JP2017528986A - 移動通信サービス用オムニアンテナ - Google Patents

移動通信サービス用オムニアンテナ Download PDF

Info

Publication number
JP2017528986A
JP2017528986A JP2017510475A JP2017510475A JP2017528986A JP 2017528986 A JP2017528986 A JP 2017528986A JP 2017510475 A JP2017510475 A JP 2017510475A JP 2017510475 A JP2017510475 A JP 2017510475A JP 2017528986 A JP2017528986 A JP 2017528986A
Authority
JP
Japan
Prior art keywords
radiating
radiation
radiating element
power supply
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017510475A
Other languages
English (en)
Other versions
JP6400839B2 (ja
Inventor
ヨン−チャン・ムン
オ−ソグ・チェ
イン−ホ・キム
ヒョン−ソク・ヤン
Original Assignee
ケーエムダブリュ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020140109486A priority Critical patent/KR102172187B1/ko
Priority to KR10-2014-0109486 priority
Application filed by ケーエムダブリュ・インコーポレーテッド filed Critical ケーエムダブリュ・インコーポレーテッド
Priority to PCT/KR2015/007548 priority patent/WO2016027997A1/ko
Publication of JP2017528986A publication Critical patent/JP2017528986A/ja
Application granted granted Critical
Publication of JP6400839B2 publication Critical patent/JP6400839B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Abstract

本発明は、移動通信サービス用オムニアンテナであって、水平面上で相互に同一の角度で配置され、各々ビームを放射する複数の放射素子と、複数の放射素子の各々に給電信号を分配して提供する給電部とを含み、複数の放射素子の各々は、2個の放射アームを有する水平偏波用ダイポール放射部と、2個の放射アームを有する垂直偏波用ダイポール放射部の結合構造を有する。

