬化性化合物とが粒子状に分散しているので、導電材料の硬化物のTgを高めることができ、かつ、電極間の導通信頼性及び絶縁信頼性を高めることができる。
図1は、本発明の一実施形態に係る接続構造体の製造方法により得られる接続構造体を模式的に示す断面図である。 図2(a)〜(b)は、本発明の一実施形態に係る接続構造体の製造方法の各工程を説明するための図である。 図3(a)〜(c)は、本発明の一実施形態に係る接続構造体の製造方法の各工程を説明するための図である。 図4は、本発明の一実施形態に係る接続構造体の製造方法の各工程を説明するための図である。 図5は、接続構造体の変形例を示す断面図である。
以下、本発明の詳細を説明する。
(導電材料)
本発明に係る導電材料は、熱硬化性成分と、複数のはんだ粒子とを含む。本発明に係る導電材料は、上記熱硬化性成分が、25℃で固形である第1の熱硬化性化合物と、25℃で固形である第2の熱硬化性化合物とを含み、上記第2の熱硬化性化合物の融点は、上記第1の熱硬化性化合物の融点よりも高い。本発明では、融点が異なる複数の熱硬化性化合物が用いられている。本発明に係る導電材料は、導電材料中で、上記第1の熱硬化性化合物と、上記第2の熱硬化性化合物とが粒子状に分散している。
本発明では、上記の構成が備えられているので、導電材料の硬化物のTgを高めることができる。
また、本発明では、上記の構成が備えられているので、上記はんだ粒子の電極上への移動速度が速くなり、接続されるべき電極間に、はんだを効率的に配置することができ、導通信頼性及び絶縁信頼性を高めることができる。電極幅又は電極間幅が狭い場合には、電極上にはんだを寄せ集めにくい傾向があるが、本発明では、電極幅又は電極間幅が狭くても、電極上にはんだを十分に寄せ集めることができる。本発明では、上記の構成が備えられているので、電極間を電気的に接続した場合に、はんだ粒子が、上下の対向した電極間に集まりやすく、はんだ粒子を電極(ライン)上に効率的に配置することができる。また、本発明では、電極がある電極幅が広いと、はんだ粒子が電極上により一層効率的に配置される。
上記のような効果を得るために、上記熱硬化性成分が、25℃で固形である第1の熱硬化性化合物と、25℃で固形である第2の熱硬化性化合物とを含み、上記第2の熱硬化性化合物の融点が、上記第1の熱硬化性化合物の融点よりも高いことは大きく寄与する。
また、本発明では、導電材料中に、上記第1の熱硬化性化合物と、上記第2の熱硬化性化合物とが粒子状に分散しているため、導電材料の粘度が適度に高くなり、導電材料が過度に流動し難くなって、意図しない領域に配置され難くなる。導電ペーストの粘度を高くするために、フィラーを所定量で配合すると、フィラーは、はんだ粒子の電極上への移動を妨げる。これに対し、上記第1の熱硬化性化合物と、上記第2の熱硬化性化合物は、フィラーと比べて、はんだ粒子の電極上への移動を妨げにくい。特に、はんだ粒子の電極上への移動時に、熱硬化性化合物が液状になれば、液状になった熱硬化性化合物は、はんだ粒子の電極上への移動を妨げない。
特に、本発明では、はんだ粒子が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。本発明では、対向する電極間に位置していないはんだ粒子を、対向する電極間に効率的に移動させることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣り合う電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
更に、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を対向するように配置した際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが配置された場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。
はんだ粒子をより一層電極上に配置する観点からは、上記はんだ粒子の融点−10℃における導電材料の粘度は、好ましくは0.1Pa・s以上、より好ましくは1Pa・s以上であり、好ましくは20Pa・s以下、より好ましくは15Pa・s以下である。上記粘度は、配合成分の種類及び配合量により適宜調整可能である。
はんだ粒子の融点−10℃は、はんだ粒子の電極上への移動に影響しやすい温度である。
上記はんだ粒子の融点−10℃における導電材料の粘度は、例えば、STRESSTECH(EOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲40℃〜はんだ粒子の融点℃の条件で測定可能である。この測定において、はんだ粒子の融点−10℃での粘度を導電材料の粘度とする。
はんだ粒子を電極上により一層効率的に配置する観点からは、上記導電材料の25℃での粘度は、好ましくは30Pa・s以上、より好ましくは40Pa・s以上であり、好ましくは200Pa・s以下、より好ましくは150Pa・s以下である。
上記粘度は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定可能である。
上記導電材料は、導電ペースト及び導電フィルム等として使用される。上記導電ペーストは、異方性導電ペーストであることが好ましく、上記導電フィルムは、異方性導電フィルムであることが好ましい。はんだ粒子をより一層電極上に配置する観点からは、上記導電材料は、導電ペーストであることが好ましい。
上記導電ペーストを作製する方法は特に限定されず、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、混合する方法等が挙げられる。
上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
以下、導電材料に含まれる各成分を説明する。
(はんだ粒子)
上記はんだ粒子は、中心部分及び外表面のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び外表面のいずれもがはんだである粒子である。
接続構造体における接続抵抗をより一層低くし、ボイドの発生をより一層抑制する観点からは、上記はんだ粒子のはんだの表面にカルボキシル基又はアミノ基が存在することが好ましく、カルボキシル基が存在することが好ましく、アミノ基が存在することが好ましい。また、上記はんだ粒子のはんだの表面にSi−O結合、エーテル結合、エステル結合又は下記式(X)で表される基を介して、カルボキシル基又はアミノ基を含む基が共有結合していることが好ましい。カルボキシル基又はアミノ基を含む基は、カルボキシル基とアミノ基との双方を含んでいてもよい。なお、下記式(X)において、右端部及び左端部は結合部位を表す。
Figure 2018006083
はんだの表面に水酸基が存在する。この水酸基とカルボキシル基を含む基とを共有結合させることにより、他の配位結合(キレート配位)等にて結合させる場合よりも強い結合を形成できるため、電極間の接続抵抗を低くし、かつボイドの発生を抑えることが可能なはんだ粒子が得られる。
上記はんだ粒子では、はんだの表面と、カルボキシル基を含む基との結合形態に、配位結合が含まれていなくてもよく、キレート配位による結合が含まれていなくてもよい。
接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記はんだ粒子は、水酸基と反応可能な官能基とカルボキシル基とを有する化合物(以下、化合物Xと記載することがある)を用いて、はんだの表面の水酸基に、上記水酸基と反応可能な官能基を反応させることにより得られることが好ましい。上記反応では、共有結合を形成させる。はんだの表面の水酸基と上記化合物Xにおける上記水酸基と反応可能な官能基とを反応させることで、はんだの表面にカルボキシル基を含む基が共有結合しているはんだ粒子を容易に得ることができ、はんだの表面にエーテル結合又はエステル結合を介してカルボキシル基を含む基が共有結合しているはんだ粒子を得ることもできる。上記はんだの表面の水酸基に上記水酸基と反応可能な官能基を反応させることで、はんだの表面に、上記化合物Xを共有結合の形態で化学結合させることができる。
上記水酸基と反応可能な官能基としては、水酸基、カルボキシル基、エステル基及びカルボニル基等が挙げられる。水酸基又はカルボキシル基が好ましい。上記水酸基と反応可能な官能基は、水酸基であってもよく、カルボキシル基であってもよい。
水酸基と反応可能な官能基を有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、リンゴ酸、シュウ酸、マロン酸、アジピン酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸、4−フェニル酪酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9−ヘキサデセン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)−リノレン酸、ノナデカン酸、アラキジン酸、デカン二酸及びドデカン二酸等が挙げられる。グルタル酸又はグリコール酸が好ましい。上記水酸基と反応可能な官能基を有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。上記水酸基と反応可能な官能基を有する化合物は、カルボキシル基を少なくとも1つ有する化合物であることが好ましい。
上記化合物Xは、フラックス作用を有することが好ましく、上記化合物Xは、はんだの表面に結合した状態でフラックス作用を有することが好ましい。フラックス作用を有する化合物は、はんだの表面の酸化膜及び電極の表面の酸化膜を除去可能である。カルボキシル基はフラックス作用を有する。
