JP2018045906A - 導電材料、導電材料の製造方法及び接続構造体 - Google Patents

導電材料、導電材料の製造方法及び接続構造体 Download PDF

Info

Publication number
JP2018045906A
JP2018045906A JP2016180651A JP2016180651A JP2018045906A JP 2018045906 A JP2018045906 A JP 2018045906A JP 2016180651 A JP2016180651 A JP 2016180651A JP 2016180651 A JP2016180651 A JP 2016180651A JP 2018045906 A JP2018045906 A JP 2018045906A
Authority
JP
Japan
Prior art keywords
conductive material
solder
compound
conductive
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016180651A
Other languages
English (en)
Inventor
士輝 宋
Shihui Song
士輝 宋
将大 伊藤
Masahiro Ito
将大 伊藤
周治郎 定永
Shujiro Sadanaga
周治郎 定永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2016180651A priority Critical patent/JP2018045906A/ja
Publication of JP2018045906A publication Critical patent/JP2018045906A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Wire Bonding (AREA)

Abstract

【課題】導電材料が一定時間放置された場合でも、優れたはんだ凝集性を発揮し、電極上に導電性粒子におけるはんだを効率的に配置することができる導電材料を提供する。【解決手段】本発明に係る導電材料は、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、酸化合物と塩基化合物との塩であるフラックスとを含み、前記酸化合物を含まないか又は含み、かつ導電材料中に前記酸化合物が含まれる場合には前記酸化合物の含有量が2重量%以下であり、前記塩基化合物を含まないか又は含み、かつ導電材料中に前記塩基化合物が含まれる場合には前記塩基化合物の含有量が2重量%以下である。【選択図】図1