Description

本発明は、移動通信(PCS、セルラー、CDMA、GSM(登録商標)、LTEなど)ネットワークにおいて、基地局又は中継局に適用されるアンテナに関するもので、特にオムニアンテナに関する。
無指向性(non-directional)アンテナと呼ばれるオムニアンテナは、水平方向に360度全方向に均一に電磁波が放射されるように設計されるアンテナを意味する。移動通信ネットワークにおいて、移動通信端末は、その特性上、移動する方向を予測できないため、通常、円形のモノポール(mono-pole)アンテナ構造を採用するオムニアンテナを具備する。移動通信ネットワーク基地局又は中継局に設置されるアンテナとしては、一般的に3セクタに分割された各サービス範囲を指向するための指向性アンテナが設置される。
最近、LTE(Long Term Evolution)サービスが本格化されるに従って、建物内部のような陰影領域のスムーズなサービスのために、さらにデータ伝送速度を高めるために、小型セル又は超小型セル装備の構築が要求されている。アウトドア(outdoor)用小型セルは、0.5〜1.5kmのカバレッジでサービスされ、装備に対するサイズも小型を要求されるので、該当装備に適用されるアンテナは、オムニアンテナを採用することが有用であり得る。
一般的に使用されるオムニアンテナは、単一偏波(V-pol)を主に使用する。しかしながら、MIMO(Multi Input Multi Output)技術は、LTEサービスのために必然的であり、このために二重偏波アンテナが必ず必要である。オムニアンテナにおいて、従来の二重偏波は、水平偏波(H-pol;0度)、垂直偏波(V-pol;90度)を意味する。
しかしながら、二重偏波(+/−45度)は、フェージングが原因で電波の反射又は回折の2つの偏波間の相関度が最も低くて、通常に基地局や中継局に適用される指向性アンテナは、二重偏波(+/−45度)を主に使用する。それによって、オムニアンテナでも+/−45度の二重偏波を発生するための研究が進められているが、実際に全方向(omni-direction)の均一な放射特性を満たしつつ、+/−45度の二重偏波を発生するための構造を実現することは難しい課題であった。さらに、+/−45度の二重偏波を発生するとともに、建物内部のように小型セルに設置されることを考慮し、オムニアンテナのサイズを小型で実現することを考慮する場合に、これは、一層難しい課題であった。
したがって、本発明は上記した従来技術の問題点に鑑みてなされたものであって、その目的は、優れた全方向放射特性を満たしつつ、+45度又は−45度偏波を発生するための移動通信サービス用オムニアンテナを提供することにある。
本発明の他の目的は、+/−45度の二重偏波を発生するための移動通信サービス用オムニアンテナを提供することにある。
さらに、本発明の目的は、サイズを小型で実現しつつ、+/−45度の二重偏波を発生するための移動通信サービス用オムニアンテナを提供することにある。
上記のような目的を達成するために、本発明の一態様によれば、移動通信サービス用オムニアンテナが提供される。上記オムニアンテナは、水平面上で相互に同一の角度で配置され、各々ビームを放射する複数の放射素子と、複数の放射素子に各々給電信号を分配して提供する給電部とを含み、複数の放射素子の各々は、2個の放射アームを有する水平偏波用ダイポール放射部と、2個の放射アームを有する垂直偏波用ダイポール放射部の結合構造を有する。
複数の放射素子の各々は、フレキシブルプリント回路基板(Flexible Printed Circuit Board:FPCB)を用いてパターンプリント方式で構成できる。
複数の放射素子はFPCBに所定の間隔で配置され、FPCBは円筒形状の構造で設置できる。
複数の放射素子の各々は、水平偏波用ダイポール放射部の一側又は他側の放射アームと垂直偏波用ダイポール放射部の一側又は他側の放射アームが該当放射素子の中心位置で各々相互に接続され、水平偏波用ダイポール放射部の一側又は他側の放射アームと垂直偏波用ダイポール放射部の他側又は一側の放射アームが該当放射素子の中心位置で各々相互接続される構造を有し、水平偏波用ダイポール放射パターンと垂直偏波用ダイポール放射部が接続される部位に同時に給電されるように設計される。
本発明の他の態様によれば、移動通信サービス用オムニアンテナが提供される。上記オムニアンテナは、水平面上で相互同一の角度で配置され、各々ビームを放射する複数の放射素子を含み、各々垂直方向に連続して配置される複数の放射素子アレイと、複数の放射素子アレイに各々給電信号を分配して提供する給電部を含み、複数の放射素子アレイのそれぞれの複数の放射素子は、各々、2つの放射アームを有する水平偏波用ダイポール放射部と、2つの放射アームを有する垂直偏波用ダイポール放射部との結合構造を有する。
複数の放射素子アレイの各々において、複数の放射素子は、各々水平偏波用ダイポール放射部の一側又は他側の放射アームと垂直偏波用ダイポール放射部の一側又は他側の放射アームが該当放射素子の中心位置で各々相互接続される構造を有する第1タイプの放射素子で構成され、水平偏波用ダイポール放射部の一側又は他側の放射アームと垂直偏波用ダイポール放射部の他側又は一側の放射アームが該当放射素子の中心位置で各々相互に接続される構造を有する第2タイプの放射素子で構成され、水平偏波用ダイポール放射パターンと垂直偏波用ダイポール放射部が接続される部位に同時に給電されるように設計される。
複数の放射素子アレイの各々において、複数の放射素子は、一つのフレキシブルプリント回路基板(FPCB)を用いてパターンプリント方式で同時に構成される。
複数の放射素子アレイの各々において、複数の放射素子は、第1乃至第3の放射素子で構成され、第1乃至第3の放射素子が形成されるFPCBは円筒形の構造で設置される。
複数の放射素子アレイは、第1タイプの放射素子で構成される少なくとも一つの放射素子アレイと、第2タイプの放射素子で構成される少なくとも一つの放射素子アレイの組み合わせ構造を有する。
複数の放射素子アレイは、第1乃至第4の放射素子アレイが垂直方向に連続して配置される構造を有し、第1及び第2の放射素子アレイは、第1タイプ又は第2タイプの放射素子で構成され、第3及び第4の放射素子アレイは、第1及び第2の放射アレイとは異なるタイプの放射素子で構成される。
複数の放射素子アレイの各々に給電信号を分配して提供する給電部は、複数の放射素子アレイの各々に給電信号を提供する複数の給電基板を含み、複数の給電基板は、各々基板内層と、基板内層の上面に形成され、対応する放射素子アレイに形成された複数の放射素子に各々カップリング方式で給電するための複数のカップリング給電パターンを有する給電パターンと、基板内層の下面に形成される接地パターンを含む。
複数の給電基板の各々は、複数の給電線路を通じて給電され、異なる給電基板に給電する給電線路のうち少なくとも一つが通るための少なくとも一つの接続通路が貫通孔の形態で形成され、接続通路を通じて通る給電線路は接地パターンと半田付けされる。
本発明による移動通信サービス用オムニアンテナは、優れた全方向放射特性を満たし、かつ+/−45度の二重偏波を発生することができる。さらに、本発明は、全体アンテナサイズを小型で実現することもできる。
本発明の第1の実施形態による移動通信サービス用オムニアンテナの概略的な分離構造図である。 図1の一つの放射素子の第1タイプの構造を示す図である。 図1の一つの放射素子の第2タイプの構造を示す図である。 図1のオムニアンテナの放射特性を示すグラフである。 本発明の第2の実施形態による移動通信サービス用オムニアンテナを示す斜視図である。 図5のオムニアンテナを示す正面図である。 図5の放射素子アレイ間の偏波方向の組み合わせ特性を示す概略図である。 図5の一つの放射素子アレイを詳細に示す斜視図である。 図5の一つの放射素子アレイの展開平面図である。 図5の他の放射素子アレイの展開平面図である。 図5の一つの放射素子アレイに適用される給電基板を示す平面図である。 図11の給電基板を示す背面図である。 図5の他の放射素子アレイに適用される給電基板を示す平面図である。 図13の給電基板を示す背面図である。 図5のオムニアンテナの給電基板に対する給電線路の接続構造を示す図である。 図5のオムニアンテナの放射特性を示すグラフである。 図5のオムニアンテナの放射特性を示すグラフである。 図5のオムニアンテナの放射特性を示すグラフである。 図5のオムニアンテナの放射特性を示すグラフである。 本発明の他の実施形態による放射素子アレイを示す斜視図である。 本発明の他の実施形態による放射素子の構造を示す図である。
以下、本発明の望ましい実施形態を添付の図面を参照して詳細に説明する。
次の説明において、具体的な構成及び構成要素のような特定の詳細は、ただ本発明の実施形態の全般的な理解を助けるために提供されるだけである。したがって、本発明の範囲及び趣旨を逸脱することなく、以下に説明される本発明の様々な変形及び変更が可能であることは、当該技術分野における通常の知識を持つ者には明らかである。