フラックス作用を有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸及び4−フェニル酪酸等が挙げられる。グルタル酸又はグリコール酸が好ましい。上記フラックス作用を有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記化合物Xにおける上記水酸基と反応可能な官能基が、水酸基又はカルボキシル基であることが好ましい。上記化合物Xにおける上記水酸基と反応可能な官能基は、水酸基であってもよく、カルボキシル基であってもよい。上記水酸基と反応可能な官能基がカルボキシル基である場合には、上記化合物Xは、カルボキシル基を少なくとも2個有することが好ましい。カルボキシル基を少なくとも2個有する化合物の一部のカルボキシル基を、はんだの表面の水酸基に反応させることで、はんだの表面にカルボキシル基を含む基が共有結合しているはんだ粒子が得られる。
上記はんだ粒子の製造方法は、例えば、はんだ粒子を用いて、該はんだ粒子、水酸基と反応可能な官能基とカルボキシル基とを有する化合物、触媒及び溶媒を混合する工程を備える。上記はんだ粒子の製造方法では、上記混合工程により、はんだの表面に、カルボキシル基を含む基が共有結合しているはんだ粒子を容易に得ることができる。
また、上記はんだ粒子の製造方法では、はんだ粒子を用いて、該はんだ粒子、上記水酸基と反応可能な官能基とカルボキシル基とを有する化合物、上記触媒及び上記溶媒を混合し、加熱することが好ましい。混合及び加熱工程により、はんだの表面に、カルボキシル基を含む基が共有結合しているはんだ粒子をより一層容易に得ることができる。
上記溶媒としては、メタノール、エタノール、プロパノール、ブタノール等のアルコール溶媒や、アセトン、メチルエチルケトン、酢酸エチル、トルエン及びキシレン等が挙げられる。上記溶媒は有機溶媒であることが好ましく、トルエンであることがより好ましい。上記溶媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記触媒としては、p−トルエンスルホン酸、ベンゼンスルホン酸及び10−カンファースルホン酸等が挙げられる。上記触媒は、p−トルエンスルホン酸であることが好ましい。上記触媒は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記混合時に加熱することが好ましい。加熱温度は好ましくは90℃以上、より好ましくは100℃以上、好ましくは130℃以下、より好ましくは110℃以下である。
接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記はんだ粒子は、イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させる工程を経て得られることが好ましい。上記反応では、共有結合を形成させる。はんだの表面の水酸基と上記イソシアネート化合物とを反応させることで、はんだの表面に、上記イソシアネート基に由来する基の窒素原子が共有結合しているはんだ粒子を容易に得ることができる。上記はんだの表面の水酸基に上記イソシアネート化合物を反応させることで、はんだの表面に、上記イソシアネート基に由来する基を共有結合の形態で化学結合させることができる。
上記イソシアネート化合物としては、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)及びイソホロンジイソシアネート(IPDI)等が挙げられる。これら以外のイソシアネート化合物を用いてもよい。この化合物をはんだの表面に反応させた後、残イソシアネート基と、その残イソシアネート基と反応性を有し、かつカルボキシル基を有する化合物を反応させることで、はんだ表面に上記式(X)で表される基を介して、カルボキシル基を導入することができる。
また、上記イソシアネート化合物としては、不飽和二重結合を有し、かつイソシアネート基を有する化合物を用いてもよい。例えば、2−アクリロイルオキシエチルイソシアネート及び2−イソシアナトエチルメタクリレートが挙げられる。この化合物のイソシアネート基をはんだの表面に反応させた後、残存している不飽和二重結合に対し反応性を有する官能基を有し、かつカルボキシル基を有する化合物を反応させることで、はんだ表面に上記式(X)で表される基を介して、カルボキシル基を導入することができる。
また、上記イソシアネート化合物としては、イソシアネート基を有するシランカップリング剤を用いてもよい。該シランカップリング剤のイソシアネート基をはんだの表面に反応させた後、残存する基と反応性を有し、かつカルボキシル基を有する化合物を反応させることで、はんだ表面に上記式(X)で表される基を介して、カルボキシル基を導入することができる。
上記イソシアネート基を有するシランカップリング剤としては、3−イソシアネートプロピルトリエトキシシラン(信越シリコーン社製「KBE−9007」)、及び3−イソシアネートプロピルトリメトキシシラン(MOMENTIVE社製「Y−5187」)等が挙げられる。上記シランカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
また、イソシアネート基は、シランカップリング剤と容易に反応させることができる。上記はんだ粒子を容易に得ることができるので、上記カルボキシル基が、カルボキシル基を有するシランカップリング剤を用いた反応により導入されているか、又は、イソシアネート基を有するシランカップリング剤を用いた反応の後に、該シランカップリング剤に由来する基にカルボキシル基を少なくとも1つ有する化合物を反応させることで導入されていることが好ましい。
上記はんだ粒子は、上記イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を少なくとも1つ有する化合物を反応させることにより得られることが好ましい。
接続構造体における接続抵抗をより一層低くし、ボイドの発生をより一層抑制する観点からは、上記カルボキシル基を少なくとも1つ有する化合物が、カルボキシル基を複数有することが好ましい。
上記カルボキシル基を少なくとも1つ有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、リンゴ酸、シュウ酸、マロン酸、アジピン酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸、4−フェニル酪酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9−ヘキサデセン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)−リノレン酸、ノナデカン酸、アラキジン酸、デカン二酸及びドデカン二酸等が挙げられる。グルタル酸、アジピン酸又はグリコール酸が好ましい。上記カルボキシル基を少なくとも1つ有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を複数有する化合物の一部のカルボキシル基を、はんだの表面の水酸基と反応させることで、カルボキシル基を含む基を残存させることができる。
上記はんだ粒子の製造方法では、はんだ粒子を用いて、かつ、イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を少なくとも1つ有する化合物を反応させて、はんだの表面に、上記式(X)で表される基を介して、カルボキシル基を含む基が結合しているはんだ粒子を得る。上記はんだ粒子の製造方法では、上記の工程により、はんだの表面に、カルボキシル基を含む基が導入されたはんだ粒子を容易に得ることができる。
上記はんだ粒子の具体的な製造方法としては、以下の方法が挙げられる。有機溶媒にはんだ粒子を分散させ、イソシアネート基を有するシランカップリング剤を添加する。その後、はんだ粒子のはんだ表面の水酸基とイソシアネート基との反応触媒を用い、はんだ表面にシランカップリング剤を共有結合させる。次に、シランカップリング剤の珪素原子に結合しているアルコキシ基を加水分解することで、水酸基を生成させる。生成した水酸基に、カルボキシル基を少なくとも1つ有する化合物のカルボキシル基を反応させる。
また、上記はんだ粒子の具体的な製造方法としては、以下の方法が挙げられる。有機溶媒にはんだ粒子を分散させ、イソシアネート基と不飽和二重結合を有する化合物を添加する。その後、はんだ粒子のはんだ表面の水酸基とイソシアネート基との反応触媒を用い、共有結合を形成させる。その後、導入された不飽和二重結合に対して、不飽和二重結合、及びカルボキシル基を有する化合物を反応させる。
はんだ粒子のはんだ表面の水酸基とイソシアネート基との反応触媒としては、錫系触媒(ジブチル錫ジラウレート等)、アミン系触媒(トリエチレンジアミン等)、カルボキシレート触媒(ナフテン酸鉛、酢酸カリウム等)、及びトリアルキルホスフィン触媒(トリエチルホスフィン等)等が挙げられる。
接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1)で表される化合物であることが好ましい。下記式(1)で表される化合物は、フラックス作用を有する。また、下記式(1)で表される化合物は、はんだの表面に導入された状態でフラックス作用を有する。
Figure 2018006083
上記式(1)中、Xは、水酸基と反応可能な官能基を表し、Rは、炭素数1〜5の2価の有機基を表す。該有機基は、炭素原子と水素原子と酸素原子とを含んでいてもよい。該有機基は炭素数1〜5の2価の炭化水素基であってもよい。上記有機基の主鎖は2価の炭化水素基であることが好ましい。該有機基では、2価の炭化水素基にカルボキシル基や水酸基が結合していてもよい。上記式(1)で表される化合物には、例えばクエン酸が含まれる。
上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1A)又は下記式(1B)で表される化合物であることが好ましい。上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1A)で表される化合物であることが好ましく、下記式(1B)で表される化合物であることがより好ましい。
Figure 2018006083