Description

本発明は、導電部の外表面部分にはんだを有する導電性粒子を含む導電材料及び導電材料の製造方法に関する。また、本発明は、上記導電材料を用いた接続構造体に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。
上記異方性導電材料の一例として、下記の特許文献1には、導電性粒子と、該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電材料が記載されている。上記導電性粒子としては、具体的には、錫(Sn)、インジウム(In)、ビスマス(Bi)、銀(Ag)、銅(Cu)、亜鉛(Zn)、鉛(Pb)、カドミウム(Cd)、ガリウム(Ga)及びタリウム(Tl)等の金属や、これらの金属の合金が挙げられている。
特許文献1では、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、異方性導電樹脂を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを経て、電極間を電気的に接続することが記載されている。また、特許文献1には、特許文献1の図8に示された温度プロファイルで実装を行うことが記載されている。特許文献1では、異方性導電樹脂が加熱される温度にて硬化が完了しない樹脂成分内で、導電性粒子が溶融する。
下記の特許文献2には、熱硬化性樹脂を含む樹脂層と、はんだ粉と、硬化剤とを含み、上記はんだ粉と上記硬化剤とが上記樹脂層中に存在する接着テープが開示されている。この接着テープは、フィルム状であり、ペースト状ではない。
また、特許文献2では、上記接着テープを用いた接着方法が開示されている。具体的には、第一基板、接着テープ、第二基板、接着テープ、及び第三基板を下からこの順に積層して、積層体を得る。このとき、第一基板の表面に設けられた第一電極と、第二基板の表面に設けられた第二電極とを対向させる。また、第二基板の表面に設けられた第二電極と第三基板の表面に設けられた第三電極とを対向させる。そして、積層体を所定の温度で加熱して接着する。これにより、接続構造体を得る。
下記の特許文献3には、はんだ粒子、熱硬化性樹脂バインダー、及びフラックス成分を含有する熱硬化性樹脂組成物が開示されている。上記フラックス成分は、ジカルボン酸もしくはトリカルボン酸と、ジエタノールアミン類もしくはトリエタノールアミン類との塩を含有する。
また、特許文献3には、上記フラックス成分の作製方法が記載されており、具体的には、ジカルボン酸もしくはトリカルボン酸と、ジエタノールアミン類もしくはトリエタノールアミン類とを、120℃のオイルバス中で溶融させることが記載されている。
特開2004−260131号公報 WO2008/023452A1 特開2013−256584号公報
従来のはんだ粒子や、はんだ層を表面に有する導電性粒子を含む導電材料では、はんだ粒子又は導電性粒子の電極(ライン)上への移動速度が遅いことがある。特に、基板等に導電材料が配置された後、長時間放置された場合には、電極上にはんだが凝集し難くなることがある。結果として、電極間の導通信頼性及び絶縁信頼性が低くなり易い。
また、従来のはんだ粒子や、はんだ層を表面に有する導電性粒子を含む導電材料では、導電材料が加熱等された際に、導電材料が黄色等に変色することがある。特に、LED用途では、導電材料が変色することで、光取り出し効率が低下するという問題がある。
本発明の目的は、導電材料が一定時間放置された場合でも、優れたはんだ凝集性を発揮し、電極上に導電性粒子におけるはんだを効率的に配置することができる導電材料及び導電材料の製造方法を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体を提供することである。
本発明の広い局面によれば、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、酸化合物と塩基化合物との塩であるフラックスとを含み、前記酸化合物を含まないか又は含み、かつ導電材料中に前記酸化合物が含まれる場合には前記酸化合物の含有量が2重量%以下であり、前記塩基化合物を含まないか又は含み、かつ導電材料中に前記塩基化合物が含まれる場合には前記塩基化合物の含有量が2重量%以下である、導電材料が提供される。
本発明に係る導電材料のある特定の局面では、前記導電材料は、イミン化合物を含まないか、又は、イミン化合物を2重量%以下で含む。
本発明に係る導電材料のある特定の局面では、前記フラックスが、25℃で固体であり、25℃の導電材料中で、前記フラックスが固体で分散している。
本発明に係る導電材料のある特定の局面では、前記酸化合物が、カルボキシル基を有する有機化合物である。
本発明に係る導電材料のある特定の局面では、前記塩基化合物が、アミノ基を有する有機化合物である。
本発明に係る導電材料のある特定の局面では、前記導電性粒子の表面上に、前記フラックスが付着している。
本発明に係る導電材料のある特定の局面では、前記フラックスの含有量が、0.1重量%以上、20重量%以下である。
本発明に係る導電材料のある特定の局面では、前記導電性粒子の含有量が、40重量%以上、95重量%以下である。
本発明に係る導電材料のある特定の局面では、前記導電材料が、導電ペーストである。
本発明の広い局面によれば、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、酸化合物と塩基化合物との塩であるフラックスとを混合し、導電材料を得る混合工程を備え、前記酸化合物を含まないか又は含み、かつ導電材料中に前記酸化合物が含まれる場合には前記酸化合物の含有量が2重量%以下であり、前記塩基化合物を含まないか又は含み、かつ導電材料中に前記塩基化合物が含まれる場合には前記塩基化合物の含有量が2重量%以下である導電材料を得る、導電材料の製造方法が提供される。
本発明に係る導電材料の製造方法は、前記混合工程の前に、前記酸化合物と前記塩基化合物との塩である前記フラックスを得るために、前記酸化合物と前記塩基化合物とを溶媒中で反応させる反応工程と、前記溶媒を除去して、前記フラックスを回収する溶媒除去工程とをさらに備えることが好ましい。
本発明に係る導電材料の製造方法のある特定の局面では、前記反応工程における前記溶媒が、水を含む。
本発明に係る導電材料の製造方法のある特定の局面では、前記反応工程における前記溶媒が、水と混和する有機溶剤を含む。
本発明の広い局面によれば、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。
本発明に係る接続構造体のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている。
本発明に係る導電材料は、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、酸化合物と塩基化合物との塩であるフラックスとを含み、上記酸化合物を含まないか又は含み、かつ導電材料中に上記酸化合物が含まれる場合には、上記酸化合物の含有量が2重量%以下であり、上記塩基化合物を含まないか又は含み、かつ導電材料中に上記塩基化合物が含まれる場合には、上記塩基化合物の含有量が2重量%以下であるので、導電材料が一定時間放置された場合でも、優れたはんだ凝集性を発揮することができ、電極上に導電性粒子におけるはんだを効率的に配置することができる。
本発明に係る導電材料の製造方法は、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、酸化合物と塩基化合物との塩であるフラックスとを混合し、導電材料を得る混合工程を備え、上記酸化合物を含まないか又は含み、かつ導電材料中に上記酸化合物が含まれる場合には、上記酸化合物の含有量が2重量%以下であり、上記塩基化合物を含まないか又は含み、かつ導電材料中に上記塩基化合物が含まれる場合には、上記塩基化合物の含有量が2重量%以下である導電材料を得るので、導電材料が一定時間放置された場合でも、優れたはんだ凝集性を発揮することができ、電極上に導電性粒子におけるはんだを効率的に配置することができる。
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。 図2(a)〜(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。 図3は、接続構造体の変形例を示す断面図である。 図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。 図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。 図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。
以下、本発明の詳細を説明する。
本発明に係る導電材料は、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、フラックスとを含む。本発明に係る導電材料の製造方法は、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、フラックスとを含む導電材料の製造方法である。はんだは、導電部に含まれ、導電部の一部又は全部である。
本発明に係る導電材料では、上記フラックスは、酸化合物と塩基化合物との塩である。本発明に係る導電材料は、上記酸化合物を含まないか又は含み、かつ導電材料中に上記酸化合物が含まれる場合には、上記酸化合物の含有量が2重量%以下である。本発明に係る導電材料は、上記塩基化合物を含まないか又は含み、かつ導電材料中に上記塩基化合物が含まれる場合には、上記塩基化合物の含有量が2重量%以下である。本発明に係る導電材料は、上記酸化合物及び上記塩基化合物の内の少なくとも一方を含んでいてもよく、上記酸化合物及び上記塩基化合物の双方を含んでいてもよく、上記酸化合物及び上記塩基化合物の内の一方のみを含んでいてもよく、上記酸化合物及び上記塩基化合物の内の上記酸化合物のみを含んでいてもよく、上記酸化合物及び上記塩基化合物の内の上記塩基化合物のみを含んでいてもよい。本発明に係る導電材料が、上記酸化合物及び上記塩基化合物の双方を含む場合に、上記酸化合物の含有量が2重量%以下であり、かつ、上記塩基化合物の含有量が2重量%以下である。
上記酸化合物は、上記塩ではない。上記酸化合物には、上記塩は含まれない。上記導電材料が上記酸化合物を含む場合に、上記導電材料に含まれる上記酸化合物は、例えば上記塩を得る際の未反応物である。上記塩基化合物は、上記塩ではない。上記塩基化合物には、上記塩は含まれない。上記導電材料が上記塩基化合物を含む場合に、上記導電材料に含まれる上記塩基化合物は、例えば上記塩を得る際の未反応物である。
本発明に係る導電材料では、上記塩ではない上記酸化合物又は上記塩基化合物が含まれる場合に、上記塩ではない上記酸化合物又は上記塩基化合物の含有量は少ない。本発明では、上記塩を構成する酸化合物が、上記塩基化合物と塩を形成していない状態で含まれないことが好ましく、上記塩を構成する酸化合物が、上記塩基化合物と塩を形成していない状態で含まれる場合には、その含有量は少ないことが好ましい。本発明では、上記塩を構成する塩基化合物が、上記酸化合物と塩を形成していない状態で含まれないことが好ましく、上記塩を構成する塩基化合物が、上記酸化合物と塩を形成していない状態で含まれる場合には、その含有量が少ないことが好ましい。上記酸化合物の含有量は、塩ではない酸化合物の含有量である。上記塩基化合物の含有量は、上記塩ではない塩基化合物の含有量である。
本発明に係る導電材料の製造方法は、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、酸化合物と塩基化合物との塩であるフラックスとを混合し、導電材料を得る混合工程を備える。本発明に係る導電材料の製造方法では、上記酸化合物を含まないか又は含み、かつ導電材料中に上記酸化合物が含まれる場合には、上記酸化合物の含有量が2重量%以下であり、上記塩基化合物を含まないか又は含み、かつ導電材料中に上記塩基化合物が含まれる場合には、上記塩基化合物の含有量が2重量%以下である導電材料を得る。
本発明に係る導電材料及び本発明に係る導電材料の製造方法では、上記の構成が備えられているので、導電材料が一定時間放置された場合でも、優れたはんだ凝集性を発揮することができ、電極上に導電性粒子におけるはんだを効率的に配置することができる。例えば、基板等の接続対象部材上に導電材料が配置された後、接続対象部材上で一定時間放置された場合でも、電極上に導電性粒子におけるはんだを効率的に配置することができる。
さらに、本発明に係る導電材料及び本発明に係る導電材料の製造方法では、上記の構成が備えられているので、電極間を電気的に接続した場合に、複数の導電性粒子が、上下の対向した電極間に集まりやすく、複数の導電性粒子を電極(ライン)上に効率的に配置することができる。また、複数の導電性粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置される導電性粒子の量をかなり少なくすることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
また、接続構造体の作製時、特に、LEDチップを基板に接続する際には、LEDチップを基板上に配置する必要があるので、スクリーン印刷等により導電材料が配置された後、LEDチップと基板とが電気的に接続されるまでに、一定時間放置されることがある。従来の導電材料では、導電材料が配置された後に一定時間放置されると、電極上に導電性粒子を効率的に配置することができず、電極間の導通信頼性も低下する。本発明では、上記の構成が採用されているので、導電材料が配置された後に一定時間放置されても、電極上に導電性粒子を効率的に配置することができ、電極間の導通信頼性を十分に高めることができる。
さらに、本発明に係る導電材料及び本発明に係る導電材料の製造方法では、上記の構成、特に、上記酸化合物を含まないか又は含み、かつ導電材料中に上記酸化合物が含まれる場合には、上記酸化合物の含有量が2重量%以下であり、上記塩基化合物を含まないか又は含み、かつ導電材料中に上記塩基化合物が含まれる場合には、上記塩基化合物の含有量が2重量%以下であるという構成が備えられているので、導電材料の変色をより一層抑制することができる。また、導電材料の硬化物等の変色も抑えることができる。
はんだ凝集性をより一層高め、かつ変色をより一層抑える観点からは、上記塩ではない上記酸化合物の含有量は、好ましくは2重量%以下、より好ましくは1.5重量%以下、更に好ましくは1.0重量%以下、特に好ましくは0重量%(未含有)である。
はんだ凝集性をより一層高め、かつ変色をより一層抑える観点からは、上記塩ではない上記塩基化合物の含有量は、好ましくは2重量%以下、より好ましくは1.5重量%以下、更に好ましくは1.0重量%以下、特に好ましくは0重量%(未含有)である。
本発明に係る導電材料の製造方法は、導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、特定のフラックスとを混合する混合工程を備える。上記混合工程において、上記導電性粒子と、上記バインダーと、上記フラックスとを混合する方法は、従来公知の分散方法を用いることができ、特に限定されない。上記バインダーに上記導電性粒子及び上記フラックスを分散させる方法としては、例えば、上記バインダー中に上記導電性粒子及び上記フラックスを添加した後、プラネタリーミキサー等で混練して分散させる方法、上記導電性粒子及び上記フラックスを水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びに上記バインダーを水又は有機溶剤等で希釈した後、上記導電性粒子及び上記フラックスを添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。
本発明に係る導電材料の製造方法は、上記混合工程の前に、上記酸化合物と上記塩基化合物との塩である上記フラックスを得るために、上記酸化合物と上記塩基化合物とを溶媒中で反応させる反応工程と、上記溶媒を除去して、上記フラックスを回収する溶媒除去工程とをさらに備えることが好ましい。
導電材料が一定時間放置された場合でも、より一層優れたはんだ凝集性を発揮し、導電性粒子におけるはんだを電極上により一層効率的に配置する観点、及び導電材料の変色をより一層抑制する観点からは、上記反応工程における上記溶媒は、水を含むことが好ましい。溶媒の全体100重量%中、水の含有量は好ましくは50重量%以上、より好ましくは70重量%以上、さらに好ましくは90重量%以上であり、好ましくは100重量%(全量)以下である。溶媒の全体が、水であってもよい。
上記溶媒除去工程における上記溶媒をより一層容易に除去する観点からは、上記溶媒は、水と混和する有機溶剤を含むことが好ましい。溶媒の全体100重量%中、水と混和する有機溶剤の含有量は、0重量%(未使用)以上、好ましくは5重量%以上、より好ましくは10重量%以上であり、好ましくは50重量%以下、より好ましくは40重量%以下である。
水と混和する有機溶剤は、メタノール又はエタノールであることが好ましい。上記溶媒は、アセトンやメチルエチルケトンのようなケトン化合物ではないことが好ましい。