図1は、本発明の第1の実施形態による移動通信サービス用オムニアンテナの概略的な分離構造を示す。図2は、図1の第1乃至第3の放射素子の各々の第1のタイプによる構造を示す。図1及び図2を参照すると、本発明によるオムニアンテナは、例えば3個の放射素子、すなわち第1乃至第3の放射素子11(11-1,11-2,11-3)の組み合わせ構造で実現できる。
図1及び図2を参照すると、第1乃至第3の放射素子11の放射パターン110は、各々2個の放射アーム(radiating arm)110b,110dを有する水平偏波用(H-pol)ダイポール放射部と、2個の放射アーム110a,110cを有する垂直偏波用(V-pol)ダイポール放射部の結合構造を有する。このとき、各々の放射素子11で水平偏波用ダイポール放射部の一側放射アーム110dと垂直偏波用ダイポール放射部の一側放射アーム110aは放射素子110の中心に位置する給電点Pに対応する部位で接続され、水平偏波用ダイポール放射部の他側の放射アーム110bと垂直偏波用ダイポール放射部の他側の放射アーム110cは、給電点Pに対応する部位で相互に接続される構造を有する。
すなわち、水平偏波用ダイポール放射部の一側の放射アーム110dと垂直偏波用ダイポール放射部の一側の放射アーム110aが対(pair)をなして一体に具備され、水平偏波用ダイポール放射部の他側の放射アーム110bと垂直偏波用ダイポール放射部の他側の放射アーム110cは、対をなして一体に提供されることがわかる。
各放射素子11に給電信号を供給する給電部の構成を説明すると、各放射素子11の給電点Pは、給電線路(例えば、図1の参照番号14)に接続されて給電され、給電点Pを通じて、水平偏波用ダイポール放射パターンの一側の放射アーム110dと垂直偏波用ダイポール放射部の一側の放射アーム110aが接続される接続部と、水平偏波用ダイポール放射部の他側の放射アーム110bと垂直偏波用ダイポール放射部の他側の放射アーム110cが接続される接続部に同時に給電されるように設計される。
第1乃至第3の放射素子11の各々の放射パターンは、薄い金属板(例えば、銅板)を成形して構成することもできる。さらに、図2の例に示すように、フレキシブルプリント回路基板(FPCB)112を用いてパターンプリント方式を通じる回路パターンで実現できる。
ここで、複数の放射素子11がFPCBに実現される技術を例に挙げて説明する。複数の放射素子は、PCBに限定することなく、円形又は楕円形で曲げられた銅板を用いて形成できる。また、FPCBの代わりに一般的な平板(flat)PCBを三角形や四角形のような多角形で構成して複数の放射素子を配置してもよい。少なくとも一つ以上の放射素子は、各平板PCBに配置してもよい。
図2に示すように、このような第1乃至第3の放射素子11が、小型化されたボウタイ(bow tie)型の水平偏波用ダイポールアンテナと、ボウタイ型の垂直偏波用ダイポールアンテナを結合し、例えば、+45度方向の偏波を発生する(第1タイプの)構造であることがわかる。このとき、水平偏波用ダイポール放射部と垂直偏波用ダイポール放射部は、相互対称になるように設計され、正確な+45度(又は−45度)偏波を発生できる。一方、図3は、図1に示した各放射素子11の第2タイプによる構造を示す。図3に示す第2タイプの構造による各放射素子11の放射パターン113は、図2に示した構造のように、各々2個の放射アーム113b,113dを有する水平偏波用(H-pol)ダイポール放射部と、2個の放射アーム113a,113cを有する垂直偏波用(V-pol)ダイポール放射部の結合構造を有する。
このとき、各々の放射素子において、水平偏波用ダイポール放射部の一側の放射アーム113dと垂直偏波用ダイポール放射部の他側の放射アーム113cは、放射素子113の中心に位置する給電点Pに対応する部分で相互接続し、水平偏波用ダイポール放射部の他側の放射アーム113bと垂直偏波用ダイポール放射部の他側の放射アーム113cが給電点Pに対応する部分で接続する構造を有する。すなわち、水平偏波用ダイポール放射部の一側の放射アーム113dと垂直偏波用ダイポール放射部の他側の放射アーム113cが対をなして一体に形成され、水平偏波用ダイポール放射部の他側の放射アーム113bと垂直偏波用ダイポール放射部の他側の放射アーム113cが対をなして一体に具備されることがわかる。
このとき、給電点Pを通じて、水平偏波用ダイポール放射パターンの一側の放射アーム113dと垂直偏波用ダイポール放射部の他側の放射アーム113cが接続される接続部分と、水平偏波用ダイポール放射部の他側の放射アーム113bと垂直偏波用ダイポール放射部の一側の放射アーム113aが接続される接続部分に同時に給電されるように設計される。
このような構造は、−45度方向の偏波を発生する構造であることがわかる。このように、図2又は図3に示すような構造で、要求される+45度又は−45度の偏波は、第1乃至第4の放射素子の放射パターンを形成することによって選択的に発生できる。
本発明の実施形態によるオムニアンテナは、図2又は図3に示す構成を有する各々の第1乃至第3の放射素子11を相互に結合して形成され、水平面上に一つの基準点から水平方向に所定の角度に従って一定の間隔で配置され得る。例えば、図1に示すように、第1乃至第3の放射素子11は、全体360度の水平面上で120度角度の同一の角度で相互に背面を突き合せて設置され、設置された位置から水平方向にビームを放射するように構成してもよい。このとき、第1乃至第3の放射素子11の各給電点Pは、一つの給電線路14から1/3に分配される信号を各々受信するように構成される。その他にも、本発明の第1の実施形態によるオムニアンテナは、一般的なアンテナ構造と同様に、オムニアンテナの全体外形を形成するレドーム構造を含むケース(図示せず)と、各放射素子11及び給電線路を支持するための支持物(図示せず)などを具備できる。さらに、上記アンテナは、送受信信号を処理するための信号処理装置をさらに具備してもよい。
上記図2と図3に示すように、4個の放射アームは、相互対称形の構造で同一の形状に設計されていることがわかる。このように、4個の放射アームが相互対称形に、かつ同一の形状に設計される場合には、放射アームが非対称構造である場合に必ず実行すべきダイポール放射部の振幅(amplitude)、位相(phase)などを調整するシミュレーション作業を省略できるという長所がある。したがって、製造工程を単純化し、製造時間を短縮することができ、大量生産を容易に実行できる。
図4は、図1のオムニアンテナの放射特性を3次元的に示すグラフである。図4に示すように、図1乃至図3に示すように構成される本発明の第1の実施形態によるオムニアンテナは、非常に優れた全方向放射特性を満たすことがわかる。
一方、上記した本発明の第1の実施形態によるオムニアンテナの構成において、オムニアンテナは、第1乃至第3の放射素子11を図2に示す第1のタイプの構造で構成される場合に全体的に+45度偏波を発生し、第1乃至第3の放射素子11を図3に示す第2タイプの構造で構成される場合には全体的に−45度偏波を発生する。それによって、本発明の他の実施形態では、第1タイプ及び第2タイプの放射素子をすべて使用して+/−45度の二重偏波を発生するための構造を提案する。このような構造は、例えば、第1タイプの放射素子で構成される図1に示したようなオムニアンテナ構造と、第2タイプの放射素子で構成されるオムニアンテナ構造を垂直方向に複数個配置して構成できる。
図5は、本発明の第2の実施形態による移動通信サービスのためのオムニアンテナの斜視図である。図6は、図5のオムニアンテナの正面図であり、図7は、図5の放射素子アレイ間の偏波方向の組み合わせ特性を示す概略図である。図5乃至図7を参照すると、本発明の第2の実施形態によるオムニアンテナは、図1に示した複数のオムニアンテナ構造が組み合わせられた構造を有する。以下、複数の組み合わせられたオムニアンテナ構造は、各々‘放射素子アレイ’と称される。
すなわち、本発明の第2の実施形態によるオムニアンテナは、第1乃至第4の放射素子アレイ21,22,23,24が垂直方向に連続して配置されて構成される。このとき、第1及び第2の放射素子アレイ21,22は、図3に示す第2タイプの放射素子で構成されて−45度偏波を全方向に発生する構成を有してもよい。また、第3及び第4の放射素子アレイ23,24は、図2に示す第1タイプの放射素子で構成されて+45度偏波を全方向に発生する構成を有してもよい。
それによって、本発明の第2の実施形態によるオムニアンテナは、図7に示すように、第1及び第2の放射素子アレイ21,22で発生する−45度偏波と、第3及び第4の放射素子アレイ23,24で発生する+45度偏波が相互に組み合わせ、全体的に+/−45度の二重偏波を発生する。このとき、図7に示すように、+/−45度偏波間の隔離度(isolation)を高めるために、同一の偏波を有する放射素子アレイ間を相互に結合させて隣接するように配置する構造を有することができる。
異なる偏波を発生する放射素子アレイ(例えば、第2及び第3の放射素子アレイ)間の離隔距離Sが大きいほど、隔離度特性が向上する。しかしながら、アンテナの小型化のために離隔距離Sを短縮する必要がある。離隔距離Sに影響を与えるいくつかの要因があり、各放射素子アレイの放射ビーム幅が減少すると、放射素子アレイ間に干渉が減少し、離隔距離Sもさらに短縮させることができる。また、離隔距離Sは、放射素子アレイの数が増加する場合、それに反比例する。