上記式(1A)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(1A)中のRは上記式(1)中のRと同様である。
Figure 2018006083
上記式(1B)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(1B)中のRは上記式(1)中のRと同様である。
はんだの表面に、下記式(2A)又は下記式(2B)で表される基が結合していることが好ましい。はんだの表面に、下記式(2A)で表される基が結合していることが好ましく、下記式(2B)で表される基が結合していることがより好ましい。なお、下記式(2A)及び(2B)において、左端部は結合部位を表す。
Figure 2018006083
上記式(2A)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(2A)中のRは上記式(1)中のRと同様である。
Figure 2018006083
上記式(2B)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(2B)中のRは上記式(1)中のRと同様である。
はんだの表面の濡れ性をより一層高める観点からは、上記カルボキシル基を少なくとも1つ有する化合物の分子量は、好ましくは10000以下、より好ましくは1000以下更に好ましくは500以下である。
上記分子量は、上記カルボキシル基を少なくとも1つ有する化合物が重合体ではない場合、及び上記カルボキシル基を少なくとも1つ有する化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記カルボキシル基を少なくとも1つ有する化合物が重合体である場合は、重量平均分子量を意味する。
はんだを電極上により一層効率的に配置する観点からは、上記はんだ粒子は、はんだ粒子本体と、上記はんだ粒子本体の表面上に配置されたアニオンポリマーとを有することが好ましい。上記はんだ粒子は、はんだ粒子本体をアニオンポリマー又はアニオンポリマーとなる化合物で表面処理することにより得られることが好ましい。上記はんだ粒子は、アニオンポリマー又はアニオンポリマーとなる化合物による表面処理物であることが好ましい。上記アニオンポリマー及び上記アニオンポリマーとなる化合物はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。上記アニオンポリマーは、酸性基を有するポリマーである。
はんだ粒子本体をアニオンポリマーで表面処理する方法としては、アニオンポリマーとして、例えば(メタ)アクリル酸を共重合した(メタ)アクリルポリマー、ジカルボン酸とジオールとから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、ジカルボン酸の分子間脱水縮合反応により得られかつ両末端にカルボキシル基を有するポリマー、ジカルボン酸とジアミンから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、並びにカルボキシル基を有する変性ポバール(日本合成化学社製「ゴーセネックスT」)等を用いて、アニオンポリマーのカルボキシル基と、はんだ粒子本体の表面の水酸基とを反応させる方法が挙げられる。
上記アニオンポリマーのアニオン部分としては、上記カルボキシル基が挙げられ、それ以外には、トシル基(p−HCCS(=O)−)、スルホン酸イオン基(−SO )、及びリン酸イオン基(−PO )等が挙げられる。
また、他の方法としては、はんだ粒子本体の表面の水酸基と反応する官能基を有し、更に、付加、縮合反応により重合可能な官能基を有する化合物を用いて、この化合物をはんだ粒子本体の表面上にてポリマー化する方法が挙げられる。はんだ粒子本体の表面の水酸基と反応する官能基としては、カルボキシル基、及びイソシアネート基等が挙げられ、付加、縮合反応により重合する官能基としては、水酸基、カルボキシル基、アミノ基、及び(メタ)アクリロイル基が挙げられる。
上記アニオンポリマーの重量平均分子量は、好ましくは2000以上、より好ましくは3000以上、好ましくは10000以下、より好ましくは8000以下である。上記重量平均分子量が、上記下限以上及び上記上限以下であると、はんだ粒子の表面に十分な量の電荷、及びフラックス性を導入することができる。これにより、接続対象部材の接続時に、電極の表面の酸化膜を効果的に除去することができる。
上記重量平均分子量が上記下限以上及び上記上限以下であると、はんだ粒子本体の表面上にアニオンポリマーを配置することが容易であり、電極上にはんだをより一層効率的に配置することができる。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。
はんだ粒子本体をアニオンポリマーとなる化合物で表面処理することにより得られたポリマーの重量平均分子量は、はんだ粒子中のはんだを溶解し、ポリマーの分解を起こさない希塩酸等により、はんだ粒子を除去した後、残存しているポリマーの重量平均分子量を測定することで求めることができる。
アニオンポリマーのはんだ粒子の表面における導入量に関しては、はんだ粒子1gあたりの酸価が、好ましくは1mgKOH以上、より好ましくは2mgKOH以上、好ましくは10mgKOH以下、より好ましくは6mgKOH以下である。
上記酸価は以下のようにして測定可能である。はんだ粒子1gを、アセトン36gに添加し、超音波にて1分間分散させる。その後、指示薬として、フェノールフタレインを用い、0.1mol/Lの水酸化カリウムエタノール溶液にて滴定する。
上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。上記はんだ粒子は、融点が150℃未満の低融点はんだであることが好ましい。
また、上記はんだ粒子は錫を含むことが好ましい。上記はんだ粒子に含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ粒子における錫の含有量が、上記下限以上であると、はんだ部と電極との接続信頼性がより一層高くなる。
なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)、又は蛍光X線分析装置(島津製作所社製「EDX−800HS」)等を用いて測定可能である。
上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、上記はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性がより一層高くなる。
上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫−銀合金、錫−銅合金、錫−銀−銅合金、錫−ビスマス合金、錫−亜鉛合金、錫−インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫−銀合金、錫−銀−銅合金、錫−ビスマス合金、錫−インジウム合金であることが好ましい。錫−ビスマス合金、錫−インジウム合金であることがより好ましい。
上記はんだ粒子は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだ粒子の組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。低融点で鉛フリーである錫−インジウム系(117℃共晶)、又は錫−ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだ粒子は、鉛を含まないことが好ましく、錫とインジウムとを含むか、又は錫とビスマスとを含むことが好ましい。
上記はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度を更に一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
上記はんだ粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは3μm以上、特に好ましくは5μm以上であり、好ましくは100μm以下、より好ましくは40μm以下、より一層好ましくは30μm以下、更に好ましくは20μm以下、特に好ましくは15μm以下、最も好ましくは10μm以下である。上記はんだ粒子の平均粒子径が、上記下限以上及び上記上限以下であると、はんだ粒子を電極上により一層効率的に配置することができる。上記はんだ粒子の平均粒子径は、5μm以上、30μm以下であることが特に好ましい。
上記はんだ粒子の「平均粒子径」は、数平均粒子径を示す。はんだ粒子の平均粒子径は、例えば、任意のはんだ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。
上記はんだ粒子の粒子径の変動係数は、好ましくは5%以上、より好ましくは10%以上、好ましくは40%以下、より好ましくは30%以下である。上記粒子径の変動係数が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。但し、上記はんだ粒子の粒子径の変動係数は、5%未満であってもよい。
上記変動係数(CV値)は、以下のようにして測定できる。
CV値(%)=(ρ/Dn)×100
ρ:はんだ粒子の粒子径の標準偏差
Dn:はんだ粒子の粒子径の平均値
上記はんだ粒子の形状は特に限定されない。上記はんだ粒子の形状は、球状であってもよく、扁平状等の球形状以外の形状であってもよい。
上記導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、更に好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは60重量%以下、特に好ましくは50重量%以下である。上記はんだ粒子の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、電極間にはんだ粒子を多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記はんだ粒子の含有量は多い方が好ましい。