導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記導電材料の25℃での粘度(η25)は、好ましくは50Pa・s以上、より好ましくは100Pa・s以上であり、好ましくは500Pa・s以下、より好ましくは300Pa・s以下である。
上記粘度(η25)は、配合成分の種類及び配合量により適宜調整可能である。また、フィラーの使用により、粘度を比較的高くすることができる。
上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定可能である。
導電材料が一定時間放置された場合でも、優れたはんだ凝集性を発揮し、導電性粒子におけるはんだを電極上により一層効率的に配置する観点、及び導電材料の変色をより一層抑制する観点からは、上記導電材料は、イミン化合物を含まないか、又は、イミン化合物を2重量%以下で含むことが好ましい。イミン化合物の含有量は少ないほどよい。導電材料100重量%中、上記イミン化合物の含有量は、より好ましくは1重量%以下、特に好ましくは0重量%(未含有)である。
上記導電材料は、導電ペースト及び導電フィルム等として使用される。上記導電ペーストは、異方性導電ペーストであることが好ましく、上記導電フィルムは、異方性導電フィルムであることが好ましい。導電性粒子におけるはんだをより一層電極上に配置する観点からは、上記導電材料は、導電ペーストであることが好ましい。
上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
上記導電材料及び上記バインダーは、熱可塑性成分又は熱硬化性成分を含むことが好ましい。上記導電材料及び上記バインダーは、熱可塑性成分を含んでいてもよく、熱硬化性成分を含んでいてもよい。上記導電材料及び上記バインダーは、熱硬化性成分を含むことが好ましい。上記導電材料及び上記バインダーは、熱硬化性化合物と熱硬化剤とを含むことが好ましい。上記バインダーは、25℃で液状成分であるか、又は導電接続時に液状になる成分であることが好ましい。
以下、導電材料に含まれる各成分を説明する。
(導電性粒子)
上記導電性粒子は、接続対象部材の電極間を電気的に接続する。上記導電性粒子は、導電部の外表面部分にはんだを有する。上記導電性粒子は、はんだにより形成されたはんだ粒子であってもよい。上記はんだ粒子は、はんだを導電部の外表面部分に有する。上記はんだ粒子は、中心部分及び導電部の外表面部分とのいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び導電性の外表面のいずれもがはんだである粒子である。上記導電性粒子は、基材粒子と、該基材粒子の表面上に配置された導電部とを有していてもよい。この場合に、上記導電性粒子は、導電部の外表面部分に、はんだを有する。
上記導電性粒子は、導電部の外表面部分にはんだを有する。上記基材粒子は、はんだにより形成されたはんだ粒子であってもよい。上記導電性粒子は、基材粒子及び導電部の外表面部分のいずれもがはんだであるはんだ粒子であってもよい。
なお、上記はんだ粒子を用いた場合と比べて、はんだにより形成されていない基材粒子と基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなり、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。従って、上記導電性粒子は、はんだにより形成されたはんだ粒子であることが好ましい。
接続構造体における接続抵抗をより一層低くし、ボイドの発生をより一層抑制する観点からは、上記導電性粒子の外表面(はんだの外表面)に、カルボキシル基又はアミノ基が存在することが好ましく、カルボキシル基が存在することが好ましく、アミノ基が存在することが好ましい。上記導電性粒子の外表面(はんだの外表面)に、Si−O結合、エーテル結合、エステル結合又は下記式(X)で表される基を介して、カルボキシル基又はアミノ基を含む基が共有結合していることが好ましい。カルボキシル基又はアミノ基を含む基は、カルボキシル基とアミノ基との双方を含んでいてもよい。下記式(X)において、右端部及び左端部は結合部位を表す。
Figure 2018045906
はんだの表面には、水酸基が存在する。この水酸基とカルボキシル基を含む基とを共有結合させることにより、他の配位結合(キレート配位)等にて結合させる場合よりも強い結合を形成できるため、電極間の接続抵抗を低くし、かつボイドの発生を抑えることが可能な導電性粒子が得られる。
上記導電性粒子では、はんだの表面と、カルボキシル基を含む基との結合形態に、配位結合が含まれていなくてもよく、キレート配位による結合が含まれていなくてもよい。
接続構造体における接続抵抗をより一層低くし、ボイドの発生をより一層抑制する観点からは、上記導電性粒子は、水酸基と反応可能な官能基とカルボキシル基又はアミノ基とを有する化合物(以下、化合物Xと記載することがある)を用いて、はんだの表面の水酸基に、上記水酸基と反応可能な官能基を反応させることにより得られることが好ましい。上記反応では、共有結合を形成させる。はんだの表面の水酸基と上記化合物Xにおける上記水酸基と反応可能な官能基とを反応させることで、はんだの表面にカルボキシル基又はアミノ基を含む基が共有結合している導電性粒子を容易に得ることができ、はんだの表面にエーテル結合又はエステル結合を介してカルボキシル基又はアミノ基を含む基が共有結合している導電性粒子を得ることもできる。上記はんだの表面の水酸基に上記水酸基と反応可能な官能基を反応させることで、はんだの表面に、上記化合物Xを共有結合の形態で化学結合させることができる。
上記水酸基と反応可能な官能基としては、水酸基、カルボキシル基、エステル基及びカルボニル基等が挙げられる。水酸基又はカルボキシル基が好ましい。上記水酸基と反応可能な官能基は、水酸基であってもよく、カルボキシル基であってもよい。
水酸基と反応可能な官能基を有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、リンゴ酸、シュウ酸、マロン酸、アジピン酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸、4−フェニル酪酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9−ヘキサデセン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)−リノレン酸、ノナデカン酸、アラキジン酸、デカン二酸及びドデカン二酸等が挙げられる。グルタル酸又はグリコール酸が好ましい。上記水酸基と反応可能な官能基を有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。上記水酸基と反応可能な官能基を有する化合物は、カルボキシル基を少なくとも1つ有する化合物であることが好ましい。
上記化合物Xは、フラックス作用を有することが好ましく、上記化合物Xは、はんだの表面に結合した状態でフラックス作用を有することが好ましい。フラックス作用を有する化合物は、はんだの表面の酸化膜及び電極の表面の酸化膜を除去可能である。カルボキシル基はフラックス作用を有する。
フラックス作用を有する化合物としては、レブリン酸、グルタル酸、グリコール酸、アジピン酸、コハク酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸及び4−フェニル酪酸等が挙げられる。グルタル酸、アジピン酸又はグリコール酸が好ましい。上記フラックス作用を有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
接続構造体における接続抵抗をより一層低くし、ボイドの発生をより一層抑制する観点からは、上記化合物Xにおける上記水酸基と反応可能な官能基が、水酸基又はカルボキシル基であることが好ましい。上記化合物Xにおける上記水酸基と反応可能な官能基は、水酸基であってもよく、カルボキシル基であってもよい。上記水酸基と反応可能な官能基がカルボキシル基である場合には、上記化合物Xは、カルボキシル基を少なくとも2個有することが好ましい。カルボキシル基を少なくとも2個有する化合物の一部のカルボキシル基を、はんだの表面の水酸基に反応させることで、はんだの表面にカルボキシル基を含む基が共有結合している導電性粒子が得られる。
上記導電性粒子の製造方法は、例えば、導電性粒子を用いて、該導電性粒子、水酸基と反応可能な官能基とカルボキシル基とを有する化合物、触媒及び溶媒を混合する工程を備える。上記導電性粒子の製造方法では、上記混合工程により、はんだの表面に、カルボキシル基を含む基が共有結合している導電性粒子を容易に得ることができる。
また、上記導電性粒子の製造方法では、導電性粒子を用いて、該導電性粒子、上記水酸基と反応可能な官能基とカルボキシル基とを有する化合物、上記触媒及び上記溶媒を混合し、加熱することが好ましい。混合及び加熱工程により、はんだの表面に、カルボキシル基を含む基が共有結合している導電性粒子をより一層容易に得ることができる。
上記溶媒としては、メタノール、エタノール、プロパノール、ブタノール等のアルコール溶媒や、アセトン、メチルエチルケトン、酢酸エチル、トルエン及びキシレン等が挙げられる。上記溶媒は有機溶媒であることが好ましく、トルエンであることがより好ましい。上記溶媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記触媒としては、p−トルエンスルホン酸、ベンゼンスルホン酸及び10−カンファースルホン酸等が挙げられる。上記触媒は、p−トルエンスルホン酸であることが好ましい。上記触媒は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記混合時に加熱することが好ましい。加熱温度は好ましくは90℃以上、より好ましくは100℃以上であり、好ましくは130℃以下、より好ましくは110℃以下である。
接続構造体における接続抵抗をより一層低くし、ボイドの発生をより一層抑制する観点からは、上記導電性粒子は、イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させる工程を経て得られることが好ましい。上記反応では、共有結合を形成させる。はんだの表面の水酸基と上記イソシアネート化合物とを反応させることで、はんだの表面に、イソシアネート基に由来する基の窒素原子が共有結合している導電性粒子を容易に得ることができる。上記はんだの表面の水酸基に上記イソシアネート化合物を反応させることで、はんだの表面に、イソシアネート基に由来する基を共有結合の形態で化学結合させることができる。
また、イソシアネート基に由来する基には、シランカップリング剤を容易に反応させることができる。上記導電性粒子を容易に得ることができるので、上記カルボキシル基を含む基が、カルボキシル基を有するシランカップリング剤を用いた反応により導入されているか、又は、シランカップリング剤を用いた反応の後に、シランカップリング剤に由来する基にカルボキシル基を少なくとも1つ有する化合物を反応させることで導入されていることが好ましい。上記導電性粒子は、上記イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を少なくとも1つ有する化合物を反応させることにより得られることが好ましい。
接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記カルボキシル基を少なくとも1つ有する化合物が、カルボキシル基を複数有することが好ましい。
上記イソシアネート化合物としては、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トルエンジイソシアネート(TDI)及びイソホロンジイソシアネート(IPDI)等が挙げられる。これら以外のイソシアネート化合物を用いてもよい。この化合物をはんだの表面に反応させた後、残イソシアネート基と、その残イソシアネート基と反応性を有し、かつカルボキシル基を有する化合物を反応させることで、はんだの表面に上記式(X)で表される基を介して、カルボキシル基を導入することができる。
上記イソシアネート化合物としては、不飽和二重結合を有し、かつイソシアネート基を有する化合物を用いてもよい。例えば、2−アクリロイルオキシエチルイソシアネート及び2−イソシアナトエチルメタクリレートが挙げられる。この化合物のイソシアネート基をはんだの表面に反応させた後、残存している不飽和二重結合に対し反応性を有する官能基を有し、かつカルボキシル基を有する化合物を反応させることで、はんだの表面に上記式(X)で表される基を介して、カルボキシル基を導入することができる。
上記シランカップリング剤としては、3−イソシアネートプロピルトリエトキシシラン(信越シリコーン社製「KBE−9007」)、及び3−イソシアネートプロピルトリメトキシシラン(MOMENTIVE社製「Y−5187」)等が挙げられる。上記シランカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記カルボキシル基を少なくとも1つ有する化合物としては、レブリン酸、グルタル酸、グリコール酸、コハク酸、リンゴ酸、シュウ酸、マロン酸、アジピン酸、5−ケトヘキサン酸、3−ヒドロキシプロピオン酸、4−アミノ酪酸、3−メルカプトプロピオン酸、3−メルカプトイソブチル酸、3−メチルチオプロピオン酸、3−フェニルプロピオン酸、3−フェニルイソブチル酸、4−フェニル酪酸、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、9−ヘキサデセン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、(9,12,15)−リノレン酸、ノナデカン酸、アラキジン酸、デカン二酸及びドデカン二酸等が挙げられる。グルタル酸、アジピン酸又はグリコール酸が好ましい。上記カルボキシル基を少なくとも1つ有する化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を複数有する化合物の一部のカルボキシル基を、はんだの表面の水酸基と反応させることで、カルボキシル基を含む基を残存させることができる。
上記導電性粒子の製造方法では、導電性粒子を用いて、かつ、イソシアネート化合物を用いて、はんだの表面の水酸基に、上記イソシアネート化合物を反応させた後、カルボキシル基を少なくとも1つ有する化合物を反応させて、はんだの表面に、上記式(X)で表される基を介して、カルボキシル基を含む基が結合している導電性粒子を得る。上記導電性粒子の製造方法では、上記の工程により、はんだの表面に、カルボキシル基を含む基が導入された導電性粒子を容易に得ることができる。
上記導電性粒子の具体的な製造方法としては、以下の方法が挙げられる。有機溶媒に導電性粒子を分散させ、イソシアネート基を有するシランカップリング剤を添加する。その後、導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒を用い、はんだの表面にシランカップリング剤を共有結合させる。次に、シランカップリング剤のケイ素原子に結合しているアルコキシ基を加水分解することで、水酸基を生成させる。生成した水酸基に、カルボキシル基を少なくとも1つ有する化合物のカルボキシル基を反応させる。
また、上記導電性粒子の具体的な製造方法としては、以下の方法が挙げられる。有機溶媒に導電性粒子を分散させ、イソシアネート基と不飽和二重結合を有する化合物を添加する。その後、導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒を用い、共有結合を形成させる。その後、導入された不飽和二重結合に対して、不飽和二重結合、及びカルボキシル基を有する化合物を反応させる。
導電性粒子のはんだの表面の水酸基とイソシアネート基との反応触媒としては、錫系触媒(ジブチル錫ジラウレート等)、アミン系触媒(トリエチレンジアミン等)、カルボキシレート触媒(ナフテン酸鉛、酢酸カリウム等)、及びトリアルキルホスフィン触媒(トリエチルホスフィン等)等が挙げられる。
接続構造体における接続抵抗を効果的に低くし、ボイドの発生を効果的に抑制する観点からは、上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1)で表される化合物であることが好ましい。下記式(1)で表される化合物は、フラックス作用を有する。また、下記式(1)で表される化合物は、はんだの表面に導入された状態でフラックス作用を有する。
Figure 2018045906
上記式(1)中、Xは、水酸基と反応可能な官能基を表し、Rは、炭素数1〜5の2価の有機基を表す。該有機基は、炭素原子と水素原子と酸素原子とを含んでいてもよい。該有機基は炭素数1〜5の2価の炭化水素基であってもよい。上記有機基の主鎖は2価の炭化水素基であることが好ましい。該有機基では、2価の炭化水素基にカルボキシル基や水酸基が結合していてもよい。上記式(1)で表される化合物には、例えばクエン酸が含まれる。