また、同一の偏波放射素子アレイ(例えば、第1及び第2の放射素子アレイ、または第3及び第4の放射素子アレイ)間の離隔距離gは、サイドローブ特性及び利得を考慮して適切に設定される。例えば、離隔距離gは、処理周波数に対しておよそ0.75〜0.8λ(λ:波長)に設定され得る。離隔距離gは、利得とサイドローブのサイズに比例するので、離隔距離gが小さいほどサイドローブを減少させることができる。それによって、オムニアンテナをもう少し小型化させることが可能である。
また、同一の偏波を有する放射素子アレイ間にはより高い隔離度を確保するために、水平面上で相対的に約60度の差を有するように設置される。例えば、図6により明確に示すように、第1の放射素子アレイ21に配置された放射素子が水平面で、0度、120度、240度に向かう位置に設置される場合に、第2の放射素子アレイ22に配置された各放射素子は、例えば60度、180度、300度に向かう位置に設置される。
本発明の第2の実施形態によるオムニアンテナは図5乃至図7に示すように構成される。図5及び図6は、本発明の第2の実施形態によるオムニアンテナが通常にアンテナ構造のように、オムニアンテナの全体外形を形成するケースとして上部キャップ28と下部キャップ29を含み、さらに上部キャップ28と下部キャップ29との間に放射素子アレイを取り囲むレドーム27を具備することを示す。また、本発明の第2の実施形態によるオムニアンテナは、放射素子アレイを支持する複数、例えば電波特性に影響を与えない材質(プラスチック、テフロン(登録商標)等)の第1乃至第3の支持台261,262,263を含む。さらに、オムニアンテナは、各放射素子アレイに給電するための給電構造及び送受信信号を処理するための信号処理装置をさらに含んでもよい。
図8は、図5の一つの放射素子アレイ、例えば第3の放射素子アレイ23の詳細斜視図であり、図9は、図5の一つの放射素子アレイ、例えば第3の放射素子アレイ23の展開平面図であり、図10は、図5の他の放射素子アレイ、例えば第1の放射素子アレイ21の展開平面図である。図8乃至図10を参照すると、図5に示した第1乃至第4の放射素子アレイ21-24は、各々一つのフレキシブルプリント回路基板232又は212上に複数の、例えば3個の放射素子23-1、23-2、23-3、又は21-1、21-2、21-3がパターンプリント方式でプリントされて所定の間隔で(例えば、連続して配置されるように)形成される構成を有することができる(図8では、説明の便宜上、プリント回路基板に該当する構成に対する図示は省略する)。
上記のように、3個の放射素子23-1、23-2、23-3、又は21-1、21-2、21-3が連続して形成されるフレキシブルプリント回路基板232又は212は、以後円筒形に巻かれ、相互に接するようになる両側面が相互に付着されて固定する形態で設置される。このようなフレキシブルプリント回路基板232又は212に設置される放射素子は、後述するように、給電パターンが形成されるプリント回路基板構造の給電基板(例えば、図8の33)を通じて各々給電される構造を有してもよい。このとき、給電基板は、フレキシブルプリント回路基板232,212に対応するサイズを有する円形に形成され、フレキシブルプリント回路基板232,212は、円形の給電基板を取り囲まれる形態で丸く巻かれて設置され得る。
このとき、各フレキシブルプリント回路基板232又は212において、各々の放射素子23-1、23-2、23-3、又は21-1、21-2、21-3に対して、水平偏波用ダイポール放射部の2個の放射アームは、給電点と隣接する部分に各々形成される貫通孔235又は215を有する。また、給電基板(例えば、図8の33)にはこのような貫通孔235、215が形成される位置に対応する位置に対応するサイズに各々突出部aが形成され得る。このような構造を通じてフレキシブルプリント回路基板232、212が給電基板を取り囲まれる形態で丸く巻かれて設置される場合に、貫通孔235,215に給電基板の突出部aが組み込まれる形態で設置できる。
図8において、一点鎖線で示す円領域Aにはフレキシブルプリント回路基板232の貫通孔235を通じて給電基板33の突出部aが挟まれる形態をより詳細に示す。このとき、給電基板33は、エポキシなどの材質の基板内層330の下部面に(突出部aまで延びる)接地パターン334が形成され、突出部aがフレキシブルプリント回路基板232の貫通孔235に挟まれた状態で部分bに示すように、以後半田付け作業を実行する。それによって、フレキシブルプリント回路基板232と給電基板33は一層安定するように固定され、かつフレキシブルプリント回路基板232の各貫通孔235の部分に形成された各放射素子23-1、23-2、23-3の水平偏波用ダイポール放射パターン230と給電基板33の接地パターン334を電気的に接続できる。
図8乃至図10に示す構成から明らかにわかるように、本発明の一部実施形態によるオムニアンテナでは、それぞれの放射素子23-1、23-2、23-3、又は21-1、21-2、21-3が各フレキシブルプリント回路基板232又は212に形成され、以後各フレキシブルプリント回路基板232又は212が丸く巻かれた形態で設置されることにより、各々の放射素子23-1,23-2、23-3、又は21-1、21-2、21-3は全体的に完全な平面でなく、左右の縁に比べて中間部分が凸状の曲面を有することがわかる。このような形態は、放射素子アレイ及びこれによるオムニアンテナの全体横方向サイズを減少する設計を可能にする。さらに各放射素子23-1、23-2、23-3、又は21-1、21-2、21-3から放射される放射ビームの組み合わせは、最適化されて最適の全方向放射特性を有することができる。
図11及び図12は、図5の一つの放射素子アレイ、例えば第3の放射素子アレイ23に適用される第1タイプの給電基板33の平面図及び背面図である。図13及び図14は、図5の他の放射素子アレイ、例えば第1の放射素子アレイ21に適用される第2のタイプの給電基板31の平面図及び背面図である。図11乃至図14を参照して、各放射素子アレイに給電信号を提供する給電部の構成として、給電基板33又は31の構成をより詳細に説明すると、第1タイプの給電基板33は、エポキシ材質などで構成される基板内層330と、基板内層330の上面に形成される給電パターン332(232-1、232-2、232-3)と、基板内層330の下面に形成される接地パターン334とを含む。また、第1タイプの給電基板33に複数の支持台(例えば、図5及び図6の261、262、263)が貫通され、複数の支持台により支持されるための複数の貫通孔h11、h12、h13が形成される。さらに、後述するように、給電線路が通るための複数の接続通路h21、h22、h23が適切な位置に貫通孔の形態に形成され得る。
給電パターン332(332-1、332-2、332-3)は、対応する放射素子アレイ23に形成される3個の放射素子に各々カップリング方式で給電するための第1乃至第3のカップリング給電パターン332-2、332-1、332-3を含む。第1乃至第3のカップリング給電パターン332-2、332-1、332-3は、給電基板33と放射素子アレイ23が相互に結合する突出部aで該当放射素子アレイ23の各放射素子にカップリング方式で給電するためのパターンを有する。第1乃至第3のカップリング給電パターン332-2、332-1、332-3は、給電基板33の中央に形成される一つの給電点Pから給電信号が各々分配される構造でパターンが形成される。給電点Pは、同軸ケーブルで構成される給電線路(例えば、43)を介して給電信号を受信するように構成される。
給電基板33と給電線路43の接続構造は、図11に一点鎖線で示す円領域Aにより詳細に示し、給電基板33の下部で給電線路43に接続され得る。同軸ケーブルで構成される給電線路43の内部導体432は、給電点Pに形成される貫通孔h1を通じて挿入されて給電基板33を貫通し、給電基板33の上面の給電パターン332に接続される。このとき、給電線路43の外部導体434は、給電基板33の下面の接地パターン334に接続される。以後、給電基板33の上面で給電パターン332と給電線路43の内部導体332が半田付けされ、給電基板33の下面で接地パターン334と給電線路43の外部導体434が半田付けされる。
図13及び図14は、第2タイプの給電基板31を示し、第2タイプの給電基板31は、第1タイプの給電基板33のように、基板内層310、基板内層310の上面に形成される給電パターン312(312-1、312-2、312-3)、及び基板内層310の下面に形成される接地パターン314を含む。また、複数の支持台が貫通され、複数の支持台により支持するための複数の貫通孔h11、h12、h13と、複数の給電線路が通るための複数の接続通路h21,h22、h23が適切な位置に形成される。