電極が形成されている部分のライン(L)が50μm以上、150μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは20重量%以上、より好ましくは30重量%以上であり、好ましくは55重量%以下、より好ましくは45重量%以下である。
電極が形成されていない部分のスペース(S)が50μm以上、150μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。
電極が形成されている部分のライン(L)が150μm以上、1000μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。
電極が形成されていない部分のスペース(S)が150μm以上、1000μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。
(熱硬化性成分)
上記導電材料は、熱硬化性成分を含む。上記熱硬化性成分は、25℃で固形である第1の熱硬化性化合物と、25℃で固形である第2の熱硬化性化合物とを含む。上記第2の熱硬化性化合物の融点は、上記第1の熱硬化性化合物の融点よりも高い。上記導電材料中において、上記第1の熱硬化性化合物及び上記第2の熱硬化性化合物は、粒子状に分散している。
上記第1の熱硬化性化合物、及び上記第2の熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物、ポリイミド化合物及びポリチオール等が挙げられる。上記25℃で固形である熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記はんだ粒子の融点と上記第2の熱硬化性化合物の融点との差の絶対値が、20℃以下であることが好ましい。上記導電材料の硬化物のTgをより一層高める観点からは、上記第1の熱硬化性化合物と上記第2の熱硬化性化合物との融点の差が、20℃以上であることが好ましい。
電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記第1の熱硬化性化合物の融点は、好ましくは60℃以上、より好ましくは80℃以上であり、好ましくは150℃以下、より好ましくは130℃以下である。
上記導電材料の硬化物のTgをより一層高める観点からは、上記第2の熱硬化性化合物の融点は、好ましくは130℃以上、より好ましくは140℃以上であり、好ましくは160℃以下、より好ましくは150℃以下である。
上記導電材料中における上記第1の熱硬化性化合物及び上記第2の熱硬化性化合物の分散状態をより一層良好にする観点からは、上記第1の熱硬化性化合物の粒子径の、上記第2の熱硬化性化合物の粒子径に対する比は、好ましくは1以上、より好ましくは3以上であり、好ましくは20以下、より好ましくは15以下である。
上記導電材料の硬化物のTgをより一層高める観点からは、上記導電材料100重量%中の上記第1の熱硬化性化合物の含有量の、上記導電材料100重量%中の上記第2の熱硬化性化合物の含有量に対する比は、好ましくは0.1以上、より好ましくは0.2以上であり、好ましくは2以下、より好ましくは1以下である。
上記導電材料の硬化物のTgをより一層高め、かつ電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記熱硬化性成分が、ジアステレオマーの関係にある熱硬化性化合物を含むことが好ましく、上記第1の熱硬化性化合物と上記第2の熱硬化性化合物とが、ジアステレオマーの関係にあることが好ましい。ここで、ジアステレオマーとは、エナンチオマーではない立体異性体を示す。エナンチオマーの関係にある化合物同士は、融点及び沸点等の物理的、化学的性質がほとんど同じであるが、ジアステレオマーの関係にある化合物同士は、物理的、化学的性質が異なる。
上記熱硬化性成分は、エポキシ化合物と、硬化剤とを含んでいてもよい。導電材料の硬化性及び粘度をより一層良好にし、導通信頼性をより一層高める観点からは、上記第1の熱硬化性化合物と上記第2の熱硬化性化合物とが、エポキシ化合物であることが好ましい。
上記エポキシ化合物としては、芳香族エポキシ化合物が挙げられる。レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、ベンゾフェノン型エポキシ化合物等の結晶性エポキシ化合物が好ましい。常温(23℃)で固体であり、かつ溶融温度がはんだの融点以下であるエポキシ化合物が好ましい。溶融温度は好ましくは100℃以下、より好ましくは80℃以下、好ましくは40℃以上である。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができ、かつ、硬化時の熱により、導電材料の粘度を大きく低下させることができ、はんだ粒子の凝集を効率よく進行させることができる。
上記導電材料の硬化物のTgをより一層高める観点から、上記熱硬化性成分は、イソシアヌル骨格を有する熱硬化性化合物を含んでいてもよい。上記導電材料の硬化性を高め、接続信頼性を高める観点から、上記イソシアヌル骨格を有する熱硬化性化合物は、エポキシ基又はチイラン基を有することが好ましく、イソシアヌル骨格を有するエポキシ化合物又はイソシアヌル骨格を有するエピスルフィド化合物であることが好ましい。イソシアヌル骨格を有するエポキシ化合物が特に好ましい。
上記導電材料の硬化物のTgをより一層高める観点から、上記第1の熱硬化性化合物と上記第2の熱硬化性化合物とが、イソシアヌル骨格を有するエポキシ化合物であることが好ましい。
上記イソシアヌル骨格を有する熱硬化性化合物としてはトリイソシアヌレート型エポキシ化合物等が挙げられ、日産化学工業社製TEPICシリーズ(TEPIC−G、TEPIC−S、TEPIC−SS、TEPIC−HP、TEPIC−L、TEPIC−PAS、TEPIC−VL、TEPIC−UC)等が挙げられる。
上記イソシアヌル骨格を有するエピスルフィド化合物は、例えば、イソシアヌル骨格を有するエポキシ化合物のエポキシ基をチイラン基に変換することにより得られる。この変換方法は、公知である。
接続信頼性をより一層高める観点から、上記イソシアヌル骨格を有する熱硬化性化合物の分子量は、好ましくは200以上、より好ましくは300以上、好ましくは1000以下、より好ましくは600以下である。
上記導電材料の硬化性を高め、接続信頼性を高める観点から、上記導電材料は、上記熱硬化性成分として、上記イソシアヌル骨格を有する熱硬化性化合物とともに、イソシアヌル骨格を有さない熱硬化性化合物を含むことが好ましい。上記導電材料の硬化性及び硬化物の耐熱性を高め、接続信頼性を高める観点からは、上記イソシアヌル骨格を有さない熱硬化性化合物は、芳香族骨格又は脂環式骨格を有することが好ましく、イソシアヌル骨格を有さず、かつ芳香族骨格又は脂環式骨格を有する熱硬化性化合物であることが好ましい。
上記導電材料100重量%中、上記第1の熱硬化性化合物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上であり、好ましくは20重量%以下、より好ましくは10重量%以下である。上記第1の熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、はんだ粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層抑制し、電極間の導通信頼性をより一層高めることができる。耐衝撃性をより一層高める観点からは、上記第1の熱硬化性化合物の含有量は多い方が好ましい。
上記導電材料の硬化物のTgをより一層高める観点からは、上記導電材料100重量%中、上記第2の熱硬化性化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上であり、好ましくは40重量%以下、より好ましくは20重量%以下である。
上記導電材料の硬化性を高め、接続信頼性を高める観点からは、上記導電材料100重量%中、上記イソシアヌル骨格を有さない熱硬化性化合物の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは20重量%以下、より好ましくは15重量%以下である。
上記硬化剤は、上記熱硬化性化合物を熱硬化させる熱硬化剤であることが好ましい。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、ホスホニウム塩、酸無水物、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
導電材料を低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
上記イミダゾール硬化剤としては、特に限定されず、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン及び2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4−ベンジル−5−ヒドロキシメチルイミダゾール、2−パラトルイル−4−メチル−5−ヒドロキシメチルイミダゾール、2−メタトルイル−4−メチル−5−ヒドロキシメチルイミダゾール、2−メタトルイル−4,5−ジヒドロキシメチルイミダゾール、2−パラトルイル−4,5−ジヒドロキシメチルイミダゾール等における1H−イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。導電材料を低温でより一層速やかに硬化可能とする観点からは、上記イミダゾール化合物は、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−パラトルイル−4−メ チル−5−ヒドロキシメチルイミダゾール、2−メタトルイル−4−メチル−5−ヒドロキシメチルイミダゾール、2−メタトルイル−4,5−ジヒドロキシメチルイミダゾール、2−パラトルイル−4,5−ジヒドロキシメチルイミダゾールであることが好ましい。