上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1A)又は下記式(1B)で表される化合物であることが好ましい。上記カルボキシル基を少なくとも1つ有する化合物は、下記式(1A)で表される化合物であることが好ましく、下記式(1B)で表される化合物であることがより好ましい。
Figure 2018045906
上記式(1A)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(1A)中のRは上記式(1)中のRと同様である。
Figure 2018045906
上記式(1B)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(1B)中のRは上記式(1)中のRと同様である。
はんだの表面に、下記式(2A)又は下記式(2B)で表される基が結合していることが好ましい。はんだの表面に、下記式(2A)で表される基が結合していることが好ましく、下記式(2B)で表される基が結合していることがより好ましい。下記式(2A)及び(2B)において、左端部は結合部位を表す。
Figure 2018045906
上記式(2A)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(2A)中のRは上記式(1)中のRと同様である。
Figure 2018045906
上記式(2B)中、Rは、炭素数1〜5の2価の有機基を表す。上記式(2B)中のRは上記式(1)中のRと同様である。
はんだの表面の濡れ性をより一層高める観点からは、上記カルボキシル基を少なくとも1つ有する化合物の分子量は、好ましくは10000以下、より好ましくは1000以下、さらに好ましくは500以下である。
上記分子量は、上記カルボキシル基を少なくとも1つ有する化合物が重合体ではない場合、及び上記カルボキシル基を少なくとも1つ有する化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記カルボキシル基を少なくとも1つ有する化合物が重合体である場合は、重量平均分子量を意味する。
電極上に導電性粒子におけるはんだをより一層効率的に配置する観点からは、上記導電性粒子は、導電性粒子と、上記導電性粒子の表面上に配置されたアニオンポリマーとを有することが好ましい。上記導電性粒子は、導電性粒子をアニオンポリマー又はアニオンポリマーとなる化合物で表面処理することにより得られることが好ましい。上記導電性粒子は、アニオンポリマー又はアニオンポリマーとなる化合物による表面処理物であることが好ましい。上記アニオンポリマー及び上記アニオンポリマーとなる化合物はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
導電性粒子本体をアニオンポリマーで表面処理する方法としては、アニオンポリマーとして、例えば(メタ)アクリル酸を共重合した(メタ)アクリルポリマー、ジカルボン酸とジオールとから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、ジカルボン酸の分子間脱水縮合反応により得られかつ両末端にカルボキシル基を有するポリマー、ジカルボン酸とジアミンから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、並びにカルボキシル基を有する変性ポバール(日本合成化学社製「ゴーセネックスT」)等を用いて、アニオンポリマーのカルボキシル基と、導電性粒子本体の表面の水酸基とを反応させる方法が挙げられる。
上記アニオンポリマーのアニオン部分としては、上記カルボキシル基が挙げられ、それ以外には、トシル基(p−HCCS(=O)−)、スルホン酸イオン基(−SO )、及びリン酸イオン基(−PO )等が挙げられる。
また、表面処理の他の方法としては、導電性粒子本体の表面の水酸基と反応する官能基を有し、さらに、付加、縮合反応により重合可能な官能基を有する化合物を用いて、この化合物を導電性粒子本体の表面上にてポリマー化する方法が挙げられる。導電性粒子本体の表面の水酸基と反応する官能基としては、カルボキシル基、及びイソシアネート基等が挙げられ、付加、縮合反応により重合する官能基としては、水酸基、カルボキシル基、アミノ基、及び(メタ)アクリロイル基が挙げられる。
上記アニオンポリマーの重量平均分子量は好ましくは2000以上、より好ましくは3000以上であり、好ましくは10000以下、より好ましくは8000以下である。上記重量平均分子量が上記下限以上及び上記上限以下であると、導電性粒子の表面に十分な量の電荷、及びフラックス性を導入することができる。これにより、導電接続時に導電性粒子の凝集性を効果的に高めることができ、かつ、接続対象部材の接続時に、電極の表面の酸化膜を効果的に除去することができる。
上記重量平均分子量が上記下限以上及び上記上限以下であると、導電性粒子本体の表面上にアニオンポリマーを配置することが容易であり、導電接続時に導電性粒子におけるはんだの凝集性を効果的に高めることができ、電極上に導電性粒子をより一層効率的に配置することができる。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。
導電性粒子本体をアニオンポリマーとなる化合物で表面処理することにより得られたポリマーの重量平均分子量は、導電性粒子中のはんだを溶解し、ポリマーの分解を起こさない希塩酸等により、導電性粒子を除去した後、残存しているポリマーの重量平均分子量を測定することで求めることができる。
アニオンポリマーの導電性粒子の表面における導入量に関しては、導電性粒子1gあたりの酸価が、好ましくは1mgKOH以上、より好ましくは2mgKOH以上であり、好ましくは10mgKOH以下、より好ましくは6mgKOH以下である。
上記酸価は以下のようにして測定可能である。
導電性粒子1gを、アセトン36gに添加し、超音波にて1分間分散させる。その後、指示薬として、フェノールフタレインを用い、0.1mol/Lの水酸化カリウムエタノール溶液にて滴定する。
次に図面を参照しつつ、導電性粒子の具体例を説明する。
図4は、導電材料に使用可能な導電性粒子の第1の例を示す断面図である。
図4に示す導電性粒子21は、はんだ粒子である。導電性粒子21は、全体がはんだにより形成されている。導電性粒子21は、基材粒子をコアに有さず、コアシェル粒子ではない。導電性粒子21は、中心部分及び導電部の外表面部分のいずれもがはんだにより形成されている。
図5は、導電材料に使用可能な導電性粒子の第2の例を示す断面図である。
図5に示す導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された導電部33とを備える。導電部33は、基材粒子32の表面を被覆している。導電性粒子31は、基材粒子32の表面が導電部33により被覆された被覆粒子である。
導電部33は、第2の導電部33Aと、はんだ部33B(第1の導電部)とを有する。導電性粒子31は、基材粒子32と、はんだ部33Bとの間に、第2の導電部33Aを備える。従って、導電性粒子31は、基材粒子32と、基材粒子32の表面上に配置された第2の導電部33Aと、第2の導電部33Aの外表面上に配置されたはんだ部33Bとを備える。
図6は、導電材料に使用可能な導電性粒子の第3の例を示す断面図である。
導電性粒子31における導電部33は2層構造を有する。図6に示す導電性粒子41は、単層の導電部として、はんだ部42を有する。導電性粒子41は、基材粒子32と、基材粒子32の表面上に配置されたはんだ部42とを備える。
以下、導電性粒子の他の詳細について説明する。
(基材粒子)
上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。上記基材粒子は、銅粒子であってもよい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを有していてもよく、コアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン−スチレン共重合体及びジビニルベンゼン−(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
「(メタ)アクリレート」の用語は、アクリレートとメタクリレートとを示す。「(メタ)アクリル」の用語は、アクリルとメタクリルとを示す。「(メタ)アクリロイル」の用語は、アクリロイルとメタクリロイルとを示す。
上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗をより一層低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。
上記有機コアを形成するための材料としては、上述した樹脂粒子を形成するための樹脂等が挙げられる。
上記無機シェルを形成するための材料としては、上述した基材粒子を形成するための無機物が挙げられる。上記無機シェルを形成するための材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼結させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。
上記コアの粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは50μm以下である。上記コアの粒子径が上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。例えば、上記コアの粒子径が上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ基材粒子の表面に導電部を形成する際、凝集した導電性粒子を形成され難くすることができる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が基材粒子の表面から剥離し難くすることができる。
上記コアの粒子径は、上記コアが真球状である場合には直径を意味し、上記コアが真球状以外の形状である場合には、最大径を意味する。また、コアの粒子径は、コアを任意の粒子径測定装置により測定した平均粒子径を意味する。例えば、レーザー光散乱、電気抵抗値変化、撮像後の画像解析等の原理を用いた粒度分布測定装置が利用できる。
上記シェルの厚みは、好ましくは100nm以上、より好ましくは200nm以上であり、好ましくは5μm以下、より好ましくは3μm以下である。上記シェルの厚みが上記下限以上及び上記上限以下であると、電極間の電気的な接続により一層適した導電性粒子が得られ、基材粒子を導電性粒子の用途に好適に使用可能になる。上記シェルの厚みは、基材粒子1個あたりの平均厚みである。ゾルゲル法の制御によって、上記シェルの厚みを制御可能である。
上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。上記基材粒子が金属粒子である場合には、該金属粒子は銅粒子であることが好ましい。但し、上記基材粒子は金属粒子ではないことが好ましい。
上記基材粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは100μm以下、より好ましくは50μm以下である。上記基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性をより一層高めることができ、導電性粒子を介して接続された電極間の接続抵抗をより一層低くすることができる。上記基材粒子の粒子径が上記上限以下であると、導電性粒子が十分に圧縮されやすく、電極間の接続抵抗をより一層低くすることができ、さらに電極間の間隔をより小さくすることができる。
上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。
上記基材粒子の粒子径は、5μm以上、40μm以下であることが特に好ましい。上記基材粒子の粒子径が5μm以上、40μm以下の範囲内であると、電極間の間隔をより小さくすることができ、かつ導電層の厚みを厚くしても、小さい導電性粒子を得ることができる。
(導電部)
上記基材粒子の表面上に導電部を形成する方法、並びに上記基材粒子の表面上又は上記第2の導電部の表面上にはんだ部を形成する方法は特に限定されない。上記導電部及び上記はんだ部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。なかでも、無電解めっき、電気めっき又は物理的な衝突による方法が好適である。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。
上記基材粒子の融点は、上記導電部及び上記はんだ部の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、さらに好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。
上記導電性粒子は、単層のはんだ部を有していてもよい。上記導電性粒子は、複数の層の導電部(はんだ部,第2の導電部)を有していてもよい。すなわち、上記導電性粒子では、導電部を2層以上積層してもよい。上記導電部が2層以上の場合、上記導電性粒子は、導電部の外表面部分にはんだを有することが好ましい。
上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ部は、融点が450℃以下である金属層(低融点金属層)であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記導電性粒子におけるはんだは、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記導電性粒子におけるはんだは錫を含むことが好ましい。上記はんだ部に含まれる金属100重量%中及び上記導電性粒子におけるはんだに含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記導電性粒子におけるはんだに含まれる錫の含有量が上記下限以上であると、導電性粒子と電極との導通信頼性がより一層高くなる。
なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)、又は蛍光X線分析装置(島津製作所社製「EDX−800HS」)等を用いて測定可能である。
上記はんだを導電部の外表面部分に有する導電性粒子を用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだを導電部の外表面部分に有する導電性粒子の使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性が効果的に高くなる。
上記はんだ部及び上記はんだを構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫−銀合金、錫−銅合金、錫−銀−銅合金、錫−ビスマス合金、錫−亜鉛合金、錫−インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫−銀合金、錫−銀−銅合金、錫−ビスマス合金、錫−インジウム合金であることが好ましい。錫−ビスマス合金、錫−インジウム合金であることがより好ましい。
上記はんだ(はんだ部)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。低融点で鉛フリーである錫−インジウム系(117℃共晶)、又は錫−ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。
上記はんだと電極との接合強度をより一層高めるために、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだと電極との接合強度をさらに一層高める観点からは、上記導電性粒子におけるはんだは、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部又は導電性粒子におけるはんだと電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、上記導電性粒子におけるはんだ100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
上記第2の導電部の融点は、上記はんだ部の融点よりも高いことが好ましい。上記第2の導電部の融点は好ましくは160℃を超え、より好ましくは300℃を超え、さらに好ましくは400℃を超え、さらに一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ部は融点が低いために導電接続時に溶融する。上記第2の導電部は導電接続時に溶融しないことが好ましい。上記導電性粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ部を溶融させて用いられることが好ましく、上記はんだ部を溶融させてかつ上記第2の導電部を溶融させずに用いられることが好ましい。上記第2の導電部の融点が上記はんだ部の融点をよりも高いことによって、導電接続時に、上記第2の導電部を溶融させずに、上記はんだ部のみを溶融させることができる。
上記はんだ部の融点と上記第2の導電部との融点との差の絶対値は、0℃を超え、好ましくは5℃以上、より好ましくは10℃以上、さらに好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。