給電パターン312(312-1、312-2、312-3)は、対応する放射素子アレイ21に形成された3個の放射素子に各々カップリング方式で給電するための第1乃至第3のカップリング給電パターン312-2、312-1、312-3を有する。第1乃至第3のカップリング給電パターン312-2、312-1、312-3は、給電基板31の中央に形成される一つの給電点Pから給電信号が各々分配される構造でパターンが形成される。給電点Pは、同軸ケーブルで構成される給電線路を通じて給電信号を受信するように構成される。
このとき、第2タイプの給電基板31に形成される第1乃至第3のカップリング給電パターン312-1、312-2、312-3は、図11及び図12に示す給電基板33に形成されるパターンと多少差がある。すなわち、第2タイプの給電基板31に形成される第1乃至第3のカップリング給電パターン312-2、312-1、312-3は、図11及び図12に示す給電基板33に形成されるパターンに比べて信号カップリング部分で給電信号の進行方向が相互に反対になるように形成される。
図15は、図5のオムニアンテナの給電基板に対する給電線路の接続構造を示す。図15は、4個の放射素子アレイの各々に対応する第1乃至第4の給電基板31,32,33,34が上側から連続して設置される状態を概略的に示す。図15を参照すると、第1乃至第4の給電基板31,32,33,34は、各々第1乃至第4の給電線路41,42,43,44により給電される。このとき、第1及び第2の給電線路41,42は、第1の共通給電線路40-1から第1の分配器52を通じて分配された信号を各々受信するように構成される。同様に、第3及び第4の給電線路43,44は、第2の共通給電線路40-2から第2の分配器54を通じて分配された信号を各々受信するように構成される。
このような構成で、各給電線路41-44のうち異なる給電基板部分を通る給電線路(図15の例では、41,43,40-1)は、各給電基板31-34に形成された接続通路(h2:例えば、図11乃至図14のh21,h22,h23)を通過するように設計される。図15において、一点鎖線で示した円領域Aには、例えば第2の給電基板32の接続通路h2を通じて第1の給電線路41が通る構造をより詳細に示す。このとき、同軸ケーブルで構成される第1の給電線路41(の外部導体)は、第2の給電基板32の下面に形成される接地パターン324と半田付けされる。同様に、各給電基板の接続通路を通じて通る給電線路は、該当給電基板の下面に形成された接地パターン324と半田付けされる。それによって、各々の給電線路に該当する同軸ケーブルのケーブル接地と各給電基板の接地が相互に半田付けされ、接地特性がより安定化される。
一方、上記した構成において、各給電基板と接続される給電線路の長さは、各放射素子アレイから放射されるビームの位相を合せるために、例えば同一に設計される。それによって、例えば、第1の分配器52に接続される第1の給電線路41と第2の給電線路42の長さは、同一に設計される。この場合、第1の給電基板31と第2の給電基板32は、同一のタイプの給電基板を用いて位相が同一であるので、2個の基板間に位相差はない。第1タイプの給電基板と第2タイプの給電基板は、該当給電パターンの差に従って相互間の給電信号が180度の位相差を有する構造を有しつつ、各放射素子アレイに設置される給電基板のタイプを適切に異なって設計し、どの一側の給電基板に接続される給電線路の長さを180度の位相差に対応するように相当な長さを短縮させる。このとき、短縮される給電線路の長さは、波長、誘電率に従って変わることがある。例えば、第1の給電線路41が100mmである場合、第2の給電線路42は、2GHzで60mm、2.6GHzで40mmに長さを短縮させることができる。
このような給電線路の構成は、従来の複数の給電ケーブルが複雑に接続されることを単純化できる。したがって、アンテナの設計において構造的便利性を向上させ、ケーブルによる電力損失も低減させ、小型軽量化の目的にも適合する。
図16乃至図19は、図5のオムニアンテナの放射特性を示すグラフである。図16はオムニアンテナの放射特性を3次元的に示し、図17は垂直方向の放射特性を示し、図18及び図19は水平方向の放射特性を示す。図15乃至図19に示すように、本発明の実施形態によるオムニアンテナは、全方向放射特性が非常に優れるように形成されることがわかる。特に、図18及び図19に示すように、全方向放射パターンで水平方向のリップル(ripple)特性が設計周波数帯域(例えば、2.5GHz、2.6GHz、2.7GHz)で約0.2dBであって、非常に優れた放射パターンを示すことがわかる。
上記のように本発明の実施形態による移動通信サービス用オムニアンテナの構成及び動作が実行できる。一方、上記した本発明の説明では具体的な実施形態に関して説明したが、多様な変形が本発明の範囲を逸脱することなく実施可能である。
例えば、上記の実施形態に関する説明では、オムニアンテナ又は放射素子アレイが3個の放射素子に形成することを開示しているが、これは、放射素子アレイ及びオムニアンテナのサイズを最小化するための構成である。放射素子アレイ及びオムニアンテナの設計の際にサイズ制約が大きくない場合、放射素子を4個以上組み合わせて一つの放射素子アレイ又はオムニアンテナを形成することも可能である。さらに、場合によっては放射素子を2個のみを組み合わせてもよい。アンテナ使用環境によって放射素子数を変換して設計することもできる。例えば、高周波帯域で放射直径に比例して大きくなるリップルの影響を減少させるために、放射素子を減少させ、低周波帯域では放射素子の数を増加させてもよい。
また、上記の説明では、複数の放射素子が形成されるフレキシブルプリント回路基板が円筒形であると説明したが、それ以外にも、多面体形態を有することもできる。例えば、図20に示す放射素子アレイ25は、3個の放射素子252-1、252-2、252-3がフレキシブルプリント回路基板に形成されることを示す。このとき、フレキシブルプリント回路基板は、例えば三角柱状に折れ、各側面に各々の放射素子252-1、252-2、252-3が一つずつ配置される形態で構成され得る。また、上記の説明では一つのオムニアンテナ又は一つの放射素子アレイを形成する放射素子は、すべて+45度偏波を発生する第1のタイプで構成するか、あるいは−45度の偏波を発生する第2のタイプで構成すると説明したが、その他にも第1タイプ及び第2タイプの放射素子が混じる構造も可能である。例えば、一つの放射素子アレイは、+45度偏波を発生する第1タイプの放射素子と−45度偏波を発生する第2タイプの放射素子が交互に配置される形態で構成することもできる。
また、第2の実施形態によるオムニアンテナは、4個の放射素子アレイが組み合わせられる構造を示したが、その他にも、放射素子アレイが2個又は6個以上組み合わせられる構造も可能である。さらに、第2の実施形態によるオムニアンテナは、同一の偏波を有する放射素子アレイを相互に結合して隣接するように配置する構造を有することを説明した。さらに、+45度偏波を発生する放射素子アレイと−45度偏波を発生する放射素子アレイが垂直方向に交互に配置される形態で構成できる。
さらに、上記の説明では、各放射素子の4個の放射アームが製造工程を単純化して製造時間を短縮させるように、相互対称形構造の同一の形状を有するように設計されることに関して説明したが、それ以外にも4個の放射アームが異なる形状で実現されることもできる。例えば、図21に示す本発明の他の実施形態による放射素子の放射パターン110’の構造は、同様に2個の放射アーム110d’,110b’を有する水平偏波用ダイポール放射部と、2個の放射アーム110a’,110c’を有する垂直偏波用ダイポール放射部の結合構造を有する。このとき、水平偏波用ダイポール放射部の放射アーム110d’,110b’と、垂直偏波用ダイポール放射部の放射アーム110a’,110c’は、相互に同一の形状でないことを示す。このとき、水平偏波用ダイポール放射部の2個の放射アーム110d’,110b’は、相互に同一の形状を有し、同様に、垂直偏波用ダイポール放射部の2個の放射アーム110a’,110c’も相互に同一の形状を有することができる。
以上、本発明の詳細な説明においては具体的な実施形態に関して説明したが、特許請求の範囲を外れない限り、様々な変更が可能であることは、当該技術分野における通常の知識を持つ者には明らかである。したがって、本発明の範囲は、前述の実施形態に限定されるものではなく、特許請求の範囲の記載及びこれと均等なものに基づいて定められるべきである。
11 放射素子
14 給電線路
21−25 放射素子アレイ
27 レドーム
28 上部キャップ
29 下部キャップ
31 給電基板
33 給電基板
41−44 給電線路
52 分配器
54 分配器
110 放射アーム
112 フレキシブルプリント回路基板
113 放射アーム
215 貫通孔
230 水平偏波用ダイポール放射パターン
232 フレキシブルプリント回路基板
235 貫通孔
252−1 放射素子
252−2 放射素子
252−3 放射素子
261 支持台
262 支持台
263 支持台
310 基板内層
312 給電パターン
324 接地パターン
330 基板内層
332 給電パターン
334 接地パターン
432 内部導体
434 外部導体