上記チオール硬化剤としては、特に限定されず、トリメチロールプロパントリス−3−メルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート及びジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。
上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン、ビス(4−アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
上記ホスホニウム塩としては、テトラノルマルブチルホスホニウムブロマイド、テトラノルマルブチルホスホニウムO−Oジエチルジチオリン酸、メチルトリブチルホスホニウムジメチルリン酸塩、テトラノルマルブチルホスホニウムベンゾトリアゾール、テトラノルマルブチルホスホニウムテトラフルオロボレート、テトラノルマルブチルホスホニウムテトラフェニルボレート等が挙げられる。
上記熱カチオン開始剤としては、特に限定されず、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ−p−トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ−tert−ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上、好ましくは250℃以下、より好ましくは200℃以下、更に好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が上記下限以上及び上記上限以下であると、はんだ粒子が電極上により一層効率的に配置される。上記熱硬化剤の反応開始温度は80℃以上、140℃以下であることが特に好ましい。
はんだ粒子を電極上により一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記はんだ粒子におけるはんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。
上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。上記第1の熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上、好ましくは200重量部以下、より好ましくは100重量部以下である。上記第2の熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上、好ましくは200重量部以下、より好ましくは100重量部以下である。熱硬化剤の含有量が上記下限以上であると、導電材料を十分に硬化させることが容易である。熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
(フラックス)
上記導電材料は、フラックスを含むことが好ましい。フラックスの使用により、はんだ粒子を電極上により一層効果的に配置することができる。該フラックスは特に限定されない。フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。
上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、アミン化合物、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。
上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。
上記カルボキシル基を2個以上有する有機酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等が挙げられる。
上記アミン化合物としては、例えば、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、イミダゾール、ベンゾイミダゾール、フェニルイミダゾール、カルボキシベンゾイミダゾール、ベンゾトリアゾールカルボキシベンゾトリアゾール等が挙げられる。
上記松脂はアビエチン酸を主成分とするロジン類である。上記ロジン類としては、例えば、アビエチン酸、アクリル変性ロジン等が挙げられる。フラックスはロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。
上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、更に好ましくは150℃以下、更に一層好ましくは140℃以下である。上記フラックスの活性温度が上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだ粒子が電極上により一層効率的に配置される。上記フラックスの活性温度(融点)は80℃以上、190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上、140℃以下であることが特に好ましい。
フラックスの活性温度(融点)が80℃以上、190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。
また、上記フラックスの沸点は200℃以下であることが好ましい。
はんだ粒子を電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記はんだ粒子の融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
はんだ粒子を電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。
上記フラックスは、導電材料中に分散されていてもよく、はんだ粒子の表面上に付着していてもよい。
フラックスの融点が、はんだ粒子の融点より高いことにより、電極部分にはんだ粒子を効率的に凝集させることができる。これは、接合時に熱を付与した場合、接続対象部材上に形成された電極と、電極周辺の接続対象部材の部分とを比較すると、電極部分の熱伝導率が電極周辺の接続対象部材部分の熱伝導率よりも高いことにより、電極部分の昇温が速いことに起因する。はんだ粒子の融点を超えた段階では、はんだ粒子の内部は溶解するが、表面に形成された酸化被膜は、フラックスの融点(活性温度)に達していないので、除去されない。この状態で、電極部分の温度が先に、フラックスの融点(活性温度)に達するため、優先的に電極上に来たはんだ粒子の表面の酸化被膜が除去され、はんだ粒子が電極の表面上に濡れ拡がることができる。これにより、電極上に効率的にはんだ粒子を凝集させることができる。
上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、はんだ粒子を電極上により一層効率的に配置することができる。
上記加熱によりカチオンを放出するフラックスとしては、上記熱カチオン開始剤(熱カチオン硬化剤)が挙げられる。
上記導電材料100重量%中、上記フラックスの含有量は好ましくは0.5重量%以上、好ましくは30重量%以下、より好ましくは25重量%以下である。上記導電材料は、フラックスを含んでいなくてもよい。フラックスの含有量が上記下限以上及び上記上限以下であると、はんだ粒子及び電極の表面に酸化被膜がより一層形成され難くなり、更に、はんだ粒子及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。
(フィラー)
上記導電材料には、フィラーを添加してもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。フィラーの添加により、基板の全電極上に対して、はんだ粒子を均一に凝集させることができる。
上記導電材料は、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。結晶性熱硬化性化合物を用いている場合には、フィラーの含有量が少ないほど、電極上にはんだが移動しやすくなる。
上記導電材料100重量%中、上記フィラーの含有量は好ましくは0重量%(未含有)以上、好ましくは5重量%以下、より好ましくは2重量%以下、更に好ましくは1重量%以下である。上記フィラーの含有量が上記下限以上及び上記上限以下であると、はんだ粒子が電極上により一層効率的に配置される。
(他の成分)
上記導電材料は、必要に応じて、例えば、カップリング剤、遮光剤、反応性希釈剤、消泡剤、レベリング剤、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(接続構造体及び接続構造体の製造方法)
本発明に係る接続構造体は、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料であり、上記接続部が、上述した導電材料の硬化物である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
本発明に係る接続構造体の製造方法は、上述した導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電材料を配置する工程と、上記導電材料の上記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程と、上記はんだ粒子の融点以上かつ上記熱硬化性成分の硬化温度以上に上記導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電材料により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程とを備える。
本発明に係る接続構造体及び上記接続構造体の製造方法では、特定の導電材料を用いているので、はんだ粒子が第1の電極と第2の電極との間に集まりやすく、はんだ粒子を電極(ライン)上に効率的に配置することができる。また、はんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