上記第2の導電部は、金属を含むことが好ましい。上記第2の導電部を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記第2の導電部は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層又は金層であることがより好ましく、銅層であることがさらに好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層又は金層を有することがより好ましく、銅層を有することがさらに好ましい。これらの好ましい導電部を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電部の表面には、はんだ部をより一層容易に形成できる。
上記はんだ部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。はんだ部の厚みが上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。
上記導電性粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは50μm以下、より好ましくは30μm以下である。上記導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、電極上に導電性粒子をより一層効率的に配置することができ、導通信頼性がより一層高くなる。
上記導電性粒子の平均粒子径は、数平均粒子径を示す。導電性粒子の平均粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。
上記導電性粒子の粒子径の変動係数は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記粒子径の変動係数が上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。但し、上記導電性粒子の粒子径の変動係数は、5%未満であってもよい。
上記変動係数(CV値)は、以下のようにして測定できる。
CV値(%)=(ρ/Dn)×100
ρ:導電性粒子の粒子径の標準偏差
Dn:導電性粒子の粒子径の平均値
上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、扁平状等の球形状以外の形状であってもよい。
上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは40重量%以上、より好ましくは50重量%以上であり、好ましくは95重量%以下、より好ましくは90重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極上に導電性粒子をより一層効率的に配置することができ、電極間に導電性粒子におけるはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記導電性粒子の含有量は多い方が好ましい。
(熱可塑性成分)
上記熱可塑性成分は、熱可塑性化合物であることが好ましい。上記熱可塑性化合物としては、フェノキシ樹脂、ウレタン樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂及びポリアミド樹脂等が挙げられる。上記熱可塑性化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記導電材料100重量%中、上記熱可塑性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、さらに好ましくは90重量%以下、特に好ましくは80重量%以下である。耐衝撃性をより一層高める観点からは、上記熱可塑性化合物の含有量は多い方が好ましい。
(熱硬化性成分:熱硬化性化合物)
上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にし、導通信頼性をより一層高める観点から、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記熱硬化性成分は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記エポキシ化合物としては、芳香族エポキシ化合物が挙げられる。レゾルシノール型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物、ベンゾフェノン型エポキシ化合物等の結晶性エポキシ化合物が好ましい。常温(23℃)で固体であり、かつ溶融温度がはんだの融点以下であるエポキシ化合物が好ましい。溶融温度は好ましくは100℃以下、より好ましくは80℃以下であり、好ましくは40℃以上である。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができ、なおかつ、硬化時の熱により、粘度を大きく低下させることができ、導電性粒子におけるはんだの凝集を効率よく進行させることができる。
上記導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上であり、好ましくは99重量%以下、より好ましくは98重量%以下、さらに好ましくは90重量%以下、特に好ましくは80重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、導電性粒子を電極上により一層効率的に配置し、電極間の位置ずれをより一層抑制し、電極間の導通信頼性をより一層高めることができる。耐衝撃性をより一層高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。
(熱硬化性成分:熱硬化剤)
上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、酸無水物硬化剤、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
なかでも、導電材料を低温でより一層速やかに硬化可能であるので、イミダゾール硬化剤、チオール硬化剤又はアミン硬化剤が好ましい。また、加熱により硬化可能な硬化性化合物と上記熱硬化剤とを混合したときに保存安定性が高くなるので、潜在性の硬化剤が好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。
上記イミダゾール硬化剤としては、特に限定されず、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン及び2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物等が挙げられる。
上記チオール硬化剤としては、特に限定されず、トリメチロールプロパントリス−3−メルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート及びジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。
上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン、ビス(4−アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。
上記熱カチオン開始剤(熱カチオン硬化剤)としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ−p−トリルスルホニウムヘキサフルオロホスファート等が挙げられる。
上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ−tert−ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。
上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が上記下限以上及び上記上限以下であると、導電性粒子におけるはんだが電極上により一層効率的に配置される。上記熱硬化剤の反応開始温度は80℃以上、140℃以下であることが特に好ましい。
導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記導電性粒子におけるはんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことがさらに好ましい。
上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。
上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。熱硬化剤の含有量が上記下限以上であると、導電材料を十分に硬化させることが容易である。熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。
(フラックス)
上記導電材料は、フラックスを含む。フラックスの使用により、導電性粒子におけるはんだを電極上により一層効率的に配置することができる。
上記フラックスは、酸化合物と塩基化合物との塩である。上記酸化合物は、金属の表面を洗浄する効果を有することが好ましく、上記塩基化合物は、上記酸化合物を中和する作用を有することが好ましい。上記フラックスは、上記酸化合物と上記塩基化合物との中和反応物であることが好ましい。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記フラックスの融点は、好ましくは60℃以上、より好ましくは80℃以上である。上記フラックスの融点が上記下限以上であると、上記フラックスの保存安定性がより一層高くなる。
導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記導電性粒子におけるはんだの融点よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことがさらに好ましい。但し、上記フラックスの融点は、上記導電性粒子におけるはんだの融点よりも高くてもよい。通常、上記導電材料の使用温度は上記導電性粒子におけるはんだの融点以上であり、上記フラックスの融点が上記導電材料の使用温度以下であれば、上記フラックスの融点が上記導電性粒子におけるはんだの融点よりも高くても、上記フラックスは十分にフラックスとしての性能を発揮することができる。例えば、導電材料の使用温度が150℃以上であり、導電性粒子におけるはんだ(Sn42Bi58:融点139℃)と、リンゴ酸とベンジルアミンとの塩であるフラックス(融点146℃)とを含む導電材料において、上記リンゴ酸とベンジルアミンとの塩であるフラックスは、十分にフラックス作用を示す。
導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことがさらに好ましい。
上記酸化合物は、カルボキシル基を有する有機化合物であることが好ましい。上記酸化合物としては、脂肪族系カルボン酸であるマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4−シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。上記酸化合物は、グルタル酸、アゼライン酸、又はリンゴ酸であることが好ましい。
上記塩基化合物は、アミノ基を有する有機化合物であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−tert−ブチルベンジルアミン、N−メチルベンジルアミン、N−エチルベンジルアミン、N−フェニルベンジルアミン、N−tert−ブチルベンジルアミン、N−イソプロピルベンジルアミン、N,N−ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。上記塩基化合物は、ベンジルアミン、2−メチルベンジルアミン、又は3−メチルベンジルアミンであることが好ましい。
上記フラックスは、導電材料中に分散されていてもよく、導電性粒子の表面上に付着していてもよい。フラックス効果をより一層効果的に高める観点からは、上記フラックスは、導電性粒子の表面上に付着していていることが好ましい。
導電材料の保存安定性をより一層高くする観点、及び導電材料が一定時間放置された場合でも、優れたはんだ凝集性を発揮し、導電性粒子におけるはんだを電極上により一層効率的に配置する観点からは、上記フラックスは、25℃で固体であることが好ましく、25℃の導電材料中で、上記フラックスが固体で分散していることが好ましい。
フラックスが導電材料中に均一に溶解した状態で添加されている場合、熱硬化性成分とフラックスとが一部反応することで粘度が上昇することがある。また、接続対象部材上に導電材料が配置され、導電材料が空気と長時間接触する状態に置かれると、空気中の水分によりフラックスと熱硬化性化合物の反応が促進されたり、フラックスとはんだの表面との反応により金属イオンが生成したりするなどして、はんだの凝集性や隣接電極間の絶縁性が低下することがある。これに対して、25℃の導電材料中で、上記フラックスは固体で存在すると、フラックスの表面のみが上記影響を受けるだけで済むので、高い保存安定性や、導電材料が一定時間放置された後でも高い導通性、絶縁性を発現することができる。
また、25℃の導電材料中で、上記フラックスは固体で存在しており、上記フラックスがはんだの融点より低い温度で溶解する場合には、導電材料がペーストである場合、室温(23℃)では導電材料にチクソ性を付与することができる。これにより、導電性粒子の沈降を防止したり、塗布後の形状保持性を発現したりすることができ、不要な箇所への導電材料の流出をより一層防止することができる。導電材料がフィルムである場合、上記フラックスが固体であることで、導電材料中の液状分を低減することができるため、フィルムのカット性、カット面からの滲み出しを抑制することができる。
また、上記フラックスがはんだの融点より低い温度で溶解する場合には、はんだの融点では、フラックスは溶解しているため、導電材料の溶融粘度が十分に下がり、より一層良好なはんだ凝集性が発揮される。
さらに、上記フラックスがはんだの融点より低い温度で溶解する場合には、はんだの融点以上では、フラックスが熱硬化性化合物、又は、熱硬化剤に溶解し、さらに、例えば熱硬化性化合物又は熱硬化剤とフラックスとが反応することで、フラックス成分が硬化物中に取り込まれる。これにより、隣接電極間の高い絶縁性を発現することができ、さらに電極の腐食を防止することができる。
上記フラックスの平均粒子径は、好ましくは0.5μm以上であり、好ましくは50μm以下である。上記フラックスの平均粒子径が上記下限以上、上記上限以下であると、フラックスを、樹脂と反応させずに導電材料中に存在させることができ、導電材料の保存安定性をより一層高めることができる。
また、上記フラックスの平均粒子径の、上記導電性粒子の平均粒子径に対する比(フラックスの平均粒子径/導電性粒子の平均粒子径)は、好ましくは0.01以上、より好ましくは0.05以上、さらに好ましくは0.1以上であり、好ましくは100以下、より好ましくは50以下、さらに好ましくは10以下である。上記比が上記下限以上、上記上限以下であると、フラックスを導電性粒子に対して効果的に接触させることができ、加熱時のフラックス性能をより一層高めることができる。
上記フラックスは、例えば、上記酸化合物と上記塩基化合物とを中和反応させることにより得ることができる。上記フラックスを得る方法としては、上記酸化合物と上記塩基化合物とを溶媒中で反応させ、反応終了後、上記溶媒を除去することが好ましい。上記酸化合物と上記塩基化合物とを反応させる際に溶媒を用いることで、上記フラックス中に上記酸化合物及び上記塩基化合物を残存させないことができる、又は、上記フラックス中の上記酸化合物及び上記塩基化合物の含有量を低減させることができる。結果として、上記塩の状態ではない上記酸化合物及び上記塩基化合物の含有量を低減することができる。
上記導電材料100重量%中、上記フラックスの含有量は、好ましくは0.1重量%以上、より好ましくは0.2重量%以上であり、好ましくは20重量%以下、より好ましくは10重量%以下である。上記フラックスの含有量が上記下限以上及び上記上限以下であると、導電性粒子におけるはんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、導電性粒子におけるはんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。
(フィラー)
上記導電材料には、フィラーを添加してもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。フィラーの添加により、基板の全電極上に対して、導電性粒子を均一に凝集させることができる。
上記導電材料は、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。結晶性熱硬化性化合物を用いている場合には、フィラーの含有量が少ないほど、電極上にはんだが移動しやすくなる。