Claims (17)

  1. 移動通信サービス用オムニアンテナであって、
    水平面上の一つの基準点から水平方向に所定の角度に従って相互に一定の間隔で配置され、各々ビームを放射する複数の放射素子と、
    前記複数の放射素子に各々給電信号を分配して提供する給電部と、を具備する放射素子アレイを含み、
    前記複数の放射素子の各々は、
    2個の放射アームを有する水平偏波用ダイポール放射部と、2個の放射アームを有する垂直偏波用ダイポール放射部とを含むことを特徴とするオムニアンテナ。
  2. 前記放射素子アレイは垂直方向に複数個が連続配置されることを特徴とする請求項1に記載のオムニアンテナ。
  3. 前記複数の放射素子の各々は、フレキシブルプリント回路基板(FPCB)を用いてパターンで具備されることを特徴とする請求項1又は2に記載のオムニアンテナ。
  4. 前記複数の放射素子は、前記FPCBに所定間隔で連続して配置され、前記FPCBは多面体形態又は円筒形であることを特徴とする請求項3に記載のオムニアンテナ。
  5. 前記複数の放射素子の放射パターンは、
    前記水平偏波用ダイポール放射部の一側の放射アームと前記垂直偏波用ダイポール放射部の一側の放射アームが対をなして一体に具備され、前記水平偏波用ダイポール放射部の他側の放射アームと前記垂直偏波用ダイポール放射部の他側の放射アームが対をなして一体に具備される第1のタイプ又は、
    前記水平偏波用ダイポール放射部の一側放射アームと前記垂直偏波用ダイポール放射部の他側放射アームが対をなして一体で具備され、前記水平偏波用ダイポール放射部の他側放射アームと前記垂直偏波用ダイポール放射部の一側放射アームが対をなして一体で具備される第2のタイプで構成されることを特徴とする請求項3に記載のオムニアンテナ。
  6. 前記水平偏波用ダイポール放射部の放射アームと前記垂直偏波用ダイポール放射部の放射アームに同時に給電されることを特徴とする請求項5に記載のオムニアンテナ。
  7. 前記水平偏波用ダイポール放射部の放射アームと前記垂直偏波用ダイポール放射部の放射アームは、少なくとも2個以上が同一の形状であることを特徴とする請求項5に記載のオムニアンテナ。
  8. 前記一体型の対で具備された水平偏波用放射部の放射アームと垂直偏波用放射部の放射アームは相互に対称形状であることを特徴とする請求項7に記載のオムニアンテナ。
  9. 前記水平偏波用ダイポール放射部の放射アームは相互に同一の形状であり、前記垂直偏波用ダイポール放射部の放射アームは相互に同一の形状であることを特徴とする請求項7に記載のオムニアンテナ。
  10. 前記複数の放射素子の個数が3個であることを特徴とする請求項1又は2に記載のオムニアンテナ。
  11. 前記複数の放射素子アレイは、第1の偏波及び第2の偏波を発生する少なくとも2個以上が垂直方向に連続して配置され、偏波方向が他の放射素子アレイが垂直方向に極性が相互対称であり、かつ同一の個数で配置されることを特徴とする請求項2に記載のオムニアンテナ。
  12. 前記偏波方向が異なる放射素子アレイ間の距離は放射素子アレイの数に反比例することを特徴とする請求項11に記載のオムニアンテナ。
  13. 前記複数の放射素子アレイは、第1の偏波を発生する放射素子アレイと第2の偏波を発生する放射素子アレイで構成され、
    前記複数の放射素子アレイの各々に給電信号を分配して提供する前記給電部は、
    前記複数の放射素子アレイごとに給電信号を提供する給電パターンを具備する複数の給電基板と、を含み、
    前記複数の給電基板は、
    前記給電パターンの差により給電信号が相互に位相差を有する第1のタイプと第2のタイプに区分して構成され、
    前記第1のタイプと第2のタイプの給電基板は、同一の偏波を発生する放射素子アレイに交互に提供されることを特徴とする請求項2に記載のオムニアンテナ。
  14. 前記複数の放射素子アレイは、第1の偏波を発生する放射素子アレイと第2の偏波を発生する放射素子アレイで構成され、
    同一の偏波を発生する放射素子アレイは、水平面上で相互に所定の角度差をおいて配置されることを特徴とする請求項2に記載のオムニアンテナ。
  15. 前記所定の角度は60度であることを特徴とする請求項14に記載のオムニアンテナ。
  16. 前記複数の放射素子アレイに各々給電信号を分配して提供する前記給電部は、前記複数の放射素子アレイごとに給電信号を提供する複数の給電基板を含み、
    前記複数の給電基板の各々は、
    基板内層と、
    前記基板内層の上面に形成され、対応する放射素子アレイに形成された複数の放射素子に各々カップリング方式で給電するための複数のカップリング給電パターンを有する給電パターンと、
    前記基板内層の下面に形成される接地パターンと、を含むことを特徴とする請求項2に記載のオムニアンテナ。
  17. 前記複数の給電基板の各々は、
    複数の給電線路を通じて給電され、
    異なる給電基板に給電する給電線路のうち少なくとも一つが通るための少なくとも一つの接続通路が貫通孔の形態に形成され、
    前記接続通路を通じて通る給電線路は前記接地パターンと半田付けされることを特徴とする請求項16に記載のオムニアンテナ。
JP2017510475A 2014-08-22 2015-07-21 移動通信サービス用オムニアンテナ Active JP6400839B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140109486A KR102172187B1 (ko) 2014-08-22 2014-08-22 이동통신 서비스용 옴니 안테나
KR10-2014-0109486 2014-08-22
PCT/KR2015/007548 WO2016027997A1 (ko) 2014-08-22 2015-07-21 이동통신 서비스용 옴니 안테나