また、はんだ粒子を電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。
電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上、好ましくは100%以下である。
以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
図1は、本発明の一実施形態に係る接続構造体の製造方法により得られる接続構造体を模式的に示す断面図である。
図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、バインダー樹脂は、熱硬化性成分を含む。本実施形態では、導電材料として、導電ペーストが用いられている。
接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。本実施形態では、はんだ部4Aを形成するために、はんだ粒子を用いている。はんだ粒子は、中心部分及び導電部の外表面のいずれもが、はんだにより形成されている。
第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ粒子は存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだ粒子は存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだ粒子が存在していてもよい。
図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電性の外表面がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このことによっても、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電材料にフラックスが含まれる場合に、フラックスは、一般に、加熱により次第に失活する。
なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図5に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだ粒子ではない。なお、本実施形態では、はんだ部から離れたはんだ粒子の量を少なくすることができるが、はんだ部から離れたはんだ粒子が硬化物部中に存在していてもよい。
はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。
導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。
次に、本発明の一実施形態に係る接続構造体の製造方法を説明する。
先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電ペースト11を配置する(第1の工程)。第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電ペースト11を配置する。導電ペースト11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。
導電ペースト11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。
また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電ペースト11において、導電ペースト11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電ペースト11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。
次に、はんだ粒子11Aの融点よりも低い温度から、はんだ粒子11Aの融点よりも高い温度かつ熱硬化性成分11B(バインダー樹脂)の硬化が完了しない温度まで、導電ペースト11を加熱する(第3の工程/第1の加熱工程)。上記第1の加熱工程において、図3(a)〜(c)の各状態を経る。
図3(a)〜(c)の各状態を経て、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの外表面のはんだが溶融変形する前に、第1の電極2aと第2の電極3aとの間に向かって、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動を開始させる。すなわち、第1の電極2aと第2の電極3aとの間に向かって、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始するのは、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの外表面のはんだが溶融変形した後ではなく、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの外表面のはんだが溶融変形する前である。
本実施形態では、上記第1の加熱工程において、第1の電極2aと第2の電極3aとの間に向かって、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動を開始させる前に、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aを寄り集めさせている(図3(a))。
更に、本実施形態では、上記第1の加熱工程において、第1の電極2aと第2の電極3aとの間に位置するはんだ粒子11Aの外表面のはんだを溶融変形させている(図3(b))。
次に、第1の電極2aと第2の電極3aとの間に向かって、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動を開始させている(図3(c))。
次に、上記第1の加熱工程後に、上記第1の加熱工程よりも高い温度に上記導電ペースト11を加熱する(第4の工程/第2の加熱工程)。上記第2の加熱工程では、好ましくは、熱硬化性成分11B(バインダー樹脂)の硬化を完了させる。この結果、図4に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4を、導電ペースト11により形成する。導電ペースト11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
本実施形態では、上記第2の工程及び上記第1の加熱工程(上記第3の工程)において、加圧を行わない方が好ましい。この場合には、本実施形態では、導電ペースト11には、第2の接続対象部材3の重量が加わる。また、本実施形態では、導電フィルムではなく、導電ペーストを用いている。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。結果として、第1の電極2aと第2の電極3aとの間のはんだ部4Aの厚みが厚くなりやすい。なお、上記第2の工程及び上記第1の加熱工程の内の少なくとも一方において、加圧を行えば、はんだ粒子11Aが第1の電極と第2の電極との間に集まろうとする作用が阻害される傾向が高くなる。このことは、本発明者らによって見出された。また、本実施形態では、上記第2の加熱工程(上記第4の工程)においても、加圧を行っていない。
ただし、第1の電極2aと第2の電極3aとの間隔を確保できれば、加圧を行ってもよい。電極間の間隔を確保する手段として、例えば、所望の電極間の間隔に相当するスペーサーを添加し、少なくとも1個、好ましくは3個以上のスペーサーが電極間に配置されるようにすればよい。スペーサーとしては、無機粒子、有機粒子が挙げられる。スペーサーは絶縁性粒子であることが好ましい。
また、本実施形態では、加圧を行っていないため、導電ペースト11を配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集した溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料のはんだ粒子以外の成分の粘度が十分低いことが望ましい。
このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電ペースト11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
上記第1の加熱工程(第3の工程)と上記第2の加熱工程(第4の工程)とは、連続して行われてもよく、不連続に行われてもよい。上記第1の加熱工程と上記第2の加熱工程とで、加熱温度は、連続していてもよく、不連続であってもよい。
なお、上記第1の加熱工程の後又は上記第2の加熱工程の後に、位置の修正や製造のやり直しを目的として、第1の接続対象部材又は第2の接続対象部材を、接続部から剥離することができる。この剥離を行うための加熱温度は、好ましくははんだ粒子の融点以上、より好ましくははんだ粒子の融点(℃)+10℃以上である。この剥離を行うための加熱温度は、はんだ粒子の融点(℃)+100℃以下であってもよい。
上記第1の加熱工程(第3の工程)における加熱温度は、はんだ粒子の融点以上及び熱硬化性成分の硬化温度以下であれば特に限定されない。上記加熱温度は、好ましくは130℃以上、より好ましくは140℃以上であり、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは160℃以下である。
第3の工程の前に、溶融前のはんだ粒子の凝集を均一化するために、加熱工程を設けてもよい。上記加熱工程における加熱温度は、好ましくは60℃以上、より好ましくは80℃以上であり、好ましくは130℃以下、より好ましくは120℃以下の温度条件にて、好ましくは3秒以上であり、好ましくは120秒以下保持する。この加熱工程によって、熱硬化性成分が熱により低粘度化し、溶融前のはんだ粒子が、凝集することで網目構造を形成し、第3の工程ではんだ粒子が溶融して凝集する際、取り残されるはんだ粒子を少なくすることができる。