上記導電材料100重量%中、上記フィラーの含有量は、好ましくは0重量%(未含有)以上であり、好ましくは5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。上記フィラーの含有量が上記下限以上及び上記上限以下であると、導電性粒子が電極上により一層効率的に配置される。
(他の成分)
上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(接続構造体)
本発明に係る接続構造体は、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
本発明に係る接続構造体では、特定の導電材料を用いているので、導電性粒子におけるはんだが第1の電極と第2の電極との間に集まりやすく、はんだを電極(ライン)上に効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。
また、導電性粒子におけるはんだを電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。
電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上であり、好ましくは100%以下である。
以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。
図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、導電材料は、導電性粒子と、熱硬化性化合物と、熱硬化剤とを含む。本実施形態では、上記導電性粒子として、はんだ粒子を含む。上記熱硬化性化合物と上記熱硬化剤とを、熱硬化性成分(硬化性成分)と呼ぶ。
接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。
第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。
図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電部の外表面部分がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電材料は、フラックスを含んでいてもよい。フラックスを用いた場合には、加熱により、一般にフラックスは次第に失活する。
なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。
はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。
導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。
次に、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。
先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電材料11を配置する(第1の工程)。導電材料11は、熱硬化性成分11Bとして、熱硬化性化合物と熱硬化剤とを含む。
第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。
導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。
また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。
次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(熱硬化性化合物)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4を、導電材料11により形成する。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。
本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子が第1の電極と第2の電極との間に集まろうとする作用が阻害される傾向が高くなる。
また、本実施形態では、加圧を行っていないため、導電材料を塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極のアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材との電極を接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集した溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料の導電性粒子以外の成分の粘度が十分低いことが望ましい。
はんだの融点での導電材料の粘度は、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは1Pa・s以下であり、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上である。上記粘度が上記上限以下であれば、導電性粒子におけるはんだを効率的に凝集させることができ、上記粘度が上記下限以上であれば、接続部でのボイドを抑制し、接続部以外への導電材料のはみだしを抑制することができる。
はんだの融点での導電材料の粘度は以下のようにして測定される。
上記はんだの融点での導電材料の粘度は、STRESSTECH(EOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25〜200℃(但し、はんだの融点が200℃を超える場合には温度上限をはんだの融点とする)の条件で測定可能である。測定結果から、はんだの融点(℃)での粘度が評価される。
このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下である。
上記第3の工程における加熱方法としては、導電性粒子におけるはんだの融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。
局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだを電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
熱硬化性成分(熱硬化性化合物):
ADEKA社製「EP−3300S」、結晶性エポキシ樹脂
熱硬化性成分(熱硬化剤):
淀化学社製「TMTP」、トリメチロールプロパントリスチオプロピオネート
T&K TOKA社製「フジキュア7000」、潜在性熱硬化剤
導電性粒子:
はんだ粒子:三井金属鉱業社製「Sn42Bi58(DS−10)」
フラックス:
フラックス1の作製方法:
ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5〜10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥し、フラックス1を得た。得られたフラックス1を所定の平均粒子径となるように乳鉢にて粉砕した。
フラックス2の作製方法:
反応溶媒である水24gの代わりに、反応溶媒として、水−メタノール溶液(水:16g、メタノール:8g)24gを用いたこと以外は、フラックス1の作製方法と同様にして、フラックス2を得た。
フラックス3の作製方法:
反応溶媒である水24gの代わりに、反応溶媒として、水−エタノール溶液(水:18g、エタノール:6g)24gを用いたこと以外は、フラックス1の作製方法と同様にして、フラックス3を得た。
フラックス4の作製方法:
ガラスビンに、反応溶媒である水24gと、リンゴ酸(和光純薬工業社製)13.41gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを投入して、約5分間撹拌し、混合液を得た。得られた混合液を5〜10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥し、フラックス4を得た。得られたフラックス4を所定の平均粒子径となるように乳鉢にて粉砕した。
フラックス5の作製方法:
3つ口フラスコに、アセトン160gと、ピメリン酸(和光純薬工業社製)38.79gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)26gを30分かけて滴下し、滴下完了後2時間室温で撹拌した。析出した白色結晶をろ過により分取し、アセトンで洗浄し、真空乾燥し、フラックス5を得た。得られたフラックス5を所定の平均粒子径となるように乳鉢にて粉砕した。
フラックス6の作製方法:
3つ口フラスコに、メチルエチルケトン160gと、アゼライン酸(和光純薬工業社製)45.59gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)26gを30分かけて滴下し、滴下完了後2時間室温で撹拌した。析出した白色結晶をろ過により分取し、メチルエチルケトンで洗浄し、真空乾燥し、フラックス6を得た。得られたフラックス6を所定の平均粒子径となるように乳鉢にて粉砕した。
フラックス7の作製方法:
3つ口フラスコに、クエン酸一水和物12.6gと、トリエタノールアミン26.8gとを添加し、120℃のオイルバスで攪拌しながらクエン酸を溶融させた。得られたクエン酸トリエタノールアミン塩は、粘稠液体であった。
(フラックスの着色有無)
作製直後のフラックスの着色の有無を目視で確認した。また、該フラックスを常温で1ヶ月間放置した。その後、常温で1ヶ月間放置したフラックスの着色が、作製直後のフラックスの着色よりも深刻化(進行)しているか否かを目視で確認した。
(フラックスの平均粒子径)
フラックスの平均粒子径は、走査型電子顕微鏡(日立製作所社製「S−4300SEN」)を用いて、任意のフラックス粒子50個の粒子径を測定し、その平均値から算出した。
(フラックスの融点)
フラックスの融点はDSC(セイコーインスツル社製「DSC6200」)にて測定し、吸熱ピークから算出した。
(フラックス及び導電性粒子の混合物の黄変有無)
得られたフラックスと導電性粒子とを、下記の表1に示す配合量で配合し、混合物を得た。得られた混合物を150℃に加熱して、はんだを溶融させた。加熱後の混合物の黄変の有無を目視で確認した。
(実施例1〜4及び比較例1〜3)
(1)異方性導電ペーストの作製
下記の表1に示す成分を下記の表1に示す配合量で配合して、異方性導電ペーストを得た。得られた異方性導電ペーストにおいて、フラックスは表1に示す状態で存在していた。また、得られた異方性導電ペーストにおいて、導電材料中の塩ではない酸化合物の含有量及び導電材料中の塩ではない塩基化合物の含有量(重量%)は表1に示す含有量であった。
(2)第1の接続構造体(L/S=50μm/50μm)の作製
(条件Aでの接続構造体の具体的な作製方法)
作製直後の異方性導電ペーストを用いて、以下のようにして、第1の接続構造体を作製した。
L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが50μm/50μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
上記ガラスエポキシ基板と上記フレキシブルプリント基板との重ね合わせ面積は、1.5cm×3mmとし、接続した電極数は75対とした。
上記ガラスエポキシ基板の上面に、作製直後の異方性導電ペーストを、ガラスエポキシ基板の電極上で厚さ100μmとなるように、メタルマスクを用い、スクリーン印刷にて塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。このとき、加圧を行わなかった。異方性導電ペースト層には、上記フレキシブルプリント基板の重量は加わる。その後、異方性導電ペースト層の温度が190℃となるように加熱しながら、はんだを溶融させ、かつ異方性導電ペースト層を190℃、10秒で硬化させ、第1の接続構造体を得た。
(条件Bでの接続構造体の具体的な作製方法)
以下の変更をしたこと以外は、条件Aと同様にして、第1の接続構造体を作製した。
条件Aから条件Bへの変更点:
ガラスエポキシ基板の上面に、作製直後の異方性導電ペーストを、ガラスエポキシ基板の電極上で厚さ100μmとなるように、メタルマスクを用い、スクリーン印刷にて塗工し、異方性導電ペースト層を形成した後、大気雰囲気下、23℃、50%RHで12時間放置した。放置後、異方性導電ペースト層の上面にフレキシブルプリント基板を、電極同士が対向するように積層した。
(3)第2の接続構造体(L/S=75μm/75μm)の作製
L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが75μm/75μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、条件A及びBでの第2の接続構造体を得た。
(4)第3の接続構造体(L/S=100μm/100μm)の作製
L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが100μm/100μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、条件A及びBでの第3の接続構造体を得た。
(評価)
(1)粘度上昇率(η2/η1)
作製直後の異方性導電ペーストの25℃での粘度(η1)を測定した。また、作製直後の異方性導電ペーストを常温で24時間放置し、放置後の異方性導電ペーストの25℃での粘度(η2)を測定した。上記粘度は、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃及び5rpmの条件で測定した。粘度の測定値から、粘度上昇率(η2/η1)を算出した。粘度上昇率(η2/η1)を下記の基準で判定した。
[粘度上昇率(η2/η1)の判定基準]
○:粘度上昇率(η2/η1)が2以下
×:粘度上昇率(η2/η1)が2を超える
(2)はんだ部の厚み
得られた第1の接続構造体を断面観察することにより、上下の電極が間に位置しているはんだ部の厚みを評価した。
(3)電極上のはんだの配置精度
得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度を下記の基準で判定した。
[電極上のはんだの配置精度の判定基準]
○○:割合Xが70%以上
○:割合Xが60%以上、70%未満
△:割合Xが50%以上、60%未満
×:割合Xが50%未満
(4)上下の電極間の導通信頼性
得られた第1,第2,第3の接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により、測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
[導通信頼性の判定基準]
○○:接続抵抗の平均値が50mΩ以下
○:接続抵抗の平均値が50mΩを超え、70mΩ以下
△:接続抵抗の平均値が70mΩを超え、100mΩ以下
×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
(5)横方向に隣接する電極間の絶縁信頼性
得られた第1,第2,第3の接続構造体(n=15個)において、85℃、湿度85%の雰囲気中に100時間放置後、横方向に隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。
[絶縁信頼性の判定基準]
○○:接続抵抗の平均値が10Ω以上
○:接続抵抗の平均値が10Ω以上、10Ω未満
△:接続抵抗の平均値が10Ω以上、10Ω未満
×:接続抵抗の平均値が10Ω未満
(6)上下の電極間の位置ずれ
得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極の中心線と第2の電極の中心線とが揃っているか否かを観察し、位置ずれの距離を評価した。上下の電極間の位置ずれを下記の基準で判定した。
[上下の電極間の位置ずれの判定基準]
○○:位置ずれが15μm未満
○:位置ずれが15μm以上、25μm未満
△:位置ずれが25μm以上、40μm未満
×:位置ずれが40μm以上
(7)導電材料の変色
得られた第1,第2,第3の接続構造体において、各接続構造体の接続部が変色しているか否かを顕微鏡で観察し、導電材料の変色を評価した。導電材料の変色を下記の基準で判定した。
[導電材料の変色の判定基準]
○:接続部が変色していない
×:接続部が変色している
結果を下記の表1に示す。
Figure 2018045906
フレキシブルプリント基板にかえて、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。
1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…導電材料
11A…はんだ粒子(導電性粒子)
11B…熱硬化性成分
21…導電性粒子(はんだ粒子)
31…導電性粒子
32…基材粒子
33…導電部(はんだを有する導電部)
33A…第2の導電部
33B…はんだ部
41…導電性粒子
42…はんだ部