Publications (2)

Publication Number Publication Date
JP2017528986A true JP2017528986A (ja) 2017-09-28
JP6400839B2 JP6400839B2 (ja) 2018-10-03

Family

ID=55350909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017510475A Active JP6400839B2 (ja) 2014-08-22 2015-07-21 移動通信サービス用オムニアンテナ

Country Status (5)

Country Link
US (2) US10355342B2 (ja)
JP (1) JP6400839B2 (ja)
KR (1) KR102172187B1 (ja)
CN (1) CN106688141B (ja)
WO (1) WO2016027997A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102172187B1 (ko) * 2014-08-22 2020-10-30 주식회사 케이엠더블유 이동통신 서비스용 옴니 안테나
KR20180099087A (ko) * 2017-02-28 2018-09-05 주식회사 케이엠더블유 이동통신 서비스용 이중편파 옴니 안테나
EP3462542B1 (en) * 2017-10-02 2021-05-19 Nokia Shanghai Bell Co. Ltd. Antenna and method of assembly of such antenna
TWI682583B (zh) * 2017-11-30 2020-01-11 財團法人金屬工業研究發展中心 利用非輻射耦合邊實現隔離之多天線系統
CN109962338A (zh) * 2017-12-25 2019-07-02 财团法人金属工业研究发展中心 利用非辐射耦合边实现隔离的多天线系统
WO2020200465A1 (en) * 2019-04-04 2020-10-08 Huawei Technologies Co., Ltd. Method for manufacturing an antenna element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062019A (en) * 1976-04-02 1977-12-06 Rca Corporation Low cost linear/circularly polarized antenna
JPH11284433A (ja) * 1998-03-30 1999-10-15 Apricot:Kk アンテナ装置
JPH11330850A (ja) * 1998-05-12 1999-11-30 Harada Ind Co Ltd 円偏波クロスダイポールアンテナ
JP2009044207A (ja) * 2007-08-06 2009-02-26 Ykc:Kk 広帯域アンテナ
JP2013501461A (ja) * 2009-08-03 2013-01-10 ヴェンティ・グループ・エルエルシー クロスダイポールアンテナ
JP2013530643A (ja) * 2010-05-28 2013-07-25 アルカテル−ルーセント 多帯域アンテナの2重偏波放射素子