第3の工程において、好ましくははんだの融点(℃)以上、より好ましくははんだの融点(℃)+5℃以上であり、好ましくははんだの融点(℃)+20℃以下、より好ましくははんだの融点(℃)+10℃以下の温度にて、好ましくは5秒以上であり、好ましくは120秒以下保持したのち、熱硬化性成分の硬化温度にあげてもよい。これにより、熱硬化性成分が硬化する前の、熱硬化性成分の粘度が低い状態にて、はんだ粒子の凝集を完了させることができ、より一層均一なはんだ粒子の凝集を行うことができる。
第3の工程における昇温速度は、30℃からはんだ粒子の融点までの昇温に関して、好ましくは50℃/秒以下、より好ましくは20℃/秒以下、更に好ましくは10℃/秒以下であり、好ましくは1℃/秒以上、より好ましくは5℃/秒以上である。昇温速度が上記下限以上であると、はんだ粒子の凝集がより一層均一になる。昇温速度が上記上限以下であると、熱硬化性成分の硬化の進行による過度の粘度上昇が抑えられ、はんだ粒子の凝集が阻害されにくくなる。
上記第3の工程の後又は上記第4の工程における加熱方法としては、はんだ粒子の融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。
局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましく、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることがより好ましい。上記第2の接続対象部材が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましく、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることがより好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだ粒子が電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだ粒子を電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
上記第1の電極及び上記第2の電極が、エリアアレイ又はペリフェラルにて配置されていることが好ましい。電極が、エリアアレイ、ペリフェラルにて面にて配置されている場合にて、本発明の効果が一層効果的に発揮される。エリアアレイとは、接続対象部材の電極が配置されている面にて、格子状に電極が配置されている構造のことである。ペリフェラルとは、接続対象部材の外周部に電極が配置されている構造のことである。電極が櫛型に並んでいる構造の場合は、櫛に垂直な方向に沿ってはんだ粒子が凝集すればよいのに対して、上記構造では電極が配置されている面において、全面にて均一にはんだ粒子が凝集する必要があるため、従来の方法では、はんだ量が不均一になりやすいのに対して、本発明の方法では、本発明の効果がより一層効果的に発揮される。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
熱硬化性成分(エポキシ化合物):
三菱化学社製「YL980」、ビスフェノールA型エポキシ樹脂
日産化学工業社製「TEPIC−HP」、トリイソシアヌレート型エポキシ樹脂(融点:150℃、粒子径:3μm)
日産化学工業社製「TEPIC−HP」、トリイソシアヌレート型エポキシ樹脂(融点:150℃、粒子径:0.5μm)
日産化学工業社製「TEPIC−S」、トリイソシアヌレート型エポキシ樹脂(融点:120℃、粒子径:5μm)
日産化学工業社製「TEPIC−S」、トリイソシアヌレート型エポキシ樹脂(融点:120℃、粒子径:0.5μm)
熱硬化性成分(硬化剤):
旭化成ケミカルズ社製「HXA3922HP」、マイクロカプセル型潜在性硬化剤
四国化成工業社製「2MA−OK」、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物
フラックス:
和光純薬工業社製「グルタル酸」
はんだ粒子:
はんだ粒子1(SnBiはんだ粒子、融点139℃、三井金属社製「Sn42Bi58」を選別したはんだ粒子本体を用い、表面処理を行ったアニオンポリマー1を有するはんだ粒子、平均粒子径:30μm、CV値:10%、ポリマー分子量:Mw=5000)
(はんだ粒子1の作製方法)
アニオンポリマー1を有するはんだ粒子:
はんだ粒子本体200gと、グルタル酸40gと、アセトン70gとを3つ口フラスコに秤量し、次にはんだ粒子本体の表面の水酸基とアジピン酸のカルボキシル基との脱水縮合触媒であるジブチル錫オキサイド0.3gを添加し、60℃で4時間反応させた。その後、はんだ粒子をろ過することで回収した。
回収したはんだ粒子と、アジピン酸50gと、トルエン200gと、パラトルエンスルホン酸0.3gとを3つ口フラスコに秤量し、真空引き、及び還流を行いながら、120℃で、3時間反応させた。この際、ディーンスターク抽出装置を用いて、脱水縮合により生成した水を除去しながら反応させた。
その後、ろ過によりはんだ粒子を回収し、ヘキサンにて洗浄し、乾燥した。その後、得られたはんだ粒子をボールミルで解砕した後、所定のCV値となるように篩にかけた。
アニオンポリマーの重量平均分子量:
はんだ粒子の表面のアニオンポリマー1の重量平均分子量は、0.1Nの塩酸を用い、はんだを溶解した後、ポリマーをろ過により回収し、GPCにより求めた。
はんだ粒子の粒子径のCV値:
CV値を、レーザー回折式粒度分布測定装置(堀場製作所社製「LA−920」)にて、測定した。
(実施例1〜5及び比較例1〜3)
(1)異方性導電ペーストの作製
下記の表1に示す成分を下記の表1に示す配合量で配合して、遊星式撹拌装置で混合及び脱泡することにより異方性導電ペーストを得た。
(2)第1の接続構造体(エリアアレイ基板)の作製
第1の接続対象部材として、半導体チップ本体(サイズ5×5mm、厚み0.4mm)の表面に、400μmピッチで250μmの銅電極が、エリアアレイにて配置されており、最表面にパッシベーション膜(ポリイミド、厚み5μm、電極部の開口径200μm)が形成されている半導体チップを準備した。銅電極の数は、半導体チップ1個当たり、10個×10個の合計100個である。
第2の接続対象部材として、ガラスエポキシ基板本体(サイズ20×20mm、厚み1.2mm、材質FR−4)の表面に、第1の接続対象部材の電極に対して、同じパターンとなるように、銅電極が配置されており、銅電極が配置されていない領域にソルダーレジスト膜が形成されているガラスエポキシ基板を準備した。銅電極の表面とソルダーレジスト膜の表面との段差は、15μmであり、ソルダーレジスト膜は銅電極よりも突出している。
上記ガラスエポキシ基板の上面に、作製直後の異方性導電ペーストを厚さ100μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層の上面に半導体チップを電極同士が対向するように積層した。異方性導電ペースト層には、上記半導体チップの重量は加わる。その状態から、異方性導電ペースト層の温度が、昇温開始から5秒後に139℃(はんだの融点)となるように加熱した。更に、昇温開始から15秒後に、異方性導電ペースト層の温度が160℃となるように加熱し、異方性導電ペースト層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。
(3)第2の接続構造体(ペリフェラル基板)の作製
第1の接続対象部材として、半導体チップ本体(サイズ5×5mm、厚み0.4mm)の表面に、400μmピッチで250μmの銅電極が、チップ外周部に配置(ペリフェラル)されており、最表面にパッシベーション膜(ポリイミド、厚み5μm、電極部の開口径200μm)が形成されている半導体チップを準備した。銅電極の数は、半導体チップ1個当たり、10個×4辺の合計36個である。
第2の接続対象部材として、ガラスエポキシ基板本体(サイズ20×20mm、厚み1.2mm、材質FR−4)の表面に、第1の接続対象部材の電極に対して、同じパターンとなるように、銅電極が配置されており、銅電極が配置されていない領域にソルダーレジスト膜が形成されているガラスエポキシ基板を準備した。銅電極の表面とソルダーレジスト膜の表面との段差は、15μmであり、ソルダーレジスト膜は銅電極よりも突出している。
上記ガラスエポキシ基板の上面のペリフェラル部分に、作製直後の異方性導電ペーストを厚さ100μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層の上面に半導体チップを電極同士が対向するように積層した。異方性導電ペースト層には、上記半導体チップの重量は加わる。その状態から、異方性導電ペースト層の温度が、昇温開始から5秒後に139℃(はんだの融点)となるように加熱した。更に、昇温開始から15秒後に、異方性導電ペースト層の温度が160℃となるように加熱し、異方性導電ペースト層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。
(評価)
(1)25℃における粘度(η25)
作製直後の異方性導電ペーストの25℃での粘度(η25)を、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。
(2)はんだ粒子の融点−10℃における粘度(η−10)
作製直後の異方性導電ペーストを、STRESSTECH(EOLOGICA社製)を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲40℃〜はんだ粒子の融点℃の条件で測定した。この測定において、はんだ粒子の融点−10℃での粘度を読み取り、はんだ粒子の融点−10℃における異方性導電ペーストの粘度とした。
(3)接続部のTg
得られた第1の接続構造体において、接続部の硬化物部のTgを測定した。Tgを以下の基準で判定した。
[接続部のTg]
○○:Tgが150℃以上