Claims (15)

  1. 導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、酸化合物と塩基化合物との塩であるフラックスとを含み、
    前記酸化合物を含まないか又は含み、かつ導電材料中に前記酸化合物が含まれる場合には前記酸化合物の含有量が2重量%以下であり、
    前記塩基化合物を含まないか又は含み、かつ導電材料中に前記塩基化合物が含まれる場合には前記塩基化合物の含有量が2重量%以下である、導電材料。
  2. イミン化合物を含まないか、又は、イミン化合物を2重量%以下で含む、請求項1に記載の導電材料。
  3. 前記フラックスが、25℃で固体であり、
    25℃の導電材料中で、前記フラックスが固体で分散している、請求項1又は2に記載の導電材料。
  4. 前記酸化合物が、カルボキシル基を有する有機化合物である、請求項1〜3のいずれか1項に記載の導電材料。
  5. 前記塩基化合物が、アミノ基を有する有機化合物である、請求項1〜4のいずれか1項に記載の導電材料。
  6. 前記導電性粒子の表面上に、前記フラックスが付着している、請求項1〜5のいずれか1項に記載の導電材料。
  7. 前記フラックスの含有量が、0.1重量%以上、20重量%以下である、請求項1〜6のいずれか1項に記載の導電材料。
  8. 前記導電性粒子の含有量が、40重量%以上、95重量%以下である、請求項1〜7のいずれか1項に記載の導電材料。
  9. 導電ペーストである、請求項1〜8のいずれか1項に記載の導電材料。
  10. 導電部の外表面部分にはんだを有する複数の導電性粒子と、バインダーと、酸化合物と塩基化合物との塩であるフラックスとを混合し、導電材料を得る混合工程を備え、
    前記酸化合物を含まないか又は含み、かつ導電材料中に前記酸化合物が含まれる場合には前記酸化合物の含有量が2重量%以下であり、前記塩基化合物を含まないか又は含み、かつ導電材料中に前記塩基化合物が含まれる場合には前記塩基化合物の含有量が2重量%以下である導電材料を得る、導電材料の製造方法。
  11. 前記混合工程の前に、前記酸化合物と前記塩基化合物との塩である前記フラックスを得るために、前記酸化合物と前記塩基化合物とを溶媒中で反応させる反応工程と、
    前記溶媒を除去して、前記フラックスを回収する溶媒除去工程とをさらに備える、請求項10に記載の導電材料の製造方法。
  12. 前記反応工程における前記溶媒が、水を含む、請求項11に記載の導電材料の製造方法。
  13. 前記反応工程における前記溶媒が、水と混和する有機溶剤を含む、請求項11又は12に記載の導電材料の製造方法。
  14. 少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、
    少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、
    前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
    前記接続部の材料が、請求項1〜9のいずれか1項に記載の導電材料であり、
    前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
  15. 前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項14に記載の接続構造体。
JP2016180651A 2016-09-15 2016-09-15 導電材料、導電材料の製造方法及び接続構造体 Pending JP2018045906A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180651A JP2018045906A (ja) 2016-09-15 2016-09-15 導電材料、導電材料の製造方法及び接続構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180651A JP2018045906A (ja) 2016-09-15 2016-09-15 導電材料、導電材料の製造方法及び接続構造体