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583226B1 (fr) * 1985-06-10 1988-03-25 France Etat Antenne omnidirectionnelle cylindrique
US5986610A (en) * 1995-10-11 1999-11-16 Miron; Douglas B. Volume-loaded short dipole antenna
US5872547A (en) * 1996-07-16 1999-02-16 Metawave Communications Corporation Conical omni-directional coverage multibeam antenna with parasitic elements
US5903826A (en) * 1996-12-06 1999-05-11 Northern Telecom Limited Extremely high frequency multipoint fixed-access wireless communication system
US6366254B1 (en) * 2000-03-15 2002-04-02 Hrl Laboratories, Llc Planar antenna with switched beam diversity for interference reduction in a mobile environment
US6693595B2 (en) * 2002-04-25 2004-02-17 Southern Methodist University Cylindrical double-layer microstrip array antenna
US6879291B2 (en) * 2003-03-04 2005-04-12 Nortel Networks Limited Offsetting patch antennas on an ominidirectional multi-facetted array to allow space for an interconnection board
CN100336269C (zh) * 2004-07-28 2007-09-05 西安海天天线科技股份有限公司 四极化六扇区阵列全向天线
US7880683B2 (en) * 2004-08-18 2011-02-01 Ruckus Wireless, Inc. Antennas with polarization diversity
US7522095B1 (en) * 2005-07-15 2009-04-21 Lockheed Martin Corporation Polygonal cylinder array antenna
JP2009159225A (ja) * 2007-12-26 2009-07-16 Samsung Electronics Co Ltd アンテナ装置
US7701384B2 (en) * 2008-04-08 2010-04-20 Honeywell International Inc. Antenna system for a micro air vehicle
CN101546869B (zh) * 2009-04-23 2012-08-29 上海交通大学 用于td-scdma基站的偶极子阵列天线
US20170149145A1 (en) * 2009-08-03 2017-05-25 Venti Group Llc Cross-Dipole Antenna Configurations
US8427385B2 (en) 2009-08-03 2013-04-23 Venti Group, LLC Cross-dipole antenna
US8558749B2 (en) * 2010-04-28 2013-10-15 Bae Systems Information And Electronic Systems Integration Inc. Method and apparatus for elimination of duplexers in transmit/receive phased array antennas
KR101111578B1 (ko) * 2010-06-08 2012-02-24 에스케이 텔레콤주식회사 이중편파 양방향성 안테나
US8736504B1 (en) * 2010-09-29 2014-05-27 Rockwell Collins, Inc. Phase center coincident, dual-polarization BAVA radiating elements for UWB ESA apertures
JP2014504124A (ja) * 2011-01-27 2014-02-13 ガルトロニクス コーポレイション リミテッド 広帯域偏波共用アンテナ
JP2012191501A (ja) * 2011-03-11 2012-10-04 Harada Ind Co Ltd アンテナ装置
US10548132B2 (en) * 2011-08-17 2020-01-28 Skyline Partners Technology Llc Radio with antenna array and multiple RF bands
JP5721073B2 (ja) * 2011-08-26 2015-05-20 株式会社Nttドコモ アンテナ
KR101315546B1 (ko) * 2011-09-01 2013-10-08 홍익대학교 산학협력단 메타물질 이중 대역 전방향성 원형편파 안테나
KR20130035052A (ko) * 2011-09-29 2013-04-08 주식회사 감마누 병렬급전 방식의 가변틸트 옴니안테나
CN102723577B (zh) * 2012-05-18 2014-08-13 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
US9276329B2 (en) * 2012-11-22 2016-03-01 Commscope Technologies Llc Ultra-wideband dual-band cellular basestation antenna
US9711871B2 (en) * 2013-09-11 2017-07-18 Commscope Technologies Llc High-band radiators with extended-length feed stalks suitable for basestation antennas
CN103811857B (zh) * 2014-01-21 2017-01-11 盛宇百祺(南京)通信技术有限公司 垂直极化全向天线和具有其的4g双极化全向吸顶天线
KR101551567B1 (ko) * 2014-03-12 2015-09-10 한국과학기술원 초소형 셀 기지국용 다중 대역, 이중 편파, 이중 빔 스위치 안테나 시스템 및 동작 방법
US10074910B1 (en) * 2014-08-01 2018-09-11 Rockwell Collins, Inc. Switchable X band communication panel
KR102172187B1 (ko) * 2014-08-22 2020-10-30 주식회사 케이엠더블유 이동통신 서비스용 옴니 안테나
US9831559B2 (en) * 2015-08-04 2017-11-28 Rockwell Collins, Inc. Low-profile blanket antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062019A (en) * 1976-04-02 1977-12-06 Rca Corporation Low cost linear/circularly polarized antenna
JPH11284433A (ja) * 1998-03-30 1999-10-15 Apricot:Kk アンテナ装置
JPH11330850A (ja) * 1998-05-12 1999-11-30 Harada Ind Co Ltd 円偏波クロスダイポールアンテナ
JP2009044207A (ja) * 2007-08-06 2009-02-26 Ykc:Kk 広帯域アンテナ
JP2013501461A (ja) * 2009-08-03 2013-01-10 ヴェンティ・グループ・エルエルシー クロスダイポールアンテナ
JP2013530643A (ja) * 2010-05-28 2013-07-25 アルカテル−ルーセント 多帯域アンテナの2重偏波放射素子

Also Published As

Publication number Publication date
US10910700B2 (en) 2021-02-02
US20170170550A1 (en) 2017-06-15
CN106688141A (zh) 2017-05-17
JP6400839B2 (ja) 2018-10-03
US10355342B2 (en) 2019-07-16
US20190296423A1 (en) 2019-09-26
CN106688141B (zh) 2021-07-20
KR20160023302A (ko) 2016-03-03
WO2016027997A1 (ko) 2016-02-25
KR102172187B1 (ko) 2020-10-30

Similar Documents

Publication Publication Date Title
JP6400839B2 (ja) 移動通信サービス用オムニアンテナ
KR101609665B1 (ko) 이동통신 기지국 안테나
US8878737B2 (en) Single feed planar dual-polarization multi-loop element antenna
KR101541374B1 (ko) 다중대역 다이폴 안테나 및 시스템
US10978813B2 (en) Bowtie antenna arrangement
US20130328733A1 (en) Waveguide or slot radiator for wide e-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
JP2014143591A (ja) アレイアンテナ
JP2021503227A (ja) 無線通信デバイスのためのアンテナシステム
US20220059951A1 (en) Dual polarized omni-directional antenna and base station including same
US10461417B2 (en) Power feed circuit and antenna device
KR102293354B1 (ko) 이동통신 서비스용 옴니 안테나
KR20150087171A (ko) 이중편파 다이폴 안테나 시스템
JP2004104682A (ja) アンテナ装置
JP2005269199A (ja) アンテナ装置
JP5582351B2 (ja) 無指向性アレイアンテナ
KR102178616B1 (ko) 안테나 및 그 제조 방법
US20220216619A1 (en) Base station antenna including fabrey-perot cavities
JP2017085513A (ja) アンテナ装置
TWM507585U (zh) 雙圓極化多波束陣列天線
KR101309505B1 (ko) 다중 입출력 안테나
JP2012039305A (ja) アンテナ装置
KR20150008690A (ko) 이중편파 다이폴 안테나 및 시스템
KR20150053098A (ko) 이중편파 다이폴 안테나 시스템

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180905

R150 Certificate of patent or registration of utility model

Ref document number: 6400839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250