○:Tgが130℃以上、150℃未満
△:Tgが70℃以上、130℃未満
×:Tgが70℃未満
(4)電極上のはんだの配置精度
得られた第1,第2の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度を下記の基準で判定した。
[電極上のはんだの配置精度の判定基準]
○○:割合Xが70%以上
○:割合Xが60%以上、70%未満
△:割合Xが50%以上、60%未満
×:割合Xが50%未満
(5)上下の電極間の導通信頼性
得られた第1,第2の接続構造体(n=15個)において、上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
[導通信頼性の判定基準]
○○:接続抵抗の平均値が8.0Ω以下
○:接続抵抗の平均値が8.0Ωを超え、10.0Ω以下
△:接続抵抗の平均値が10.0Ωを超え、15.0Ω以下
×:接続抵抗の平均値が15.0Ωを超える
(6)隣接する電極間の絶縁信頼性
得られた第1,第2の接続構造体(n=15個)において、温度85℃、及び湿度85%の雰囲気中に100時間放置後、隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。
[絶縁信頼性の判定基準]
○○:接続抵抗の平均値が10Ω以上
○:接続抵抗の平均値が10Ω以上、10Ω未満
△:接続抵抗の平均値が10Ω以上、10Ω未満
×:接続抵抗の平均値が10Ω未満
結果を下記の表1に示す。
Figure 2018006083
フレキシブルプリント基板、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。
1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…導電ペースト
11A…はんだ粒子
11B…熱硬化性成分

Claims (14)

  1. 熱硬化性成分と、複数のはんだ粒子を含み、
    前記熱硬化性成分が、25℃で固形である第1の熱硬化性化合物と、25℃で固形である第2の熱硬化性化合物とを含み、
    前記第2の熱硬化性化合物の融点は、前記第1の熱硬化性化合物の融点よりも高く、
    導電材料中で、前記第1の熱硬化性化合物と、前記第2の熱硬化性化合物とが粒子状に分散している、導電材料。
  2. 前記はんだ粒子の融点と前記第2の熱硬化性化合物の融点との差の絶対値が、20℃以下である、請求項1に記載の導電材料。
  3. 前記第1の熱硬化性化合物と前記第2の熱硬化性化合物との融点の差が、20℃以上である、請求項1又は2に記載の導電材料。
  4. 前記第1の熱硬化性化合物の粒子径の、前記第2の熱硬化性化合物の粒子径に対する比が、1以上、20以下である、請求項1〜3のいずれか1項に記載の導電材料。
  5. 導電材料100重量%中の前記第1の熱硬化性化合物の含有量の、導電材料100重量%中の前記第2の熱硬化性化合物の含有量に対する比が、0.1以上、2以下である、請求項1〜4のいずれか1項に記載の導電材料。
  6. 前記熱硬化性成分が、ジアステレオマーの関係にある熱硬化性化合物を含む、請求項1〜5のいずれか1項に記載の導電材料。
  7. 前記第1の熱硬化性化合物と前記第2の熱硬化性化合物とが、ジアステレオマーの関係にある、請求項6に記載の導電材料。
  8. 前記熱硬化性成分が、エポキシ化合物と、硬化剤とを含む、請求項1〜7のいずれか1項に記載の導電材料。
  9. 前記第1の熱硬化性化合物と前記第2の熱硬化性化合物とが、エポキシ化合物である、請求項8に記載の導電材料。
  10. 導電ペーストである、請求項1〜9のいずれか1項に記載の導電材料。
  11. 少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、
    少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、
    前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
    前記接続部の材料が、請求項1〜10のいずれか1項に記載の導電材料であり、
    前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
  12. 前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項11に記載の接続構造体。
  13. 請求項1〜10のいずれか1項に記載の導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、
    前記導電材料の前記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
    前記はんだ粒子の融点以上かつ前記熱硬化性成分の硬化温度以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法。
  14. 前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている接続構造体を得る、請求項13に記載の接続構造体の製造方法。
JP2016129104A 2016-06-29 2016-06-29 導電材料、接続構造体及び接続構造体の製造方法 Pending JP2018006083A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016129104A JP2018006083A (ja) 2016-06-29 2016-06-29 導電材料、接続構造体及び接続構造体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016129104A JP2018006083A (ja) 2016-06-29 2016-06-29 導電材料、接続構造体及び接続構造体の製造方法

Publications (1)

Publication Number Publication Date
JP2018006083A true JP2018006083A (ja) 2018-01-11

Family

ID=60949537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016129104A Pending JP2018006083A (ja) 2016-06-29 2016-06-29 導電材料、接続構造体及び接続構造体の製造方法

Country Status (1)

Country Link
JP (1) JP2018006083A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255874A1 (ja) * 2019-06-20 2020-12-24 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255874A1 (ja) * 2019-06-20 2020-12-24 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
CN113994438A (zh) * 2019-06-20 2022-01-28 积水化学工业株式会社 导电材料、连接结构体以及连接结构体的制造方法
TWI834887B (zh) * 2019-06-20 2024-03-11 日商積水化學工業股份有限公司 導電材料、連接構造體及連接構造體之製造方法

Similar Documents

Publication Publication Date Title
JP6557591B2 (ja) 導電フィルム、接続構造体及び接続構造体の製造方法
JP6588843B2 (ja) 接続構造体の製造方法
JPWO2018047690A1 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP5966101B1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP6592350B2 (ja) 異方性導電材料、接続構造体及び接続構造体の製造方法
JP5966102B1 (ja) 導電ペースト、接続構造体及び接続構造体の製造方法
JP6062106B1 (ja) 接続構造体の製造方法
JP2016100443A (ja) 電子部品の製造方法及び接続構造体の製造方法
JP2017224602A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2018006084A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6581434B2 (ja) 導電材料及び接続構造体
JP2017195180A (ja) 導電材料及び接続構造体
JP6067191B1 (ja) 導電材料及び接続構造体
JP6082843B2 (ja) 導電ペースト及び接続構造体
JP2018006083A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6767309B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JPWO2017179532A1 (ja) 導電材料及び接続構造体
JPWO2017130892A1 (ja) 導電材料及び接続構造体
JP2018045906A (ja) 導電材料、導電材料の製造方法及び接続構造体
JP2017041442A (ja) 導電材料及び接続構造体
WO2018174065A1 (ja) 導電材料及び接続構造体
JP2017092424A (ja) 接続構造体の製造方法
JP2017022112A (ja) 接続構造体
JP2017017318A (ja) 接続構造体の製造方法及び接続構造体
JP2018006085A (ja) 導電材料、接続構造体及び接続構造体の製造方法