Publications (1)

Publication Number Publication Date
JP2018045906A true JP2018045906A (ja) 2018-03-22

Family

ID=61694985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180651A Pending JP2018045906A (ja) 2016-09-15 2016-09-15 導電材料、導電材料の製造方法及び接続構造体

Country Status (1)

Country Link
JP (1) JP2018045906A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020251043A1 (ja) * 2019-06-13 2020-12-17 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
TWI831825B (zh) * 2018-09-14 2024-02-11 日商積水化學工業股份有限公司 導電材料及連接構造體

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047615A (ja) * 2013-08-30 2015-03-16 株式会社タムラ製作所 はんだ組成物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047615A (ja) * 2013-08-30 2015-03-16 株式会社タムラ製作所 はんだ組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831825B (zh) * 2018-09-14 2024-02-11 日商積水化學工業股份有限公司 導電材料及連接構造體
WO2020251043A1 (ja) * 2019-06-13 2020-12-17 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
CN113950778A (zh) * 2019-06-13 2022-01-18 积水化学工业株式会社 导电性粒子、导电材料和连接结构体

Similar Documents

Publication Publication Date Title
JP6630284B2 (ja) 導電材料及び接続構造体
JP7425824B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2021185579A (ja) 導電材料及び接続構造体
JP2017195180A (ja) 導電材料及び接続構造体
JP6581434B2 (ja) 導電材料及び接続構造体
JP2017224602A (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2017033932A1 (ja) 導電材料及び接続構造体
JPWO2017029993A1 (ja) 導電材料及び接続構造体
JP2018006084A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2018045906A (ja) 導電材料、導電材料の製造方法及び接続構造体
JP6734141B2 (ja) 導電材料及び接続構造体
WO2017179532A1 (ja) 導電材料及び接続構造体
JP6067191B1 (ja) 導電材料及び接続構造体
JP6523105B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2017033933A1 (ja) 導電材料及び接続構造体
JP2018060786A (ja) 導電材料及び接続構造体
WO2017033931A1 (ja) 導電材料及び接続構造体
JP2018006085A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2018046004A (ja) 導電材料及び接続構造体
JP2017188327A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP6294973B2 (ja) 導電材料及び接続構造体
JP2017191685A (ja) 導電材料及び接続構造体
JP2017045606A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2018046003A (ja) 導電材料及び接続構造体
JP2017045542A (ja) 導電材料及び接続構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201013